1
|
Gbadamosi SO, Evans KA, Brady BL, Hoovler A. Noninvasive tests and diagnostic pathways to MASH diagnosis in the United States: a retrospective observational study. J Med Econ 2025; 28:314-322. [PMID: 39963742 DOI: 10.1080/13696998.2025.2468582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/03/2025]
Abstract
AIM Although liver biopsy is considered the most reliable diagnostic tool for metabolic dysfunction-associated steatohepatitis (MASH), it is invasive and can be costly. Clinicians are increasingly relying on routine biomarkers and other noninvasive tests (NITs) for diagnosis. We examined real-world diagnostic pathways for patients newly diagnosed with MASH with a primary focus on NITs. MATERIALS AND METHODS This retrospective, observational study analyzed healthcare claims data (Merative MarketScan Commercial and Medicare Databases) from patients in the United States newly diagnosed with MASH from October 1, 2016, to March 31, 2023. Patients ≥18 years old with ≥12 months of continuous enrollment with medical and pharmacy benefits prior to diagnosis were included. Diagnostic pathways leading up to MASH diagnosis, including NITs (blood-based and imaging-based tests) and liver biopsies were assessed. Prevalence of comorbid conditions, MASH-associated medication use, and the diagnosing physician specialty were also examined. RESULTS A total of 18,396 patients were included in the analysis. Routine laboratory tests (alanine aminotransferase [ALT], albumin, aspartate aminotransferase [AST], cholesterol, complete blood count, and hemoglobin A1c) were performed among ≥70% of patients prior to MASH diagnosis, including 89% of patients with a liver enzyme test (ALT and/or AST). More than 75% of patients had necessary laboratory tests to calculate AST to platelet ratio index (APRI) and fibrosis-4 index (FIB-4) scores. The most common imaging performed was ultrasound (62%); liver biopsy was only performed in 10% of patients. There was a high prevalence of cardio metabolic risk factors such as hyperlipidemia (66%), hypertension (62%), obesity (58%), type 2 diabetes (40%), and cardiovascular disease (21%). Nearly half of the patients (49%) were diagnosed by a primary care physician. LIMITATIONS AND CONCLUSIONS This study highlights real-world diagnostic pathways among patients newly diagnosed with MASH, supporting previous findings that liver biopsies are infrequently used in favor of noninvasive methods.
Collapse
|
2
|
Gruevska A, Leslie J, Perpiñán E, Maude H, Collins AL, Johnson S, Evangelista L, Sabey E, French J, White S, Moir J, Robinson SM, Alrawashdeh W, Thakkar R, Forlano R, Manousou P, Goldin R, Carling D, Hoare M, Thursz M, Mann DA, Cebola I, Posma JM, Safinia N, Oakley F, Hall Z. Spatial lipidomics reveals sphingolipid metabolism as anti-fibrotic target in the liver. Metabolism 2025; 168:156237. [PMID: 40127860 DOI: 10.1016/j.metabol.2025.156237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND AND AIMS Steatotic liver disease (SLD), which encompasses various causes of fat accumulation in the liver, is a major cause of liver fibrosis. Understanding the specific mechanisms of lipotoxicity, dysregulated lipid metabolism, and the role of different hepatic cell types involved in fibrogenesis is crucial for therapy development. METHODS We analysed liver tissue from SLD patients and 3 mouse models. We combined bulk/spatial lipidomics, transcriptomics, imaging mass cytometry (IMC) and analysis of published spatial and single-cell RNA sequencing (scRNA-seq) data to explore the metabolic microenvironment in fibrosis. Pharmacological inhibition of sphingolipid metabolism with myriocin, fumonisin B1, miglustat and D-PDMP was carried out in hepatic stellate cells (HSCs) and human precision cut liver slices (hPCLSs). RESULTS Bulk lipidomics revealed increased glycosphingolipids, ether lipids and saturated phosphatidylcholines in fibrotic samples. Spatial lipidomics detected >40 lipid species enriched within fibrotic regions, notably sphingomyelin (SM) 34:1. Using bulk transcriptomics (mouse) and analysis of published spatial transcriptomics data (human) we found that sphingolipid metabolism was also dysregulated in fibrosis at transcriptome level, with increased gene expression for ceramide and glycosphingolipid synthesis. Analysis of human scRNA-seq data showed that sphingolipid-related genes were widely expressed in non-parenchymal cells. By integrating spatial lipidomics with IMC of hepatic cell markers, we found excellent spatial correlation between sphingolipids, such as SM(34:1), and myofibroblasts. Inhibiting sphingolipid metabolism resulted in anti-fibrotic effects in HSCs and hPCLSs. CONCLUSIONS Our spatial multi-omics approach suggests cell type-specific mechanisms of fibrogenesis involving sphingolipid metabolism. Importantly, sphingolipid metabolic pathways are modifiable targets, which may have potential as an anti-fibrotic therapeutic strategy.
Collapse
Affiliation(s)
- Aleksandra Gruevska
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, University of Newcastle, Newcastle-upon-Tyne, United Kingdom
| | - Elena Perpiñán
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, United Kingdom
| | - Hannah Maude
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Amy L Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, University of Newcastle, Newcastle-upon-Tyne, United Kingdom
| | - Sophia Johnson
- Newcastle Fibrosis Research Group, Biosciences Institute, University of Newcastle, Newcastle-upon-Tyne, United Kingdom
| | - Laila Evangelista
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Eleanor Sabey
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jeremy French
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, United Kingdom
| | - Steven White
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, United Kingdom
| | - John Moir
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, United Kingdom
| | - Stuart M Robinson
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, United Kingdom
| | - Wasfi Alrawashdeh
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, United Kingdom
| | - Rohan Thakkar
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, United Kingdom
| | - Roberta Forlano
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Pinelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Robert Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - David Carling
- MRC Laboratory of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthew Hoare
- Early Cancer Institute, University of Cambridge, Cambridge, United Kingdom
| | - Mark Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, University of Newcastle, Newcastle-upon-Tyne, United Kingdom
| | - Inês Cebola
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Joram M Posma
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Niloufar Safinia
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, United Kingdom
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, University of Newcastle, Newcastle-upon-Tyne, United Kingdom; FibroFind, Unit 26/27, Baker's Yard, Christon Road, Newcastle upon Tyne, United Kingdom
| | - Zoe Hall
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
3
|
Vergani M, Borella ND, Rizzo M, Conti M, Perra S, Bianconi E, Sani E, Csermely A, Grespan E, Targher G, Perseghin G, Mantovani A, Ciardullo S. Metabolic dysfunction-associated steatotic liver disease, insulin sensitivity and continuous glucose monitoring metrics in patients with type 1 diabetes: A multi-centre cross-sectional study. Diabetes Obes Metab 2025; 27:3201-3211. [PMID: 40083078 PMCID: PMC12046442 DOI: 10.1111/dom.16333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND AND AIM We assessed the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) and significant liver fibrosis in adults with type 1 diabetes mellitus (T1DM) and the association of MASLD with insulin sensitivity and continuous glucose monitoring metrics. METHODS We consecutively enrolled 198 adults with T1DM undergoing vibration-controlled transient elastography with liver stiffness measurement (LSM) and controlled attenuation parameter (CAP). All participants had a continuous glucose monitoring (CGM) device. Insulin sensitivity was evaluated by estimated glucose disposal rate (eGDR). MASLD was defined as CAP ≥ 248 db/m and the presence of at least one cardiometabolic risk factor. Significant liver fibrosis was defined as LSM ≥ 7 kPa. RESULTS Patients had a mean age of 56 years, mean BMI of 26.0 ± 5.9 kg/m2, and mean eGDR of 7.1 ± 2.3 mg/kg/min. 73 (37%) patients had MASLD (using a CAP threshold of 274 dB/m), 16 (8.1%) of whom had significant liver fibrosis. MASLD was associated with a significantly lower eGDR (beta coefficient = -0.367, 95% confidence interval -0.472 to -0.261; p < 0.001). This association remained significant, even after adjustment for age, sex, body mass index, plasma triglycerides, diabetes duration, daily insulin dose, time above the range of glucose levels, LSM and chronic kidney disease. No association was observed between MASLD and CGM-derived metrics. These results were not different when we used a CAP threshold of 274 dB/m for diagnosing MASLD. CONCLUSION In T1DM, MASLD was inversely associated with eGDR and biomarkers of insulin resistance but not with CGM-derived metrics.
Collapse
Affiliation(s)
- Michela Vergani
- Department of Medicine and RehabilitationPoliclinico di MonzaMonzaItaly
- School of Medicine and SurgeryUniversity of Milano BicoccaMilanItaly
| | - Nicolò Diego Borella
- Section of Endocrinology, Diabetes and Metabolism, Department of MedicineUniversity and Azienda Ospedaliera Universitaria Integrata of VeronaVeronaItaly
| | - Mariangela Rizzo
- Department of Medicine and RehabilitationPoliclinico di MonzaMonzaItaly
- School of Medicine and SurgeryUniversity of Milano BicoccaMilanItaly
| | - Matteo Conti
- Department of Medicine and RehabilitationPoliclinico di MonzaMonzaItaly
- School of Medicine and SurgeryUniversity of Milano BicoccaMilanItaly
| | - Silvia Perra
- Department of Medicine and RehabilitationPoliclinico di MonzaMonzaItaly
| | - Eleonora Bianconi
- Department of Medicine and RehabilitationPoliclinico di MonzaMonzaItaly
| | - Elena Sani
- Section of Endocrinology, Diabetes and Metabolism, Department of MedicineUniversity and Azienda Ospedaliera Universitaria Integrata of VeronaVeronaItaly
| | - Alessandro Csermely
- Section of Endocrinology, Diabetes and Metabolism, Department of MedicineUniversity and Azienda Ospedaliera Universitaria Integrata of VeronaVeronaItaly
| | - Elisabetta Grespan
- Section of Endocrinology, Diabetes and Metabolism, Department of MedicineUniversity and Azienda Ospedaliera Universitaria Integrata of VeronaVeronaItaly
| | - Giovanni Targher
- Department of MedicineUniversity of VeronaVeronaItaly
- Metabolic Diseases Research UnitIRCCS Sacro Cuore‐Don Calabria HospitalNegrar di Valpolicella (VR)Italy
| | - Gianluca Perseghin
- Department of Medicine and RehabilitationPoliclinico di MonzaMonzaItaly
- School of Medicine and SurgeryUniversity of Milano BicoccaMilanItaly
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of MedicineUniversity and Azienda Ospedaliera Universitaria Integrata of VeronaVeronaItaly
| | - Stefano Ciardullo
- Department of Medicine and RehabilitationPoliclinico di MonzaMonzaItaly
- School of Medicine and SurgeryUniversity of Milano BicoccaMilanItaly
| |
Collapse
|
4
|
Chen HF, Chang YY, Chen P, Shen XH, Chang CH, Hsu WL. Risks of liver cirrhosis, hepatocellular carcinoma, hepatic-related complications, and mortality in patients with type 2 diabetes in Taiwan. World J Diabetes 2025; 16:104576. [DOI: 10.4239/wjd.v16.i5.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/25/2025] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Hepatitis B and C and alcoholic liver disease are the principal causes of hepatic-related morbidity and mortality. However, evidence of the associations between diabetes without the above risk factors and hepatic-related study endpoints is not well understood. In addition, the effects of associated metabolic dysfunction and exercise on hepatic outcomes are still not clear.
AIM To investigate the incidence and relative hazards of cirrhosis of the liver, hepatocellular carcinoma (HCC), hepatic-related complications and mortality in patients with type 2 diabetes (T2D) who were nonalcoholic and serologically negative for hepatitis B and C in Taiwan.
METHODS A total of 33184 T2D patients and 648746 nondiabetic subjects selected from Taiwan’s adult preventive health care service were linked to various National Health Insurance databases, cancer registry, and death registry to identify cirrhosis of the liver, HCC, hepatic-related complications, and mortality. The Poisson assumption and Cox proportional hazard regression model were used to estimate the incidences and relative hazards of all hepatic-related study endpoints, respectively. We also compared the risk of hepatic outcomes stratified by age, sex, associated metabolic dysfunctions, and regular exercise between T2D patients and nondiabetic subjects.
RESULTS Compared with nondiabetic subjects, T2D patients had a significantly greater incidence (6.32 vs 17.20 per 10000 person-years) and greater risk of cirrhosis of the liver [adjusted hazard ratio (aHR) 1.45; 95%CI: 1.30-1.62]. The aHRs for HCC, hepatic complications, and mortality were 1.81, 1.87, and 2.08, respectively. An older age, male sex, obesity, hypertension, and dyslipidemia further increased the risks of all hepatic-related study endpoints, and regular exercise decreased the risk, irrespective of diabetes status.
CONCLUSION Patients with T2D are at increased risk of cirrhosis of the liver, HCC, hepatic-related complications, and mortality, and associated metabolic dysfunctions provide additional hazard. Coordinated interprofessional care for high-risk T2D patients and diabetes education, with an emphasis on the importance of physical activity, are crucial for minimizing hepatic outcomes.
Collapse
Affiliation(s)
- Hua-Fen Chen
- Department of Endocrinology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yung-Yueh Chang
- Department of Endocrinology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City 100, Taiwan
| | - Peter Chen
- Department of Gastroenterology, Choninn Hospital, Choninn Medical Group, New Taipei City 220, Taiwan
| | - Xiao-Han Shen
- Department of Endocrinology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Master Program of Big Data in Medical Healthcare Industry, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Data Science Center, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Chin-Huan Chang
- Department of Endocrinology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Wan-Lun Hsu
- Master Program of Big Data in Medical Healthcare Industry, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Data Science Center, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
5
|
Wada N, Iwaki M, Kobayashi T, Nakajima A, Yoneda M. Reducing complications of metabolic dysfunction-associated steatotic liver disease. Expert Rev Gastroenterol Hepatol 2025:1-12. [PMID: 40366767 DOI: 10.1080/17474124.2025.2502549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Complications from metabolic dysfunction-associated steatotic liver disease (MASLD) include liver-related and extrahepatic complications, and the all-cause mortality rate is significantly higher in patients with MASLD than in those without MASLD. AREAS COVERED We review the complications of MASLD and their management based on the European Association for the Study of the Liver (EASL) and American Association for the Study of Liver Diseases (AASLD) guidelines as well as medical papers. For the papers, we focused on studies referenced in the EASL and AASLD guidelines. Additionally, a search was conducted in PubMed to gather relevant literature. EXPERT OPINION Identifying and managing MASLD early, before it progresses to cirrhosis, is crucial to reducing mortality rates, and collaboration among healthcare professionals, including dietitians, nurses, and physical therapists, is vital for comprehensive management. There is active development of new drugs for MASLD, and we hope that new treatments will be developed soon.
Collapse
Affiliation(s)
- Naohiro Wada
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
6
|
Shah A, MacConell L, Liberman A, Di Bisceglie AM, Shapiro D. Challenges in Histological Endpoints for MASH Therapies: An Exercise in Statistical Modelling. Aliment Pharmacol Ther 2025; 61:1489-1499. [PMID: 39945523 DOI: 10.1111/apt.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/21/2024] [Accepted: 02/01/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Regulatory-accepted efficacy endpoints for nonalcoholic steatohepatitis (NASH; recently updated to metabolic-dysfunction associated steatohepatitis, MASH) clinical trials include fibrosis improvement with no worsening of NASH or NASH resolution with no worsening of fibrosis determined by liver biopsy using the NASH Clinical Research Network criteria. These endpoints involve the scoring of four liver histology parameters, all of which are associated with significant inter-/intra-reader variability. Since few trials have shown positive results with these endpoints, we evaluated the effects of imprecision in histologic scoring on trial results from a statistical perspective. METHODS Estimating the probability (sensitivity) of accurately scoring histology is based on the relationship between measures of agreement and sensitivity. We simulated kappa values for a range of sensitivities. Then, using published kappa values from NASH trials, we selected corresponding sensitivities for histology parameters. Finally, simulations assuming a range of "overscore" and "underscore" probabilities were conducted to estimate the dilution of the true effect size. RESULTS Simulations for 2-arm trials with sample sizes of 400 (mix of stage 2/3 fibrosis) subjects showed ~50% dilution of the true effect size for both approvable endpoints due to scoring imprecision. Such dilution remains constant regardless of sample size. CONCLUSION Imprecise histologic scoring disproportionately impacts the 'superior' arm as the error is proportional to the true response rate. This dilution of effect size should be considered when weighing the clinical benefit and the overall risk-benefit profile in the review of NASH studies. This argues for the adoption of non-invasive biomarkers rather than histologic endpoints.
Collapse
Affiliation(s)
- Amrik Shah
- Karma Statistics LLC, Skillman, New Jersey, USA
| | | | | | | | - David Shapiro
- Integrated Quality Resources, San Diego, California, USA
| |
Collapse
|
7
|
Younossi ZM, Razavi H, Sherman M, Allen AM, Anstee QM, Cusi K, Friedman SL, Lawitz E, Lazarus JV, Schuppan D, Romero-Gómez M, Schattenberg JM, Vos MB, Wong VWS, Ratziu V, Hompesch M, Sanyal AJ, Loomba R. Addressing the High and Rising Global Burden of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Metabolic Dysfunction-Associated Steatohepatitis (MASH): From the Growing Prevalence to Payors' Perspective. Aliment Pharmacol Ther 2025; 61:1467-1478. [PMID: 39967239 DOI: 10.1111/apt.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/10/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND The continuum of metabolic syndrome encompasses a spectrum of dysfunctions impacting obesity-linked insulin resistance, glucose homeostasis, lipid metabolism and pro-inflammatory immune responses. The global prevalence of metabolic diseases, including diabetes, chronic liver disease, cardiometabolic disease and kidney disease, has surged in recent decades, contributing significantly to population mortality. Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is a leading cause of liver disease worldwide. MASLD poses a significant global health challenge with its rising prevalence, placing a substantial burden on healthcare systems, impacts patient well-being and incurs significant economic costs. Addressing MASLD requires a comprehensive understanding of its interconnected factors, including its prevalence, healthcare burden and economic implications. Lack of awareness, imprecise non-invasive diagnostic methods and ineffective preventive interventions are core components of the MASLD-related problem. AIM The aim of this article was to summarise the global burden of MASLD from the payer's perspective. METHODS We carried out a review of the global comprehensive burden of MASLD. These topics led to discussions and insights by an expert panel during the 7th Metabolic Continuum Roundtable meeting, which took place in November 2023. This meeting focused on the burden, patient-reported outcomes and health economics, from payor and societal perspectives, and aimed to identify opportunities for improving patient care, optimise resource allocation and mitigate the overall impact on individuals and society related to MASLD. During the roundtable, an emphasis emerged on the need for greater awareness and strategic deployment of diagnostic, therapeutic and preventative measures to address MASLD effectively. CONCLUSION The global burden of MASLD is high and growing. Prioritising the prevention of metabolic dysregulation and timely therapeutic interventions can yield a holistic strategy to combat MASLD, its progression and potentially lower disease costs. TRIAL REGISTRATION NCT06309992.
Collapse
Affiliation(s)
- Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- The Global NASH Council, Washington, DC, USA
| | - Homie Razavi
- Center for Disease Analysis Foundation, Lafayette, Colorado, USA
| | - Michael Sherman
- RA Capital Management, L.P., Boston, Massachusetts, USA
- Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alina M Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic Minnesota, Rochester, Minnesota, USA
| | - Quentin M Anstee
- Faculty of Medical Sciences, Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes & Metabolism, University of Florida, Gainesville, Florida, USA
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eric Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jeffrey V Lazarus
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- City University of New York Graduate School of Public Health and Health Policy (CUNY SPH), New York, New York, USA
| | - Detlef Schuppan
- Mainz University, Mainz, Germany
- Germany & Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Manuel Romero-Gómez
- Department of Medicine, UCM Digestive Diseases, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (HUVR/CSIC/US), CIBEREHD, ISCIII, University of Seville, Seville, Spain
| | - Jörn M Schattenberg
- Department of Internal Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Miriam B Vos
- Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Vincent Wai-Sun Wong
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Vlad Ratziu
- Sorbonne Université and Pitié-Salpêtrière Hospital Paris, Paris, France
| | | | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology at UC San Diego, MASLD Research Center California, La Jolla, California, USA
| |
Collapse
|
8
|
Giri S, Ingawale S, Khatana G, Gore P, Praharaj DL, Wong VWS, Huang DQ, Singhal A, Choudhury A. Metabolic Cause of Cirrhosis Is the Emerging Etiology for Primary Liver Cancer in the Asia-Oceania Region: Analysis of Global Burden of Disease (GBD) Study 2021. J Gastroenterol Hepatol 2025; 40:1188-1201. [PMID: 40016821 DOI: 10.1111/jgh.16922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/01/2025]
Abstract
INTRODUCTION Studies have shown a change in the etiological profile of liver cancer globally. We aimed to analyze the burden and changes in etiology of liver cancer in the Asia-Oceania region. METHODS The burden of liver cancer in Asia-Oceania was estimated using data from the 2021 Global Burden of Disease (GBD) Study. The analysis included age-standardized incidence (ASIR), prevalence (ASPR), mortality (ASMR), and disability-adjusted life years (DALY) per 100 000 population. RESULTS The Asia-Oceania region contributed 68.6%, 68.8%, and 67.3% of the global incidence, prevalence, and mortality of liver cancer in 2021. In 2021, Mongolia, Tonga, and South Korea had the highest ASIR, ASPR, and ASMR, whereas Australia, New Zealand, and Guam had the greatest increase in incidence and mortality rates. Viral hepatitis remained the most common etiology of liver cancer, with 47.7% and 26.1% of cases being related to hepatitis B virus (HBV) and hepatitis C virus (HCV), respectively. Around 14.5% and 7.1% of cases were related to alcohol and nonalcoholic steatohepatitis (NASH), respectively; however, the annual change in the ASIR was the highest for NASH. Alcohol, drug abuse, tobacco use, and metabolic syndrome, contributed to 15.2%, 11.7%, 11.5%, and 9.0% of liver cancer mortality in 2021; however, the change in death from 1990 to 2021 was the highest for metabolic syndrome. CONCLUSION Viral hepatitis remains the most common cause of liver cancer, with NASH having the highest annual rate of change in ASIR and liver cancer deaths in Asia-Oceania.
Collapse
Affiliation(s)
- Suprabhat Giri
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Sushrut Ingawale
- Division of Internal Medicine, Frank H. Netter MD School of Medicine, Bridgeport, Connecticut, USA
| | - Gaurav Khatana
- Department of Gastroenterology, Government Medical College, Kottayam, India
| | - Prasanna Gore
- Department of Gastroenterology, Wellness Hospital, Hyderabad, India
| | - Dibya Lochan Praharaj
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease and Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Amit Singhal
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ashok Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
9
|
Moolla A, Poolman T, Othonos N, Dong J, Smith K, Cornfield T, White S, Ray DW, Mouchti S, Mózes FE, Thomaides-Brears H, Neubauer S, Cobbold JF, Hodson L, Tomlinson JW. Randomised trial comparing weight loss through lifestyle and GLP-1 receptor agonist therapy in people with MASLD. JHEP Rep 2025; 7:101363. [PMID: 40342635 PMCID: PMC12060445 DOI: 10.1016/j.jhepr.2025.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 05/11/2025] Open
Abstract
Background & Aims Glucagon-like peptide 1 receptor agonist (GLP-1RA) therapies deliver histological benefit in people with metabolic dysfunction-associated steatotic liver disease (MASLD). Multiple mechanisms may be important including weight loss, improved glycaemic control and putative direct tissue-specific actions. Following cessation of GLP1-RA therapy, weight regain is common. To dissect the mechanisms underpinning their benefits, we conducted a prospective, randomised, experimental medicine study in people with MASLD, comparing GLP-1RA treatment (liraglutide) to matched lifestyle-induced weight loss and assessed the impact of treatment withdrawal. Methods Twenty-nine participants with MASLD, without type 2 diabetes underwent metabolic phenotyping including measurement de novo lipogenesis (DNL), liver magnetic resonance imaging, body composition, adipose tissue RNA sequencing, circulating proteome, and stool microbiome analysis. Participants were randomised to lifestyle (∼500 kcal energy deficit) or GLP1-RA treatment for 12 weeks, after which investigations were repeated, and treatment stopped; investigations were also repeated 12 weeks after treatment withdrawal. Results Matched weight loss was achieved in both arms. Body composition changes, reductions in alanine aminotransferase, liver steatosis, and disease activity were similar following both treatments. GLP-1RA treatment, but not lifestyle, improved glucose handling, fasting lipids, and significantly deceased DNL. The subcutaneous adipose transcriptome, circulating proteome profile and stool microbiome were not different between groups after treatment. However, 12 weeks after GLP1-RA (but not lifestyle) withdrawal, circulating MMP-10, IL10RB, FGF-23, and Flt3L were elevated, alongside dysregulated adipose gene expression. Conclusions Although matched weight loss through lifestyle or GLP-1RA have comparable effects on hepatic steatosis, GLP-1RA treatment had additional metabolic benefits on glucose homeostasis, lipid profiles, and DNL. However, GLP-1RA withdrawal may adversely impact the circulating proteome, adipose tissue gene expression, and the stool microbiome, predisposing to weight regain. Impact and implications Weight loss, through either lifestyle intervention or pharmacotherapy with GLP-1RA has an equally beneficial impact on the liver, and both strategies should be considered in the management of people with MASLD. GLP-1RA therapy may have additional benefits to improve glucose homeostasis even in the absence of pre-existing type 2 diabetes. Further research is needed to explore the differential impact of treatment withdrawal and the resultant metabolic consequences. Clinical Trials Registration This study is registered at EudraCT (2016-002045-36).
Collapse
Affiliation(s)
- Ahmad Moolla
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Toryn Poolman
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
- Structural and Molecular Biology, Faculty of Life Sciences, University College London, London, UK
| | - Nantia Othonos
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Jiawen Dong
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Kieran Smith
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Thomas Cornfield
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Sarah White
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - David W. Ray
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, University of Oxford, Oxford, UK
- Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | - Ferenc E. Mózes
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jeremy F. Cobbold
- Department of Gastroenterology and Hepatology, Oxford University Hospitals, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Jeremy W. Tomlinson
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
10
|
Choque Vargas C, Cáceres F, Landeira G, Perez S, Marchi L, Ruffillo G, Tevez S, Puga-Tejada M, Fassio E. Cardiovascular events and incident diabetes in 220 patients with MASLD according to basal liver fibrosis: a 10-year follow-up historic cohort. Eur J Gastroenterol Hepatol 2025; 37:660-667. [PMID: 39975992 DOI: 10.1097/meg.0000000000002943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
AIM The aim of this study is to analyze association between liver fibrosis with CVE, incident diabetes, and cirrhosis complications. METHODS Historic cohort of biopsy-proven MASLD patients, divided into two groups: F0-F2 vs F3-F4 fibrosis. Baseline data included metabolic traits and liver function tests. Patients were contacted and scheduled for laboratory analysis and elastography. Endpoints were (a) CVE, defined as any of acute myocardial infarction, coronary stenting, ischemic cardiopathy, and stroke; (b) incident diabetes; (c) cirrhosis complications. Baseline data were collected at the time of liver biopsy, while follow-up data were recovered through personal interview or medical records. A stepwise logistic regression determined predictive variables for each endpoint. RESULTS Study population included 220 patients with median age 53 years, and 145 were women; baseline fibrosis was F0-F2 in 165 patients and F3-F4 in 55 patients; median follow-up was 9.9 years. A higher percentage of F3-F4 patients had CVE (29.4%) than F0-F2 ones (13.1%) (hazard ratio 2.42; 95% CI: 1.26-4.6; P = 0.008). Incident diabetes occurred in 53.3% of F3-F4 and 20.2% of F0-F2 cohort (hazard ratio 3.04; 95% CI: 1.99-4.86; P < 0.001); cirrhosis complications occurred in 9/55 F3-F4 patients and in 1/165 F0-F2 ones (hazard ratio 26.3; 95% CI: 3.3-208.3; P = 0.002). Multivariate analysis confirmed liver fibrosis as an independent predictor of incident diabetes and cirrhosis complications. CVE were associated with baseline diabetes and aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio. CONCLUSION In a cohort of 220 MASLD patients followed for 9.9 years, baseline F3-F4 was associated with incident diabetes and cirrhosis complications. AST/ALT ratio and diabetes were associated with CVE.
Collapse
Affiliation(s)
- Cinthia Choque Vargas
- Sección Hígado, Vías Biliares y Páncreas, Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, El Palomar, Buenos Aires, Argentina
| | - Francisco Cáceres
- Sección Hígado, Vías Biliares y Páncreas, Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, El Palomar, Buenos Aires, Argentina
| | - Graciela Landeira
- Sección Hígado, Vías Biliares y Páncreas, Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, El Palomar, Buenos Aires, Argentina
| | - Soledad Perez
- Sección Hígado, Vías Biliares y Páncreas, Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, El Palomar, Buenos Aires, Argentina
| | - Laura Marchi
- Sección Hígado, Vías Biliares y Páncreas, Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, El Palomar, Buenos Aires, Argentina
| | - Gabriela Ruffillo
- Sección Hígado, Vías Biliares y Páncreas, Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, El Palomar, Buenos Aires, Argentina
| | - Silvina Tevez
- Sección Hígado, Vías Biliares y Páncreas, Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, El Palomar, Buenos Aires, Argentina
| | - Miguel Puga-Tejada
- Sección Hígado, Vías Biliares y Páncreas, Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, El Palomar, Buenos Aires, Argentina
- División de Investigación Médica & Bioestadística, Instituto Ecuatoriano de Enfermedades Digestivas, Guayaquil, Ecuador
| | - Eduardo Fassio
- Sección Hígado, Vías Biliares y Páncreas, Servicio de Gastroenterología, Hospital Nacional Prof. Alejandro Posadas, El Palomar, Buenos Aires, Argentina
| |
Collapse
|
11
|
Singal AK, Wong RJ, Dasarathy S, Abdelmalek MF, Neuschwander-Tetri BA, Limketkai BN, Petrey J, McClain CJ. ACG Clinical Guideline: Malnutrition and Nutritional Recommendations in Liver Disease. Am J Gastroenterol 2025; 120:950-972. [PMID: 40314389 DOI: 10.14309/ajg.0000000000003379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 01/29/2025] [Indexed: 05/03/2025]
Abstract
Malnutrition, defined as deficiency, excess, or imbalance of nutrients, is a common complication in patients with liver disease, especially those with cirrhosis. Malnutrition may present as an isolated micronutrient deficiency, such as zinc deficiency, and it commonly presents as frailty and/or sarcopenia in patients with advanced liver disease. Patients with cirrhosis and/or alcohol-associated hepatitis should be assessed for malnutrition because it adversely affects patient outcomes including mortality, as well as waitlist and posttransplant outcomes among liver transplant candidates. The prevalence of malnutrition varies based on the method of assessment and disease severity, being higher in those with advanced liver disease. Among stable outpatients with cirrhosis, counseling should be done to eat small frequent meals, a night-time snack between 7 PM and 10 PM, and 2 or more cups of coffee daily. In selected patients with metabolic dysfunction-associated steatohepatitis, vitamin E 800 IU/d should be provided. Among hospitalized patients with cirrhosis, nutritional supplementation preferably by enteral route should be implemented in those with poor oral intake of daily requirements of proteins and/or calories. Protein intake should not be restricted including patients with decompensated cirrhosis and hepatic encephalopathy. A vegetable source of protein seems to be better tolerated than an animal source of protein in patients with hepatic encephalopathy. Branched chain amino acids augment the efficacy of lactulose and rifaximin in the treatment of hepatic encephalopathy. Level of evidence and strength of recommendations were evaluated using the Grading of Recommendations, Assessment, Development, and Evaluations system. This guideline was developed under the auspices of the American College of Gastroenterology Practice Parameters Committee.
Collapse
Affiliation(s)
- Ashwani K Singal
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Robert J Wong
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Srinivasan Dasarathy
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Brent A Neuschwander-Tetri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, USA
| | - Berkeley N Limketkai
- Divisions of Digestive Diseases and Clinical Nutrition, UCLA School of Medicine, Los Angeles, California, USA
| | - Jessica Petrey
- Kornhauser Health Sciences Library, University of Louisville, Louisville, Kentucky, USA; and
| | - Craig J McClain
- Departments of Medicine and Pharmacology & Toxicology, Chief of Research Affairs, Division of Gastroenterology, Hepatology and Nutrition, Associate Vice President for Health Affairs/Research, Associate Vice President for Translational Research, Louisville, Kentucky, USA
| |
Collapse
|
12
|
Huang DQ, Wilson LA, Behling C, Amangurbanova M, Kleiner DE, Kowdley KV, Dasarathy S, Terrault NA, Diehl AM, Chalasani N, Neuschwander-Tetri BA, Sanyal AJ, Tonascia J, Loomba R. Liver stiffness progression in biopsy-proven metabolic dysfunction-associated steatotic disease among people with diabetes versus people without diabetes: A prospective multicenter study. Hepatology 2025; 81:1553-1563. [PMID: 39028908 DOI: 10.1097/hep.0000000000001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/29/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND AND AIMS There are limited data on the progression of liver stiffness measurement (LSM) by vibration-controlled transient elastography (VCTE) in people with type 2 diabetes mellitus (T2DM) versus those without T2DM in biopsy-proven metabolic dysfunction-associated steatotic liver disease. We examined LSM progression in participants with T2DM versus those without T2DM in a large, prospective, multicenter cohort study. APPROACH AND RESULTS This study included 1231 adult participants (62% female) with biopsy-proven metabolic dysfunction-associated steatotic liver disease who had VCTEs at least 1 year apart. LSM progression and regression were defined by a ≥20% increase and an upward or downward change, respectively, in the LSM category in the Baveno VII categories for compensated advanced chronic liver disease, compared between participants with T2DM (n = 680) versus no T2DM (n = 551) at baseline. The mean (±SD) age and body mass index were 51.8 (±12.0) years and 34.0 (±6.5) kg/m 2 , respectively. The median (IQR) time between the first and last VCTE measurements was 4.1 (2.5-6.5) years. Participants with T2DM had higher LSM progression at 4 years (12% vs. 10%), 6 years (23% vs. 16%), and 8 years (50% vs. 39%), p = 0.04. Using a multivariable Cox proportional hazards model adjusted for multiple confounders, the presence of T2DM remained an independent predictor of LSM progression (adjusted HR: 1.35, 95% CI: 1.01-1.81, p = 0.04). T2DM was not associated with LSM regression ( p = 0.71). Mean HbA1c was significantly associated with LSM progression ( p = 0.003) and regression ( p = 0.02). CONCLUSIONS Using serial VCTE data from a multicenter study of participants with biopsy-proven metabolic dysfunction-associated steatotic liver disease, we demonstrate that T2DM and HbA1c are associated with LSM progression.
Collapse
Affiliation(s)
- Daniel Q Huang
- Division of Gastroenterology, MASLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, California, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Laura A Wilson
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cynthia Behling
- Department of Pathology, University of California San Diego School of Medicine, San Diego, California, USA
| | - Maral Amangurbanova
- Division of Gastroenterology, MASLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, California, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Norah A Terrault
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Arun J Sanyal
- Division of Gastroenterology and Hepatology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - James Tonascia
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rohit Loomba
- Division of Gastroenterology, MASLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, California, USA
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, California, USA
| |
Collapse
|
13
|
Lima LCV, Al-Sharif L, Souza M. Editorial commentary: Cardiovascular-liver-metabolic health: Time to integrate liver assessment into cardiology practice? Trends Cardiovasc Med 2025; 35:266-268. [PMID: 39864639 DOI: 10.1016/j.tcm.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Affiliation(s)
- Luan C V Lima
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lubna Al-Sharif
- Department of Biomedical Sciences and Basic Clinical Skills, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Matheus Souza
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Neuschwander-Tetri BA, Akbary K, Carpenter DH, Noureddin M, Alkhouri N. The Emerging Role of Second Harmonic Generation/Two Photon Excitation for Precision Digital Analysis of Liver Fibrosis in MASH Clinical Trials. J Hepatol 2025:S0168-8278(25)00285-5. [PMID: 40316054 DOI: 10.1016/j.jhep.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 04/08/2025] [Accepted: 04/23/2025] [Indexed: 05/04/2025]
Abstract
Conventional histopathological evaluation of liver biopsy slides has been invaluable in assessing the causes of liver injury, the severity of the underlying disease processes, and the degree of resulting fibrosis. However, the use of conventional histologic assessments as endpoints in clinical trials is limited by the reliability of scoring systems, variability in interpretation of histologic features and translation of continuous variables into categorical scores. To increase the precision and reproducibility of liver biopsy assessment, several artificial intelligence/machine learning (AI/ML) approaches have been developed to analyse high resolution digital images of liver biopsy specimens. Multiple AI/ML platforms are in development with promising results in post-hoc analyses of clinical trial biopsies. One such technique employs images generated by Second Harmonic Generation/Two Photon Excitation (SHG/TPE) microscopy that uniquely uses unstained liver biopsies to provide high resolution images of collagen fibres to assess and quantify collagen morphometry, and avoid challenges related to staining variability. One SHG/TPE microscopy methodology coupled with AI/ML based analysis, qFibrosis™, has been used post-hoc as an exploratory endpoint in several clinical trials for metabolic dysfunction-associated steatohepatitis (MASH) demonstrating its ability to provide a consistent and more nuanced assessment of liver fibrosis that still correlates well with traditional staging. This review summarizes the development of qFibrosis and outlines the need for additional studies to validate it as a sensitive marker for changes in fibrosis in the context of treatment trials and correlate these changes with subsequent liver-related outcomes.
Collapse
Affiliation(s)
| | - Kutbuddin Akbary
- HistoIndex, Teletech Park, 20 Science Park Road, Singapore 117674
| | - Danielle H Carpenter
- Department of Pathology, Division of Anatomic Pathology, Saint Louis University, St. Louis, MO 63104, USA
| | - Mazen Noureddin
- Sherrie & Alan Conover Center for Liver Disease & Transplantation, Underwood Center for Digestive Disorders Department of Medicine, Houston Methodist Hospital, Houston, Texas; Houston Research Institute, Houston, Texas
| | | |
Collapse
|
15
|
Sanyal AJ, Newsome PN, Kliers I, Østergaard LH, Long MT, Kjær MS, Cali AMG, Bugianesi E, Rinella ME, Roden M, Ratziu V. Phase 3 Trial of Semaglutide in Metabolic Dysfunction-Associated Steatohepatitis. N Engl J Med 2025. [PMID: 40305708 DOI: 10.1056/nejmoa2413258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
BACKGROUND Semaglutide, a glucagon-like peptide-1 receptor agonist, is a candidate for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). METHODS In this ongoing phase 3, multicenter, randomized, double-blind, placebo-controlled trial, we assigned 1197 patients with biopsy-defined MASH and fibrosis stage 2 or 3 in a 2:1 ratio to receive once-weekly subcutaneous semaglutide at a dose of 2.4 mg or placebo for 240 weeks. The results of a planned interim analysis conducted at week 72 involving the first 800 patients are reported here (part 1). The primary end points for part 1 were the resolution of steatohepatitis without worsening of liver fibrosis and reduction in liver fibrosis without worsening of steatohepatitis. RESULTS Resolution of steatohepatitis without worsening of fibrosis occurred in 62.9% of the 534 patients in the semaglutide group and in 34.3% of the 266 patients in the placebo group (estimated difference, 28.7 percentage points; 95% confidence interval [CI], 21.1 to 36.2; P<0.001). A reduction in liver fibrosis without worsening of steatohepatitis was reported in 36.8% of the patients in the semaglutide group and in 22.4% of those in the placebo group (estimated difference, 14.4 percentage points; 95% CI, 7.5 to 21.3; P<0.001). Results for the three secondary outcomes that were included in the plan to adjust for multiple testing were as follows: combined resolution of steatohepatitis and reduction in liver fibrosis was reported in 32.7% of the patients in the semaglutide group and in 16.1% of those in the placebo group (estimated difference, 16.5 percentage points; 95% CI, 10.2 to 22.8; P<0.001). The mean change in body weight was -10.5% with semaglutide and -2.0% with placebo (estimated difference, -8.5 percentage points; 95% CI, -9.6 to -7.4; P<0.001). Mean changes in bodily pain scores did not differ significantly between the two groups. Gastrointestinal adverse events were more common in the semaglutide group. CONCLUSIONS In patients with MASH and moderate or advanced liver fibrosis, once-weekly semaglutide at a dose of 2.4 mg improved liver histologic results. (Funded by Novo Nordisk; ClinicalTrials.gov number, NCT04822181.).
Collapse
Affiliation(s)
- Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond
| | - Philip N Newsome
- Roger Williams Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College London, Foundation for Liver Research and King's College Hospital, London
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | | - Mary E Rinella
- Division of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago
| | - Michael Roden
- Department of Endocrinology and Diabetology, Faculty of Medicine, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Munich-Neuherberg, Germany
| | - Vlad Ratziu
- Sorbonne Université, Institute for Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, INSERM Unité Mixte de Recherche Scientifique 1138 Centre de Recherche des Cordeliers, Paris
| |
Collapse
|
16
|
Cerban R, Iacob S, Ester C, Ghioca M, Chitul M, Iacob R, Gheorghe L. Liver Elastography Methods for Diagnosis of De Novo and Recurrent Hepatocellular Carcinoma. Diagnostics (Basel) 2025; 15:1087. [PMID: 40361905 PMCID: PMC12072106 DOI: 10.3390/diagnostics15091087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 05/15/2025] Open
Abstract
Hepatocellular carcinoma (HCC), a common consequence of chronic liver disease, ranks among the most prevalent cancers globally and contributes significantly to cancer-related mortality. Liver fibrosis is intimately associated with hepatic function and the likelihood of future HCC occurrence. Despite the fact that liver biopsy continues to be the gold standard for diagnosing fibrosis, its utility is hindered by cost and invasiveness, along with patient unease, procedural rejection, and potential adverse effects. Liver elastography has become a leading noninvasive means of assessing tissue stiffness with considerable diagnostic precision. Malignant tumors generally exhibit higher cellularity in comparison to benign ones, resulting in increased stiffness. Elastography techniques capitalize on alterations in tissue elasticity stemming from specific pathological or physiological processes. Technological innovations, such as advanced ultrasound imaging and artificial intelligence (AI)-integrated systems, are paving the way for enhanced diagnostic accuracy and risk prediction. Recent research underscores the potential of elastography in managing HCC patients, presenting novel clinical applications, including prediction of HCC development, differentiation between malignant and benign liver lesions, evaluating treatment response, and forecasting recurrence post-treatment, though certain findings remain contentious. Therefore, this review aims to sum up the latest advancements in liver elastography for HCC patients, outlining its applications while addressing existing limitations and avenues for future progress.
Collapse
Affiliation(s)
- Razvan Cerban
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.); (C.E.); (M.C.); (R.I.); (L.G.)
- Center for Digestive Diseases and Liver Transplant, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Speranta Iacob
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.); (C.E.); (M.C.); (R.I.); (L.G.)
- Center for Digestive Diseases and Liver Transplant, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Carmen Ester
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.); (C.E.); (M.C.); (R.I.); (L.G.)
- Center for Digestive Diseases and Liver Transplant, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Mihaela Ghioca
- Center for Digestive Diseases and Liver Transplant, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Mirela Chitul
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.); (C.E.); (M.C.); (R.I.); (L.G.)
| | - Razvan Iacob
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.); (C.E.); (M.C.); (R.I.); (L.G.)
- Center for Digestive Diseases and Liver Transplant, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Liana Gheorghe
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.); (C.E.); (M.C.); (R.I.); (L.G.)
- Center for Digestive Diseases and Liver Transplant, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| |
Collapse
|
17
|
Niziński P, Krajewska A, Oniszczuk T, Polak B, Oniszczuk A. Hepatoprotective Effect of Kaempferol-A Review. Molecules 2025; 30:1913. [PMID: 40363718 PMCID: PMC12073652 DOI: 10.3390/molecules30091913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025] Open
Abstract
Liver diseases, including chronic inflammation and related metabolic dysfunction-associated steatotic liver disease (MASLD), fibrosis and cirrhosis remain a growing global health burden. Currently, available pharmacotherapy for liver dysfunction has limited efficacy. Kaempferol, a naturally occurring flavonoid, has demonstrated significant hepatoprotective effects in preclinical models. This substance activates the SIRT1/AMPK signalling pathway, improves mitochondrial function, inhibits proinflammatory cytokine production via TLR4/NF-κB suppression and attenuates hepatic stellate cell activation by modulating the TGF-β/Smad pathway. In addition, kaempferol regulates the composition of the gut microbiota, thus improving bile acid metabolism and alleviating steatosis and fibrosis. This review presents an integrated analysis of recent in vitro and in vivo studies on the mode of action and utility of kaempferol in liver disease and hepatoprotection.
Collapse
Affiliation(s)
- Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Anna Krajewska
- Department of Comprehensive Paediatric and Adult Dentistry, Medical University of Lublin, Chodżki 6, 20-093 Lublin, Poland;
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Beata Polak
- Department of Physical Chemistry, Medical University of Lublin, Chodżki 4a, 20-093 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
18
|
Jiao X, Lai L, Qian Y, Sun B, Yang W. Identification of MEOX1 as a potential target in metabolic dysfunction-associated steatohepatitis-related liver fibrosis. Int J Biol Markers 2025:3936155251335975. [PMID: 40270091 DOI: 10.1177/03936155251335975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
BackgroundThe mechanisms underlying the occurrence and progression of metabolic dysfunction-associated steatohepatitis (MASH)-related liver fibrosis remains poorly understood. This study aims to identify key transcription factors involved in the development of liver fibrosis in MASH patients, thereby providing potential targets for drug discovery.MethodsMicroarray data were retrieved from liver biopsy specimens of MASH patients exhibiting varying stages of fibrosis via the Gene Expression Omnibus database. Differentially expressed transcription factors (DETFs) were identified through the application of Weighted Gene Co-expression Network Analysis. A set of in vitro and in vivo experiments were conducted to investigate the role of MEOX1 in MASH-related fibrosis. To delineate the potential mechanisms, the transcriptomic RNA sequencing (RNA-seq), Alphafold, and PyMOL were used.ResultsA total of six DETFs (MEOX1, SOX4, LEF1, SOX9, MYC, and CBX2) were identified as being positively correlated with the progression of MASH-related fibrosis. MEOX1 was increased in mouse model of MASH diet-induced liver fibrosis and hepatic stellate cells (HSCs) stimulated by transforming growth factor-β1. Knockdown of the MEOX1 markedly suppressed the activation, proliferation, and migration of HSCs. RNA-Seq analysis identified serine protease inhibitor family E member 1 (SERPINE1) as the critical target of MEOX1 within HSCs. The protein interaction sites of MEOX1 and SERPINE1 were predicted using Alphafold and PyMOL.ConclusionIn summary, as a pivotal transcription factor, MEOX1 activates HSCs via SERPINE1, thereby promoting liver fibrosis associated with MASH. Inhibition of the MEOX1-SERPINE1 pathway could offer a novel therapeutic avenue for treating MASH-related fibrosis.
Collapse
Affiliation(s)
- Xiaoxiao Jiao
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Linying Lai
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Yiting Qian
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Bo Sun
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Wenzhuo Yang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| |
Collapse
|
19
|
Wu TX, Pang HZ, Liu XD, Liu L, Tang YF, Luo XF, Ran XK. Adiponectin alleviates inflammatory response in metabolic dysfunction-associated steatohepatitis by inhibiting NLRP3 inflammasome-mediated hepatocyte pyroptosis. Hepatobiliary Pancreat Dis Int 2025:S1499-3872(25)00061-X. [PMID: 40307114 DOI: 10.1016/j.hbpd.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Activation of NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasomes induced by pyroptosis is crucial in metabolic dysfunction-associated steatohepatitis (MASH) progression. Adiponectin possesses an anti-inflammatory role in various liver diseases. This study aimed to evaluate the effects of adiponectin on MASH. METHODS Adiponectin-mediated anti-inflammatory mechanisms, effects on pyroptosis-related proteins, and activation of NLRP3 inflammasomes were investigated using methionine-choline-deficient (MCD)-induced MASH murine model and in vitro models. The degree of MASH inflammation in liver tissue of C57BL/6J mice was assessed using histopathology. Enzyme-linked immunosorbent assay was performed to measure levels of inflammatory factors [interleukin-18 (IL-18), IL-1β, and tumor necrosis factor-α (TNF-α)] in mice serum and culture medium. Western blot and quantitative polymerase chain reaction were performed to analyze the expression of pyroptosis-related genes and proteins in liver tissues of mouse model and in vitro models. Macrophage recruitment in vitro was evaluated using co-culture of upper and lower chambers. RESULTS MASH developed in MCD diet mice [metabolic dysfunction-associated steatotic liver disease (MASLD) activity score = 6] but not in methionine-choline-sufficient (MCS) diet mice (MASLD activity score = 3). Compared to MCS-fed mice, MCD-fed mice showed increased serum levels of aspartate aminotransferase, IL-18, IL-1β, and TNF-α and higher MASLD activity score (P < 0.001). Adiponectin inhibited these increases (P < 0.05) and suppressed mRNA and protein levels of NLRP3, gasdermin-D (GSDMD), and GSDMD-N in liver tissues (P < 0.05). In vitro, lipopolysaccharide (LPS)/palmitic acid (PA) increased the levels of IL-18, IL-1β, and TNF-α, mRNA expressions of CASP1 and GSDMD, and production of CASP1, NLRP3, GSDMD, and GSDMD-N (P < 0.01). Adiponectin reduced the levels of these inflammatory factors and downregulated the mRNA expression and protein generation of pyroptosis-related markers (P < 0.05). HepG2 cells pretreated with LPS/PA recruited more J774A.1 cells (P < 0.001) and increased inflammatory factor secretion by J774A.1 cells (P < 0.001). Adiponectin inhibited this recruitment and reduced inflammatory factor secretion (P < 0.001). CONCLUSIONS Adiponectin inhibits hepatocyte pyroptosis by reducing the production and activation of NLRP3 inflammasomes, CASP1, and GSDMD, thus improving the inflammatory response in MASH and possibly delaying or reversing MASLD progression.
Collapse
Affiliation(s)
- Tie-Xiong Wu
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530000, China; Department of Hepatobiliary, the Third Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Hua-Zhen Pang
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China; Department of Gastroenterology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou 545001, China
| | - Xu-Dong Liu
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530000, China; Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China.
| | - Li Liu
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Yan-Fang Tang
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xue-Fei Luo
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiao-Ke Ran
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530000, China
| |
Collapse
|
20
|
Oeda S, Inoue K, Isoda H, Hirai K, Takahashi H. Survey on Awareness and Implementation Rate of Ultrasound Elastography and Attenuation Imaging. Intern Med 2025; 64:1143-1149. [PMID: 39293981 DOI: 10.2169/internalmedicine.4128-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Objective Recent developments in ultrasound elastography (UE) and ultrasound attenuation imaging (UA) have enabled the detection of advanced liver fibrosis and steatosis in patients with steatotic liver disease (SLD), which is prevalent worldwide. In patients with SLD, the presence of advanced liver fibrosis determines the risk of hepatocarcinogenesis, and UE and UA are expected to play important roles in liver cancer surveillance. We conducted a questionnaire survey among medical facilities in Saga Prefecture regarding the actual status of awareness and implementation of UE and UA. Methods A 16-item questionnaire was sent to 275 facilities that employed members of the Liver Cancer Control Medical Association in Saga Prefecture. The response rate was 56% (153 facilities), and data from 142 facilities were analyzed after excluding 11 facilities. Results The most common facilities were outpatient clinics (60%) followed by hospitals with ≥100 beds (14%). In 48% of the facilities, an average of 10-49 abdominal ultrasound examinations were performed monthly. The rates of recognition that UE and UA are useful for fibrosis and steatosis were 65% (92/142) and 41% (58/142), respectively. The actual availability of UE and UA in facilities with ultrasound machines was 21% (30/142) and 12% (17/142), respectively; UE and UA were used in 90% (27/30) and 88% (15/17) of these facilities, respectively. Conclusion Even among medical facilities in Saga Prefecture that are active in liver cancer surveillance, awareness of UE and UA is not high. The availability of UE and UA may be inadequate, considering the high prevalence of SLD.
Collapse
Affiliation(s)
- Satoshi Oeda
- Liver Center, Saga University Hospital, Japan
- Department of Laboratory Medicine, Saga University Hospital, Japan
| | - Kaori Inoue
- Liver Center, Saga University Hospital, Japan
- Education and Research Center for Community Medicine, Faculty of Medicine, Saga University, Japan
| | | | | | | |
Collapse
|
21
|
Habibi M, Ferguson D, Eichler SJ, Chan MM, Fu C, Pietka TA, Bredemeyer AL, LaPoint A, Shew TM, He M, Liss KHH, Lutkewitte AJ, Cho K, Schilling JD, Patti GJ, Finck BN. A Critical Role for the Mitochondrial Pyruvate Carrier in Hepatic Stellate Cell Activation. Cell Mol Gastroenterol Hepatol 2025:101517. [PMID: 40239806 DOI: 10.1016/j.jcmgh.2025.101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND & AIMS Hepatic stellate cells (HSCs) are non-parenchymal cells of the liver that produce the extracellular matrix that forms fibrotic lesions in chronic liver disease, including metabolic dysfunction-associated steatohepatitis (MASH). The mitochondrial pyruvate carrier (MPC) catalyzes the transport of pyruvate from the cytosol into the mitochondrial matrix, which is a critical step in pyruvate metabolism. An MPC inhibitor has shown promise as a novel therapeutic for MASH and HSC activation, but a mechanistic understanding of the direct effects of MPC inhibition on HSC activation is lacking. METHODS Stable lines of LX2 cells expressing short hairpin RNA against MPC2 were established and examined in a series of studies to assess HSC metabolism and activation. Mice with conditional, HSC-specific MPC2 deletion were generated and their phenotypes assessed in the context of diets that cause hepatic steatosis, injury, and early-stage fibrosis. RESULTS Genetic suppression of MPC activity markedly decreased expression of markers of HSC activation in vitro. MPC knockdown reduced the abundance of several intermediates of the tricarboxylic acid cycle and attenuated HSC activation by suppressing hypoxia inducible factor-1α signaling. Supplementing alpha-ketoglutarate to replenish the tricarboxylic acid cycle intermediates was sufficient to overcome the effects of MPC inhibition on hypoxia inducible factor-1α and HSC activation. On high-fat diets, mice with HSC-specific MPC deletion exhibited reduced circulating transaminases, numbers of HSCs, and hepatic expression of markers of HSC activation and inflammation compared with wild-type mice. CONCLUSIONS These data suggest that MPC inhibition modulates HSC metabolism to attenuate activation and illuminate mechanisms by which MPC inhibitors could prove therapeutically beneficial for treating MASH.
Collapse
Affiliation(s)
- Mohammad Habibi
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel Ferguson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Sophie J Eichler
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mandy M Chan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Christina Fu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Terri A Pietka
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Andrea L Bredemeyer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew LaPoint
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Trevor M Shew
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Kim H H Liss
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; (4)Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew J Lutkewitte
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kevin Cho
- Department of Chemistry, Washington University, St. Louis, Missouri
| | - Joel D Schilling
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Gary J Patti
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Chemistry, Washington University, St. Louis, Missouri
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
22
|
Gbadamosi SO, Swindle JP, Nguyen H, Li Q, Hoovler A. Cardiovascular events, mortality, and incident type 2 diabetes in patients with metabolic dysfunction-associated steatohepatitis: a claims-based analysis of commercial and Medicare Advantage enrollees. Expert Rev Pharmacoecon Outcomes Res 2025:1-10. [PMID: 40215125 DOI: 10.1080/14737167.2025.2490303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND The objective of this study was to examine the risks of cardiovascular events, incident type 2 diabetes (T2D), and mortality in patients with newly diagnosed metabolic dysfunction-associated steatohepatitis (MASH) compared with those without MASH in a large real-world setting in the US. METHODS We retrospectively analyzed US claims data from Optum®'s de-identified Clinformatics® Data Mart database from October 2015 to December 2022. Patients with newly diagnosed MASH were matched 1:1 on age, sex, region, and index month-year with patients without MASH, and repeated for a subgroup without baseline diabetes. Risks of clinical outcomes associated with MASH were assessed using Cox proportional hazard models. RESULTS The study comprised 24,278 matched pairs in the patients with and without MASH cohorts. Patients with MASH had increased risks for any cardiovascular event (adjusted HR: 1.48 [95% CI = 1.38-1.58]), and all-cause mortality (1.31; 1.20-1.42) compared to those without MASH. For the subgroup without baseline diabetes (10,027 matched pairs), the adjusted HRs were 1.94 (95% CI = 1.68-2.23) for incident T2D and 1.40 (95% CI = 1.20-1.64) for all-cause mortality. CONCLUSION Our findings suggest increased risks of cardiovascular events, incident T2D, and mortality among patients newly diagnosed with MASH compared with patients without MASH.
Collapse
Affiliation(s)
- Semiu O Gbadamosi
- Real World Evidence, Clinical Data Science and Evidence, Novo Nordisk Inc., Plainsboro, NJ, USA
| | | | | | - Qian Li
- Evidera, Inc., Bethesda, MD, USA
| | | |
Collapse
|
23
|
Boulos M, Mousa RS, Jeries N, Simaan E, Alam K, Bulus B, Assy N. Hidden in the Fat: Unpacking the Metabolic Tango Between Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Syndrome. Int J Mol Sci 2025; 26:3448. [PMID: 40244398 PMCID: PMC11989262 DOI: 10.3390/ijms26073448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic syndrome (MetS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are closely related, with rapidly increasing prevalence globally, driving significant public health concerns. Both conditions share common pathophysiological mechanisms such as insulin resistance (IR), adipose tissue dysfunction, oxidative stress, and gut microbiota dysbiosis, which contribute to their co-occurrence and progression. While the clinical implications of this overlap, including increased cardiovascular, renal, and hepatic risk, are well recognized, current diagnostic and therapeutic approaches remain insufficient due to the clinical and individuals' heterogeneity and complexity of these diseases. This review aims to provide an in-depth exploration of the molecular mechanisms linking MetS and MASLD, identify critical gaps in our understanding, and highlight existing challenges in early detection and treatment. Despite advancements in biomarkers and therapeutic interventions, the need for a comprehensive, integrated approach remains. The review also discusses emerging therapies targeting specific pathways, the potential of precision medicine, and the growing role of artificial intelligence in enhancing research and clinical management. Future research is urgently needed to combine multi-omics data, precision medicine, and novel biomarkers to better understand the complex interactions between MetS and MASLD. Collaborative, multidisciplinary efforts are essential to develop more effective diagnostic tools and therapies to address these diseases on a global scale.
Collapse
Affiliation(s)
- Mariana Boulos
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Rabia S. Mousa
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nizar Jeries
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Elias Simaan
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Klode Alam
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Bulus Bulus
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nimer Assy
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
24
|
Hou M, Gu Q, Cui J, Dou Y, Huang X, Li J, Qiao L, Nan Y. Proportion and clinical characteristics of metabolic-associated fatty liver disease and associated liver fibrosis in an urban Chinese population. Chin Med J (Engl) 2025; 138:829-837. [PMID: 39183555 PMCID: PMC11970824 DOI: 10.1097/cm9.0000000000003141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Metabolic-associated fatty liver disease (MAFLD) is the predominant form of chronic liver disease worldwide. This study was designed to investigate the proportion and characteristics of MAFLD within the general Chinese population and to identify the contributory risk factors for liver fibrosis among MAFLD individuals. METHODS The participants were recruited from a cohort undergoing routine health evaluations at the Third Hospital of Hebei Medical University between May 2019 and March 2023. The diagnosis of MAFLD was based on the established clinical practice guidelines. The fibrosis-4 index score (FIB-4) was employed to evaluate hepatic fibrosis, with a FIB-4 score of ≥1.3 indicating significant fibrosis. Binary logistic regression analyses were used to determine risk factors associated with significant hepatic fibrosis in MAFLD. RESULTS A total of 22,970 participants who underwent comprehensive medical examinations were included in the analysis. The overall proportion of MAFLD was 28.77% (6608/22,970), with 16.87% (1115/6608) of these patients showing significant fibrosis as assessed using FIB-4. Independent risk factors for significant liver fibrosis in MAFLD patients were male (odds ratio [OR] = 0.676, 95% confidence interval [CI]: 0.558-0.821), hepatitis B surface antigen (HBsAg) positivity (OR = 2.611, 95% CI: 1.557-4.379), body mass index ≥23.00 kg/m 2 (OR = 0.632, 95% CI: 0.470-0.851), blood pressure ≥130/85 mmHg (OR = 1.885, 95% CI: 1.564-2.272), and plasma glucose ≥5.6 mmol/L (OR = 1.815, 95% CI: 1.507-2.186) (all P <0.001). CONCLUSIONS The proportion of MAFLD in an urban Chinese population is 28.77%. About 16.87% of MAFLD patients presented with significant liver fibrosis. Independent risk factors for significant liver fibrosis in MAFLD patients should be noticed.
Collapse
Affiliation(s)
- Mengmeng Hou
- Department of Traditional and Western Medical Hepatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Qi Gu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jiawei Cui
- Department of Traditional and Western Medical Hepatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Yao Dou
- Department of Traditional and Western Medical Hepatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Xiuhong Huang
- Healthy Physical Examination Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Liang Qiao
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
25
|
Onoiu AI, Domínguez DP, Joven J. Digital Pathology Tailored for Assessment of Liver Biopsies. Biomedicines 2025; 13:846. [PMID: 40299404 PMCID: PMC12024806 DOI: 10.3390/biomedicines13040846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Improved image quality, better scanners, innovative software technologies, enhanced computational power, superior network connectivity, and the ease of virtual image reproduction and distribution are driving the potential use of digital pathology for diagnosis and education. Although relatively common in clinical oncology, its application in liver pathology is under development. Digital pathology and improving subjective histologic scoring systems could be essential in managing obesity-associated steatotic liver disease. The increasing use of digital pathology in analyzing liver specimens is particularly intriguing as it may offer a more detailed view of liver biology and eliminate the incomplete measurement of treatment responses in clinical trials. The objective and automated quantification of histological results may help establish standardized diagnosis, treatment, and assessment protocols, providing a foundation for personalized patient care. Our experience with artificial intelligence (AI)-based software enhances reproducibility and accuracy, enabling continuous scoring and detecting subtle changes that indicate disease progression or regression. Ongoing validation highlights the need for collaboration between pathologists and AI developers. Concurrently, automated image analysis can address issues related to the historical failure of clinical trials stemming from challenges in histologic assessment. We discuss how these novel tools can be incorporated into liver research and complement post-diagnosis scenarios where quantification is necessary, thus clarifying the evolving role of digital pathology in the field.
Collapse
Affiliation(s)
- Alina-Iuliana Onoiu
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Universitat Rovira i Virgili, 43204 Reus, Spain;
- Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - David Parada Domínguez
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Universitat Rovira i Virgili, 43204 Reus, Spain;
- Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, 43201 Reus, Spain
- Department of Pathology, Hospital Universitari Sant Joan, 43204 Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Universitat Rovira i Virgili, 43204 Reus, Spain;
- Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, 43201 Reus, Spain
- The Campus of International Excellence Southern Catalonia, 43003 Tarragona, Spain
| |
Collapse
|
26
|
Younossi ZM, Stepanova M, Racila A, Henry L, Labriola D, Taub R, Nader F. Health-related quality of life (HRQL) assessments in a 52-week, double-blind, randomized, placebo-controlled phase III study of resmetirom (MGL-3196) in patients with metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis. Hepatology 2025; 81:1318-1327. [PMID: 39250515 DOI: 10.1097/hep.0000000000001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND AND AIMS Resmetirom, liver-directed thyroid-hormone receptor-β agonist, received approval for metabolic dysfunction-associated steatohepatitis (MASH) treatment. We assessed health-related quality of life (HRQL) in patients with MASH treated with resmetirom. APPROACH AND RESULTS Patients with MASH/NASH without cirrhosis and with confirmed/suspected fibrosis were enrolled in a 54-month double-blind randomized placebo-controlled phase III clinical trial with serial biopsy assessments at baseline and week 52 (MAESTRO-NASH, NCT03900429). HRQL was assessed using Chronic Liver Disease Questionnaire-NASH (CLDQ-NAFLD) and Liver Disease Quality of Life (LDQOL). Baseline HRQL score changes by treatment group (resmetirom 80 mg, resmetirom 100 mg, or placebo) and histological response (improvement of fibrosis without worsening of NAFLD activity score or resolution of MASH/NASH without worsening of fibrosis) were compared after 52 weeks. Included were 966 intention-to-treat patients: 323 received resmetirom 100 mg, 322 resmetirom 80 mg, and 321 placebo. By weeks 24 and 52, patients receiving 80 or 100 mg resmetirom experienced HRQL improvement in CLDQ-NAFLD Worry domain (mean +0.21 to +0.24, p < 0.05). At week 52, subjects who met histologic endpoints after treatment with resmetirom (100 mg and 80 mg pooled) experienced HRQL improvement in CLDQ-NAFLD Worry +0.46 (41% met minimal clinically important difference [MCID]), LDQOL domains: Role Emotional +3.0 (28% met MCID), Health Distress +8.1 (38% MCID), Stigma +3.5 (39% MCID), and total LDQOL +2.2 (35% MCID) (all p < 0.05). Similar improvements were noted in histologic responders from 100 mg or 80 mg resmetirom groups when separated-no improvements in placebo or nonresponders. Baseline F3 histologic responders had similar/more pronounced HRQL improvements. CONCLUSIONS Patients with MASH/NASH with fibrosis improvement or the resolution of MASH with resmetirom experienced clinically meaningful and statistically significant HRQL improvements.
Collapse
Affiliation(s)
- Zobair M Younossi
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Maria Stepanova
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Andrei Racila
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Linda Henry
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Dominic Labriola
- Madrigal Pharmaceuticals, Inc., West Conshohocken, Pennsylvania, USA
| | - Rebecca Taub
- Madrigal Pharmaceuticals, Inc., West Conshohocken, Pennsylvania, USA
| | - Fatema Nader
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Outcomes Research in Liver Disease, Washington, District of Columbia, USA
| |
Collapse
|
27
|
Eslam M, Fan JG, Yu ML, Wong VWS, Cua IH, Liu CJ, Tanwandee T, Gani R, Seto WK, Alam S, Young DY, Hamid S, Zheng MH, Kawaguchi T, Chan WK, Payawal D, Tan SS, Goh GBB, Strasser SI, Viet HD, Kao JH, Kim W, Kim SU, Keating SE, Yilmaz Y, Kamani L, Wang CC, Fouad Y, Abbas Z, Treeprasertsuk S, Thanapirom K, Al Mahtab M, Lkhagvaa U, Baatarkhuu O, Choudhury AK, Stedman CAM, Chowdhury A, Dokmeci AK, Wang FS, Lin HC, Huang JF, Howell J, Jia J, Alboraie M, Roberts SK, Yoneda M, Ghazinian H, Mirijanyan A, Nan Y, Lesmana CRA, Adams LA, Shiha G, Kumar M, Örmeci N, Wei L, Lau G, Omata M, Sarin SK, George J. The Asian Pacific association for the study of the liver clinical practice guidelines for the diagnosis and management of metabolic dysfunction-associated fatty liver disease. Hepatol Int 2025; 19:261-301. [PMID: 40016576 DOI: 10.1007/s12072-024-10774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/28/2024] [Indexed: 03/01/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) affects over one-fourth of the global adult population and is the leading cause of liver disease worldwide. To address this, the Asian Pacific Association for the Study of the Liver (APASL) has created clinical practice guidelines focused on MAFLD. The guidelines cover various aspects of the disease, such as its epidemiology, diagnosis, screening, assessment, and treatment. The guidelines aim to advance clinical practice, knowledge, and research on MAFLD, particularly in special groups. The guidelines are designed to advance clinical practice, to provide evidence-based recommendations to assist healthcare stakeholders in decision-making and to improve patient care and disease awareness. The guidelines take into account the burden of clinical management for the healthcare sector.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia.
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal MedicineCollege of Medicine and Center for Liquid Biopsy and Cohort ResearchFaculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of MedicineSchool of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, Kaohsiung Medical University, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong, China
| | - Ian Homer Cua
- Institute of Digestive and Liver Diseases, St. Luke's Medical Center, Global City, Philippines
| | - Chun-Jen Liu
- Division of Gastroenterology and Hepatology, Department of Internal MedicineHepatitis Research CenterGraduate Institute of Clinical Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tawesak Tanwandee
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rino Gani
- Department of Internal Medicine, Hepatobiliary Division, Dr. Cipto Mangunkusumo National General Hospital, Universitas Indonesia, Pangeran Diponegoro Road No. 71St, Central Jakarta, 10430, Indonesia
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Shahinul Alam
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Dan Yock Young
- Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Saeed Hamid
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Diana Payawal
- Department of Medicine, Cardinal Santos Medical Center, Mandaluyong, Philippines
| | - Soek-Siam Tan
- Department of Hepatology, Selayang Hospital, Batu Caves, Malaysia
| | - George Boon-Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore
- Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Simone I Strasser
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Hang Dao Viet
- Internal Medicine Faculty, Hanoi Medical University, Hanoi, Vietnam
| | - Jia-Horng Kao
- Graduate Institute of Clinical MedicineDepartment of Internal MedicineHepatitis Research CenterDepartment of Medical Research, National Taiwan University College of Medicine, National Taiwan University, National Taiwan University Hospital, 1 Chang-Te Street, 10002, Taipei, Taiwan
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, 50-1, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | | | - Chia-Chi Wang
- Buddhist Tzu Chi Medical Foundation and School of Medicine, Taipei Tzu Chi Hospital, Tzu Chi University, Taipei, Taiwan
| | - Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Cairo, Egypt
| | - Zaigham Abbas
- Department of Hepatogastroenterology, Dr.Ziauddin University Hospital, Clifton, Karachi, Pakistan
| | | | | | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Undram Lkhagvaa
- Department of Health Policy, School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Oidov Baatarkhuu
- Department of Infectious Diseases, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Ashok Kumar Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | | | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - A Kadir Dokmeci
- Department of Medicine, Ankara University School of Medicine, Ankara, Turkey
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, 100039, China
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Institute of Clinical Medicine, School of Medicine, Taipei Veterans General Hospital, National Yang-Ming Chiao Tung University, No. 201, Section 2, Shipai RdNo. 155, Section 2, Linong St, Beitou District, Taipei City, 112, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal MedicineCollege of Medicine and Center for Liquid Biopsy and Cohort ResearchFaculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jess Howell
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Clayton, VIC, 3008, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, 3050, Australia
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Melbourne, VIC, 3165, Australia
| | - Jidong Jia
- Liver Research Center, Beijing Key Laboratory of Translational Medicine On Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Mohamed Alboraie
- Department of Internal Medicine, Al-Azhar University, Cairo, 11884, Egypt
| | - Stuart K Roberts
- Department of Gastroenterology and Hepatology, Central Clinical School, The Alfred, Monash University, Melbourne, Australia
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hasmik Ghazinian
- Gastroenterology and Hepatology Department, Yerevan Medical Scientific Center, Yerevan, Armenia
| | - Aram Mirijanyan
- Gastroenterology and Hepatology Department, Yerevan Medical Scientific Center, Yerevan, Armenia
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Leon A Adams
- Medical School, Faculty of Medicine and Health Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Gamal Shiha
- Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt
| | - Manoj Kumar
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Necati Örmeci
- Department of Gastroenterohepatology, Istanbul Health and Technology University, Istanbul, Turkey
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - George Lau
- Humanity and Health Medical Group, Humanity and Health Clinical Trial Center, Hong Kong SAR, China
- The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100039, China
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
- University of Tokyo, Tokyo, Japan
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia
| |
Collapse
|
28
|
Arab JP, Díaz LA, Rehm J, Im G, Arrese M, Kamath PS, Lucey MR, Mellinger J, Thiele M, Thursz M, Bataller R, Burton R, Chokshi S, Francque SM, Krag A, Lackner C, Lee BP, Liangpunsakul S, MacClain C, Mandrekar P, Mitchell MC, Morgan MY, Morgan TR, Pose E, Shah VH, Shawcross D, Sheron N, Singal AK, Stefanescu H, Terrault N, Trépo E, Moreno C, Louvet A, Mathurin P. Metabolic dysfunction and alcohol-related liver disease (MetALD): Position statement by an expert panel on alcohol-related liver disease. J Hepatol 2025; 82:744-756. [PMID: 39608457 DOI: 10.1016/j.jhep.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
In this position statement, we explore the intricate relationship between alcohol intake and metabolic dysfunction in the context of the 2023 nomenclature update for steatotic liver disease (SLD). Recent and lifetime alcohol use should be accurately assessed in all patients with SLD to facilitate classification of alcohol use in grams of alcohol per week. Alcohol biomarkers (i.e., phosphatidylethanol), use of validated questionnaires (i.e. AUDIT-C [alcohol use disorders identification test consumption]), and collateral information from friends and relatives could help facilitate differentiation between alcohol-related liver disease (ALD) per se and liver disease with both metabolic and alcohol-related components (MetALD). Heavy alcohol use can contribute to cardiometabolic risk factors such as high blood pressure, hypertriglyceridaemia, and hyperglycaemia. As a result, caution should be exercised in the application of only one metabolic dysfunction criterion to diagnose MASLD, as suggested in the 2023 nomenclature document, particularly in individuals exceeding weekly alcohol use thresholds of 140 g for women and 210 g for men. This is particularly important in those individuals with isolated high blood pressure, hypertriglyceridaemia, or hyperglycaemia, where the disease process may be driven by alcohol itself. Additionally, metabolic dysfunction and alcohol use should be reassessed over time, especially after periods of change in risk factor exposure. This approach could ensure a more accurate prognosis and effective management of SLD, addressing both metabolic and alcohol-related factors.
Collapse
Affiliation(s)
- Juan Pablo Arab
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Departamento de Gastroenterología, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Luis Antonio Díaz
- Departamento de Gastroenterología, Pontificia Universidad Católica de Chile, Santiago, Chile; MASLD Research Center, Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, CA, USA
| | - Jürgen Rehm
- Institute for Mental Health Policy Research, Campbell Family Mental Health Research Institute, PAHO/WHO Collaborating Centre, Centre for Addiction and Mental Health, Toronto, Canada
| | - Gene Im
- Division of Liver Diseases, Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco Arrese
- Departamento de Gastroenterología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patrick S Kamath
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael R Lucey
- Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jessica Mellinger
- Department of Internal Medicine, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Maja Thiele
- Odense Liver Research Centre, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Mark Thursz
- Department of Metabolism, Digestion & Reproduction, Imperial College London, UK
| | - Ramon Bataller
- Liver Unit, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Robyn Burton
- Institute for Social Marketing and Health. University of Stirling, UK
| | - Shilpa Chokshi
- Institute of Hepatology Foundation for Liver Research London UK; School of Immunology and Microbial Sciences King's College London, London, UK
| | - Sven M Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Aleksander Krag
- Odense Liver Research Centre, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Brian P Lee
- Division of Gastrointestinal and Liver Diseases, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology, Department of Internal Medicine, and Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Craig MacClain
- Department of Gastroenterology and Hepatology, University of Louisville, Louisville, KY, USA
| | - Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mack C Mitchell
- Department of Internal Medicine, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marsha Y Morgan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Timothy R Morgan
- VA Long Beach Healthcare System - Gastroenterology Section, Long Beach, CA, USA
| | - Elisa Pose
- Liver Unit, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Nick Sheron
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, Kings College London, UK
| | - Ashwani K Singal
- Department of Gastroenterology and Hepatology, University of Louisville, Louisville, KY, USA
| | - Horia Stefanescu
- Liver Unit, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor," University of Medicine and Pharmacy "Iuliu Hatieganu," Cluj-Napoca, Romania
| | - Norah Terrault
- Division of Gastrointestinal and Liver Diseases, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Eric Trépo
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Christophe Moreno
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandre Louvet
- CHRU de Lille, Hôpital Claude Huriez, Rue M. Polonovski CS 70001, 59 037 Lille Cedex, France
| | - Philippe Mathurin
- CHRU de Lille, Hôpital Claude Huriez, Rue M. Polonovski CS 70001, 59 037 Lille Cedex, France.
| |
Collapse
|
29
|
Hong JG, Trotman J, Carbajal Y, Dey P, Glass M, Sclar V, Alter IL, Zhang P, Wang L, Chen L, Petitjean M, Bhattacharya D, Wang S, Friedman SL, DeRossi C, Chu J. Mannose reduces fructose metabolism and reverses MASH in human liver slices and murine models in vivo. Hepatol Commun 2025; 9:e0671. [PMID: 40116750 PMCID: PMC11927666 DOI: 10.1097/hc9.0000000000000671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/20/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Fibrosis drives liver-related mortality in metabolic dysfunction-associated steatohepatitis (MASH), yet we have limited medical therapies to target MASH-fibrosis progression. Here we report that mannose, a simple sugar, attenuates MASH steatosis and fibrosis in 2 robust murine models and human liver slices. METHODS The well-validated fat-and-tumor MASH murine model for liver steatosis and fibrosis was employed. Mannose was supplied in the drinking water at the start ("Prevention" group) or at week 6 of the 12-week MASH regimen ("Therapy" group). The in vivo antifibrotic effects of mannose supplementation were tested in a second model of carbon tetrachloride (CCl4)-induced liver fibrosis. A quantitative and automated digital pathology approach was used to comprehensively assess steatosis and fibrosis phenotypes. Mannose was also tested in vitro in human and primary mouse hepatocytes conditioned with free fatty acids alone or with fructose, and human precision-cut liver slices from patients with end-stage MASH cirrhosis. RESULTS Oral mannose supplementation improved liver fibrosis in vivo in both fat-and-tumor MASH and CCl4 mouse models, as well as in human precision-cut liver slice MASH samples. Mannose also reduced liver steatosis in fat-and-tumor MASH mice, and in human and mouse hepatocytes in vitro. Ketohexokinase, the main enzyme in fructolysis, was decreased with mannose in whole mouse liver, cultured hepatocytes, and human precision-cut liver slices. Removal of fructose or overexpression of ketohexokinase each abrogated the antisteatotic effects of mannose. CONCLUSIONS This study identifies mannose as a novel therapeutic candidate for MASH that mitigates steatosis by dampening hepatocyte ketohexokinase expression and exerts independent antifibrotic effects in 2 mouse models and human liver tissue slices.
Collapse
Affiliation(s)
- John G. Hong
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Joshaya Trotman
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Yvette Carbajal
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Poulomi Dey
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Mariel Glass
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Victoria Sclar
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Isaac L. Alter
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Peng Zhang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Liheng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Chen
- PharmaNest Inc., Princeton, New Jersey, USA
| | | | - Dipankar Bhattacharya
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shuang Wang
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott L. Friedman
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Charles DeRossi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
30
|
Le P, Tatar M, Rothberg MB, Wilson LA, Allende D, Diehl AM, Loomba R, Chalasani N, Neuschwander-Tetri BA, Kowdley K, Sanyal AJ, Tonascia J, Dasarathy S. Association of Components of Metabolic Syndrome and the Progression of Nonalcoholic Fatty Liver Disease. Am J Gastroenterol 2025:00000434-990000000-01671. [PMID: 40163040 DOI: 10.14309/ajg.0000000000003455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION The effects of metabolic syndrome (MetS), its individual components, and baseline liver histology, on the rates of progression and regression of nonalcoholic fatty liver disease (NAFLD), were evaluated. METHODS We conducted a post hoc analysis of a multicenter prospective cohort study using the noninterventional registry of the Nonalcoholic Steatohepatitis Clinical Research Network (2002-2022). We included patients aged 18 years or older with biopsy-proven NAFLD. Outcomes included progression/regression of histology defined by changes in NAFLD Activity Score, nonalcoholic steatohepatitis, or fibrosis. Crude incidence rates were compared among patients with MetS vs those without using Kaplan-Meier curves and log-rank test. Cox proportional hazard models were used to estimate effects of MetS and its components on the fibrosis progression/regression. RESULTS We included 452 patients; the mean age was 51 years, one-third was male, and 85% was White. The median follow-up was 4.3 (range: 1-15.6) years. At baseline, patients with MetS, large waist circumference, and impaired glucose tolerance/diabetes had worse ballooning and fibrosis scores and a higher prevalence of definite nonalcoholic steatohepatitis than those without. MetS was not associated with fibrosis progression or regression. Impaired glucose tolerance/diabetes was associated with a higher risk of fibrosis progression (adjusted hazard ratio = 1.61; 95% confidence interval: 1.11-2.34) whereas hypertension was associated with a lower risk (adjusted hazard ratio = 0.64; 95% confidence interval: 0.43-0.96). DISCUSSION In the cohort of patients with NAFLD, MetS was associated with greater histological severity at baseline but was not a risk factor of disease progression or regression. Impaired glucose/diabetes was associated with a higher rate and hypertension with a lower rate of fibrosis progression.
Collapse
Grants
- U01DK061713, U01DK061718, U01DK061728, U01DK061732, U01DK061734, U01DK061737, U01DK061738, U01DK061730, U24DK061730 NIDDK NIH HHS
- R01HS026937 Agency for Healthcare Research and Quality Safety Program for Telemedicine
- UL1TR000439, UL1TR000436, UL1TR000006, UL1TR000448, UL1TR000100, UL1TR000004, UL1TR000423, UL1TR002649 National Center for Advancing Translational Sciences (NCATS)
Collapse
Affiliation(s)
- Phuc Le
- Center for Value-based Care Research, Primary Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Moosa Tatar
- Center for Value-based Care Research, Primary Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael B Rothberg
- Center for Value-based Care Research, Primary Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Laura A Wilson
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Daniela Allende
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, California, USA
| | - Naga Chalasani
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Kris Kowdley
- Liver Institute Northwest, Seattle, Washington, USA
| | - Arun J Sanyal
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - James Tonascia
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
31
|
Issa G, Shang Y, Strandberg R, Hagström H, Wester A. Cause-specific mortality in 13,099 patients with metabolic dysfunction-associated steatotic liver disease in Sweden. J Hepatol 2025:S0168-8278(25)00156-4. [PMID: 40139508 DOI: 10.1016/j.jhep.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/08/2025] [Accepted: 03/02/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND & AIMS Data on cause-specific mortality in metabolic dysfunction-associated steatotic liver disease (MASLD) are limited. We aimed to determine the rate and risk of death from different causes in patients with MASLD compared to the general population in Sweden. METHODS In this population-based cohort study, we identified individuals with an ICD-10 code for MASLD in inpatient or specialized outpatient care using Swedish healthcare registers from 2002-2020 (n = 13,099) and matched them with up to 10 controls (median 9) from the general population for age, sex, municipality, and calendar year (n = 118,884). We used Cox regression to estimate adjusted hazard ratios (HRs) and 95% CIs for 11 different primary causes of death. 15-year cumulative incidences of death were calculated while accounting for competing risks. RESULTS In total, 1,628 (12.4%) deaths occurred in patients with MASLD and 9,119 (7.7%) in controls during a median follow-up of 4.7 (IQR 2.0-9.2) and 5.8 years (IQR 2.7-10.5), respectively. MASLD was associated with higher all-cause mortality (HR 1.85, 95% CI 1.74-1.96) and higher rates of all specific causes of death except mental health disorder. The strongest associations were observed for non-hepatocellular carcinoma (HCC) liver-related (HR 26.9, 95% CI 19.4-37.3) and HCC-related (HR 35.0, 95% CI 17.0-72.1) mortality. However, the highest estimated 15-year cumulative incidences of death in patients with MASLD were for non-HCC cancer (7.3%) and cardiovascular disease (7.2%). CONCLUSIONS MASLD was strongly associated with liver- and HCC-related mortality, but the absolute risks of death were highest for non-HCC cancer and cardiovascular disease. Mortality was increased for nearly all causes in patients with MASLD, suggesting that earlier multidisciplinary care is needed to reduce excess mortality. IMPACT AND IMPLICATIONS Previous studies on mortality in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) were either small, restricted to liver-related mortality, relied on liver biopsy to identify patients (thus inducing selection bias), or mainly used data from old cohorts. In a nationwide cohort study of all patients diagnosed with MASLD in inpatient or specialized outpatient care in Sweden between 2002 and 2020, we found a nearly doubled all-cause mortality rate and higher mortality than the general population from a wide range of causes, indicating that earlier multidisciplinary care may be needed to reduce premature mortality in patients with MASLD. The absolute risk estimates of death in our study may be useful for clinicians and policymakers to inform patients about their prognosis and potentially implement clinical or public health strategies to reduce premature mortality.
Collapse
Affiliation(s)
- Gabriel Issa
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Ying Shang
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Rickard Strandberg
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden; Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | - Axel Wester
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
32
|
Truong E, Alnimer L, Gornbein JA, Yang JD, Alkhouri N, Harrison SA, Noureddin M. Agile 3+ and 4 Scores Accurately Predict Major Adverse Liver Outcomes, Liver Transplant, Progression of MELD Score, the Development of Hepatocellular Carcinoma, and Death in NAFLD. Dig Dis Sci 2025:10.1007/s10620-025-08850-1. [PMID: 40126753 DOI: 10.1007/s10620-025-08850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/04/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND AND AIMS Based on liver stiffness measurement by vibration controlled transient elastography (LSM by VCTE), the Agile 3+ and 4 are novel noninvasive scores that accurately identify advanced fibrosis (≥ F3) and cirrhosis (F4), respectively. We investigated and compared the Agile 3+ and 4 scores' performances in predicting adverse events to LSM alone, FIB-4 and Fibroscan-AST (FAST) score. METHOD This retrospective analysis included NAFLD patients with LSM by VCTE and laboratory testing from a tertiary care center from 2013 to 2022. Adverse events were defined as major adverse liver outcomes (MALO), hepatocellular carcinoma, liver transplant, and death. MALO was defined as ascites, hepatic encephalopathy, or esophageal variceal bleeding. We used the Cox proportional hazard rate model and the Harrell's concordance (C) statistic to compare predictive performances. RESULTS 733 total subjects with median follow-up of 27.0 months were included. Average age was 58.1 years and 32.8% had type 2 diabetes. Average alanine aminotransferase was 46.6 IU/L, aspartate aminotransferase: 34.5 IU/L, albumin: 4.4 g/dL, and platelets: 241.1 × 109/L. Fourteen subjects had 21 adverse outcomes, including 10 MALO, 5 HCC, 4 liver transplants, 3 progression of MELD score, and 6 deaths. Agile 3+ and 4 respectively had the highest C stats of 0.911 (C stat SE 0.028) and 0.909 (C stat SE 0.029) compared to LSM (C stat 0.857, C stat SE 0.045), FIB-4 (C stat 0.843, C stat SE 0.037) or FAST (C stat 0.703, C stat SE 0.085). CONCLUSION The Agile 3+ and 4 scores had the highest likelihood of accurately predicting adverse outcomes including MALO and death compared to LSM alone, FIB-4 or FAST score.
Collapse
Affiliation(s)
- Emily Truong
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lynna Alnimer
- Division of Gastroenterology, Henry Ford Providence Hospital, Michigan State University/College of Human Medicine, Southfield, MI, USA
| | - Jeffrey A Gornbein
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Mazen Noureddin
- Houston Methodist Hospital, Houston Research Institute, 1155 Dairy Ashford Suite 200, Houston, TX, 77079, USA.
- Lynda K. and David M. Underwood Center for Digestive Disorders, Department of Medicine, J.C. Walter Jr. Transplant Center, Sherrie & Alan Conover Center for Liver Disease & Transplantation, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, USA.
| |
Collapse
|
33
|
Long L, Wu Y, Tang H, Xiao Y, Wang M, Shen L, Shi Y, Feng S, Li C, Lin J, Tang S, Wu C. Development and validation of a scoring system to predict MASLD patients with significant hepatic fibrosis. Sci Rep 2025; 15:9639. [PMID: 40113920 PMCID: PMC11926222 DOI: 10.1038/s41598-025-91013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
To address the need for a simple model to predict ≥ F2 fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD) patients, a study utilized data from 791 biopsy-proven MASLD patients from the NASH Clinical Research Network and Jinan University First Affiliated Hospital. The data were divided into training and internal testing sets through randomized stratified sampling. A multivariable logistic regression model using key categorical variables was developed to identify ≥ F2 fibrosis. External validation was performed using data from the FLINT trial and multiple centers in China. The DA-GAG score, incorporating diabetes, age, GGT, aspartate aminotransferase/ platelet ratio, and globulin/ total protein ratio, demonstrated superior performance in distinguishing ≥ F2 fibrosis with an area under the receiver operating characteristic curve of 0.79 in training and over 0.80 in testing datasets. The DA-GAG score efficiently identifies MASLD patients with ≥ F2 fibrosis, significantly reducing the medical burden.
Collapse
Affiliation(s)
- Linjing Long
- Department of Gastroenterology, the Fifth Affiliated Hospital, Guangzhou Medical University, Guangdong, 510700, People's Republic of China
| | - Yue Wu
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangdong, 510440, People's Republic of China
| | - Huijun Tang
- Department of Gastroenterology, Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen, 518104, People's Republic of China
| | - Yanhua Xiao
- Department of Pathology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangdong, 510440, People's Republic of China
| | - Min Wang
- Department of Gastroenterology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Lianli Shen
- Department of Gastroenterology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Ying Shi
- Department of Gastroenterology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Shufen Feng
- Department of Gastroenterology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Chujing Li
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangdong, 510440, People's Republic of China
| | - Jiaheng Lin
- Department of Gastrointestinal Surgery, He Fifth Affiliated Hospital, Guangzhou Medical University, Guangdong, 510700, People's Republic of China
| | - Shaohui Tang
- Department of Gastroenterology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China.
| | - Chutian Wu
- Department of Gastroenterology, the Fifth Affiliated Hospital, Guangzhou Medical University, Guangdong, 510700, People's Republic of China.
- Department of Gastroenterology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
34
|
Liu WY, Huang S, Ji H, Kim SU, Yip TCF, Wong GLH, Petta S, Tsochatzis E, Nakajima A, Bugianesi E, Goh BBG, Chan WK, Romero-Gomez M, Sanyal AJ, Boursier J, Hagström H, Calleja JL, de Lédinghen V, Newsome PN, Fan JG, Lai M, Castéra L, Lee HW, Pennisi G, Yoneda M, Armandi A, Teh KKJ, Gallego-Durán R, Asgharpour A, de Saint-Loup M, Shang Y, Llop E, Fournier C, Mahgoub S, Lara-Romero C, Canivet CM, Chan MSW, Lin H, Chen LL, Targher G, Byrne CD, Du M, Wai-Sun Wong V, Zheng MH. From "Burnt-Out" to "Burning-Out": Capturing Liver Fat Loss in Patients With Advanced Metabolic Dysfunction-Associated Steatotic Liver Disease From a Dynamic Perspective. Gastroenterology 2025:S0016-5085(25)00523-2. [PMID: 40113099 DOI: 10.1053/j.gastro.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/02/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND AND AIMS The absence of hepatic fat in advanced fibrosis has been documented in metabolic dysfunction-associated steatotic liver disease (''burnt-out" MASLD). However, whether hepatic fat loss occurs continuously with fibrosis progression is controversial. We proposed a "burning-out" concept to describe this process and analyze the long-term outcomes of "burnt-out" and "burning-out" MASLD. METHODS We included a MASLD cohort from 16 centers, including 3273 individuals with baseline histology and 5455 with serial vibration-controlled transient elastography measurements during the follow-up. "Burnt-out" MASLD was defined by steatosis grade ≤S1 and fibrosis stage ≥F3. Trajectory analysis identified "burning-out" patients with continuous trends of decreasing controlled attenuation parameter and increasing liver stiffness measurement values. RESULTS Of 3273 patients with histologic evaluation included, 435 had "burnt-out" MASLD. Compared with those with pronounced steatosis in advanced fibrosis, patients with "burnt-out" had higher risks of all-cause mortality (hazard ratio [HR], 2.14; 95% confidence interval [CI], 1.14-4.02), liver-related events (LREs; HR, 1.77; 95% CI, 1.12-2.78), and hepatic decompensation (HR, 1.83; 95% CI, 1.11-3.01). Of 5455 patients with vibration-controlled transient elastography included for trajectory analysis, 176 were identified as "burning-out" MASLD. The incidence rates of all-cause mortality, LREs, and decompensation were 7.28, 26.47, and 21.92 per 1000 person-years in "burning-out" patients, respectively. The "burning-out" group had higher cumulative incidences of adverse outcomes than patients with consistently high controlled attenuation parameter and moderate/low liver stiffness measurement values (P < .0001). CONCLUSIONS Continuous hepatic fat loss accompanied by fibrosis progression, referred to as "burning-out," was observed in advanced MASLD and associated with high rates of all-cause mortality, LREs, and hepatic decompensation.
Collapse
Affiliation(s)
- Wen-Yue Liu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Wenzhou Key Laboratory of Diabetes Research, Wenzhou, China
| | - Shanshan Huang
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongsheng Ji
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Terry Cheuk-Fung Yip
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace Lai-Hung Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Salvatore Petta
- Sezione di Gastroenterologia, Di.Bi.M.I.S., University of Palermo, Italy
| | - Emmanuel Tsochatzis
- University College London Institute for Liver and Digestive Health, Royal Free Hospital, London, United Kingdom
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Boon-Bee George Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Malaysia
| | - Manuel Romero-Gomez
- Digestive Diseases Unit and CIBERehd, Virgen Del Rocío University Hospital, Seville, Spain
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Jérôme Boursier
- Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet, Sweden; Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - José Luis Calleja
- Department of Gastroenterology and Hepatology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - Philip Noel Newsome
- Institute of Hepatology, Faculty of Life Sciences & Medicine, King's College London and King's College Hospital, London, UK
| | - Jian-Gao Fan
- Department of Gastroenterology and Hepatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Michelle Lai
- Division of Gastroenterology & Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Laurent Castéra
- Université Paris Cité, UMR1149 (CRI), INSERM, Paris, France; Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP), Clichy, France
| | - Hye Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Grazia Pennisi
- Sezione di Gastroenterologia, Di.Bi.M.I.S., University of Palermo, Italy
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Angelo Armandi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Kevin Kim-Jun Teh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Rocio Gallego-Durán
- Digestive Diseases Unit and CIBERehd, Virgen Del Rocío University Hospital, Seville, Spain
| | - Amon Asgharpour
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Marc de Saint-Loup
- Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France
| | - Ying Shang
- Department of Medicine, Huddinge, Karolinska Institutet, Sweden
| | - Elba Llop
- Department of Gastroenterology and Hepatology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - Sara Mahgoub
- Institute of Hepatology, Faculty of Life Sciences & Medicine, King's College London and King's College Hospital, London, UK
| | - Carmen Lara-Romero
- Digestive Diseases Unit and CIBERehd, Virgen Del Rocío University Hospital, Seville, Spain
| | - Clemence M Canivet
- Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France
| | | | - Huapeng Lin
- Department of Gastroenterology and Hepatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
| | - Li-Li Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mulong Du
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
35
|
Zou H, Xie J, Ma X, Xie Y. The Value of TyG-Related Indices in Evaluating MASLD and Significant Liver Fibrosis in MASLD. Can J Gastroenterol Hepatol 2025; 2025:5871321. [PMID: 40114971 PMCID: PMC11925628 DOI: 10.1155/cjgh/5871321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/22/2025] [Indexed: 03/22/2025] Open
Abstract
Background: Triglyceride glucose (TyG) and its related index (TyG-body mass index, TyG-BMI) are recognized as markers for nonalcoholic fatty liver disease (NAFLD), but their associations with metabolic dysfunction-associated steatotic liver disease (MASLD) and significant liver fibrosis (SLF) risk are less studied. Therefore, this study explores the effectiveness of these indices in assessing MASLD and SLF risk in the U.S. population. Methods: Utilizing data from the National Health and Nutrition Examination Survey (NHANES), a cross-sectional study involving 5520 participants from the general population was performed. This research measured demographic, anthropometric, biochemical, comorbid, and lifestyle characteristics, all of which are considered risk factors for MASLD/SLF. Results: Upon controlling for confounding variables, only the TyG-BMI was found to have a consistent positive association with the risk of MASLD and SLF. Specifically, for each standard deviation increase, the odds ratio (OR) and 95% confidence interval (CI) were 4.44 (3.64-9.26, p for trend < 0.001) for MASLD and 2.48 (2.15-2.87, p for trend < 0.001) for SLF. Significant interactions were identified among age, sex, and the risk of MASLD associated with the TyG-BMI. The TyG-BMI also had a significant threshold effect on the risk of MASLD at a cutoff point of 180.71. Furthermore, the area under the receiver operating characteristic curve (AUC) revealed that the TyG-BMI better predicted the risk of MASLD and SLF (AUC 0.820, 95% CI 0.810-0.831; AUC 0.729, 95% CI 0.703-0.756, respectively). In addition, the integrated discrimination improvement (IDI), decision curve analysis (DCA), and net reclassification index (NRI) also demonstrated the satisfactory predictive ability of the TyG-BMI. Conclusions: Within this large dataset, the TyG-BMI was independently associated with both the MASLD score and the SLF in the MASLD cohort. Its predictive efficacy consistently surpassed that of TyG and other noninvasive models, indicating that TyG-BMI has potential for the early identification of MASLD and SLF risk.
Collapse
Affiliation(s)
- Haoxuan Zou
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiejie Xie
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaopu Ma
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Xie
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Huang DQ, Wong VWS, Rinella ME, Boursier J, Lazarus JV, Yki-Järvinen H, Loomba R. Metabolic dysfunction-associated steatotic liver disease in adults. Nat Rev Dis Primers 2025; 11:14. [PMID: 40050362 DOI: 10.1038/s41572-025-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the umbrella term that comprises metabolic dysfunction-associated steatotic liver, or isolated hepatic steatosis, through to metabolic dysfunction-associated steatohepatitis, the progressive necroinflammatory disease form that can progress to fibrosis, cirrhosis and hepatocellular carcinoma. MASLD is estimated to affect more than one-third of adults worldwide. MASLD is closely associated with insulin resistance, obesity, gut microbial dysbiosis and genetic risk factors. The obesity epidemic and the growing prevalence of type 2 diabetes mellitus greatly contribute to the increasing burden of MASLD. The treatment and prevention of major metabolic comorbidities such as type 2 diabetes mellitus and obesity will probably slow the growth of MASLD. In 2023, the field decided on a new nomenclature and agreed on a set of research and action priorities, and in 2024, the US FDA approved the first drug, resmetirom, for the treatment of non-cirrhotic metabolic dysfunction-associated steatohepatitis with moderate to advanced fibrosis. Reliable, validated biomarkers that can replace histology for patient selection and primary end points in MASH trials will greatly accelerate the drug development process. Additionally, noninvasive tests that can reliably determine treatment response or predict response to therapy are warranted. Sustained efforts are required to combat the burden of MASLD by tackling metabolic risk factors, improving risk stratification and linkage to care, and increasing access to therapeutic agents and non-pharmaceutical interventions.
Collapse
Affiliation(s)
- Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Vincent W S Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Mary E Rinella
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Jerome Boursier
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Centre Hospitalier Universitaire d'Angers, Angers, France
- Laboratoire HIFIH, SFR ICAT 4208, Université d'Angers, Angers, France
| | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, USA.
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
37
|
Møller S, Kimer N, Hove JD, Barløse M, Gluud LL. Cardiovascular disease and metabolic dysfunction-associated steatotic liver disease: pathophysiology and diagnostic aspects. Eur J Prev Cardiol 2025:zwae306. [PMID: 40037299 DOI: 10.1093/eurjpc/zwae306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 03/06/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) can be interpreted as the hepatic expression of metabolic syndrome, which is estimated to affect 30% of the adult population. Obesity, dyslipidaemia, arterial hypertension, and T2DM are considered significant risk factors of MASLD. The relationship is two-way with MASLD found in up to 75% of patients with T2DM. Importantly, MASLD is associated with increased risk of cardiovascular diseases (CVD) such as arrhythmia, atherosclerotic heart disease, heart failure, and CVD-associated mortality. In addition, MASLD patients present with a high prevalence of major adverse cardiac events, which calls for systematic surveillance of CVD in MASLD. This review focuses on the pathophysiology behind development of CVD in MASLD, the types of cardiovascular complications, morbidity and survival, and suggestions for evaluation of patients with MASLD.
Collapse
Affiliation(s)
- Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård alle 30, DK-2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Nina Kimer
- Gastro Unit, Medical Division, Copenhagen University Hospital Hvidovre, DK-2650 Hvidovre, Denmark
| | - Jens Dahlgaard Hove
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital Hvidovre, DK-2650 Hvidovre, Denmark
| | - Mads Barløse
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård alle 30, DK-2650 Hvidovre, Denmark
| | - Lise Lotte Gluud
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
- Gastro Unit, Medical Division, Copenhagen University Hospital Hvidovre, DK-2650 Hvidovre, Denmark
| |
Collapse
|
38
|
Wang H, Liu Z, Fan H, Guo C, Zhang X, Li Y, Zhao S, Dai L, Zhao M, Zhang T. Association between advanced fibrosis and epigenetic age acceleration among individuals with MASLD. J Gastroenterol 2025; 60:306-314. [PMID: 39565370 DOI: 10.1007/s00535-024-02181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND The biological process of aging plays an important role in the progress of liver fibrosis. However, epidemiological evidence about the associations between advanced fibrosis and epigenetic age acceleration (EAA) among individuals with metabolic dysfunction-associated steatotic liver disease (MASLD) is limited. METHODS We utilized publicly available DNA methylation data (GSE180474) for our analysis. Five EAA measures were calculated in this study, including IEAA, PhenoAA, GrimAA, DunedinPACE, and DNAmTLAA. Separate linear regression models were conducted to explore the associations between different fibrosis grades and each measure of EAA. RESULTS A total of 325 participants were included in this study, with a mean (± SD) age of 48.56 ± 11.50 years. Of these participants, 64.6% with no fibrosis, 16.9% with bridging fibrosis, 11.1% with incomplete cirrhosis, and 7.4% with cirrhosis. After adjusting for demographics and medication status, MASLD individuals with advanced fibrosis were associated with a 5% increase in the pace of aging (DunedinPACE, β = 0.05, 95% CI: 0.03-0.07) and a 10% decrease in DNAmTLAA (β = -0.10, 95% CI: -0.13 to -0.07) compared those without fibrosis. Similarly, higher stages of fibrosis were associated with an increased pace of aging (DunedinPACE, β = 0.02, 95% CI: 0.01-0.03, Ptrend < 0.001) and decreased DNAmTLAA (β = -0.05, 95% CI: -0.07 to -0.04, Ptrend < 0.001). However, no significant association was found between advanced fibrosis and IEAA, PhenoAA, and GrimAA. CONCLUSIONS Our findings suggest that advanced fibrosis was associated with an accelerated pace of aging, as measured by the third-generation EA measure DunedinPACE, and shorter telomere length, captured by DNAmTLAA, among individuals with MASLD. This finding has potential prognostic implications and suggests EAA may serve as a surrogate marker of therapeutic efficacy in MASLD.
Collapse
Affiliation(s)
- Haili Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zhenqiu Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hong Fan
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Chengnan Guo
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Xin Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yi Li
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Suzhen Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Luojia Dai
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ming Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
- Yiwu Research Institute, Fudan University, Yiwu, China.
| |
Collapse
|
39
|
Siriwong N, Sriphoosanaphan S, Decharatanachart P, Yongpisarn T, Kerr SJ, Treeprasertsuk S, Tiyarattanachai T, Apiparakoon T, Hagström H, Akbari C, Ekstedt M, Yip TCF, Wong GLH, Ito T, Ishigami M, Toyoda H, Peleg N, Shlomai A, Seko Y, Sumida Y, Kawanaka M, Hino K, Chaiteerakij R. Role of noninvasive tests on the prediction of hepatocellular carcinoma in nonalcoholic fatty liver disease patients without cirrhosis: a systematic review and meta-analysis of aggregate and individual patient data. Eur J Gastroenterol Hepatol 2025; 37:358-369. [PMID: 39919008 DOI: 10.1097/meg.0000000000002912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has been identified as an emerging risk factor for hepatocellular carcinoma (HCC). Identifying non-cirrhotic NAFLD patients at risk for HCC is crucial. We aimed to investigate the utility of noninvasive tests (NITs) as predictors for HCC and to determine optimal and cost-effective NIT cutoffs for HCC surveillance in non-cirrhotic NAFLD patients. METHODS Medline, EMBASE, and Scopus databases were searched for studies evaluating the relationship between NITs and HCC in this population. Random-effects models were used to estimate hazard ratios or risk ratios and 95% confidence interval (95% CI). Cutoffs of NITs for identifying high-risk patients for HCC were determined. RESULTS This systematic review comprised 20 studies. A meta-analysis of 379 194 patients was conducted using six studies with individual patient data and five studies with aggregate data. Among NITs studied, fibrosis-4 index (FIB-4), aspartate aminotransferase to platelet ratio index (APRI), and NAFLD fibrosis score (NFS) were significantly associated with HCC, with pooled risk ratio (95% CI) of 9.21 (5.79-14.64), pooled hazard ratio of 12.53 (6.57-23.90), and 13.32 (6.48-27.37), respectively. FIB-4, APRI, and NFS of more than 2.06, 0.65, and 0.51 resulted in the highest area under the receiver operating characteristics of 0.83, 0.80, and 0.85, respectively. Surveillance in patients with FIB-4 ≥ 5.91 and NFS ≥ 2.85 would be cost-effective with an annual HCC incidence of ≥15 per 1000 patient-years. CONCLUSION FIB-4, APRI, and NFS are associated with HCC development in non-cirrhotic NAFLD patients. Different NIT cutoffs may be used to enroll high-risk NAFLD patients for HCC surveillance, according to resource availability in different settings.
Collapse
Affiliation(s)
- Nanicha Siriwong
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society
| | - Supachaya Sriphoosanaphan
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society
| | | | - Tanat Yongpisarn
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society
| | - Stephen J Kerr
- Biostatistics Excellence Centre, Faculty of Medicine, Chulalongkorn University
| | - Sombat Treeprasertsuk
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society
| | - Thodsawit Tiyarattanachai
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Terapap Apiparakoon
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm
| | | | - Mattias Ekstedt
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Terry Cheuk-Fung Yip
- Department of Medicine and Therapeutics
- Medical Data Analytics Centre
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Grace Lai-Hung Wong
- Department of Medicine and Therapeutics
- Medical Data Analytics Centre
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Gifu, Japan
| | - Noam Peleg
- Department of Gastroenterology and Hepatology, Rabin Medical Center, Beilinson Hospital, Petach-Tikva
| | - Amir Shlomai
- Department of Medicine D, Beilinson Hospital, Rabin Medical Center and the Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yuya Seko
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto
| | - Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi
| | - Miwa Kawanaka
- Department of General Internal Medicine, Kawasaki Medical Center, Kawasaki Medical School, Okayama
| | - Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Roongruedee Chaiteerakij
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
40
|
Petta S, Armandi A, Bugianesi E. Impact of PNPLA3 I148M on Clinical Outcomes in Patients With MASLD. Liver Int 2025; 45:e16133. [PMID: 39412170 PMCID: PMC11815615 DOI: 10.1111/liv.16133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogenous clinical and histopathological entity, where multiple metabolic co-factors are intertwined with high interindividual variability. The impact and severity of each factor (including obesity and type 2 diabetes) define a systemic dysmetabolism that can lead to either advanced liver disease and its complication (including hepatocellular carcinoma and clinical events related to portal hypertension) or extrahepatic events: incident cardiovascular disease, chronic kidney disease and extrahepatic cancers. The balance between environmental factors and genetic susceptibility has unique implications in MASLD: the intermittent injury of metabolic co-factors, their fluctuation over time and their specific management, are counterbalanced by the presence of gene variants that can significantly impact the disease at multiple levels. The I148M variant in the PNPLA3 gene is the most investigated genetic susceptibility that induces a more severe steatohepatitis, enhanced fibrogenesis and can shape the incidence of long-term clinical events regardless of, or worsened by, other metabolic risk factors. METHODS AND RESULTS In this review, we will summarise the updated evidence on the natural history of MASLD accounting for classical metabolic risk factors, the role of PNPLA3 in clinical sub-phenotyping (e.g., 'lean MASLD'), impact on disease severity and fibrosis progression, as well as its role for prognostication, alone or in combination with non-invasive tools into polygenic risk scores.
Collapse
Affiliation(s)
- Salvatore Petta
- Sezione di Gastroenterologia, Di.Bi.M.I.SUniversity of PalermoPalermoItaly
| | - Angelo Armandi
- Division of Gastroenterology and Hepatology, Department of Medical SciencesUniversity of TurinTurinItaly
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology, Department of Medical SciencesUniversity of TurinTurinItaly
| |
Collapse
|
41
|
Houttu V, Boulund U, Troelstra M, Csader S, Stols-Gonçalves D, Mak AL, Dijk AMV, Bouts J, Winkelmeijer M, Verdoes X, van den Berg-Faay S, Lek D, Ronteltap T, de Haan F, Jorstad H, Männistö V, Savonen K, Pentikäinen H, Hanhineva K, Babu AF, Panagiotou G, van Delden O, Verheij J, Doukas M, Nederveen A, Schwab U, Grefhorst A, Nieuwdorp M, Holleboom AG. Deep phenotyping of patients with MASLD upon high-intensity interval training. JHEP Rep 2025; 7:101289. [PMID: 40051412 PMCID: PMC11883402 DOI: 10.1016/j.jhepr.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 03/09/2025] Open
Abstract
Background & Aims Exercise is a key component of lifestyle management in patients with metabolic dysfunction-associated steatotic liver disease (MASLD), but neither its therapeutic effect on the active stage of the disease, that is metabolic dysfunction-associated steatohepatitis (MASH) nor the mediating mechanisms have been characterized. Therefore, we performed multi-omic phenotyping of patients with MASLD-MASH on an exercise program. Methods Fifteen patients with MASLD conducted high-intensity interval training (HIIT) combined with home-based training for 12 weeks. MASLD was evaluated using histology, transient elastography, and multiparametric magnetic resonance imaging (MRI) before and after the intervention. Change in maximal oxygen consumption (VO2max) and MRI-determined liver fat were compared with a control group of patients with MASLD (n = 22). RNA sequencing was performed on liver, muscle, and fat biopsies of patients in the exercise group. Stool was analyzed by shotgun metagenomics and untargeted metabolomics was performed on plasma, urine, adipose, and stool. Results HIIT increased VO2max by 10.1% and improved mitochondrial metabolism in skeletal muscle, indicating improved cardiorespiratory fitness and adherence. VO2max increased significantly in the exercise group compared with controls. Histologically, no reduction in steatosis, MASH, or liver fibrosis was observed; however, transient elastography tended to improve. MRI-determined liver fat did not change in the exercise group compared with controls. HIIT induced changes in mRNA expression of genes related to beiging of adipose tissue and fibrogenesis in liver. In addition, specific gut microbial taxa and metabolites changed. Conclusions HIIT increased cardiorespiratory fitness and induced beneficial gene expression changes in muscle, adipose tissue, and liver, but without translation into histological improvement of MASLD. Longer exercise intervention trials are warranted to validate or refute current recommendations for exercise as a cornerstone treatment for MASLD-MASH. Impact and implications Despite exercise being considered as a key component of lifestyle management for steatotic liver disease, neither the clinical effects nor the mechanisms involved are completely understood. We show that a high-intensity interval training (HIIT) program in 15 patients with metabolic dysfunction-associated steatotic liver disease (MASLD) improved cardiorespiratory fitness, compared with 22 control patients with MASLD who did not participate in an exercise program, however, it did not improve MASLD. HIIT induced a positive effect on fat tissue and muscle metabolism which was accompanied with changes in certain gut bacteria and metabolites in blood and urine. These findings improve our understanding of the effects of exercise on the whole-body metabolism in relation to steatotic liver disease. As such, this study provides a basis for future exercise interventions in patients with MASLD, required to thoroughly test current guideline advice for exercise as a cornerstone treatment for MASLD of all stages. Clinical trial registry Dutch Trial Register (registration number NL7932).
Collapse
Affiliation(s)
- Veera Houttu
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrika Boulund
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marian Troelstra
- Department of Radiology, and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne Csader
- School of Medicine, Institute of Public Health, and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Daniela Stols-Gonçalves
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne Linde Mak
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Marieke van Dijk
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Julia Bouts
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maaike Winkelmeijer
- Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Xanthe Verdoes
- Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandra van den Berg-Faay
- Department of Radiology, and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Donne Lek
- Polifysiek, Amsterdam University of Applied Science, Amsterdam, The Netherlands
| | - Ted Ronteltap
- Polifysiek, Amsterdam University of Applied Science, Amsterdam, The Netherlands
| | - Ferdinand de Haan
- Polifysiek, Amsterdam University of Applied Science, Amsterdam, The Netherlands
| | - Harald Jorstad
- Department of Cardiology, Amsterdam Movement Sciences, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland, and Kuopio University Hospital, Kuopio, Finland
| | - Kai Savonen
- School of Medicine, Institute of Public Health, and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | | | - Kati Hanhineva
- School of Medicine, Institute of Public Health, and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Afekta Technologies Ltd., Kuopio, Finland
- Department of Life Technologies, Food Chemistry, and Food Development Unit, University of Turku, Turku, Finland
| | - Ambrin Farizah Babu
- School of Medicine, Institute of Public Health, and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Afekta Technologies Ltd., Kuopio, Finland
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research, and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Otto van Delden
- Department of Interventional Radiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Michial Doukas
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Aart Nederveen
- Department of Radiology, and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ursula Schwab
- School of Medicine, Institute of Public Health, and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Aldo Grefhorst
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Adriaan Georgius Holleboom
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Theel WB, de Jong VD, Castro Cabezas M, Grobbee DE, Jukema JW, Trompet S. Risk of cardiovascular disease in elderly subjects with obesity and liver fibrosis and the potential benefit of statin treatment. Eur J Clin Invest 2025; 55:e14368. [PMID: 39636216 PMCID: PMC11810556 DOI: 10.1111/eci.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Liver fibrosis progression is influenced by older age and cardiometabolic risk factors such as obesity and is associated with an increased risk of cardiovascular events. While statins may protect against cardiovascular complications, their effects in elderly individuals with obesity and liver fibrosis are unclear. METHOD The PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) database was used to evaluate the effect of pravastatin on major adverse cardiovascular events in an elderly population (>70 years). Subjects were categorized by BMI: lean (<25 kg/m2), overweight (25-29.9 kg/m2) and obese (≥30 kg/m2). Liver fibrosis was assessed using the FIB-4 index: low risk (<2.0), intermediate risk (2.0-2.66) and high risk (≥2.67). Time-to-event data were analysed using the Cox proportional hazards model, adjusted for confounders and compared the placebo and pravastatin groups. RESULTS A total of 5.804 subjects were included. In the placebo group, the highest risk group (high FIB-4 and obesity) had a significantly higher hazard ratio for (non-)fatal stroke (HR 2.74; 95% CI 1.19-6.29) compared to the low FIB-4, lean BMI group. This risk disappeared in the same pravastatin group. Pravastatin did not affect other cardiovascular endpoints. All-cause mortality was significantly higher in subjects with lean weight and high FIB-4 on placebo (HR 1.88; 95% CI 1.14-3.11), but not on pravastatin (HR .58; 95% CI .28-1.20). CONCLUSION Elderly individuals with obesity and liver fibrosis are at higher risk for (non-)fatal stroke, which is reduced with pravastatin. Pravastatin also potentially lowers all-cause mortality in subjects with lean weight and liver fibrosis.
Collapse
Affiliation(s)
- Willy B. Theel
- Department of Internal medicineFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
- Obesity Center CGGRotterdamThe Netherlands
| | - Vivian D. de Jong
- Julius Global Health, Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrechtThe Netherlands
- Julius ClinicalZeistThe Netherlands
| | - Manuel Castro Cabezas
- Department of Internal medicineFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
- Julius ClinicalZeistThe Netherlands
- Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Diederick E. Grobbee
- Julius Global Health, Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrechtThe Netherlands
- Julius ClinicalZeistThe Netherlands
| | - Johan W. Jukema
- Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Stella Trompet
- Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Internal Medicine, Section of Gerontology & GeriatricsLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
43
|
Saarinen K, Färkkilä M, Jula A, Erlund I, Vihervaara T, Lundqvist A, Åberg F. The use of ELF in predicting liver fibrosis prevalence and fibrosis progression in the general population. Scand J Gastroenterol 2025; 60:262-272. [PMID: 39931821 DOI: 10.1080/00365521.2025.2454247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND AND AIMS The enhanced liver fibrosis (ELF) test has good discrimination performance in detecting advanced liver fibrosis. The chronic liver disease (CLivD) risk score based on clinical data accurately predicts risk for future severe liver disease. Considering the ELF test as a surrogate marker for liver fibrosis, we analyzed predictors of elevated ELF (eELF) and its change. METHODS The study cohort consisted of Finnish general population-based health surveys Health2000 and a follow-up study 10 years later Health2011 with 6084 and 2937 individuals, respectively with phenotype and ELF data. eELF was defined as ELF ≥ 9.8, and clinically relevant fibrosis progression as an ELF change ≥0.6. CLivD risk score was calculated at baseline. Analyses were age-adjusted. RESULTS Obesity measures and diabetes predicted eELF at baseline. Only waist-hip ratio (WHR) could predict clinically relevant fibrosis progression over the follow-up consistently among men and women (OR 1.35 and 1.41, respectively). High-risk alcohol use was a significant risk factor for eELF only among men (OR 1.72, p = 0.049), and it did not predict fibrosis progression in either sex. Although elevated transaminases were associated with eELF, in most individuals with eELF they were within reference limits. Increased CLivD scores correlated with baseline and the change of ELF values over the 10-year follow-up independent of baseline ELF (p < 0.001). CONCLUSIONS Liver fibrosis progression is difficult to predict based on single risk factors or liver enzymes. ELF had limited value to predict fibrosis progression. The CLivD score, based on multiple risk factors, predicted both occurrence of baseline eELF and its progression over a 10-year follow-up.
Collapse
Affiliation(s)
- Kustaa Saarinen
- Helsinki University Hospital, Abdominal Center, Helsinki, Finland
| | - Martti Färkkilä
- Helsinki University Hospital, Abdominal Center, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Antti Jula
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Iris Erlund
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | | | - Fredrik Åberg
- Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Noguerol Álvarez M, Valer López Fando MP, Torrijos Bravo C, Gómez Ortiz MC, Piqueras Alcohol B, Guardiola Arévalo A, De la Poza Gómez G, Pascual García Z, Rey Rodríguez S, Iglesias Sigüenza R, Ledesma Estévez E, Parra Román S, Gómez Suárez M, Pérez San Juan A, Ruiz Romero M, Martínez Vega L, López Uriarte B, Góngora Maldonado F, Martín Porras B, Serrano Gismero P, Rubio Benito E, Viñas Fernández G, Rojas Giraldo MJ, Hernández Sánchez AM, Alonso Ovies M, Saiz Ladera GM, Martín Peña N, Fernández Horcajuelo J, Llinares Gómez V, Sánchez Mateos JF, Polentinos Castro E, Rodríguez Barrientos R, Carbajo Ariza M, Amat Baeza G, Bermejo San José F. Screening for advanced liver disease incorporating the use of transitional elastography in primary care. GASTROENTEROLOGIA Y HEPATOLOGIA 2025; 48:502242. [PMID: 39245210 DOI: 10.1016/j.gastrohep.2024.502242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVES To describe the proportion of patients with liver fibrosis in at-risk populations in primary care (PC). To know the agreement between FIB-4 and transitional elastography (TE), interobserver agreement between PC and hospital care (HC) in TE, and associated risk Factors (RF). METHODS Observational, descriptive, cross-sectional study in ≥16 years of age with RF for chronic liver disease. Sex and age, RF (alteration of liver tests [LT], metabolic syndrome, diabetes, obesity, alcohol consumption, hepatic steatosis), and FIB-4, controlled attenuation parameter and TE in PC and in HC, were collected. According to a consensus algorithm, vibration-controlled TE was performed in PC in patients with FIB-4≥1,3, and those with measurement ≥8kPa were referred to HC. RESULTS 326 patients were studied. 71% were not referred to HC, due to liver stiffness <8kPa. 83 of the 95 derivations did TE in HC. 45 (54%) had TE ≥8, and 25 (30%) ≥12. The proportion of patients with stiffness ≥8kPa was 13,8% (45/326) and ≥12kPa, 7,6% (25/326). The predictive values of the FIB-4 were low. The interobserver correlation coefficient between TE in PC and HC was 0,433. Variables associated with TE ≥8 in PC: LT alteration, diabetes and steatosis. With TE ≥12: LT alteration, diabetes and obesity. PREDICTOR VARIABLES LT alteration and obesity. CONCLUSIONS The study supports the sequential performance of serum indices and TE as a screening for fibrosis in the at-risk population in PC, which allows a reduction in the percentage of patients referred to AH, and a better stratification of risk patients.
Collapse
Affiliation(s)
| | - Ma Paz Valer López Fando
- Servicio de Aparato Digestivo, Hospital Universitario de Fuenlabrada, Fuenlabrada, Madrid, España
| | | | | | - Belén Piqueras Alcohol
- Servicio de Aparato Digestivo, Hospital Universitario de Fuenlabrada, Fuenlabrada, Madrid, España
| | | | - Gema De la Poza Gómez
- Servicio de Aparato Digestivo, Hospital Universitario de Fuenlabrada, Fuenlabrada, Madrid, España
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Greta Amat Baeza
- Unidad de apoyo a la investigación de Atención Primaria, Madrid, España
| | | |
Collapse
|
45
|
Namura N, Kamada K, Hagiwara T, Takahashi K, Matsui K. Disease activity and changes in the fibrosis-4 index in patients with rheumatoid arthritis treated with methotrexate for a short period. Arch Rheumatol 2025; 40:53-62. [PMID: 40264486 PMCID: PMC12010268 DOI: 10.46497/archrheumatol.2025.10702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/27/2025] [Indexed: 04/24/2025] Open
Abstract
Objectives This study aims to investigate the relationship between disease activity and changes in the fibrosis-4 index (FIB-4) in patients with rheumatoid arthritis (RA) who received methotrexate as Phase I treatment for a short period. Patients and methods In this retrospective study, 144 patients (106 females, 38 males; median age: 68.05 years; range, 58.3 to 76.0 years) diagnosed with RA who had not received methotrexate before their diagnosis were included between April 2015 and September 2020. The patients' clinical data were recorded at baseline, six months, and 12 months. Patients with hepatitis, alcoholism, severe obesity, hypercholesterolemia, or overlapping autoimmune diseases and those receiving a maximum methotrexate dose of ≤10 mg/week were excluded. Multiple regression analysis was performed to identify predictors of the changes in FIB-4 values from baseline. Mediation analysis was employed to determine the association between Disease Activity Score-28 for RA with erythrocyte sedimentation rate (DAS28-ESR) and changes in FIB-4 values, with the cumulative methotrexate dose as a mediator. Results FIB-4 values increased significantly from baseline to 12 months after methotrexate initiation. The cumulative methotrexate dose did not independently influence changes in FIB-4 values. After adjusting for confounding factors, the factor independently influencing the change in fibrosis-4 values from baseline was DAS28-ESR at six and 12 months (β=0.107 and β=0.086, respectively). The cumulative methotrexate dose did not mediate the relationship between DAS28-ESR at baseline and changes in FIB-4 values, and it did not affect changes in FIB-4 values over a short period. Conclusion Rheumatoid arthritis disease activity before methotrexate administration independently affected changes in FIB-4 values. We suggest monitoring FIB-4 values in patients with RA with high disease activity, even for a short period after methotrexate administration, as FIB-4 values in these patients may be underestimated.
Collapse
Affiliation(s)
- Noriyuki Namura
- Department of Diabetes, Endocrinology and Clinical Immunology, Division of Allergology and Rheumatology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
- Department of Rheumatology, Takarazuka City Hospital, Takarazuka City, Japan
| | - Kazuya Kamada
- Department of Rheumatology, Takarazuka City Hospital, Takarazuka City, Japan
| | - Takahumi Hagiwara
- Department of Rheumatology, Takarazuka City Hospital, Takarazuka City, Japan
| | - Kanae Takahashi
- Department of Biostatistics, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Kiyoshi Matsui
- Department of Diabetes, Endocrinology and Clinical Immunology, Division of Allergology and Rheumatology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| |
Collapse
|
46
|
Wang Y, Wong VWS. Is digital pathology the new standard in MASH trials? Hepatology 2025; 81:765-768. [PMID: 38885007 DOI: 10.1097/hep.0000000000000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Affiliation(s)
- Yue Wang
- Department of Medicine and Therapeutics, Medical Data Analytics Center, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Medical Data Analytics Center, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
47
|
Pecoraro V, Nascimbeni F, Cuccorese M, Gabrielli F, Fasano T, Trenti T. Diagnostic Accuracy of Golgi Protein 73 (GP73) for Liver Fibrosis Staging in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Scoping Review and Cohort Study. Diagnostics (Basel) 2025; 15:544. [PMID: 40075792 PMCID: PMC11898419 DOI: 10.3390/diagnostics15050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Golgi protein 73 (GP73) is a transmembrane protein expressed by epithelial cells of the bile duct in the normal liver. High serum levels of GP73 have been detected in patients with acute or chronic liver diseases, MASLD, and its measurement has been suggested as a potential biomarker for liver fibrosis staging. We evaluated the utility of GP73 in the diagnosis of MASLD, MASH, and for liver fibrosis staging. Methods: We performed a literature scoping review to map the current evidence about the accuracy of GP73 in patients with MASLD. We searched in Medline and EMBASE for English studies reporting an AUC value of GP73 in diagnosing MASLD and MASH and evaluating GP73 for fibrosis staging. A narrative synthesis of the evidence was conducted. Moreover, we performed an observational study including 84 patients with MASLD, of which 60 were biopsy-confirmed MASH, and different liver fibrosis stages, and 15 healthy controls. Serum GP73 levels were determined using a chemiluminescent assay and reported as mean and standard deviation (SD). Sensitivity (SE), specificity (SP), the area under the receiver operating characteristic (AUROC) curve, and the optimal cut-off value were calculated. Data were considered statistically significant when p < 0.05. Results: Available studies evaluating GP73 in MASLD reported the ability to discriminate MASH from simple steatosis and distinguish patients at different fibrotic stages, but the evidence is still scarce. Our experimental study showed that the serum levels of GP73 were 30 ± 12 ng/mL in MASLD and 32 ± 12 ng/mL in MASH patients and were statistically higher than those of the control group (19 ± 30 ng/mL), increasing from liver fibrosis stage F0 to F4. GP73 levels were significantly higher in patients with significant and advanced fibrosis than controls and no significant fibrosis (p > 0.05). ROC analysis demonstrated that serum GP73 had a good diagnostic potential for MASLD (AUROC 0.85; SE 90%; SP 73%), MASH (AUROC 0.75; SE 82%; SP64%), and significant fibrosis (AUROC 0.7; SE 56%; SP 79%) and was better than other biomarkers for chronic liver diseases. Conclusions: Serum GP73 could support clinicians in the evaluation of patients with MASH and significant fibrosis.
Collapse
Affiliation(s)
- Valentina Pecoraro
- Complex Structure of Laboratory Medicine, Department of Laboratory Medicine and Pathological Anatomy, AUSL Modena, 41121 Modena, Italy
| | | | - Michela Cuccorese
- Complex Structure of Laboratory Medicine, Department of Laboratory Medicine and Pathological Anatomy, AUSL Modena, 41121 Modena, Italy
| | | | - Tommaso Fasano
- Complex Structure of Laboratory Medicine, Department of Laboratory Medicine and Pathological Anatomy, AUSL Modena, 41121 Modena, Italy
| | | |
Collapse
|
48
|
Salahshour F, Abkhoo A, Sadeghian S, Safaei M. Reliability assessment of CT enhancement rate and extracellular volume in liver fibrosis prediction. BMC Gastroenterol 2025; 25:101. [PMID: 39984822 PMCID: PMC11846286 DOI: 10.1186/s12876-025-03678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Reliable, non-invasive evaluation of liver fibrosis is essential for early disease management. Computed tomography (CT)-based extracellular volume (ECV) fraction and portal venous phase enhancement rate (VP-ER) have shown potential in quantifying mild-to-moderate fibrosis. This study investigates the diagnostic performance of ECV and VP-ER in differentiating non-significant (F0-F1) from significant (F2-F3) fibrosis in biopsy-confirmed patients. METHODS Ninety-three patients (20-72 years, 56.9% male) undergoing liver biopsy and multiphasic CT scans were retrospectively enrolled. Patients with METAVIR F4 cirrhosis or incomplete imaging/pathological data were excluded. Hematocrit levels were obtained on the day of CT. ECV was calculated from differences in liver and aortic attenuation between delayed and enhanced phases, adjusted for hematocrit. VP-ER was derived as the ratio of liver attenuation in venous to portal venous phases multiplied by 100. Spearman's correlation, receiver operating characteristic (ROC) curves, and DeLong tests evaluated their performance. Multiple logistic regression assessed independent contributions of ECV and VP-ER to fibrosis status. RESULTS Fifty-three patients had no significant fibrosis (F0-F1) and 40 had significant fibrosis (F2-F3). ECV demonstrated a moderate correlation with fibrosis grade (r = 0.531, p < 0.0001), while VP-ER showed a weaker yet statistically significant correlation (r = 0.363, p = 0.0003). ROC analyses yielded an area under the curve (AUC) of 0.698 for ECV (cut-off = 38%) and 0.763 for VP-ER (cut-off = 71%), with no significant difference between AUCs (p = 0.358). VP-ER accurately classified 70 patients, while ECV correctly predicted 65. Logistic regression revealed significant associations for both VP-ER (OR = 1.08; p = 0.007) and ECV (OR = 1.025; p = 0.0132), achieving 72.04% classification accuracy and an overall AUC of 0.756 (95% CI: 0.688-0.863). CONCLUSION ECV fraction and VP-ER demonstrated reliable, complementary capabilities for distinguishing non-significant fibrosis from significant fibrosis. Their combined use in routine multiphasic CT protocols may reduce dependence on invasive biopsy while offering robust sensitivity and specificity for early fibrosis assessment. Further studies including cirrhotic populations and larger cohorts are recommended.
Collapse
Affiliation(s)
- Faeze Salahshour
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Aminreza Abkhoo
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Sadeghian
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Safaei
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Vizioli G, Nicoletti A, Feliciani D, Funaro B, Zileri Dal Verme L, Ponziani FR, Zocco MA, Gasbarrini A, Gabrielli M. Immunotherapy and MASLD-Related HCC: Should We Reconsider the Role of Etiology in the Therapeutic Approach to HCC? APPLIED SCIENCES 2025; 15:2279. [DOI: 10.3390/app15052279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancers and typically arises in the context of chronic liver disease. With the increasing prevalence of metabolic disorders, metabolic dysfunction-associated steatotic liver disease (MASLD) has become the leading cause of chronic liver disease and the most rapidly increasing cause of HCC. The role of dysfunctional innate and adaptive immune responses in the development and progression of HCC is well-established, prompting numerous trials to evaluate the efficacy of immune checkpoint inhibitors (ICIs) in targeting tumor cells. These trials have yielded promising results, and ICIs, in combination with anti-vascular endothelial growth factor (VEGF) monoclonal antibodies, are now approved as first-line therapy for patients with metastatic or unresectable HCC, irrespective of the underlying liver disease. Notably, MASLD itself is characterized by immune system dysfunction, as metabolic inflammation plays a central role in its onset and progression. However, clinical studies and post-hoc analyses suggest that immunotherapy may be less effective in MASLD-associated HCC compared to viral-related HCC. This emerging evidence raises the question of whether the underlying liver disease influences the therapeutic response to ICIs in HCC. It may be time to consider tailoring therapeutic strategies for HCC based on the specific etiological, histological, and genotypical subgroups.
Collapse
Affiliation(s)
- Giuseppina Vizioli
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alberto Nicoletti
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Daniela Feliciani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Barbara Funaro
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Zileri Dal Verme
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maurizio Gabrielli
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
50
|
Han J, Liu C, Yang H, Dong Z, Li X, Gao R, Li J, Zhang Q, Ming WK, Li Z, Li J, Qi X. Caffeine intake associated with a lower risk of liver fibrosis in different glucose status. J Adv Res 2025:S2090-1232(25)00076-1. [PMID: 39947323 DOI: 10.1016/j.jare.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/29/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND AND AIMS To investigate the prevalence of liver fibrosis, and the association between caffeine intake and fibrosis in populations with different glucose metabolism status. METHODS This was a cross-sectional study based on the National Health and Nutrition Examination Survey (2005-March 2020). Of the 39,221 adult individuals with no necessary laboratory results missing, a total of 23,711 eligible individuals were included in the study. Individuals were divided into T2DM, prediabetes, and diabetes-free groups. Fibrosis-4 index was calculated to evaluate the risk of liver fibrosis. Caffeine intake was obtained through a 24-hour dietary recall. RESULTS The mean ± SE age of prediabetes group was 53 ± 0·4 years, and in type 2 diabetes mellitus group, the individuals have a mean ± SE age of 62 ± 0·3 years. The participants with type 2 diabetes mellitus had significantly higher risk of liver fibrosis than those with prediabetes or normal glucose tolerance (5·9% vs. 3·2% vs. 2·5%, P < 0·001). Compared to individuals with daily caffeine intake < 78 mg, individuals with daily caffeine intake ≥ 78 mg had significantly lower risk of liver fibrosis in all subgroups (odds ratio: diabetes-free group: 0·698[0·577-0·846]; prediabetes group: 0·553[0·397-0·769]; type 2 diabetes mellitus group: 0·720[0·556-0·933]; all P < 0·05). CONCLUSIONS Prevalence of liver fibrosis is high in patients with type 2 diabetes mellitus and prediabetes. It is indicated that individuals with prediabetes should also be screened for fibrosis. Caffeine intake ≥ 78 mg per day is associated with a lower risk of liver fibrosis.
Collapse
Affiliation(s)
- Jiahao Han
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, State Key Laboratory of Digital Medical Engineering, Nanjing, China; Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Chuan Liu
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, State Key Laboratory of Digital Medical Engineering, Nanjing, China
| | - Huanhuan Yang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Zihe Dong
- Institute of Portal Hypertension, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoguo Li
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, State Key Laboratory of Digital Medical Engineering, Nanjing, China; Institute of Portal Hypertension, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ruixia Gao
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jie Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qun Zhang
- Department of Infectious Disease, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Wai-Kit Ming
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhihui Li
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Jia Li
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.
| | - Xiaolong Qi
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, State Key Laboratory of Digital Medical Engineering, Nanjing, China.
| |
Collapse
|