1
|
Yawata M, Yawata N. Practical Considerations and Workflow in Utilizing KIR Genotyping in Transplantation Medicine. Methods Mol Biol 2022; 2463:291-310. [PMID: 35344182 DOI: 10.1007/978-1-0716-2160-8_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This chapter is intended to serve as a practical guide for establishing a workflow using sequence-specific polymorphism PCR (SSP-PCR) for killer cell immunoglobulin-like receptor (KIR) genotyping in a clinical setting, especially in allogeneic hematopoietic stem cell transplantation (HSCT). As clinical evidence accumulates on the application of KIR and HLA genetics to guide donor selection in HSCT, there is an increasing need for KIR genotyping in clinical settings, and thus medical institutes may need to build this capability. Among the various KIR genotyping approaches now available, SSP-PCR methods are well-established and are the most cost-effective and will likely be the method of choice especially when expenses will be passed on to the patient. The protocol described in this chapter developed by Vilches et al. features small amplicon PCR and is suitable for KIR genotyping using FFPE-derived DNA as well as DNA extracted from blood samples. Setting up a laboratory workflow for in-house KIR genotyping is relatively straightforward; in this chapter, considerations for KIR genotyping to guide clinical decisions are discussed.In HSCT, a main objective of KIR genotyping is to apply the genetic analysis to predict donor and recipient combinations that have the most potential to produce NK cell alloresponses either through the missing-self mechanism or by action associated with activating KIR. The desired effects are reduction in acute GVHD and relapse rates and enhancement of overall survival. The information herein may also be useful to clinical laboratories considering the application of KIR genotyping in areas such as solid organ transplantation, NK cell-based treatment in other forms of cancer and autoimmune diseases, humanized antibody treatment, regenerative medicine, and reproductive medicine. Some background knowledge on KIR genetics will be necessary in managing a KIR genotyping platform. This chapter aims to address the main difficulties often encountered by physicians in understanding the KIR system, such as basic aspects of the nomenclature of KIR genes and haplotypes, genotypes, and determining presence/absence of KIR ligands in the patient and donor from the extensively diversified HLA class I allotypes. In describing the workflow, emphasis has been placed on the processes after genotype PCR and gel image acquisition: haplotype inference, generating B content scores, deduction of KIR ligands from HLA typing results, and the emerging algorithms for donor selection based on KIR and HLA genetics.
Collapse
Affiliation(s)
- Makoto Yawata
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Health System, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
- NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore.
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Kyushu University, Kyushu, Japan
- Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
2
|
Sahin U, Beksac M. Natural Killer Cell-Mediated Cellular Therapy of Hematological Malignancies. Clin Hematol Int 2019; 1:134-141. [PMID: 34595423 PMCID: PMC8432367 DOI: 10.2991/chi.d.190623.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/20/2019] [Indexed: 11/09/2022] Open
Abstract
Our understanding on the mechanisms of graft versus tumor/leukemia (GvT/GvL) and graft versus host (GvH) effects has tremendously evolved within the past decades. During the search for a mechanism that augments GvT/GvL without increasing GvH effects, natural killer (NK) cells have clearly attracted attention. Current approaches of NK cell immunotherapy for hematological malignancies involve using methods for in vivo potentiation of NK cell proliferation and activity; adoptive transfer of NK cells from autologous and allogeneic sources [cord blood mononuclear cells, peripheral blood mononuclear cells, CD34+ stem cells] and NK cell lines; and genetic modification of NK cells. Several cytokines, including interleukin-2 and interleukin-15 take part in the development of NK cells and have been shown to boost NK cell effects both in vivo and ex vivo. Monoclonal antibodies directed towards certain targets, including stimulating CD16, blockade of NK cell receptors, and redirection of cytotoxicity to tumor cells via bi- or tri-specific engagers may promote NK cell function. Despite the relative disappointment with autologous NK cell infusions, the future holds promise in adoptive transfer of allogeneic NK cells and the development of novel cellular therapeutic strategies, such as chimeric antigen receptor-modified NK cell immunotherapy. In this review, we summarize the current status of NK cell-related mechanisms in the therapy of hematologic malignancies, and discuss the future perspectives on adoptive NK cell transfer and other novel cellular immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ugur Sahin
- Hematology Unit, Yenimahalle Education and Research Hospital, Yildirim Beyazit University, Ankara, Turkey
| | - Meral Beksac
- Department of Hematology, Faculty of Medicine, Ankara University, Cebeci Hospital, 06220, Ankara, Turkey
| |
Collapse
|
3
|
Wu T, Liang X, He K, Wei T, Wang Y, Zou L, Lu J, Yao Y, Liu N, Zhang T, Xue Y, Tang M. Transcriptome analysis of different sizes of 3-mercaptopropionic acid-modified cadmium telluride quantum dot-induced toxic effects reveals immune response in rat hippocampus. J Appl Toxicol 2018; 38:1177-1194. [DOI: 10.1002/jat.3629] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/22/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| | - Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| | - Keyu He
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| | - Yan Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| | - Jie Lu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| | - Ying Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| |
Collapse
|
4
|
Sahin U, Dalva K, Gungor F, Ustun C, Beksac M. Donor-recipient killer immunoglobulin like receptor (KIR) genotype matching has a protective effect on chronic graft versus host disease and relapse incidence following HLA-identical sibling hematopoietic stem cell transplantation. Ann Hematol 2018; 97:1027-1039. [DOI: 10.1007/s00277-018-3274-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 02/02/2018] [Indexed: 01/08/2023]
|
5
|
Sahin U, Demirer T. Future Perspectives for Haploidentical SCT. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2017. [DOI: 10.1007/978-3-319-65319-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Berrien-Elliott MM, Wagner JA, Fehniger TA. Human Cytokine-Induced Memory-Like Natural Killer Cells. J Innate Immun 2015; 7:563-71. [PMID: 25924651 DOI: 10.1159/000382019] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/01/2015] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells that are important for host defense against infection and mediate antitumor responses. Recent reports from several laboratories have identified that NK cells can remember a prior activation event and consequently respond more robustly when restimulated, a property termed innate NK cell memory. NK cell memory has now been identified following hapten exposure, viral infection, and combined cytokine preactivation with IL-12, IL-15, and IL-18. Many questions in the field remain regarding the cellular and molecular mechanisms regulating memory NK cells and their responses, as well as their formation and function in mice and humans. Here we review our current understanding of cytokine-induced memory-like (CIML) NK cells that are generated by combined preactivation with IL-12, IL-15, and IL-18. These cells exhibit enhanced NK cell effector functions weeks after the initial cytokine preactivation. Further, we highlight the preclinical rationale and ongoing therapeutic application of CIML NK cells for adoptive immunotherapy in patients with hematologic malignancies.
Collapse
Affiliation(s)
- Melissa M Berrien-Elliott
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Mo., USA
| | | | | |
Collapse
|
7
|
Beaulieu AM, Bezman NA, Lee JE, Matloubian M, Sun JC, Lanier LL. MicroRNA function in NK-cell biology. Immunol Rev 2013; 253:40-52. [PMID: 23550637 DOI: 10.1111/imr.12045] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The important role of microRNAs in directing immune responses has become increasingly clear. Here, we highlight discoveries uncovering the role of specific microRNAs in regulating the development and function of natural killer (NK) cells. Furthermore, we discuss the impact of NK cells on the entire immune system during global and specific microRNA ablation in the settings of inflammation, infection, and immune dysregulation.
Collapse
Affiliation(s)
- Aimee M Beaulieu
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
8
|
Rea IM, Maxwell LD, McNerlan SE, Alexander HD, Curran MD, Middleton D, Ross OA. Killer Immunoglobulin-like Receptors (KIR) haplogroups A and B track with Natural Killer Cells and Cytokine Profile in Aged Subjects: Observations from Octo/Nonagenarians in the Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST). Immun Ageing 2013; 10:35. [PMID: 23957956 PMCID: PMC3827941 DOI: 10.1186/1742-4933-10-35] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/10/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Natural Killer Cells (NK) play an important role in detection and elimination of virus-infected, damaged or cancer cells. NK cell function is guided by expression of Killer Immunoglobulin-like Receptors (KIRs) and contributed to by the cytokine milieu. KIR molecules are grouped on NK cells into stimulatory and inhibitory KIR haplotypes A and B, through which NKs sense and tolerate HLA self-antigens or up-regulate the NK-cytotoxic response to cells with altered HLA self-antigens, damaged by viruses or tumours. We have previously described increased numbers of NK and NK-related subsets in association with sIL-2R cytokine serum levels in BELFAST octo/nonagenarians. We hypothesised that changes in KIR A and B haplotype gene frequencies could explain the increased cytokine profiles and NK compartments previously described in Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST) octo/nonagenarians, who show evidence of ageing well. RESULTS In the BELFAST study, 24% of octo/nonagenarians carried the KIR A haplotype and 76% KIR B haplotype with no differences for KIR A haplogroup frequency between male or female subjects (23% v 24%; p=0.88) or for KIR B haplogroup (77% v 76%; p=0.99). Octo/nonagenarian KIR A haplotype carriers showed increased NK numbers and percentage compared to Group B KIR subjects (p=0.003; p=0.016 respectively). There were no KIR A/ B haplogroup-associated changes for related CD57+CD8 (high or low) subsets. Using logistic regression, KIR B carriers were predicted to have higher IL-12 cytokine levels compared to KIR A carriers by about 3% (OR 1.03, confidence limits CI 0.99-1.09; p=0.027) and 14% higher levels for TGF-β (active), a cytokine with an anti-inflammatory role, (OR 1.14, confidence limits CI 0.99-1.09; p=0.002). CONCLUSION In this observational study, BELFAST octo/nonagenarians carrying KIR A haplotype showed higher NK cell numbers and percentage compared to KIR B carriers. Conversely, KIR B haplotype carriers, with genes encoding for activating KIRs, showed a tendency for higher serum pro-inflammatory cytokines compared to KIR A carriers. While the findings in this study should be considered exploratory they may serve to stimulate debate about the immune signatures of those who appear to age slowly and who represent a model for good quality survivor-hood.
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science Queens University, Belfast, UK
| | - Lynn D Maxwell
- Immunology and Microbiology Laboratory, Belfast Health and Social Care Trust, Belfast, UK
| | - Susan E McNerlan
- Cytogenetics Laboratory, Belfast Health and Social Care Trust, Belfast, UK
| | | | - Martin D Curran
- Molecular Diagnostic Microbiology Section, Health Protection Agency, Addenbrookes Hospital, Cambridge, UK
| | | | - Owen A Ross
- Mayo Clinic Jacksonville, Jacksonville, FL, USA
| |
Collapse
|
9
|
Subramani B, Ratnavelu K, Pullai CR, Krishnan K, Sugadan SD, Deng X, Hiroshi T. Autologous immune enhancement therapy: A case report of a stage IV colonic cancer. Oncol Lett 2013; 5:1611-1614. [PMID: 23761827 PMCID: PMC3678846 DOI: 10.3892/ol.2013.1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/07/2013] [Indexed: 01/05/2023] Open
Abstract
Current modalities of cancer treatment, including surgery, chemotherapy and radiotherapy, show marginal therapeutic responses in cancer patients. In adoptive immunotherapy, interleukin-2 (IL-2) activated immune cells demonstrated notable results in patients with advanced malignant disease. The present study reports the efficacy and safety of repetitive infusions of autologous immune enhancement therapy (AIET) in a stage IV colonic cancer patient who had already received first-line chemotherapeutic drugs. Peripheral blood was aspirated from the patient. Specifically, natural killer (NK) cells and T-lymphocytes were isolated from the peripheral blood mononuclear cells (PBMCs). These cells were activated and expanded ex vivo for 14 days and were transfused intravenously to the patient. After six infusions of AIET, the carcinoembryonic antigen (CEA) level was decreased from 901 to 437 U/ml, regression of lesions was noted and there were no adverse reactions during the course of this therapy. Thus, AIET may be a promising anticancer approach to eradicate tumor cells with other conventional therapies.
Collapse
|
10
|
Aversa F, Martelli MF, Velardi A. Haploidentical Hematopoietic Stem Cell Transplantation With a Megadose T-Cell–Depleted Graft: Harnessing Natural and Adaptive Immunity. Semin Oncol 2012. [DOI: 10.1053/j.seminoncol.2012.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Natural killer cell regulation by microRNAs in health and disease. J Biomed Biotechnol 2012; 2012:632329. [PMID: 23226942 PMCID: PMC3514007 DOI: 10.1155/2012/632329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/12/2012] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are innate immune lymphocytes that are critical for normal host defense against infections and mediate antitumor immune responses. MicroRNAs (miRNAs) are a family of small, noncoding RNAs that posttranscriptionally regulate the majority of cellular processes and pathways. Our understanding of how miRNAs regulate NK cells biology is limited, but recent studies have provided novel insight into their expression by NK cells, and how they contribute to the regulation of NK cell development, maturation, survival, and effector function. Here, we review the expression of miRNAs by NK cells, their contribution to cell intrinsic and extrinsic control of NK cell development and effector response, and their dysregulation in NK cell malignancies.
Collapse
|
12
|
Gallez-Hawkins GM, Li X, Franck AE, Gendzekhadze K, Nakamura R, Forman SJ, Senitzer D, Zaia JA. KIR2DS2 and KIR2DS4 promoter hypomethylation patterns in patients undergoing hematopoietic cell transplantation (HCT). Hum Immunol 2012; 73:1109-15. [PMID: 22939905 PMCID: PMC3478408 DOI: 10.1016/j.humimm.2012.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/15/2012] [Accepted: 08/22/2012] [Indexed: 01/20/2023]
Abstract
The killer cell Ig-like receptor (KIR)-MHC class I pathway is an integral part of natural killer cell immunity, and its role in host protection from both cancer and infection is important. In addition, we have shown elevated KIR2DS2 and 2DS4 expression in PBMCs of patients undergoing hematopoietic cell transplantation (HCT) [1]. Since all inhibitory KIR promoters are known to be heavily methylated, the question asked here is how and when KIR2DS2 and 2DS4 promoters had changed their methylation profile in association with HCT. Genomic DNA, extracted from 20 KIR2DS2/4+ donor and recipient cells, was treated with sodium bisulfate that will modify the unmethylated cytosine into uracil. Sequencing chromatographs were examined for C/T double peak indicative of base conversion. A CpG island in KIR2DS2 promoter spans from -160 to +26 with six cytosine sites. In contrast, the KIR2DS4 promoter CpG island contains three cytosine sites. The noted increase of unmethylated sites was associated with increased KIR expression as measured by mRNA-cDNA Q-PCR. In addition, the frequency of unmethylated sites in the CpG island was increased after HCT. The mechanism through which hypomethylation occurs after HCT is not known but it suggests a linkage to NK clonal expansion during the process of NK education in response to transplant therapy or viral infection.
Collapse
Affiliation(s)
| | - Xiuli Li
- CMV Laboratory in the Department of Virology, City of Hope, Duarte, CA, United States
| | - Anne E. Franck
- CMV Laboratory in the Department of Virology, City of Hope, Duarte, CA, United States
| | - Ketevan Gendzekhadze
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - David Senitzer
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - John A. Zaia
- CMV Laboratory in the Department of Virology, City of Hope, Duarte, CA, United States
| |
Collapse
|
13
|
Campoli M, Ferrone S. HLA antigen and NK cell activating ligand expression in malignant cells: a story of loss or acquisition. Semin Immunopathol 2011; 33:321-34. [PMID: 21523560 DOI: 10.1007/s00281-011-0270-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 12/22/2022]
Abstract
Malignant transformation of cells is often associated with changes in classical and non-classical HLA class I antigen, HLA class II antigen as well as NK cell activating ligand (NKCAL) expression. These changes are believed to play a role in the clinical course of the disease since these molecules are critical to the interactions between tumor cells and components of both innate and adaptive immune system. For some time, it has been assumed that alterations in the expression profile of HLA antigens and NKCAL on malignant cells represented loss of classical HLA class I antigen and induction of HLA class II antigen, non-classical HLA class I antigen and/or NKCAL expression. In contrast to these assumptions, experimental evidence suggests that in some cases dysplastic and malignant cells can acquire classical HLA class I antigen expression and/or lose the ability to express HLA class II antigens. In light of the latter findings as well as of the revival of the cancer immune surveillance theory, a reevaluation of the interpretation of changes in HLA antigen and NKCAL expression in malignant lesions is warranted. In this article, we first briefly describe the conventional types of changes in HLA antigen and NKCAL expression that have been identified in malignant cells to date. Second, we discuss the evidence indicating that, in at least some cell types, classical HLA class I antigen expression can be acquired and/or the ability to express HLA class II antigens is lost. Third, we review the available evidence for the role of immune selective pressure in the generation of malignant lesions with changes in HLA antigen expression. This information contributes to our understanding of the role of the immune system in the control of tumor development and to the optimization of the design of immunotherapeutic strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Michael Campoli
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | |
Collapse
|
14
|
Natural killer cells in human cancer: from biological functions to clinical applications. J Biomed Biotechnol 2011; 2011:676198. [PMID: 21541191 PMCID: PMC3085499 DOI: 10.1155/2011/676198] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/25/2011] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are central components of the innate immunity. In murine models, it has been shown that NK cells can control both local tumor growth and metastasis due to their ability to exert direct cellular cytotoxicity without prior sensitization and to secrete immunostimulatory cytokines like IFN-γ. The latter participates in cancer elimination by inhibiting cellular proliferation and angiogenesis, promoting apoptosis, and stimulating the adaptive immune system, and it is instrumental for enhancing Ag processing and presentation. Nevertheless, NK cells display impaired functionality and capability to infiltrate tumors in cancer patients. Also, NK cells are feasible targets of stimulation to participate in immunotherapeutic approaches like antibody-based strategies and adoptive cell transfer. Thus, multiple attempts currently aim to manipulate NK for utilization in the immunotherapy of cancer.
Collapse
|
15
|
Sinkovics JG. Antileukemia and antitumor effects of the graft-versus-host disease: a new immunovirological approach. Acta Microbiol Immunol Hung 2010; 57:253-347. [PMID: 21183421 DOI: 10.1556/amicr.57.2010.4.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In leukemic mice, the native host's explicit and well-defined immune reactions to the leukemia virus (a strong exogenous antigen) and to leukemia cells (pretending in their native hosts to be protected "self" elements) are extinguished and replaced in GvHD (graft-versus-host disease) by those of the immunocompetent donor cells. In many cases, the GvHD-inducer donors display genetically encoded resistance to the leukemia virus. In human patients only antileukemia and anti-tumor cell immune reactions are mobilized; thus, patients are deprived of immune reactions to a strong exogenous antigen (the elusive human leukemia-sarcoma retroviruses). The innate and adaptive immune systems of mice have to sustain the immunosuppressive effects of leukemia-inducing retroviruses. Human patients due to the lack of leukemiainducing retroviral pathogens (if they exist, they have not as yet been discovered), escape such immunological downgrading. After studying leukemogenic retroviruses in murine and feline (and other mammalian) hosts, it is very difficult to dismiss retroviral etiology for human leukemias and sarcomas. Since no characterized and thus recognized leukemogenic-sarcomagenic retroviral agents are being isolated from the vast majority of human leukemias-sarcomas, the treatment for these conditions in mice and in human patients vastly differ. It is immunological and biological modalities (alpha interferons; vaccines; adoptive lymphocyte therapy) that dominate the treatment of murine leukemias, whereas combination chemotherapy remains the main remission-inducing agent in human leukemias-lymphomas and sarcomas (as humanized monoclonal antibodies and immunotoxins move in). Yet, in this apparently different backgrounds in Mus and Homo, GvHD, as a treatment modality, appears to work well in both hosts, by replacing the hosts' anti-leukemia and anti-tumor immune faculties with those of the donor. The clinical application of GvHD in the treatment of human leukemias-lymphomas and malignant solid tumors remains a force worthy of pursuit, refinement and strengthening. Graft engineering and modifications of the inner immunological environment of the recipient host by the activation or administration of tumor memory T cells, selected Treg cells and natural killer (NKT) cell classes and cytokines, and the improved pharmacotherapy of GvHD without reducing its antitumor efficacy, will raise the value of GvHD to the higher ranks of the effective antitumor immunotherapeutical measures. Clinical interventions of HCT/HSCT (hematopoietic cell/stem cell transplants) are now applicable to an extended spectrum of malignant diseases in human patients, being available to elderly patients, who receive non-myeloablative conditioning, are re-enforced by post-transplant donor lymphocyte (NK cell and immune T cell) infusions and post-transplant vaccinations, and the donor cells may derive from engineered grafts, or from cord blood with reduced GvHD, but increased GvL/GvT-inducing capabilities (graft-versus leukemia/tumor). Post-transplant T cell transfusions are possible only if selected leukemia antigen-specific T cell clones are available. In verbatim quotation: "Ultimately, advances in separation of GvT from GvHD will further enhance the potential of allogeneic HCT as a curative treatment for hematological malignancies" (Rezvani, A.R. and Storb, R.F., Journal of Autoimmunity 30:172-179, 2008 (see in the text)). It may be added: for cure, a combination of the GvL/T effects with new targeted therapeutic modalities, as elaborated on in this article, will be necessary.
Collapse
Affiliation(s)
- Joseph G Sinkovics
- The University of South Florida College of Medicine, St. Joseph Hospital's Cancer Institute, Affiliated with the H. L. Moffitt Comprehensive Cancer Center, Tampa, FL 33607-6307, USA.
| |
Collapse
|
16
|
Burt BM, Plitas G, Zhao Z, Bamboat ZM, Nguyen HM, Dupont B, DeMatteo RP. The lytic potential of human liver NK cells is restricted by their limited expression of inhibitory killer Ig-like receptors. THE JOURNAL OF IMMUNOLOGY 2009; 183:1789-96. [PMID: 19587011 DOI: 10.4049/jimmunol.0900541] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human liver is enriched in NK cells which are potent effectors of the innate immune system. We have determined that liver NK cells freshly isolated from surgical specimens from patients with hepatic malignancy have less cytolytic activity than autologous blood NK cells. This difference was due to a higher proportion of CD16(-) NK cells in the liver and reduced cytotoxicity by CD16(+) liver NK cells compared with their blood counterparts. CD16(+) liver NK cells had similar expression of activating NK receptors and had similar intracellular granzyme B and perforin content compared with CD16(+) blood NK cells. CD16(+) liver NK cells contained a reduced fraction of cells with inhibitory killer Ig-like receptors specific for self-MHC class I (self-killer Ig-related receptor (KIR)) and an increased fraction of self-KIR(neg)NKG2A(pos) and self-KIR(neg)NKG2A(neg) cells. Using single-cell analysis of intracellular IFN-gamma production and cytotoxicity assays, we determined that CD16(+) liver NK cells expressing self-KIR were more responsive to target cells than those cells that did not express self-KIR molecules. CD16(+) liver NK cells gained cytolytic function when stimulated with IL-2 or cultured with LPS or poly(I:C)-activated autologous liver Kupffer cells. Thus, the human liver contains NK cell subsets which have reduced effector function, but under appropriate inflammatory conditions become potent killers.
Collapse
Affiliation(s)
- Bryan M Burt
- Hepatopancreatobiliary Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The curative potential of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for many hematologic malignancies derives in large part from reconstitution of normal donor immunity and the development of a potent graft-versus-leukemia (GVL) immune response capable of rejecting tumor cell in vivo. Elucidation of the mechanisms of GVL by studies of animal models and analysis of clinical data has yielded important insights into how clinically effective tumor immunity is generated following allo-HSCT. These studies have identified NK cells and B cells as well as T cells as important mediators of the GVL response. A variety of antigenic targets of the GVL response have also been identified, and include tumor-associated antigens as well as minor histocompatibility antigens. The principles of effective GVL can now be applied to the development of novel therapies that enhance the therapeutic benefit of allogeneic HSCT while minimizing the toxicities associated with treatment. Moreover, many components of this approach that result in elimination of tumor cells following allogeneic HSCT can potentially be adapted to enhance the effectiveness of tumor immunity in the autologous setting.
Collapse
Affiliation(s)
- Catherine J Wu
- Cancer Vaccine Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | |
Collapse
|
18
|
Toubai T, Sun Y, Reddy P. GVHD pathophysiology: is acute different from chronic? Best Pract Res Clin Haematol 2008; 21:101-17. [DOI: 10.1016/j.beha.2008.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Biological Advances in Acute Graft-Versus-Host Disease After Allogeneic Hematopoietic Stem Cell Transplantation. Transplantation 2008; 85:303-8. [DOI: 10.1097/tp.0b013e318162d357] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Sobecks RM, Ball EJ, Askar M, Theil KS, Rybicki LA, Thomas D, Brown S, Kalaycio M, Andresen S, Pohlman B, Dean R, Sweetenham J, Macklis R, Bernhard L, Cherni K, Copelan E, Maciejewski JP, Bolwell BJ. Influence of killer immunoglobulin-like receptor/HLA ligand matching on achievement of T-cell complete donor chimerism in related donor nonmyeloablative allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2008; 41:709-14. [PMID: 18195688 DOI: 10.1038/sj.bmt.1705954] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Achievement of complete donor chimerism (CDC) after allogeneic nonmyeloablative hematopoietic stem cell transplantation (NMHSCT) is important for preventing graft rejection and for generating a graft-vs-malignancy effect. The alloreactivity of NK cells and some T-cell subsets is mediated through the interaction of their killer immunoglobulin-like receptors (KIRs) with target cell HLA/KIR ligands. The influence of KIR matching on the achievement of T-cell CDC after NMHSCT has not been previously described. We analyzed 31 patients undergoing T-cell replete related donor NMHSCT following fludarabine and 200 cGy TBI. Recipient inhibitory KIR genotype and donor HLA/KIR ligand matches were used to generate an inhibitory KIR score from 1 to 4 based upon the potential number of recipient inhibitory KIRs that could be engaged with donor HLA/KIR ligands. Patients with a score of 1 were less likely to achieve T-cell CDC (P=0.016) and more likely to develop graft rejection (P=0.011) than those with scores greater than 1. Thus, patients with lower inhibitory KIR scores may have more active anti-donor immune effector cells that may reduce donor chimerism. Conversely, patients with greater inhibitory KIR scores may have less active NK cell and T-cell populations, which may make them more likely to achieve CDC.
Collapse
Affiliation(s)
- R M Sobecks
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Petersdorf EW, Malkki M, Gooley TA, Martin PJ, Guo Z. MHC haplotype matching for unrelated hematopoietic cell transplantation. PLoS Med 2007; 4:e8. [PMID: 17378697 PMCID: PMC1796628 DOI: 10.1371/journal.pmed.0040008] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 11/06/2006] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Current criteria for the selection of unrelated donors for hematopoietic cell transplantation (HCT) include matching for the alleles of each human leukocyte antigen (HLA) locus within the major histocompatibility complex (MHC). Graft-versus-host disease (GVHD), however, remains a significant and potentially life-threatening complication even after HLA-identical unrelated HCT. The MHC harbors more than 400 genes, but the total number of transplantation antigens is unknown. Genes that influence transplantation outcome could be identified by using linkage disequilibrium (LD)-mapping approaches, if the extended MHC haplotypes of the unrelated donor and recipient could be defined. METHODS AND FINDINGS We isolated DNA strands extending across 2 million base pairs of the MHC to determine the physical linkage of HLA-A, -B, and -DRB1 alleles in 246 HCT recipients and their HLA-A, -B, -C, -DRB1, -DQB1 allele-matched unrelated donors. MHC haplotype mismatching was associated with a statistically significantly increased risk of severe acute GVHD (odds ratio 4.51; 95% confidence interval [CI], 2.34-8.70, p < 0.0001) and with lower risk of disease recurrence (hazard ratio 0.45; 95% CI, 0.22-0.92, p = 0.03). CONCLUSIONS The MHC harbors genes that encode unidentified transplantation antigens. The three-locus HLA-A, -B, -DRB1 haplotype serves as a proxy for GVHD risk among HLA-identical transplant recipients. The phasing method provides an approach for mapping novel MHC-linked transplantation determinants and a means to decrease GVHD-related morbidity after HCT from unrelated donors.
Collapse
Affiliation(s)
- Effie W Petersdorf
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.
| | | | | | | | | |
Collapse
|
22
|
Ruggeri L, Aversa F, Martelli MF, Velardi A. Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self. Immunol Rev 2006; 214:202-18. [PMID: 17100886 DOI: 10.1111/j.1600-065x.2006.00455.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although the optimal donor for allogeneic hematopoietic stem cell transplantation (HSCT) is a human leukocyte antigen-matched sibling, 75% of patients do not have a match, and alternatives are matched unrelated volunteers, unrelated umbilical cord blood units, and full-haplotype-mismatched family members. To cure leukemia, allogeneic HSCT relies on donor T cells in the allograft, which promote engraftment, eradicate malignant cells, and reconstitute immunity. Here, we focus on the open issues of rejection, graft-versus-host disease (GVHD), and infections and the benefits of natural killer (NK) cell alloreactivity and its underlying mechanisms. Donor-versus-recipient NK cell alloreactivity derives from a mismatch between inhibitory receptors for self-major histocompatibility complex (MHC) class I molecules on donor NK clones and the MHC class I ligands on recipient cells. These NK clones sense the missing expression of the self-MHC class I allele on the allogeneic targets and mediate alloreactions. HSCT from 'NK alloreactive' donors controls acute myeloid relapse without causing GVHD. We review the translation of NK cell recognition of missing self into the clinical practice of allogeneic hematopoietic transplantation and discuss how it has opened innovative perspectives in the cure of leukemia.
Collapse
Affiliation(s)
- Loredana Ruggeri
- Division of Hematology and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Perugia, Italy
| | | | | | | |
Collapse
|
23
|
Abstract
BACKGROUND Advances in immunology and molecular biology have shown that colorectal cancer is potentially immunogenic and that host immune responses influence survival. However, immune surveillance and activation is frequently ineffective in preventing and/or controlling tumour growth. AIM To discuss potential ways in which colorectal cancer induces immune suppression, its effect upon prognosis and avenues for therapeutic development. METHOD A literature review was undertaken for evidence of colorectal cancer-induced immune suppression using PubMed and Medline searches. Further studies were identified from the reference lists of identified papers. RESULTS Immune suppression occurs at a molecular and cellular level and can result in a shift from cellular to humoral immunity. Several mechanisms for immune suppression have been described affecting innate and adaptive immunity with suppression linked to poorer clinical outcome. CONCLUSIONS Colorectal cancer causes direct inhibition of the host's immune response with a detrimental effect upon prognosis. Immunotherapy offers a therapeutic strategy to counteract these effects with promising results seen particularly in precancerous conditions and early tumours. This review strongly suggests that immunotherapy should be incorporated into adjuvant therapeutic trials for stage 2 tumours and be considered as adjuvant treatment in conjunction with standard chemotherapy regimes for advanced disease.
Collapse
Affiliation(s)
- C Evans
- Institution Colorectal Surgery Unit & Division of Oncology, St George's Hospital, Blackshaw Road, London, UK
| | | | | |
Collapse
|
24
|
Nagaishi T, Iijima H, Nakajima A, Chen D, Blumberg RS. Role of CEACAM1 as a Regulator of T Cells. Ann N Y Acad Sci 2006; 1072:155-75. [PMID: 17057197 DOI: 10.1196/annals.1326.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A major immunological attribute of inflammatory bowel disease (IBD) is the presence of unrestrained activation of T cells that produce a variety of inflammatory cytokines and other mediators. Gaining an understanding of T cell regulation is therefore of major importance to IBD. Carcinoembryonic antigen-related cell adhesion molecule 1 CEACAM1) is a novel protein that has been recently recognized as being expressed by immune cells and T lymphocytes, in particular; this protein appears to function as a coinhibitory receptor after T cell activation. Ligation of CEACAM1 on T cells induces a signal cascade that leads inhibition of T cell cytokine production and IBD. CEACAM1 is thus a novel potential therapeutic target in the treatment of IBD.
Collapse
Affiliation(s)
- Takashi Nagaishi
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Toll-like receptors (TLR) are critical sentinels of the host innate immune system. Prior evidence has clearly demonstrated that these receptors are essential to immune recognition of invading pathogens. However, there is emerging evidence that TLR signaling participates in inflammation that is not driven by microorganisms. In the setting of solid organ transplantation, there is accumulating evidence, both in experimental and clinical studies, that TLR signaling is involved in the immune recognition of allografts. Further investigation of how innate immunity impacts solid organ transplantation will likely lead to improved therapeutics for transplant recipients.
Collapse
Affiliation(s)
- Jagdeep Obhrai
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
26
|
Volz A, Radeloff B. Detecting the unusual: natural killer cells. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:473-541. [PMID: 16891179 DOI: 10.1016/s0079-6603(06)81012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Armin Volz
- Institut für Immungenetik Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Spanndauer Damm 130, 14050 Berlin, Germany
| | | |
Collapse
|
27
|
Abstract
Modern understanding of the genetic basis of graft-versus-host disease (GVHD) in allogeneic hematopoietic stem cell transplantation (HSCT) involves knowledge of human leukocyte antigen (HLA), killer immunoglobulin-like receptors (KIR), cytokine genes, and their interactions. Insights into the immunogenetic basis of GVHD come from long-standing clinical experience in the use of myeloablative conditioning regimens and donor bone marrow as the grafting source. Under these circumstances, donor T-cell recognition of host HLA can cause GVHD. The recent elucidation of HLA class I as ligands for natural killer (NK) cell inhibitory KIR demonstrates that GVHD is the result of a complex interplay between the innate and adaptive immune responses. The extent to which T cells and NK cells contribute to clinical GVHD is a function of the host post-conditioning environment, immunosuppressive treatments, and the content of the graft source. The contribution of donor and host genetic differences in cytokine genes in modulating risks of GVHD has recently been recognized.
Collapse
Affiliation(s)
- Effie W Petersdorf
- Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| | | |
Collapse
|