1
|
Reshetnyak VI, Vinnitskaya EV, Maev IV. Primary biliary cholangitis: A historical perspective from xanthomatous lesions to modern molecular biology. World J Gastrointest Pathophysiol 2025; 16:107347. [DOI: 10.4291/wjgp.v16.i2.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/05/2025] [Accepted: 04/29/2025] [Indexed: 06/19/2025] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease characterized by damage and loss of the epithelial lining of small intrahepatic bile ducts, leading to ductopenia and cholestasis. In advanced stages, this process results in cirrhosis and liver failure. The disease belongs to cholangiopathies. The review addressed historical questions concerning: The history of the first mention of this disease; how its nomenclature was formed; when specific serological tests were discovered and their importance in the diagnosis of PBC; the history of ursodeoxycholic and other bile acids for the treatment of PBC; and the significance of modern data on impaired bicarbonate production by cholangiocytes in the pathogenesis of PBC.
Collapse
Affiliation(s)
- Vasiliy Ivanovich Reshetnyak
- Department of Propaedeutics of Internal Diseases and Gastroenterology, Russian University of Medicine, Moscow 127473, Russia
| | - Elena Vladimirovna Vinnitskaya
- Department of Hepatology, Center for Diagnostics and Treatment of Liver Diseases, Moscow Clinical Scientific and Practical Center, Moscow 111123, Russia
| | - Igor Veniaminovich Maev
- Department of Propaedeutics of Internal Diseases and Gastroenterology, Russian University of Medicine, Moscow 127473, Russia
| |
Collapse
|
2
|
Bozward AG, Davies SP, Morris SM, Kayani K, Oo YH. Cellular interactions in self-directed immune-mediated liver diseases. J Hepatol 2025; 82:1110-1124. [PMID: 39793614 DOI: 10.1016/j.jhep.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The lymphocyte population must traverse a complex path throughout their journey to the liver. The signals which these cells must detect, including cytokines, chemokines and other soluble factors, steer their course towards further crosstalk with other hepatic immune cells, hepatocytes and biliary epithelial cells. A series of specific chemokine receptors and adhesion molecules drive not only the recruitment, migration, and retention of these cells within the liver, but also their localisation. Perturbation of these interactions and failure of self-recognition drive the development of several autoimmune liver diseases. We also describe check point-induced liver injury. Immune cell internalisation into hepatocytes (emperipolesis) in autoimmune hepatitis and into biliary epithelial cells (intra-epithelial lymphocyte) in primary biliary cholangitis are typical features in autoimmune liver diseases. Finally, we describe emerging immune-based therapies, including regulatory T cell, anti-cytokine and anti-chemokine therapies, cytokine supplementation (e.g. interleukin-2), as well as co-inhibitory molecule manipulation, including T-cell engagers, and discuss their potential application in the treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
- Amber G Bozward
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) Centre, University of Birmingham, Birmingham, UK.
| | - Scott P Davies
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) Centre, University of Birmingham, Birmingham, UK
| | - Sean M Morris
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) Centre, University of Birmingham, Birmingham, UK
| | - Kayani Kayani
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) Centre, University of Birmingham, Birmingham, UK
| | - Ye H Oo
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) Centre, University of Birmingham, Birmingham, UK; Liver Transplant and Hepatobiliary Department, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
3
|
Wang WL, Lian H, Liang Y, Ye Y, Tam PKH, Chen Y. Molecular Mechanisms of Fibrosis in Cholestatic Liver Diseases and Regenerative Medicine-Based Therapies. Cells 2024; 13:1997. [PMID: 39682745 PMCID: PMC11640075 DOI: 10.3390/cells13231997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this review is to explore the potential of new regenerative medicine approaches in the treatment of cholestatic liver fibrosis. Cholestatic liver diseases, such as primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and biliary atresia (BA), due to the accumulation of bile, often progress to liver fibrosis, cirrhosis, and liver failure. When the disease becomes severe enough to require liver transplantation. Deeply understanding the disease's progression and fibrosis formation is crucial for better diagnosis and treatment. Current liver fibrosis treatments mainly target the root causes and no direct treatment method in fibrosis itself. Recent advances in regenerative medicine offer a potential approach that may help find the ways to target fibrosis directly, offering hope for improved outcomes. We also summarize, analyze, and discuss the current state and benefits of regenerative medicine therapies such as mesenchymal stem cell (MSC) therapy, induced pluripotent stem cells (iPSCs), and organoid technology, which may help the treatment of cholestatic liver diseases. Focusing on the latest research may reveal new targets and enhance therapeutic efficacy, potentially leading to more effective management and even curative strategies for cholestatic liver diseases.
Collapse
Affiliation(s)
- Wei-Lu Wang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China; (W.-L.W.); (H.L.); (Y.L.)
| | - Haoran Lian
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China; (W.-L.W.); (H.L.); (Y.L.)
| | - Yingyu Liang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China; (W.-L.W.); (H.L.); (Y.L.)
| | - Yongqin Ye
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China;
| | - Paul Kwong Hang Tam
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China; (W.-L.W.); (H.L.); (Y.L.)
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China;
- Precision Regenerative Medicine Research Centre, Medical Sciences Division, Macau University of Science and Technology, Macao SAR, China
| | - Yan Chen
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China; (W.-L.W.); (H.L.); (Y.L.)
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China;
- Precision Regenerative Medicine Research Centre, Medical Sciences Division, Macau University of Science and Technology, Macao SAR, China
| |
Collapse
|
4
|
Burra P, Zanetto A, Schnabl B, Reiberger T, Montano-Loza AJ, Asselta R, Karlsen TH, Tacke F. Hepatic immune regulation and sex disparities. Nat Rev Gastroenterol Hepatol 2024; 21:869-884. [PMID: 39237606 DOI: 10.1038/s41575-024-00974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
Chronic liver disease is a major cause of morbidity and mortality worldwide. Epidemiology, clinical phenotype and response to therapies for gastrointestinal and liver diseases are commonly different between women and men due to sex-specific hormonal, genetic and immune-related factors. The hepatic immune system has unique regulatory functions that promote the induction of intrahepatic tolerance, which is key for maintaining liver health and homeostasis. In liver diseases, hepatic immune alterations are increasingly recognized as a main cofactor responsible for the development and progression of chronic liver injury and fibrosis. In this Review, we discuss the basic mechanisms of sex disparity in hepatic immune regulation and how these mechanisms influence and modify the development of autoimmune liver diseases, genetic liver diseases, portal hypertension and inflammation in chronic liver disease. Alterations in gut microbiota and their crosstalk with the hepatic immune system might affect the progression of liver disease in a sex-specific manner, creating potential opportunities for novel diagnostic and therapeutic approaches to be evaluated in clinical trials. Finally, we identify and propose areas for future basic, translational and clinical research that will advance our understanding of sex disparities in hepatic immunity and liver disease.
Collapse
Affiliation(s)
- Patrizia Burra
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy.
| | - Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, Department of Medicine, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Tom Hemming Karlsen
- Department of Transplantation Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
5
|
Hitomi Y, Ueno K, Aiba Y, Nishida N, Kono M, Sugihara M, Kawai Y, Kawashima M, Khor SS, Sugi K, Kouno H, Kohno H, Naganuma A, Iwamoto S, Katsushima S, Furuta K, Nikami T, Mannami T, Yamashita T, Ario K, Komatsu T, Makita F, Shimada M, Hirashima N, Yokohama S, Nishimura H, Sugimoto R, Komura T, Ota H, Kojima M, Nakamuta M, Fujimori N, Yoshizawa K, Mano Y, Takahashi H, Hirooka K, Tsuruta S, Sato T, Yamasaki K, Kugiyama Y, Motoyoshi Y, Suehiro T, Saeki A, Matsumoto K, Nagaoka S, Abiru S, Yatsuhashi H, Ito M, Kawata K, Takaki A, Arai K, Arinaga-Hino T, Abe M, Harada M, Taniai M, Zeniya M, Ohira H, Shimoda S, Komori A, Tanaka A, Ishigaki K, Nagasaki M, Tokunaga K, Nakamura M. A genome-wide association study identified PTPN2 as a population-specific susceptibility gene locus for primary biliary cholangitis. Hepatology 2024; 80:776-790. [PMID: 38652555 DOI: 10.1097/hep.0000000000000894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AND AIMS Previous genome-wide association studies (GWAS) have indicated the involvement of shared (population-nonspecific) and nonshared (population-specific) susceptibility genes in the pathogenesis of primary biliary cholangitis (PBC) among European and East-Asian populations. Although a meta-analysis of these distinct populations has recently identified more than 20 novel PBC susceptibility loci, analyses of population-specific genetic architecture are still needed for a more comprehensive search for genetic factors in PBC. APPROACH AND RESULTS Protein tyrosine phosphatase nonreceptor type 2 ( PTPN2) was identified as a novel PBC susceptibility gene locus through GWAS and subsequent genome-wide meta-analysis involving 2181 cases and 2699 controls from the Japanese population (GWAS-lead variant: rs8098858, p = 2.6 × 10 -8 ). In silico and in vitro functional analyses indicated that the risk allele of rs2292758, which is a primary functional variant, decreases PTPN2 expression by disrupting Sp1 binding to the PTPN2 promoter in T follicular helper cells and plasmacytoid dendritic cells. Infiltration of PTPN2-positive T-cells and plasmacytoid dendritic cells was confirmed in the portal area of the PBC liver by immunohistochemistry. Furthermore, transcriptomic analysis of PBC-liver samples indicated the presence of a compromised negative feedback loop in vivo between PTPN2 and IFNG in patients carrying the risk allele of rs2292758. CONCLUSIONS PTPN2 , a novel susceptibility gene for PBC in the Japanese population, may be involved in the pathogenesis of PBC through an insufficient negative feedback loop caused by the risk allele of rs2292758 in IFN-γ signaling. This suggests that PTPN2 could be a potential molecular target for PBC treatment.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshihiro Aiba
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Nao Nishida
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michihiro Kono
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mitsuki Sugihara
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Seik-Soon Khor
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kazuhiro Sugi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hirotaka Kouno
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hiroshi Kohno
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Atsushi Naganuma
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Satoru Iwamoto
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shinji Katsushima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kiyoshi Furuta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Toshiki Nikami
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tomohiko Mannami
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tsutomu Yamashita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Keisuke Ario
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tatsuji Komatsu
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Fujio Makita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Masaaki Shimada
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Noboru Hirashima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shiro Yokohama
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hideo Nishimura
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Rie Sugimoto
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Takuya Komura
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hajime Ota
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Motoyuki Kojima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Makoto Nakamuta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Naoyuki Fujimori
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kaname Yoshizawa
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yutaka Mano
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hironao Takahashi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kana Hirooka
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Satoru Tsuruta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Takeaki Sato
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazumi Yamasaki
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yuki Kugiyama
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | | | - Tomoyuki Suehiro
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Akira Saeki
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kosuke Matsumoto
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shinya Nagaoka
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Seigo Abiru
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | | | - Masahiro Ito
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Teruko Arinaga-Hino
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Masaru Harada
- The Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makiko Taniai
- Department of Medicine and Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Mikio Zeniya
- Department of Gastroenterology and Hepatology, Tokyo Jikei University School of Medicine, Tokyo, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Shinji Shimoda
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Atsumasa Komori
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masao Nagasaki
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| |
Collapse
|
6
|
Tanaka A, Ma X, Takahashi A, Vierling JM. Primary biliary cholangitis. Lancet 2024; 404:1053-1066. [PMID: 39216494 DOI: 10.1016/s0140-6736(24)01303-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024]
Abstract
Primary biliary cholangitis is a chronic, autoimmune, cholestatic disease that mainly affects women aged 40-70 years. Recent epidemiological studies have shown an increasing incidence worldwide despite geographical heterogeneity and a decrease in the female-to-male ratio of those the disease affects. Similar to other autoimmune diseases, primary biliary cholangitis occurs in genetically predisposed individuals upon exposure to environmental triggers, specifically xenobiotics, smoking, and the gut microbiome. Notably, the diversity of the intestinal microbiome is diminished in individuals with primary biliary cholangitis. The intricate interplay among immune cells, cytokines, chemokines, and biliary epithelial cells is postulated as the underlying pathogenic mechanism involved in the development and progression of primary biliary cholangitis, and extensive research has been dedicated to comprehending these complex interactions. Following the official approval of obeticholic acid as second-line treatment for patients with an incomplete response or intolerance to ursodeoxycholic acid, clinical trials have indicated that peroxisome proliferator activator receptor agonists are promising additional second-line drugs. Future dual or triple drug regimens might reach a new treatment goal of normalisation of alkaline phosphatase levels, rather than a decrease to less than 1·67 times the upper limit of normal levels, and potentially improve long-term outcomes. Improvement of health-related quality of life with better recognition and care of subjective symptoms, such as pruritus and fatigue, is also an important treatment goal. Promising clinical investigations are underway to alleviate these symptoms. Efforts to facilitate better access to medical care and dissemination of current knowledge should enable diagnosis at an earlier stage of primary biliary cholangitis and ensure access to treatments based on risk stratification for all patients.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Atsushi Takahashi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - John M Vierling
- Department of Medicine and Surgery, Section of Gastroenterology, Baylor College of Medicine, Houston, TX, USA; Hepatology, and Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Carbone M, Gerussi A, Cardinale V, Cazzagon N, Cossiga V, Lleo A, Marrone G, Marzioni M, Moschetta A, Muratori L, Rigamonti C, Vespasiani-Gentilucci U, Fraquelli M, Calvaruso V. Position paper of the Italian Association for the Study of the Liver (AISF): Management and treatment of primary biliary cholangitis. Dig Liver Dis 2024; 56:1461-1474. [PMID: 38902184 DOI: 10.1016/j.dld.2024.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
|
8
|
Katsumi T, Sato H, Murakami R, Hanatani T, Uchiyama F, Suzuki F, Maki K, Hoshikawa K, Haga H, Saito T, Ueno Y. Identification of microbial antigens in liver tissues involved in the pathogenesis of primary biliary cholangitis using 16S rRNA metagenome analysis. PLoS One 2024; 19:e0308912. [PMID: 39159233 PMCID: PMC11332946 DOI: 10.1371/journal.pone.0308912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Multiple factors are involved in the pathogenesis of primary biliary cholangitis (PBC), a chronic cholestatic liver disease, characterized by intrahepatic cholangiopathy. In particular, studies have suggested that environmental factors such as the presence of granulomas in the portal vein region are important for the development of PBC. This study aimed to comprehensively analyze and identify foreign-derived antigens in PBC liver tissue to confirm their involvement in PBC pathogenesis. METHODS Portal areas and hepatocyte regions were selectively dissected from formalin-fixed paraffin-embedded PBC liver tissue samples using the microlaser method, followed by total DNA extraction. We then validated whether the bacterial strains identified through 16S rRNA metagenomic analysis were detected in PBC liver tissues. RESULTS The most frequently detected bacterial genera in the PBC liver tissue samples were Sphingomonas panacis, Providencia, and Cutibacterium. These bacterial genera were also detected in the other PBC samples. Validation for the detection of S. panacis, the most abundant genus, revealed polymerase chain reaction bands extracted from the portal areas of all samples. They were also more highly expressed than bands detected in the hepatocyte region. CONCLUSION S. panacis antigen was specifically detected in the portal areas of PBC liver tissues. The introduction of foreign-derived antigens into the liver as an environmental factor could be a possible mechanism for the development of PBC.
Collapse
Affiliation(s)
- Tomohiro Katsumi
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Hidenori Sato
- Genomic Information Analysis Unit, Department of Genomic Cohort Research, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Ryoko Murakami
- Genomic Information Analysis Unit, Department of Genomic Cohort Research, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Takumi Hanatani
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Fumi Uchiyama
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Fumiya Suzuki
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Keita Maki
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Kyoko Hoshikawa
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Hiroaki Haga
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Takafumi Saito
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| |
Collapse
|
9
|
Gerussi A, Cappadona C, Bernasconi DP, Cristoferi L, Valsecchi MG, Carbone M, Invernizzi P, Asselta R. Improving predictive accuracy in primary biliary cholangitis: A new genetic risk score. Liver Int 2024; 44:1952-1960. [PMID: 38619000 DOI: 10.1111/liv.15916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND AND AIMS Genetic variants influence primary biliary cholangitis (PBC) risk. We established and tested an accurate polygenic risk score (PRS) using these variants. METHODS Data from two Italian cohorts (OldIT 444 cases, 901 controls; NewIT 255 cases, 579 controls) were analysed. The latest international genome-wide meta-analysis provided effect size estimates. The PRS, together with human leukocyte antigen (HLA) status and sex, was included in an integrated risk model. RESULTS Starting from 46 non-HLA genes, 22 variants were selected. PBC patients in the OldIT cohort showed a higher risk score than controls: -.014 (interquartile range, IQR, -.023, .005) versus -.022 (IQR -.030, -.013) (p < 2.2 × 10-16). For genetic-based prediction, the area under the curve (AUC) was .72; adding sex increased the AUC to .82. Validation in the NewIT cohort confirmed the model's accuracy (.71 without sex, .81 with sex). Individuals in the top group, representing the highest 25%, had a PBC risk approximately 14 times higher than that of the reference group (lowest 25%; p < 10-6). CONCLUSION The combination of sex and a novel PRS accurately discriminated between PBC cases and controls. The model identified a subset of individuals at increased risk of PBC who might benefit from tailored monitoring.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Claudio Cappadona
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Davide Paolo Bernasconi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maria Grazia Valsecchi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marco Carbone
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
10
|
Trivedi PJ, Hirschfield GM, Adams DH, Vierling JM. Immunopathogenesis of Primary Biliary Cholangitis, Primary Sclerosing Cholangitis and Autoimmune Hepatitis: Themes and Concepts. Gastroenterology 2024; 166:995-1019. [PMID: 38342195 DOI: 10.1053/j.gastro.2024.01.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Autoimmune liver diseases include primary biliary cholangitis, primary sclerosing cholangitis, and autoimmune hepatitis, a family of chronic immune-mediated disorders that target hepatocytes and cholangiocytes. Treatments remain nonspecific, variably effective, and noncurative, and the need for liver transplantation is disproportionate to their rarity. Development of effective therapies requires better knowledge of pathogenic mechanisms, including the roles of genetic risk, and how the environment and gut dysbiosis cause immune cell dysfunction and aberrant bile acid signaling. This review summarizes key etiologic and pathogenic concepts and themes relevant for clinical practice and how such learning can guide the development of new therapies for people living with autoimmune liver diseases.
Collapse
Affiliation(s)
- Palak J Trivedi
- National Institute for Health Research Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Liver Unit, University Hospitals Birmingham, Birmingham, United Kingdom; Institute of Translational Medicine, University of Birmingham, Birmingham, United Kingdom.
| | - Gideon M Hirschfield
- Division of Gastroenterology and Hepatology, Toronto Centre for Liver Disease, University of Toronto, Toronto, Ontario, Canada
| | - David H Adams
- National Institute for Health Research Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Liver Unit, University Hospitals Birmingham, Birmingham, United Kingdom
| | - John M Vierling
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas; Division of Abdominal Transplantation, Department of Surgery, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
11
|
Ghozzi M, Mankai A, Chedly Z, Mlika I, Manoubi W, Melayah S, Ghedira I. Frequency of antithyroid antibodies in patients with primary biliary cholangitis. Lab Med 2024; 55:304-309. [PMID: 37638796 DOI: 10.1093/labmed/lmad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVE Primary biliary cholangitis (PBC) is an autoimmune disease of liver that may be associated with other conditions, including autoimmune thyroid diseases. We aimed to investigate the frequency of anti-thyroperoxidase antibodies (TPO-Ab), antithyroglobulin antibodies (TG-Ab), and anti-thyrotropin receptor antibodies (TSHR-Ab) in Tunisian patients with PBC. METHODS Sera of 80 patients with PBC were collected over a 9-year period. A total of 189 healthy blood donors (HBD) were included in the control group. Measurements of TPO-Ab and TG-Ab were performed using indirect enzyme-linked immunosorbent assay (ELISA). Competitive ELISA was used to assess TSHR-Ab. RESULTS Antithyroid antibodies (ATA) were significantly more frequent in PBC patients than in the control group (13.7% vs 1.6%; P < 10-3). Out of 11 patients with ATA, 10 (90.9%) were female. Nine patients and 2 HBD had TPO-Ab (11.2% vs 1%; P < 10-3). TG-Ab were more frequent in patients than in healthy subjects but the difference was not statistically significant (6.2% vs 1.6%; P = .1). TPO-Ab and TG-Ab were present together in 3 patients (3.7%). TSHR-Ab were absent in patients and controls. CONCLUSION This study shows that PBC is associated with a high frequency of ATA but not TG-Ab or TSHR-Ab.
Collapse
Affiliation(s)
- Mariam Ghozzi
- Laboratory of Immunology, Farhat Hached University Hospital, Sousse, Tunisia
- Faculty of Pharmacy, Department of Immunology, University of Monastir, Monastir, Tunisia
- Research Laboratory for "Epidemiology and Immunogenetics of Viral Infections" (LR14SP02), Sahloul University Hospital, University of Sousse, Sousse, Tunisia
| | - Amani Mankai
- High School of Sciences and Techniques of Health, Tunis El Manar University, Tunis, Tunisia
- Research Unit "Obesity: Etiopathology and Treatment, UR18ES01," National Institute of Nutrition and Food Technology, Tunis, Tunisia
| | - Zeineb Chedly
- Faculty of Pharmacy, Department of Immunology, University of Monastir, Monastir, Tunisia
| | - Ikram Mlika
- Faculty of Pharmacy, Department of Immunology, University of Monastir, Monastir, Tunisia
| | - Wiem Manoubi
- Erasmus University Medical Centre, Department of Neuroscience, Rotterdam, Netherlands
| | - Sarra Melayah
- Laboratory of Immunology, Farhat Hached University Hospital, Sousse, Tunisia
- Faculty of Pharmacy, Department of Immunology, University of Monastir, Monastir, Tunisia
- LR12SP11, Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Ibtissem Ghedira
- Laboratory of Immunology, Farhat Hached University Hospital, Sousse, Tunisia
- Faculty of Pharmacy, Department of Immunology, University of Monastir, Monastir, Tunisia
| |
Collapse
|
12
|
Floreani A, Gabbia D, De Martin S. Are Gender Differences Important for Autoimmune Liver Diseases? Life (Basel) 2024; 14:500. [PMID: 38672770 PMCID: PMC11050899 DOI: 10.3390/life14040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Gender Medicine has had an enormous expansion over the last ten years. Autoimmune liver diseases include several conditions, i.e., autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and conditions involving the liver or biliary tree overlapping with AIH, as well as IgG4-related disease. However, little is known about the impact of sex in the pathogenesis and natural history of these conditions. The purpose of this review is to provide an update of the gender disparities among the autoimmune liver diseases by reviewing the data published from 1999 to 2023. The epidemiology of these diseases has been changing over the last years, due to the amelioration of knowledge in their diagnosis, pathogenesis, and treatment. The clinical data collected so far support the existence of sex differences in the natural history of autoimmune liver diseases. Notably, their history could be longer than that which is now known, with problems being initiated even at a pediatric age. Moreover, gender disparity has been observed during the onset of complications related to end-stage liver disease, including cancer incidence. However, there is still an important debate among researchers about the impact of sex and the pathogenesis of these conditions. With this review, we would like to emphasize the urgency of basic science and clinical research to increase our understanding of the sex differences in autoimmune liver diseases.
Collapse
Affiliation(s)
- Annarosa Floreani
- Scientific Consultant IRCCS Negrar, 37024 Verona, Italy
- University of Padova, 35122 Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (D.G.); (S.D.M.)
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (D.G.); (S.D.M.)
| |
Collapse
|
13
|
Ma D, Ma J, Zhao C, Tai W. Reasons why women are more likely to develop primary biliary cholangitis. Heliyon 2024; 10:e25634. [PMID: 38384574 PMCID: PMC10878884 DOI: 10.1016/j.heliyon.2024.e25634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune disease of biliary stasis in which immune factors cause the gradual destruction of small bile ducts, biliary stasis, and eventually the development of liver fibrosis, cirrhosis, and even liver failure. One of the main characteristics of PBC is that it primarily affects middle-aged women, but the precise cause is still unknown. This article analyzes the unique causes and mechanisms of the female predominance of PBC and summarizes the potential causes.The female domination of PBC is reported to be primarily caused by sex hormones, environmental circumstances, and epigenetic changes, each of which has a different subtle impact on patients' gender disparities.
Collapse
Affiliation(s)
- Di Ma
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiaxuan Ma
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunmei Zhao
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenlin Tai
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
14
|
Abstract
Primary biliary cholangitis (PBC) is the most common of the autoimmune liver diseases, in which there is chronic small bile duct inflammation. The pathophysiology of PBC is multifactorial, involving immune dysregulation and damage to biliary epithelial cells, with influences from genetic factors, epigenetics, the gut-liver axis, and environmental exposures.
Collapse
Affiliation(s)
- Inbal Houri
- Division of Gastroenterology and Hepatology, Toronto Centre for Liver Disease, University of Toronto, 9th Floor Eaton Building, North Wing 219-B, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Gideon M Hirschfield
- Division of Gastroenterology and Hepatology, Toronto Centre for Liver Disease, University of Toronto, 9th Floor Eaton Building, North Wing 219-B, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
15
|
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease that can progress to cirrhosis and hepatic failure if left untreated. Ursodeoxycholic acid (UDCA) was introduced as a first-line drug for PBC around 1990; it remarkably improved patient outcomes, leading to the nomenclature change of PBC in 2015, from primary biliary "cirrhosis" to primary biliary "cholangitis." Nevertheless, 20-30% of patients exhibit an incomplete response to UDCA, resulting in significantly worse outcomes compared to those with a complete response. Therefore, improving the long-term outcomes of patients with an incomplete response to UDCA has been recognized as an unmet need. In addition, patients with PBC often suffer from a variety of debilitating symptoms, such as pruritus, fatigue and sicca syndrome, which significantly impair their health-related quality of life. Thus, appropriate management of these symptoms is currently regarded as another unmet need for PBC treatment. In this review, several compounds and drugs under clinical trials that can potentially solve these unmet needs are comprehensively discussed, and future directions of treatment policy of PBC are proposed for significantly improving long-term outcome as well as health-related quality of life of patients.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
16
|
Liang EY, Liu M, Ke PF, Han G, Zhang C, Deng L, Wang YX, Huang H, Huang WJ, Liu RP, Li GH, Wan ZM, He YT, He M, Huang XZ. A population-based characterization study of
anti-mitochondrial M2 antibodies and its consistency with anti-mitochondrial antibodies. Lab Med 2023; 54:618-625. [PMID: 37040652 DOI: 10.1093/labmed/lmad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
OBJECTIVE This study aims to estimate the prevalence of anti-mitochondrial antibody subtype M2 (AMA-M2) and assess its consistency with AMA in a general population. METHODS A total of 8954 volunteers were included to screen AMA-M2 using enzyme-linked immunosorbent assay. Sera with AMA-M2 >50 RU/mL were further tested for AMA using an indirect immunofluorescence assay. RESULTS The population frequency of AMA-M2 positivity was 9.67%, of which 48.04% were males and 51.96% were females. The AMA-M2 positivity in males had a peak and valley value of 7.81% and 16.88% in those aged 40 to 49 and ≥70 years, respectively, whereas it showed a balanced age distribution in females. Transferrin and immunoglobulin M were the risk factors for AMA-M2 positivity and exercise was the only protective factor. Of 155 cases with AMA-M2 >50 RU/mL, 25 cases were AMA-positive, with a female-to-male ratio of 5.25:1. Only 2 people, with very high AMA-M2 of 760 and >800 RU/mL, met the diagnostic criteria of primary biliary cholangitis (PBC), making the prevalence of PBC 223.36 per million in southern China. CONCLUSION We found that AMA-M2 has a low coincidence rate with AMA in the general population. A new decision-making point for AMA-M2 is needed to improve consistency with AMA and diagnostic accuracy.
Collapse
Affiliation(s)
- En-Yu Liang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Liu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei-Feng Ke
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guang Han
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cheng Zhang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Deng
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun-Xiu Wang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wu-Jiao Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui-Ping Liu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guo-Hua Li
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ze-Min Wan
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Ting He
- Intellectual Property Management and Transfer Center, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min He
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian-Zhang Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Liu L, Pang J, Qin D, Li R, Zou D, Chi K, Wu W, Rui H, Yu H, Zhu W, Liu K, Wu X, Wang J, Xu P, Song X, Cao Y, Wang J, Xu F, Xue L, Chen Y. Deubiquitinase OTUD5 as a Novel Protector against 4-HNE-Triggered Ferroptosis in Myocardial Ischemia/Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301852. [PMID: 37552043 PMCID: PMC10558642 DOI: 10.1002/advs.202301852] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Despite the development of advanced technologies for interventional coronary reperfusion after myocardial infarction, a substantial number of patients experience high mortality due to myocardial ischemia-reperfusion (MI/R) injury. An in-depth understanding of the mechanisms underlying MI/R injury can provide crucial strategies for mitigating myocardial damage and improving patient survival. Here, it is discovered that the 4-hydroxy-2-nonenal (4-HNE) accumulates during MI/R, accompanied by high rates of myocardial ferroptosis. The loss-of-function of aldehyde dehydrogenase 2 (ALDH2), which dissipates 4-HNE, aggravates myocardial ferroptosis, whereas the activation of ALDH2 mitigates ferroptosis. Mechanistically, 4-HNE targets glutathione peroxidase 4 (GPX4) for K48-linked polyubiquitin-related degradation, which 4-HNE-GPX4 axis commits to myocyte ferroptosis and forms a positive feedback circuit. 4-HNE blocks the interaction between GPX4 and ovarian tumor (OTU) deubiquitinase 5 (OTUD5) by directly carbonylating their cysteine residues at C93 of GPX4 and C247 of OTUD5, identifying OTUD5 as the novel deubiquitinase for GPX4. Consequently, the elevation of OTUD5 deubiquitinates and stabilizes GPX4 to reverse 4-HNE-induced ferroptosis and alleviate MI/R injury. The data unravel the mechanism of 4-HNE in GPX4-dependent ferroptosis and identify OTUD5 as a novel therapeutic target for the treatment of MI/R injury.
Collapse
|
18
|
Floreani A, Gabbia D, De Martin S. Primary biliary cholangitis: primary autoimmune disease or primary secretory defect. Expert Rev Gastroenterol Hepatol 2023; 17:863-870. [PMID: 37515436 DOI: 10.1080/17474124.2023.2242771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/15/2023] [Accepted: 07/27/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease characterized by the immune-mediated destruction of small and medium intrahepatic bile ducts, involving predominantly females. PBC has long been described as an autoimmune liver disease, also because it is very often associated with many autoimmune conditions. More recently, another pathogenic mechanism exploring the damage of cholangiocytes has been hypothesized, i.e. a defect in the biliary umbrella which is physiologically responsible for the exchange of the ions Cl- and HCO3- and maintains the integrity of glycocalyx. To provide a state-of-the-art analysis of this topic, a systematic review of literature in PubMed, Scopus, and Science Direct was conducted (inclusive dates: 1986-2023). AREA COVERED Although the etiology remains unknown, pathogenesis consists of a complex immune-mediated process resulting from a genetic susceptibility. PBC can be triggered by an immune-mediated response to an autoantigen, which leads to a progressive destruction of bile ducts and eventually to a progressive fibrosis with cirrhosis. The defect in the 'bicarbonate umbrella' acts as a protection against the toxic hydrophobic bile acids, leading to a toxic composition of bile. EXPERT OPINION This review offers a summary of the current knowledge about the pathogenesis of PBC, indicating that this is probably based on the mutual relationship between the immune insult and the unbalanced secretory mechanisms.
Collapse
Affiliation(s)
- Annarosa Floreani
- Scientific Institute for Research, Hospitalization and Healthcare, Negrar, Verona, Italy
- University of Padova, Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
19
|
Fu L, Lu K, Jiao Q, Chen X, Jia F. The Regulation and Double-Edged Roles of the Deubiquitinase OTUD5. Cells 2023; 12:cells12081161. [PMID: 37190070 DOI: 10.3390/cells12081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
OTUD5 (OTU Deubiquitinase 5) is a functional cysteine protease with deubiquitinase activity and is a member of the ovarian tumor protease (OTU) family. OTUD5 is involved in the deubiquitination of many key proteins in various cellular signaling pathways and plays an important role in maintaining normal human development and physiological functions. Its dysfunction can affect physiological processes, such as immunity and DNA damage repair, and it can even lead to tumors, inflammatory diseases and genetic disorders. Therefore, the regulation of OTUD5 activity and expression has become a hot topic of research. A comprehensive understanding of the regulatory mechanisms of OTUD5 and its use as a therapeutic target for diseases is of great value. Herein, we review the physiological processes and molecular mechanisms of OTUD5 regulation, outline the specific regulatory processes of OTUD5 activity and expression, and link OTUD5 to diseases from the perspective of studies on signaling pathways, molecular interactions, DNA damage repair and immune regulation, thus providing a theoretical basis for future studies.
Collapse
Affiliation(s)
- Lin Fu
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Kun Lu
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Qian Jiao
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Xi Chen
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Fengju Jia
- School of Nursing, Qingdao University, Qingdao 266072, China
| |
Collapse
|
20
|
Li Y, Li Z, Chen R, Lian M, Wang H, Wei Y, You Z, Zhang J, Li B, Li Y, Huang B, Chen Y, Liu Q, Lyu Z, Liang X, Miao Q, Xiao X, Wang Q, Fang J, Shi Y, Liu X, Seldin MF, Gershwin ME, Tang R, Ma X. A regulatory variant at 19p13.3 is associated with primary biliary cholangitis risk and ARID3A expression. Nat Commun 2023; 14:1732. [PMID: 36977669 PMCID: PMC10049997 DOI: 10.1038/s41467-023-37213-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Genome-wide association studies have identified 19p13.3 locus associated with primary biliary cholangitis (PBC). Here we aim to identify causative variant(s) and initiate efforts to define the mechanism by which the 19p13.3 locus variant(s) contributes to the pathogenesis of PBC. A genome-wide meta-analysis of 1931 PBC subjects and 7852 controls in two Han Chinese cohorts confirms the strong association between 19p13.3 locus and PBC. By integrating functional annotations, luciferase reporter assay and allele-specific chromatin immunoprecipitation, we prioritize rs2238574, an AT-Rich Interaction Domain 3A (ARID3A) intronic variant, as a potential causal variant at 19p13.3 locus. The risk allele of rs2238574 shows higher binding affinity of transcription factors, leading to an increased enhancer activity in myeloid cells. Genome-editing demonstrates the regulatory effect of rs2238574 on ARID3A expression through allele-specific enhancer activity. Furthermore, knock-down of ARID3A inhibits myeloid differentiation and activation pathway, and overexpression of the gene has the opposite effect. Finally, we find ARID3A expression and rs2238574 genotypes linked to disease severity in PBC. Our work provides several lines of evidence that a non-coding variant regulates ARID3A expression, presenting a mechanistic basis for association of 19p13.3 locus with the susceptibility to PBC.
Collapse
Affiliation(s)
- You Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Hanxiao Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Yiran Wei
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Yong Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Qiaoyan Liu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Zhuwan Lyu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Xueying Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - YongYong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Xiangdong Liu
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu, China
| | - Michael F Seldin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, CA, USA
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
- Institute of Aging & Tissue Regeneration, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Scaravaglio M, Carbone M, Invernizzi P. Autoimmune liver diseases. Minerva Gastroenterol (Torino) 2023; 69:7-9. [PMID: 36856272 DOI: 10.23736/s2724-5985.22.03279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Miki Scaravaglio
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Monza-Brianza, Italy
| | - Marco Carbone
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Monza-Brianza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy -
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Monza-Brianza, Italy
| |
Collapse
|
22
|
Hitomi Y, Nakamura M. The Genetics of Primary Biliary Cholangitis: A GWAS and Post-GWAS Update. Genes (Basel) 2023; 14:405. [PMID: 36833332 PMCID: PMC9957238 DOI: 10.3390/genes14020405] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic, progressive cholestatic liver disease in which the small intrahepatic bile ducts are destroyed by autoimmune reactions. Among autoimmune diseases, which are polygenic complex traits caused by the combined contribution of genetic and environmental factors, PBC exhibits the strongest involvement of genetic heritability in disease development. As at December 2022, genome-wide association studies (GWASs) and associated meta-analyses identified approximately 70 PBC susceptibility gene loci in various populations, including those of European and East Asian descent. However, the molecular mechanisms through which these susceptibility loci affect the pathogenesis of PBC are not fully understood. This study provides an overview of current data regarding the genetic factors of PBC as well as post-GWAS approaches to identifying primary functional variants and effector genes in disease-susceptibility loci. Possible mechanisms of these genetic factors in the development of PBC are also discussed, focusing on four major disease pathways identified by in silico gene set analyses, namely, (1) antigen presentation by human leukocyte antigens, (2) interleukin-12-related pathways, (3) cellular responses to tumor necrosis factor, and (4) B cell activation, maturation, and differentiation pathways.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, 2-1001-1 Kubara, Omura 856-8562, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 2-1001-1 Kubara, Omura 856-8562, Japan
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, 2-1001-1 Kubara, Omura 856-8562, Japan
| |
Collapse
|
23
|
Abstract
Primary biliary cholangitis (PBC) is a rare disease of the liver characterized by an autoimmune attack on the small bile ducts. PBC is a complex trait, meaning that a large list of genetic factors interacts with environmental agents to determine its onset. Genome-wide association studies have had a huge impact in fostering research in PBC, but many steps need still to be done compared with other autoimmune diseases of similar prevalence. This review presents the state-of-the-art regarding the genetic architecture of PBC and provides some thoughtful reflections about possible future lines of research, which can be helpful to fill the missing heritability gap in PBC.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza (MB), Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy.
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele 20072, Italy; Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, Rozzano 20089, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza (MB), Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
24
|
Chen R, Tang R, Ma X, Gershwin ME. Immunologic Responses and the Pathophysiology of Primary Biliary Cholangitis. Clin Liver Dis 2022; 26:583-611. [PMID: 36270718 DOI: 10.1016/j.cld.2022.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease with a female predisposition and selective destruction of intrahepatic small bile ducts leading to nonsuppurative destructive cholangitis. It is characterized by seropositivity of antimitochondrial antibodies or PBC-specific antinuclear antibodies, progressive cholestasis, and typical liver histologic manifestations. Destruction of the protective bicarbonate-rich umbrella is attributed to the decreased expression of membrane transporters in biliary epithelial cells (BECs), leading to the accumulation of hydrophobic bile acids and sensitizing BECs to apoptosis. A recent X-wide association study reveals a novel risk locus on the X chromosome, which reiterates the importance of Treg cells.
Collapse
Affiliation(s)
- Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - M Eric Gershwin
- Division of Rheumatology-Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA.
| |
Collapse
|
25
|
Abstract
Primary biliary cholangitis (PBC) is a cholestatic liver disease with potential evolution to liver cirrhosis when left untreated. Despite being rare, PBC has a substantial impact on the quality of life and survival of affected patients. Women are the most diagnosed worldwide; however, male subjects seem to have more aggressive disease and worse prognosis. Changing epidemiologic trends are emerging in PBC, with increasing global prevalence and slight smoothing of sex differences. In this review we present available data on incidence rates and prevalence of PBC worldwide, highlighting geographic differences and factors impacting clinical outcomes.
Collapse
Affiliation(s)
- Francesca Colapietro
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via A. Manzoni 56, Rozzano 20089, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Arianna Bertazzoni
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via A. Manzoni 56, Rozzano 20089, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Ana Lleo
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via A. Manzoni 56, Rozzano 20089, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
26
|
Li Y, Sun Y, Liu Y, Wang B, Li J, Wang H, Zhang H, Wang X, Han X, Lin Q, Zhou Y, Hu L, Song Y, Bao J, Gong L, Sun M, Yuan X, Zhang X, Lian M, Xiao X, Miao Q, Wang Q, Li KK, Du S, Ma A, Li Y, Xu J, Tang S, Shi J, Xu Y, Yang L, Zhang J, Huang Z, Zhou L, Cui Y, Seldin MF, Gershwin ME, Yan H, Zou Z, Zuo X, Tang R, Ma X. Genome-wide meta-analysis identifies susceptibility loci for autoimmune hepatitis type 1. Hepatology 2022; 76:564-575. [PMID: 35184318 DOI: 10.1002/hep.32417] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Autoimmune hepatitis (AIH) is a rare and chronic autoimmune liver disease. While genetic factors are believed to play a crucial role in the etiopathogenesis of AIH, our understanding of these genetic risk factors is still limited. In this study, we aimed to identify susceptibility loci to further understand the pathogenesis of this disease. APPROACH AND RESULTS We conducted a case-control association study of 1,622 Chinese patients with AIH type 1 and 10,466 population controls from two independent cohorts. A meta-analysis was performed to ascertain variants associated with AIH type 1. A single-nucleotide polymorphism within the human leukocyte antigen (HLA) region showed the strongest association with AIH (rs6932730: OR = 2.32; p = 9.21 × 10-73 ). The meta-analysis also identified two non-HLA loci significantly associated with AIH: CD28/CTLA4/ICOS on 2q33.3 (rs72929257: OR = 1.31; p = 2.92 × 10-9 ) and SYNPR on 3p14.2 (rs6809477: OR = 1.25; p = 5.48 × 10-9 ). In silico annotation, reporter gene assays, and CRISPR activation experiments identified a distal enhancer at 2q33.3 that regulated expression of CTLA4. In addition, variants near STAT1/STAT4 (rs11889341: OR = 1.24; p = 1.34 × 10-7 ), LINC00392 (rs9564997: OR = 0.81; p = 2.53 × 10-7 ), IRF8 (rs11117432: OR = 0.72; p = 6.10 × 10-6 ), and LILRA4/LILRA5 (rs11084330: OR = 0.65; p = 5.19 × 10-6 ) had suggestive association signals with AIH. CONCLUSIONS Our study identifies two novel loci (CD28/CTLA4/ICOS and SYNPR) exceeding genome-wide significance and suggests four loci as potential risk factors. These findings highlight the importance of costimulatory signaling and neuro-immune interaction in the pathogenesis of AIH.
Collapse
Affiliation(s)
- You Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ying Sun
- Department of Liver Disease, Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanmin Liu
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jia Li
- Tianjin Second People's Hospital, Tianjin Institute of Hepatology, Tianjin, China
| | - Hanxiao Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Haiping Zhang
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyi Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xu Han
- Tianjin Second People's Hospital, Tianjin Institute of Hepatology, Tianjin, China
| | - Qiuxiang Lin
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Zhou
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lilin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhu Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Bao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Gong
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Mengying Sun
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiaoling Yuan
- Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhe Zhang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, ShenYang, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ke-Ke Li
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Anlin Ma
- Department of infection disease, China-Japan Friendship Hospital, Beijing, China
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, ShenYang, China
| | - Jie Xu
- Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanhong Tang
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, China
| | - Junping Shi
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital and Key Laboratory of Medical Molecular Virology (MOH & MOE), Shanghai Medical College, Fudan University, Shanghai, China
| | - Zuxiong Huang
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Michael F Seldin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California, USA
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, California, USA
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California, USA
| | - Huiping Yan
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhengsheng Zou
- Department of Liver Disease, Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xianbo Zuo
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
- Institute of Dermatology and Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
27
|
Ellinghaus D. How genetic risk contributes to autoimmune liver disease. Semin Immunopathol 2022; 44:397-410. [PMID: 35650446 PMCID: PMC9256578 DOI: 10.1007/s00281-022-00950-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022]
Abstract
Genome-wide association studies (GWAS) for autoimmune hepatitis (AIH) and GWAS/genome-wide meta-analyses (GWMA) for primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) have been successful over the past decade, identifying about 100 susceptibility loci in the human genome, with strong associations with the HLA locus and many susceptibility variants outside the HLA locus with relatively low risk. However, identifying causative variants and genes and determining their effects on liver cells and their immunological microenvironment is far from trivial. Polygenic risk scores (PRSs) based on current genome-wide data have limited potential to predict individual disease risk. Interestingly, results of mediated expression score regression analysis provide evidence that a substantial portion of gene expression at susceptibility loci is mediated by genetic risk variants, in contrast to many other complex diseases. Genome- and transcriptome-wide comparisons between AIH, PBC, and PSC could help to better delineate the shared inherited component of autoimmune liver diseases (AILDs), and statistical fine-mapping, chromosome X-wide association testing, and genome-wide in silico drug screening approaches recently applied to GWMA data from PBC could potentially be successfully applied to AIH and PSC. Initial successes through single-cell RNA sequencing (scRNA-seq) experiments in PBC and PSC now raise high hopes for understanding the impact of genetic risk variants in the context of liver-resident immune cells and liver cell subpopulations, and for bridging the gap between genetics and disease.
Collapse
Affiliation(s)
- David Ellinghaus
- Institute of Clinical Molecular Biology (IKMB), Kiel University and University Medical Center Schleswig-Holstein, Rosalind-Franklin-Str. 12, 24105, Kiel, Germany.
| |
Collapse
|
28
|
Gender and Autoimmune Liver Diseases: Relevant Aspects in Clinical Practice. J Pers Med 2022; 12:jpm12060925. [PMID: 35743710 PMCID: PMC9225254 DOI: 10.3390/jpm12060925] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022] Open
Abstract
Autoimmune liver diseases (AILDs) include autoimmune hepatitis, primary biliary cholangitis and primary sclerosing cholangitis. The etiologies of AILD are not well understood but appear to involve a combination of genetic and environmental factors. AILDs commonly affect young individuals and are characterized by a highly variable clinical course. These diseases significantly influence quality of life and can progress toward liver decompensation or the onset of hepatocellular or cholangiocarcinoma; a significant number of patients eventually progress to end-stage liver disease, requiring liver transplantation. In this review, we focus on the sex characteristics and peculiarities of AILD patients and highlight the relevance of a sex-specific analysis in future studies. Understanding the sex differences underlying AILD immune dysregulation may be critical for developing more effective treatments.
Collapse
|
29
|
Gerussi A, Paraboschi EM, Cappadona C, Caime C, Binatti E, Cristoferi L, Asselta R, Invernizzi P. The Role of Epigenetics in Primary Biliary Cholangitis. Int J Mol Sci 2022; 23:4873. [PMID: 35563266 PMCID: PMC9105933 DOI: 10.3390/ijms23094873] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Primary Biliary Cholangitis (PBC) is a rare autoimmune disease of the liver, affecting mostly females. There is evidence that epigenetic changes have a pathogenic role in PBC. Epigenetic modifications are related to methylation of CpG DNA islands, post-translational modifications of histone proteins, and non-coding RNAs. In PBC, there are data showing a dysregulation of all these levels, especially in immune cells. In addition, epigenetics seems to be involved in complex phenomena such as X monosomy or abnormalities in the process of X chromosome inactivation, which have been reported in PBC and appear to influence its sex imbalance and pathogenesis. We review here historical data on epigenetic modifications in PBC, present new data, and discuss possible links among X-chromosome abnormalities at a genetic and epigenetic level, PBC pathogenesis, and PBC sex imbalance.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (E.M.P.); (C.C.); (R.A.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - Claudio Cappadona
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (E.M.P.); (C.C.); (R.A.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - Chiara Caime
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Eleonora Binatti
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (E.M.P.); (C.C.); (R.A.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| |
Collapse
|
30
|
Gerussi A, Caime C, Binatti E, Cristoferi L, Asselta R, Gershwin EM, Invernizzi P. X marks the spot in autoimmunity. Expert Rev Clin Immunol 2022; 18:429-437. [PMID: 35349778 DOI: 10.1080/1744666x.2022.2060203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Autoimmune diseases mostly affect females. Besides hormones, several factors related to chromosome X have been called in action to explain this sex predominance. AREAS COVERED This paper provides an overview on the role of chromosome X (chrX) in explaining why females have higher susceptibility to autoimmunity. The work outlines some essential concepts regarding chrX inactivation, escape from chrX inactivation and the evolutionary history of chrX. In addition, we will discuss the concept of gene escape in immune cells, with examples related to specific X-linked genes and autoimmune diseases. EXPERT OPINION There is growing evidence that many genes present on chrX escape inactivation, and some of them have significant immune-mediated functions. In immune cells of female individuals the escape of these genes is not constant, but the knowledge of the mechanisms controlling this plasticity are not completely understood. Future studies aimed at the characterization of these modifications at single-cell resolution, together with conformational 3D studies of the inactive X chromosome, will hopefully help to fill this gap of knowledge.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Chiara Caime
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Eleonora Binatti
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Eric M Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, USA
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| |
Collapse
|
31
|
Wang L, Li J, Wang C, Tang R, Liang J, Gong Y, Dai Y, Ding N, Wu J, Dai N, Liu L, Zhao Y, Shao Y, Zhao W, Jiang P, Shi X, Chen W, Tian Y, Liu X, Ma X, Sun Z. Mapping of de novo mutations in primary biliary cholangitis to a disease-specific co-expression network underlying homeostasis and metabolism. J Genet Genomics 2022; 49:145-154. [PMID: 34433101 DOI: 10.1016/j.jgg.2021.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune disease involving dysregulation of a broad array of homeostatic and metabolic processes. Although considerable single-nucleotide polymorphisms have been unveiled, a large fraction of risk factors remains enigmatic. Candidate genes with rare mutations that tend to confer more deleterious effects need to be identified. To help pinpoint cellular and developmental mechanisms beyond common noncoding variants, we integrate whole exome sequencing with integrative network analysis to investigate genes harboring de novo mutations. Prominent convergence has been revealed on a network of disease-specific co-expression comprised of 55 genes associated with homeostasis and metabolism. The transcription factor gene MEF2D and the DNA repair gene PARP2 are highlighted as hub genes and identified to be up- and down-regulated, respectively, in peripheral blood data set. Enrichment analysis demonstrates that altered expression of MEF2D and PARP2 may trigger a series of molecular and cellular processes with pivotal roles in PBC pathophysiology. Our study identifies genes with de novo mutations in PBC and suggests that a subset of genes in homeostasis and metabolism tend to act in synergy through converging on co-expression network, providing novel insights into the etiology of PBC and expanding the pool of molecular candidates for discovering clinically actionable biomarkers.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| | - Jinchen Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Chan Wang
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| | - Ruqi Tang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, 145 Shandong Middle Road, Shanghai 200001, China
| | - Jialong Liang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Yuhua Gong
- Department of Laboratory Medicine, The Third People's Hospital of Zhenjiang, 300 Daijiamen, Zhenjiang, Jiangsu 212021, China
| | - Yaping Dai
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, 1215 Guangrui Road, Wuxi, Jiangsu 214000, China
| | - Ningling Ding
- Department of Hepatology, The Fifth People's Hospital of Suzhou, Soochow University, 10 Guangqian Road, Suzhou, Jiangsu 215131, China
| | - Jian Wu
- Department of Rheumatology, First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, China
| | - Na Dai
- Department of Gastroenterology, Jiangsu University Affiliated Kunshan Hospital, 91 Qianjin West Road, Kunshan, Jiangsu 215300, China
| | - Lei Liu
- Department of Gastroenterology, Yixing People's Hospital, 75 Tongzhenguan Road, Yixin, Jiangsu 214200, China
| | - Yi Zhao
- Department of Gastrointestinal Endoscopy, Eastern Hepatobiliary Surgery Hospital, 700 Moyu North Road, Shanghai 201800, China
| | - Youlin Shao
- Department of Hepatology, The Third People's Hospital of Changzhou, 300 Lanling North Road, Changzhou, Jiangsu 213001, China
| | - Weifeng Zhao
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, China
| | - Peng Jiang
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| | - Xingjuan Shi
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| | - Weichang Chen
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, China
| | - Ye Tian
- Department of Radiology, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China
| | - Xiangdong Liu
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China.
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, 145 Shandong Middle Road, Shanghai 200001, China.
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; Institute of Genomic Medicine, Wenzhou Medical University, University Town, Chashan, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
32
|
Matsumoto K, Ohfuji S, Abe M, Komori A, Takahashi A, Fujii H, Kawata K, Noritake H, Tadokoro T, Honda A, Asami M, Namisaki T, Ueno M, Sato K, Kakisaka K, Arakawa M, Ito T, Tanaka K, Matsui T, Setsu T, Takamura M, Yasuda S, Katsumi T, Itakura J, Sano T, Tamura Y, Miura R, Arizumi T, Asaoka Y, Uno K, Nishitani A, Ueno Y, Terai S, Takikawa Y, Morimoto Y, Yoshiji H, Mochida S, Ikegami T, Masaki T, Kawada N, Ohira H, Tanaka A. Environmental factors, medical and family history, and comorbidities associated with primary biliary cholangitis in Japan: a multicenter case-control study. J Gastroenterol 2022; 57:19-29. [PMID: 34796398 DOI: 10.1007/s00535-021-01836-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/04/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is considered to be caused by the interaction between genetic background and environmental triggers. Previous case-control studies have indicated the associations of environmental factors (tobacco smoking, a history of urinary tract infection, and hair dye) use with PBC. Therefore, we conducted a multicenter case-control study to identify the environmental factors associated with the development of PBC in Japan. METHODS From 21 participating centers in Japan, we prospectively enrolled 548 patients with PBC (male/female = 78/470, median age 66), and 548 age- and sex-matched controls. These participants completed a questionnaire comprising 121 items with respect to demographic, anthropometric, socioeconomic features, lifestyle, medical/familial history, and reproductive history in female individuals. The association was determined using conditional multivariate logistic regression analysis. RESULTS The identified factors were vault toilet at home in childhood [odds ratio (OR), 1.63; 95% confidence interval (CI), 1.01-2.62], unpaved roads around the house in childhood (OR, 1.43; 95% CI, 1.07-1.92), ever smoking (OR, 1.70; 95% CI, 1.28-2.25), and hair dye use (OR, 1.57; 95% CI, 1.15-2.14) in the model for lifestyle factors, and a history of any type of autoimmune disease (OR, 8.74; 95% CI, 3.99-19.13), a history of Cesarean section (OR, 0.20; 95% CI, 0.077-0.53), and presence of PBC in first-degree relatives (OR, 21.1; 95% CI, 6.52-68.0) in the model for medical and familial factors. CONCLUSIONS These results suggest that poor environmental hygiene in childhood (vault toilets and unpaved roads) and chronic exposure to chemicals (smoking and hair dye use) are likely to be risk factors for the development of PBC in Japan.
Collapse
Affiliation(s)
- Kosuke Matsumoto
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, Japan.
| | - Satoko Ohfuji
- Department of Public Health, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Atsumasa Komori
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Nagasaki, Japan
| | - Atsushi Takahashi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideki Fujii
- Department of Premier Preventive Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hidenao Noritake
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa, Japan
| | - Akira Honda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Maiko Asami
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Nara, Japan
| | - Masayuki Ueno
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Okayama, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Sato
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Keisuke Kakisaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Mie Arakawa
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kazunari Tanaka
- Center for Gastroenterology, Teine-Keijinkai Hospital, Hokkaido, Japan
| | - Takeshi Matsui
- Center for Gastroenterology, Teine-Keijinkai Hospital, Hokkaido, Japan
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Gifu, Japan
| | - Tomohiro Katsumi
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Jun Itakura
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Tomoya Sano
- Division of Gastroenterology, Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Yamato Tamura
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, Japan
| | - Ryo Miura
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, Japan
| | - Toshihiko Arizumi
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, Japan
| | - Yoshinari Asaoka
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, Japan
| | - Kiyoko Uno
- Teikyo Academic Research Center, Teikyo University, Tokyo, Japan
| | - Ai Nishitani
- Teikyo Academic Research Center, Teikyo University, Tokyo, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Youichi Morimoto
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Okayama, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Nara, Japan
| | - Satoshi Mochida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Tadashi Ikegami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
33
|
rs9459874 and rs1012656 in CCR6/FGFR1OP confer susceptibility to primary biliary cholangitis. J Autoimmun 2021; 126:102775. [PMID: 34864633 DOI: 10.1016/j.jaut.2021.102775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022]
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic autoimmune liver disease that appears to be strongly influenced by genetic factors. Recently, an international meta-analysis of genome-wide association studies (GWAS) identified CC-Motif Chemokine Receptor-6 (CCR6) and FGFR1 Oncogene-Partner (FGFR1OP) as PBC-susceptibility genes. However, the lead single nucleotide polymorphisms (SNPs) of CCR6/FGFR1OP showed low linkage disequilibrium with each other in East Asian and European populations. Additionally, the primary functional variants and the molecular mechanisms responsible for PBC-susceptibility remain unclear. Here, among the PBC-susceptibility SNPs identified by high-density association mapping in our previous meta-GWAS (Patients: n = 10,516; healthy controls: n = 20,772) within the CCR6/FGFR1OP locus, rs9459874 and rs1012656 were identified as primary functional variants. These functional variants accounted for the effects of GWAS-identified lead SNPs in CCR6/FGFR1OP. Additionally, the roles of rs9459874 and rs1012656 in regulating FGFR1OP transcription and CCR6 translation, respectively, were supported by expression quantitative trait loci (eQTL) analysis and gene editing technology using the CRISPR/Cas9 system. Immunohistochemistry showed higher expression of CCR6 protein in the livers of patients with PBC than in those of a non-diseased control. In conclusion, we identified primary functional variants in CCR6/FGFR1OP and revealed the molecular mechanisms by which these variants confer PBC-susceptibility in an eQTL-dependent or -independent manner. The approach in this study is applicable for the elucidation of the pathogenesis of other autoimmune disorders in which CCR6/FGFR1OP is known as a susceptibility locus, as well as PBC.
Collapse
|
34
|
The genetic architecture of primary biliary cholangitis. Eur J Med Genet 2021; 64:104292. [PMID: 34303876 DOI: 10.1016/j.ejmg.2021.104292] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/03/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Primary biliary cholangitis (PBC) is a rare autoimmune disease of the liver affecting the small bile ducts. From a genetic point of view, PBC is a complex trait and several genetic and environmental factors have been called in action to explain its etiopathogenesis. Similarly to other complex traits, PBC has benefited from the introduction of genome-wide association studies (GWAS), which identified many variants predisposing or protecting toward the development of the disease. While a progressive endeavour toward the characterization of candidate loci and downstream pathways is currently ongoing, there is still a relatively large portion of heritability of PBC to be revealed. In addition, genetic variation behind progression of the disease and therapeutic response are mostly to be investigated yet. This review outlines the state-of-the-art regarding the genetic architecture of PBC and provides some hints for future investigations, focusing on the study of gene-gene interactions, the application of whole-genome sequencing techniques, and the investigation of X chromosome that can be helpful to cover the missing heritability gap in PBC.
Collapse
|