1
|
Ghatak S, Mehrabi SF, Mehdawi LM, Satapathy SR, Sjölander A. Identification of a Novel Five-Gene Signature as a Prognostic and Diagnostic Biomarker in Colorectal Cancers. Int J Mol Sci 2022; 23:ijms23020793. [PMID: 35054980 PMCID: PMC8776147 DOI: 10.3390/ijms23020793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality worldwide. The current TNM (Tumor, Node, and Metastasis) classification approach is suboptimal in determining the prognosis of CRC patients. The prognosis for CRC is affected by a variety of features that are present at the initial diagnosis. Herein, we performed a systematic exploration and established a novel five-panel gene signature as a prognostic and early diagnosis biomarker after performing differential gene expression analyses in five independent in silico CRCs cohort and independently validating it in one clinical cohort, using immunohistochemistry. Four genes (BDNF, PTGS2, GSK3B, and CTNNB1) were significantly upregulated and one gene (HPGD) was significantly downregulated in primary tumor tissues compared with adjacent normal tissues throughout all the five in silico datasets. The univariate CoxPH analysis yielded a five-gene signature that accurately predicted overall survival (OS) and recurrence-free survival (RFS) in the in silico training (AUC = 0.73 and 0.69, respectively) and one independent in silico validation cohort (AUC = 0.69 and 0.74, respectively). This five-gene signature demonstrated significant associations with poor OS in independent clinical validation cohorts of colon cancer (CC) patients (AUC = 0.82). Intriguingly, a risk stratification model comprising of the five-gene signature together with TNM stage and gender status achieved an even superior AUC of 0.89 in the clinical cohorts. On the other hand, the circulating mRNA expression of the upregulated four-gene signature achieved a robust AUC = 0.83 with high sensitivity and specificity as a diagnosis marker in plasma from CRC patients. We have identified a novel, five-gene signature as an independent predictor of OS, which in combination with TNM stage and gender offers an easy-to-translate and facile assay for the personalized risk-assessment in CRC patients.
Collapse
|
2
|
Liebl M, Schulze-Hagen M, Zimmermann M, Pedersoli F, Kuhl C, Bruners P, Isfort P. Microwave Ablation in the Proximity of Surgical Clips: Is there a Safety Issue? Cardiovasc Intervent Radiol 2020; 43:918-923. [PMID: 32236668 PMCID: PMC7225190 DOI: 10.1007/s00270-020-02453-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022]
Abstract
Purpose The purpose of this study was to evaluate the heat generation of surgical clips within the target area of MWA and the influences on the ablation volume. Materials and Methods In bovine liver tissue, 42 ex vivo microwave ablations (60 W; 180 s) were performed. During ablation, the temperature was measured continuously at 4 points of interest (POI), in a distance of 7.5 and 15 mm on each side of the microwave antenna, with a titanium surgical placed at one 7.5-mm POI. Ablation volumes containing large vessels (n = 10) were excluded. For every POI, the mean temperature of 32 ablations was calculated. The mean temperatures were compared between the 4 POI and statistically analyzed using the Student’s t test. Results The mean maximum temperatures at the side of the clip were 88.76 °C/ 195 s and 52.97 °C/ 195 s and at the side without clip 78.75 °C/ 195 s and 43.16 °C/ 195 s, respectively, at POI 7.5 mm and POI 15 mm. The maximum difference of mean temperatures for POI 7.5 mm was 12.91 °C at 84 s (p = 0.022) and for POI 15 mm 9.77 °C at 195 s (p = 0.009). No significant changes in size and shape of the ablation zone could be determined. Conclusions Our study demonstrated significantly higher temperatures adjacent to surgical clips. Also, the temperatures distal to the titanium clip were higher compared to the control location without clip. These findings suggest an increased risk of thermal damage to surrounding tissues during MWA, especially in case of immediate contact to surgical clips.
Collapse
Affiliation(s)
- Martin Liebl
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.,Hôpital Kirchberg (Hôpitaux Robert Schuman), 9, Rue Edward Steichen, 2540, Luxembourg, Luxembourg
| | - Maximilian Schulze-Hagen
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Markus Zimmermann
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Federico Pedersoli
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Philipp Bruners
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Peter Isfort
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Kumaradevan S, Lee SY, Richards S, Lyle C, Zhao Q, Tapan U, Jiangliu Y, Ghumman S, Walker J, Belghasem M, Arinze N, Kuhnen A, Weinberg J, Francis J, Hartshorn K, Kolachalama VB, Cifuentes D, Rahimi N, Chitalia VC. c-Cbl Expression Correlates with Human Colorectal Cancer Survival and Its Wnt/β-Catenin Suppressor Function Is Regulated by Tyr371 Phosphorylation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1921-1933. [PMID: 30029779 DOI: 10.1016/j.ajpath.2018.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 05/09/2018] [Indexed: 12/16/2022]
Abstract
The proto-oncogene β-catenin drives colorectal cancer (CRC) tumorigenesis. Casitas B-lineage lymphoma (c-Cbl) inhibits CRC tumor growth through targeting nuclear β-catenin by a poorly understood mechanism. In addition, the role of c-Cbl in human CRC remains largely underexplored. Using a novel quantitative histopathologic technique, we demonstrate that patients with high c-Cbl-expressing tumors had significantly better median survival (3.7 years) compared with low c-Cbl-expressing tumors (1.8 years; P = 0.0026) and were more than twice as likely to be alive at 3 years compared with low c-Cbl tumors (P = 0.0171). Our data further demonstrate that c-Cbl regulation of nuclear β-catenin requires phosphorylation of c-Cbl Tyr371 because its mutation compromises its ability to target β-catenin. The tyrosine 371 (Y371H) mutant interacted with but failed to ubiquitinate nuclear β-catenin. The nuclear localization of the c-Cbl-Y371H mutant contributed to its dominant negative effect on nuclear β-catenin. The biological importance of c-Cbl-Y371H was demonstrated in various systems, including a transgenic Wnt-8 zebrafish model. c-Cbl-Y371H mutant showed augmented Wnt/β-catenin signaling, increased Wnt target genes, angiogenesis, and CRC tumor growth. This study demonstrates a strong link between c-Cbl and overall survival of patients with CRC and provides new insights into a possible role of Tyr371 phosphorylation in Wnt/β-catenin regulation, which has important implications in tumor growth and angiogenesis in CRC.
Collapse
Affiliation(s)
- Sowmiya Kumaradevan
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Shin Yin Lee
- Hematology and Oncology Section, Boston University School of Medicine, Boston, Massachusetts
| | - Sean Richards
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Chimera Lyle
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Qing Zhao
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Umit Tapan
- Hematology and Oncology Section, Boston University School of Medicine, Boston, Massachusetts
| | - Yilan Jiangliu
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Shmyle Ghumman
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Joshua Walker
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Mostafa Belghasem
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nkiruka Arinze
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Angela Kuhnen
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Janice Weinberg
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Jean Francis
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Kevan Hartshorn
- Hematology and Oncology Section, Boston University School of Medicine, Boston, Massachusetts
| | - Vijaya B Kolachalama
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Nader Rahimi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Vipul C Chitalia
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Department of Surgery, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
4
|
Ottone A, Bellini E, Ferrero A, Baratelli C, Taberna E, Bitossi R, Brizzi MP, Tampellini M. A case of long-term survival after repeated response to oxaliplatin-based chemotherapy and repeated thermoablation of liver metastases from colorectal cancer. Should we introduce the concept of oxaliplatin-resistant tumors? TUMORI JOURNAL 2018; 99:e91-5. [DOI: 10.1177/030089161309900323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background The management of advanced colorectal cancer patients differs among cancer centers. International guidelines recommend offering all the recognized active regimens in order to obtain survival advantage, but little information is given about the sequence and combination in which such regimens should be administered. Case report We report the case of a man with multiple liver metastasis from colorectal cancer followed for more than 78 months at our Institution. Repeated response to the same oxaliplatin, 5-fluorouracil and folinic acid chemotherapy schedule was achieved, and repeated radiofrequency ablation of liver metastases was performed until progression of lung and brain disease at 50 and 72 months, respectively, after the diagnosis of advanced disease. Although the tumor became oxaliplatin and chemo-resistant after the onset of extra-hepatic disease, a more aggressive chemotherapy regimen, including a doublet with a biological, halted tumor growth. Conclusions The patient survived for more than 78 months without experiencing a major impact on his quality of life. This case reflects the importance of following tumor biology in the therapeutic decision-making process, reintroducing oxaliplatin whenever possible, and adopting a more aggressive strategy when the tumor becomes oxaliplatin-resistant.
Collapse
Affiliation(s)
- Azzurra Ottone
- University of Torino, Medical Oncology, AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Elisa Bellini
- University of Torino, Medical Oncology, AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Anna Ferrero
- University of Torino, Medical Oncology, AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Chiara Baratelli
- University of Torino, Medical Oncology, AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Eleonora Taberna
- University of Torino, Medical Oncology, AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Raffaella Bitossi
- University of Torino, Medical Oncology, AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Maria Pia Brizzi
- University of Torino, Medical Oncology, AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Marco Tampellini
- University of Torino, Medical Oncology, AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| |
Collapse
|
5
|
Chen Y, Jiang J, Zhao M, Luo X, Liang Z, Zhen Y, Fu Q, Deng X, Lin X, Li L, Luo R, Liu Z, Fang W. microRNA-374a suppresses colon cancer progression by directly reducing CCND1 to inactivate the PI3K/AKT pathway. Oncotarget 2016; 7:41306-41319. [PMID: 27191497 PMCID: PMC5173061 DOI: 10.18632/oncotarget.9320] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 04/24/2016] [Indexed: 01/07/2023] Open
Abstract
microRNA-374a (miR-374a) exhibits oncogenic functions in various tumor types. Here we report that miR-374a suppresses proliferation, invasion, migration and intrahepatic metastasis in colon adenocarcinoma cell lines HCT116 and SW620. Notably, we detected that PI3K/AKT signaling and its downstream cell cycle factors including c-Myc, cyclin D1 (CCND1), CDK4 and epithelial-mesenchymal transition (EMT)-related genes including ZEB1, N-cadherin, Vimentin, Slug, and Snail were all significantly downregulated after miR-374a overexpression. Conversely, cell cycle inhibitors p21 and p27 were upregulated. Expression of E-cadherin was only decreased in HCT116, without any obvious differences observed in SW620 cells. Furthermore, luciferase reporter assays confirmed that miR-374a could directly reduce CCND1. Interestingly, when CCND1 was silenced or overexpressed, levels of pPI3K, pAkt as well as cell cycle and EMT genes were respectively downregulated or upregulated. We examined miR-374a levels by in situ hybridization and its correlation with CCND1 expression in CRC tumor tissues. High miR-374a expression with low level of CCND1 was protective factor in CRC. Together these findings indicate that miR-374a inactivates the PI3K/AKT axis by inhibiting CCND1, suppressing of colon cancer progression.
Collapse
Affiliation(s)
- Yiyu Chen
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, PR China
- Cancer Research Institute, Southern Medical University, Guangzhou, PR China
| | - Jingwen Jiang
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, PR China
| | - Mengyang Zhao
- Cancer Research Institute, Southern Medical University, Guangzhou, PR China
| | - Xiaojun Luo
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, PR China
| | - Zixi Liang
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, PR China
- Cancer Research Institute, Southern Medical University, Guangzhou, PR China
| | - Yan Zhen
- Cancer Research Institute, Southern Medical University, Guangzhou, PR China
| | - Qiaofen Fu
- Cancer Research Institute, Southern Medical University, Guangzhou, PR China
| | - Xiaojie Deng
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, PR China
- Cancer Research Institute, Southern Medical University, Guangzhou, PR China
| | - Xian Lin
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, PR China
| | - Libo Li
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, PR China
| | - Rongcheng Luo
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, PR China
| | - Zhen Liu
- Cancer Research Institute, Southern Medical University, Guangzhou, PR China
- Department of Pathology, School of Basic Medicine, Guangzhou Medical College, Guangzhou, PR China
| | - Weiyi Fang
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, PR China
- Cancer Research Institute, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
6
|
Catenacci DVT. Next-generation clinical trials: Novel strategies to address the challenge of tumor molecular heterogeneity. Mol Oncol 2015; 9:967-96. [PMID: 25557400 PMCID: PMC4402102 DOI: 10.1016/j.molonc.2014.09.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 02/09/2023] Open
Abstract
The promise of 'personalized cancer care' with therapies toward specific molecular aberrations has potential to improve outcomes. However, there is recognized heterogeneity within any given tumor-type from patient to patient (inter-patient heterogeneity), and within an individual (intra-patient heterogeneity) as demonstrated by molecular evolution through space (primary tumor to metastasis) and time (after therapy). These issues have become hurdles to advancing cancer treatment outcomes with novel molecularly targeted agents. Classic trial design paradigms are challenged by heterogeneity, as they are unable to test targeted therapeutics against low frequency genomic 'oncogenic driver' aberrations with adequate power. Usual accrual difficulties to clinical trials are exacerbated by low frequencies of any given molecular driver. To address these challenges, there is need for innovative clinical trial designs and strategies implementing novel diagnostic biomarker technologies to account for inter-patient molecular diversity and scarce tissue for analysis. Importantly, there is also need for pre-defined treatment priority algorithms given numerous aberrations commonly observed within any one individual sample. Access to multiple available therapeutic agents simultaneously is crucial. Finally intra-patient heterogeneity through time may be addressed by serial biomarker assessment at the time of tumor progression. This report discusses various 'next-generation' biomarker-driven trial designs and their potentials and limitations to tackle these recognized molecular heterogeneity challenges. Regulatory hurdles, with respect to drug and companion diagnostic development and approval, are considered. Focus is on the 'Expansion Platform Design Types I and II', the latter demonstrated with a first example, 'PANGEA: Personalized Anti-Neoplastics for Gastro-Esophageal Adenocarcinoma'. Applying integral medium-throughput genomic and proteomic assays along with a practical biomarker assessment and treatment algorithm, 'PANGEA' attempts to address the problem of heterogeneity towards successful implementation of molecularly targeted therapies.
Collapse
Affiliation(s)
- Daniel V T Catenacci
- University of Chicago Medical Center, Department of Medicine, Section of Hematology & Oncology, 5841 S. Maryland Avenue, MC2115, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
Tirumani SH, Kim KW, Nishino M, Howard SA, Krajewski KM, Jagannathan JP, Cleary JM, Ramaiya NH, Shinagare AB. Update on the role of imaging in management of metastatic colorectal cancer. Radiographics 2014; 34:1908-28. [PMID: 25384292 PMCID: PMC4386871 DOI: 10.1148/rg.347130090] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 02/07/2023]
Abstract
Evolution in the treatment of metastatic colorectal cancer (mCRC) has led to significant improvement in the survival of these patients. Surgery is useful in patients with resectable disease. Liver-directed therapies such as hepatic arterial infusion, transarterial radio- and chemoembolization, and percutaneous ablation are sometimes used by oncologists when the liver is the only site of metastatic disease. Unresectable mCRC is typically treated with systemic chemotherapy. First-line systemic chemotherapeutic regimens for mCRC are FOLFOX (combination of 5-fluorouracil/leucovorin [5-FU/LV] and oxaliplatin) and FOLFIRI (combination of 5-FU/LV and irinotecan) combined with molecular targeted drugs. Molecular targeted therapies that are effective in treating mCRC include antiangiogenic agents such as bevacizumab-an antibody against vascular endothelial growth factor-and antibodies directed against epidermal growth factor receptor (EGFR). EGFR-directed antibodies such as cetuximab and panitumumab have been shown to produce activity only in wild-type KRAS tumors. Imaging modalities such as multidetector computed tomography (CT), magnetic resonance imaging, and positron emission tomography/CT play a major role in the selection of appropriate treatment strategies. Assessment of treatment response in patients who undergo liver-directed and systemic therapy requires imaging at regular intervals. Recent studies have shown that alternative treatment response criteria may be more predictive of pathologic response in mCRC than conventional criteria such as Response Evaluation Criteria in Solid Tumors. Awareness of unusual response patterns, as well as of complications and toxicities, is helpful in guiding patient management.
Collapse
Affiliation(s)
- Sree Harsha Tirumani
- From the Departments of Imaging (S.H.T., K.W.K., M.N., S.A.H., K.M.K., J.P.J., N.H.R., A.B.S.) and Medical Oncology (J.M.C.), Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02215; and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass (S.H.T., K.W.K., M.N., S.A.H., K.M.K., J.P.J., N.H.R., A.B.S.)
| | | | - Mizuki Nishino
- From the Departments of Imaging (S.H.T., K.W.K., M.N., S.A.H., K.M.K., J.P.J., N.H.R., A.B.S.) and Medical Oncology (J.M.C.), Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02215; and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass (S.H.T., K.W.K., M.N., S.A.H., K.M.K., J.P.J., N.H.R., A.B.S.)
| | - Stephanie A. Howard
- From the Departments of Imaging (S.H.T., K.W.K., M.N., S.A.H., K.M.K., J.P.J., N.H.R., A.B.S.) and Medical Oncology (J.M.C.), Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02215; and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass (S.H.T., K.W.K., M.N., S.A.H., K.M.K., J.P.J., N.H.R., A.B.S.)
| | - Katherine M. Krajewski
- From the Departments of Imaging (S.H.T., K.W.K., M.N., S.A.H., K.M.K., J.P.J., N.H.R., A.B.S.) and Medical Oncology (J.M.C.), Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02215; and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass (S.H.T., K.W.K., M.N., S.A.H., K.M.K., J.P.J., N.H.R., A.B.S.)
| | - Jyothi P. Jagannathan
- From the Departments of Imaging (S.H.T., K.W.K., M.N., S.A.H., K.M.K., J.P.J., N.H.R., A.B.S.) and Medical Oncology (J.M.C.), Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02215; and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass (S.H.T., K.W.K., M.N., S.A.H., K.M.K., J.P.J., N.H.R., A.B.S.)
| | - James M. Cleary
- From the Departments of Imaging (S.H.T., K.W.K., M.N., S.A.H., K.M.K., J.P.J., N.H.R., A.B.S.) and Medical Oncology (J.M.C.), Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02215; and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass (S.H.T., K.W.K., M.N., S.A.H., K.M.K., J.P.J., N.H.R., A.B.S.)
| | - Nikhil H. Ramaiya
- From the Departments of Imaging (S.H.T., K.W.K., M.N., S.A.H., K.M.K., J.P.J., N.H.R., A.B.S.) and Medical Oncology (J.M.C.), Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02215; and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass (S.H.T., K.W.K., M.N., S.A.H., K.M.K., J.P.J., N.H.R., A.B.S.)
| | - Atul B. Shinagare
- From the Departments of Imaging (S.H.T., K.W.K., M.N., S.A.H., K.M.K., J.P.J., N.H.R., A.B.S.) and Medical Oncology (J.M.C.), Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02215; and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass (S.H.T., K.W.K., M.N., S.A.H., K.M.K., J.P.J., N.H.R., A.B.S.)
| |
Collapse
|
8
|
Long-term results after proactive management for locoregional control in patients with colonic cancer at high risk of peritoneal metastases. Int J Colorectal Dis 2014; 29:1081-9. [PMID: 24980687 DOI: 10.1007/s00384-014-1929-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE A major problem in treating patients with peritoneal spread from colorectal cancer is that at diagnosis wide peritoneal involvement often precludes all curative attempts. A possible solution is to identify those patients at risk for peritoneal metastases and intervene early to prevent locoregional disease spread before it develops and, thus, to improve outcome. METHODS We analyzed long-term results from a previous study and compared outcomes in 25 patients with advanced colon cancer considered at high risk for peritoneal spread (pT3/pT4 and mucinous or signet ring cell histology) prospectively included and managed with a proactive surgical approach including target organ resection for peritoneal spread plus hyperthermic intraperitoneal chemotherapy (HIPEC) and in 50 retrospectively well-matched controls who underwent standard surgical resection during the same period and in the same hospital by different surgical teams. RESULTS At 48 months after the study closed, peritoneal metastases and local recurrence developed significantly less often in proactively managed patients than in controls (4 vs 28%) (p < 0.03). Patients in the proactive group also survived longer than control patients (median overall survival 59.5 vs 52 months). Despite similar morbidity, Kaplan-Meier survival curves disclosed significantly longer disease-free and overall survival in the proactive than in the control group (p < 0.05 and <0.04). CONCLUSIONS In patients with advanced colon cancer at risk for peritoneal recurrence, the proactive surgical approach plus HIPEC seems to achieve good locoregional control preventing peritoneal spread thus improving outcome without increasing morbidity. These advantages merit investigation in a multicentric randomized trial.
Collapse
|
9
|
Valeri N, Braconi C, Gasparini P, Murgia C, Lampis A, Paulus-Hock V, Hart JR, Ueno L, Grivennikov SI, Lovat F, Paone A, Cascione L, Sumani KM, Veronese A, Fabbri M, Carasi S, Alder H, Lanza G, Gafa' R, Moyer MP, Ridgway RA, Cordero J, Nuovo GJ, Frankel WL, Rugge M, Fassan M, Groden J, Vogt PK, Karin M, Sansom OJ, Croce CM. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell 2014; 25:469-83. [PMID: 24735923 PMCID: PMC3995091 DOI: 10.1016/j.ccr.2014.03.006] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/14/2013] [Accepted: 03/06/2014] [Indexed: 02/07/2023]
Abstract
MicroRNA deregulation is frequent in human colorectal cancers (CRCs), but little is known as to whether it represents a bystander event or actually drives tumor progression in vivo. We show that miR-135b overexpression is triggered in mice and humans by APC loss, PTEN/PI3K pathway deregulation, and SRC overexpression and promotes tumor transformation and progression. We show that miR-135b upregulation is common in sporadic and inflammatory bowel disease-associated human CRCs and correlates with tumor stage and poor clinical outcome. Inhibition of miR-135b in CRC mouse models reduces tumor growth by controlling genes involved in proliferation, invasion, and apoptosis. We identify miR-135b as a key downsteam effector of oncogenic pathways and a potential target for CRC treatment.
Collapse
Affiliation(s)
- Nicola Valeri
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK.
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Pierluigi Gasparini
- Human Cancer Genetics Program, Ohio State University Comprehensive Cancer Center, Columbus, OH 43212, USA
| | - Claudio Murgia
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Andrea Lampis
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Viola Paulus-Hock
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Jonathan R Hart
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lynn Ueno
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sergei I Grivennikov
- Department of Pharmacology, School of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Francesca Lovat
- Human Cancer Genetics Program, Ohio State University Comprehensive Cancer Center, Columbus, OH 43212, USA
| | - Alessio Paone
- Human Cancer Genetics Program, Ohio State University Comprehensive Cancer Center, Columbus, OH 43212, USA
| | - Luciano Cascione
- Human Cancer Genetics Program, Ohio State University Comprehensive Cancer Center, Columbus, OH 43212, USA
| | - Khlea M Sumani
- Human Cancer Genetics Program, Ohio State University Comprehensive Cancer Center, Columbus, OH 43212, USA
| | - Angelo Veronese
- Aging Research Center, G.d'Annunzio University Foundation, Chieti 66100, Italy
| | - Muller Fabbri
- Human Cancer Genetics Program, Ohio State University Comprehensive Cancer Center, Columbus, OH 43212, USA
| | - Stefania Carasi
- Human Cancer Genetics Program, Ohio State University Comprehensive Cancer Center, Columbus, OH 43212, USA
| | - Hansjuerg Alder
- Human Cancer Genetics Program, Ohio State University Comprehensive Cancer Center, Columbus, OH 43212, USA
| | - Giovanni Lanza
- Department of Pathology, University of Ferrara, Ferrara 44121, Italy
| | - Roberta Gafa'
- Department of Pathology, University of Ferrara, Ferrara 44121, Italy
| | | | | | - Julia Cordero
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Gerard J Nuovo
- Human Cancer Genetics Program, Ohio State University Comprehensive Cancer Center, Columbus, OH 43212, USA
| | - Wendy L Frankel
- Department of Pathology, Ohio State University Comprehensive Cancer Center, Columbus, OH 43212, USA
| | - Massimo Rugge
- Department of Pathology, University of Padova, Padova 35121, Italy
| | - Matteo Fassan
- Department of Pathology, University of Padova, Padova 35121, Italy
| | - Joanna Groden
- Human Cancer Genetics Program, Ohio State University Comprehensive Cancer Center, Columbus, OH 43212, USA
| | - Peter K Vogt
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Karin
- Department of Pharmacology, School of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Carlo M Croce
- Human Cancer Genetics Program, Ohio State University Comprehensive Cancer Center, Columbus, OH 43212, USA.
| |
Collapse
|
10
|
He S, Smith DL, Sequeira M, Sang J, Bates RC, Proia DA. The HSP90 inhibitor ganetespib has chemosensitizer and radiosensitizer activity in colorectal cancer. Invest New Drugs 2014; 32:577-86. [PMID: 24682747 PMCID: PMC4101249 DOI: 10.1007/s10637-014-0095-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023]
Abstract
The integration of targeted agents to standard cytotoxic regimens has improved outcomes for patients with colorectal cancer (CRC) over recent years; however this malignancy remains the second leading cause of cancer mortality in industrialized countries. Small molecule inhibitors of heat shock protein 90 (HSP90) are one of the most actively pursued classes of compounds for the development of new cancer therapies. Here we evaluated the activity of ganetespib, a second-generation HSP90 inhibitor, in models of CRC. Ganetespib reduced cell viability in a panel of CRC cell lines in vitro with low nanomolar potency. Mechanistically, drug treatment exerted concomitant effects on multiple oncogenic signaling pathways, cell cycle regulation, and DNA damage repair capacity to promote apoptosis. Combinations of ganetespib and low-dose ionizing radiation enhanced the radiosensitivity of HCT 116 cells and resulted in superior cytotoxic activity over either treatment alone. In vivo, the single-agent activity of ganetespib was relatively modest, suppressing HCT 116 xenograft tumor growth by approximately half. However, ganetespib significantly potentiated the antitumor efficacy of the 5-Fluorouracil (5-FU) prodrug capecitabine in HCT 116 xenografts, causing tumor regressions in a model that is intrinsically resistant to fluoropyrimidine therapy. This demonstration of combinatorial benefit afforded by an HSP90 inhibitor to a standard CRC adjuvant regimen provides an attractive new framework for the potential application of ganetespib as an investigational agent in this disease.
Collapse
Affiliation(s)
- Suqin He
- Synta Pharmaceuticals Corp, 125 Hartwell Avenue, Lexington, MA 02421 USA
| | - Donald L. Smith
- Synta Pharmaceuticals Corp, 125 Hartwell Avenue, Lexington, MA 02421 USA
| | - Manuel Sequeira
- Synta Pharmaceuticals Corp, 125 Hartwell Avenue, Lexington, MA 02421 USA
| | - Jim Sang
- Synta Pharmaceuticals Corp, 125 Hartwell Avenue, Lexington, MA 02421 USA
| | - Richard C. Bates
- Synta Pharmaceuticals Corp, 125 Hartwell Avenue, Lexington, MA 02421 USA
| | - David A. Proia
- Synta Pharmaceuticals Corp, 125 Hartwell Avenue, Lexington, MA 02421 USA
| |
Collapse
|
11
|
Malinowsky K, Nitsche U, Janssen KP, Bader FG, Späth C, Drecoll E, Keller G, Höfler H, Slotta-Huspenina J, Becker KF. Activation of the PI3K/AKT pathway correlates with prognosis in stage II colon cancer. Br J Cancer 2014; 110:2081-9. [PMID: 24619078 PMCID: PMC3992486 DOI: 10.1038/bjc.2014.100] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/05/2013] [Accepted: 01/28/2014] [Indexed: 12/27/2022] Open
Abstract
Background: Patients with UICC/AJCC stage II colon cancer have a high 5-year overall survival rate after surgery. Nevertheless, a significant subgroup of patients develops tumour recurrence. Currently, there are no clinically established biomarkers available to identify this patient group. We applied reverse-phase protein arrays (RPPA) for phosphatidylinositide-3-kinase pathway activation mapping to stratify patients according to their risk of tumour recurrence after surgery. Methods: Full-length proteins were extracted from formalin-fixed, paraffin-embedded tissue samples of 118 patients who underwent curative resection. RPPA technology was used to analyse expression and/or phosphorylation levels of six major factors of the phosphatidylinositide-3-kinase pathway. Oncogenic mutations of KRAS and BRAF, and DNA microsatellite status, currently discussed as prognostic markers, were analysed in parallel. Results: Expression of phospho-AKT (HR=3.52; P=0.032), S6RP (HR=6.3; P=0.044), and phospho-4E-BP1 (HR=4.12; P=0.011) were prognostic factors for disease-free survival. None of the molecular genetic alterations were significantly associated with prognosis. Conclusions: Our data indicate that activation of the PI3K/AKT pathway evidenced on the protein level might be a valuable prognostic marker to stratify patients for their risk of tumour recurrence. Beside adjuvant chemotherapy targeting of upregulated PI3K/AKT signalling may be an attractive strategy for treatment of high-risk patients.
Collapse
Affiliation(s)
- K Malinowsky
- Department of Pathology, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany
| | - U Nitsche
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany
| | - K-P Janssen
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany
| | - F G Bader
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany
| | - C Späth
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany
| | - E Drecoll
- Department of Pathology, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany
| | - G Keller
- Department of Pathology, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany
| | - H Höfler
- 1] Department of Pathology, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany [2] Department of Pathology, Helmholtz-Centre Munich, Ingolstädter Landstrasse 1, 85764 Munich, Germany
| | - J Slotta-Huspenina
- Department of Pathology, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany
| | - K-F Becker
- Department of Pathology, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany
| |
Collapse
|
12
|
Durães C, Almeida GM, Seruca R, Oliveira C, Carneiro F. Biomarkers for gastric cancer: prognostic, predictive or targets of therapy? Virchows Arch 2014; 464:367-78. [DOI: 10.1007/s00428-013-1533-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/12/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022]
|
13
|
Walker AS, Zwintscher NP, Johnson EK, Maykel JA, Stojadinovic A, Nissan A, Avital I, Brücher BL, Steele SR. Future directions for monitoring treatment response in colorectal cancer. J Cancer 2014; 5:44-57. [PMID: 24396497 PMCID: PMC3881220 DOI: 10.7150/jca.7809] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/25/2013] [Indexed: 02/06/2023] Open
Abstract
Treatment of advanced colon and rectal cancer has significantly evolved with the introduction of neoadjuvant chemoradiation therapy so much that, along with more effective chemotherapy regimens, surgery has been considered unnecessary among some institutions for select patients. The tumor response to these treatments has also improved and ultimately has been shown to have a direct effect on prognosis. Yet, the best way to monitor that response, whether clinically, radiologically, or with laboratory findings, remains controversial. The authors' aim is to briefly review the options available and, more importantly, examine emerging and future options to assist in monitoring treatment response in cases of locally advanced rectal cancer and metastatic colon cancer.
Collapse
Affiliation(s)
- Avery S Walker
- 1. Department of Surgery, Madigan Army Medical Center, 9040 Fitzsimmons Dr., Fort Lewis, WA, USA
| | - Nathan P Zwintscher
- 1. Department of Surgery, Madigan Army Medical Center, 9040 Fitzsimmons Dr., Fort Lewis, WA, USA
| | - Eric K Johnson
- 1. Department of Surgery, Madigan Army Medical Center, 9040 Fitzsimmons Dr., Fort Lewis, WA, USA
| | - Justin A Maykel
- 2. University of Massachusetts Memorial Medical Center, Worcester, MA, USA
| | - Alexander Stojadinovic
- 3. Department of Surgery, Division of Surgical Oncology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Aviram Nissan
- 4. Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | - Scott R Steele
- 1. Department of Surgery, Madigan Army Medical Center, 9040 Fitzsimmons Dr., Fort Lewis, WA, USA
| |
Collapse
|
14
|
Kim HS. [Site-specific colorectal cancer; how is it different?]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2013; 61:63-70. [PMID: 23458982 DOI: 10.4166/kjg.2013.61.2.63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One of the most critical characteristics of colorectal cancer (CRC) is the difference between proximal (right-sided colon cancer, RCC) and distal (left-sided colon cancer, LCC) disease. The recent CRC studies showed the unique characteristics of RCC; RCCs were more prevalent in women than men and old patients, and the age difference between RCC and LCC was more apparent in women. Moreover, relatively poor protection against RCC by colonoscopy is a clearly hot issue for alarm. Thus, the left and right colon have been considered as dichotomous or even different organs in the view of molecular, histopathological, epidemiologic and clinical bases for over three decades. However, the evolutionary data suggesting linearity from the rectum to ascending colon beyond the simple right-left dichotomization in the views of cancer molecular features and site-specific clinicopathological differences, support the need for a paradigm shift to the colorectal continuum model rather than the traditional two-colon concept. This new multi-segmental or colorectal continuum hypothesis would provide both the better understanding of the complex etiology of colorectal carcinogenesis and the tailored preventive and therapeutic strategies for CRC including individualized CRC screening programs.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
15
|
Van Cutsem E, Borràs JM, Castells A, Ciardiello F, Ducreux M, Haq A, Schmoll HJ, Tabernero J. Improving outcomes in colorectal cancer: where do we go from here? Eur J Cancer 2013; 49:2476-85. [PMID: 23642327 DOI: 10.1016/j.ejca.2013.03.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) places a considerable burden on individuals and society in Europe, being the second most common cause of cancer-related death in the region. While earlier diagnosis and advances in treatment have considerably improved survival in recent years, further progress is needed. One of the greatest challenges associated with the treatment of CRC is the fact that current therapies for advanced disease are not curative, necessitating treatment for many years and placing a significant healthcare burden on society. To reduce the burden of CRC, care delivery must be more efficient and cost-effective. In particular, development of adequate screening programmes is needed, along with chemo-preventative strategies and newer, more active therapies. Further challenges include the lack of optimal selection of patients for adjuvant therapy, identification of the most appropriate target populations for current treatments and the optimum sequence for new molecular targeted agents. This article outlines current developments and unmet needs in CRC, and provides a detailed vision for improvements in the management of the disease. Implementation of some of these strategies will go some way to improving outcomes for patients with CRC.
Collapse
Affiliation(s)
| | | | - Antoni Castells
- Gastroenterology Department, Hospital Clinic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Catalonia, Spain
| | | | - Michel Ducreux
- Institut de Cancérologie Gustave-Roussy, Villejuif, France
| | - Asif Haq
- Kings College Hospital, London, UK
| | | | - Josep Tabernero
- Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
16
|
de Souza JA, Polite B, Perkins M, Meropol NJ, Ratain MJ, Newcomer LN, Alexander GC. Unsupported off-label chemotherapy in metastatic colon cancer. BMC Health Serv Res 2012; 12:481. [PMID: 23272659 PMCID: PMC3544564 DOI: 10.1186/1472-6963-12-481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 12/26/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Newer systemic therapies have the potential to decrease morbidity and mortality from metastatic colorectal cancer, yet such therapies are costly and have side effects. Little is known about their non-evidence-based use. METHODS We conducted a retrospective cohort study using commercial insurance claims from UnitedHealthcare, and identified incident cases of metastatic colon cancer (mCC) from July 2007 through April 2010. We evaluated the use of three regimens with recommendations against their use in the National Comprehensive Cancer Center Network Guidelines, a commonly used standard of care: 1) bevacizumab beyond progression; 2) single agent capecitabine as a salvage therapy after failure on a fluoropyridimidine-containing regimen; 3) panitumumab or cetuximab after progression on a prior epidermal growth factor receptor antibody. We performed sensitivity analyses of key assumptions regarding cohort selection. Costs from a payer perspective were estimated using the average sales price for the entire duration and based on the number of claims. RESULTS A total of 7642 patients with incident colon cancer were identified, of which 1041 (14%) had mCC. Of those, 139 (13%) potentially received at least one of the three unsupported off-label (UOL) therapies; capecitabine was administered to 121 patients and 49 (40%) likely received it outside of clinical guidelines, at an estimated cost of $718,000 for 218 claims. Thirty-eight patients received panitumumab and six patients (16%) received it after being on cetuximab at least two months, at an estimated cost of $69,500 for 19 claims. Bevacizumab was administered to 884 patients. Of those, 90 (10%) patients received it outside of clinical guidelines, at an estimated costs of $1.34 million for 636 claims. CONCLUSIONS In a large privately insured mCC cohort, a substantial number of patients potentially received UOL treatment. The economic costs and treatment toxicities of these therapies warrant increased efforts to stem their use in settings lacking sufficient scientific evidence.
Collapse
Affiliation(s)
- Jonas A de Souza
- Section of Hematology/Oncology, The University of Chicago Medicine, Chicago, IL, USA
- Comprehensive Cancer Center, The University of Chicago Medicine, Chicago, IL, USA
| | - Blase Polite
- Section of Hematology/Oncology, The University of Chicago Medicine, Chicago, IL, USA
- Comprehensive Cancer Center, The University of Chicago Medicine, Chicago, IL, USA
- Center for Interdisciplinary Health Disparities Research, The University of Chicago Medicine, 5841 South Maryland Avenue, MC 2115, Chicago, IL, 60637-1470, USA
| | | | - Neal J Meropol
- Division of Hematology and Oncology, University Hospitals Case Medical Center Seidman Cancer Center, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Mark J Ratain
- Section of Hematology/Oncology, The University of Chicago Medicine, Chicago, IL, USA
- Comprehensive Cancer Center, The University of Chicago Medicine, Chicago, IL, USA
- Committee on Clinical Pharmacology and Pharmacogenomics and Center for Personalized Therapeutics, The University of Chicago, Chicago, IL, USA
| | | | - G Caleb Alexander
- Section of General Medicine and Center for Health and the Social Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Wanebo HJ, LeGolvan M, Paty PB, Saha S, Zuber M, D’Angelica MI, Kemeny NE. Meeting the biologic challenge of colorectal metastases. Clin Exp Metastasis 2012; 29:821-39. [DOI: 10.1007/s10585-012-9517-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 12/20/2022]
|
18
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|
19
|
Yamauchi M, Lochhead P, Morikawa T, Huttenhower C, Chan AT, Giovannucci E, Fuchs CS, Ogino S. Colorectal cancer: a tale of two sides or a continuum? Gut 2012; 61:794-7. [PMID: 22490520 PMCID: PMC3345045 DOI: 10.1136/gutjnl-2012-302014] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mai Yamauchi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Paul Lochhead
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Teppei Morikawa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard School of Public Health, Boston, MA
| | - Andrew T. Chan
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
| | - Edward Giovannucci
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
- Departments of Epidemiology and Nutrition, Harvard School of Public Health, Boston, MA
| | - Charles S. Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Bauer K, Nitsche U, Slotta-Huspenina J, Drecoll E, von Weyhern CH, Rosenberg R, Höfler H, Langer R. High HSP27 and HSP70 expression levels are independent adverse prognostic factors in primary resected colon cancer. Cell Oncol (Dordr) 2012; 35:197-205. [PMID: 22535481 DOI: 10.1007/s13402-012-0079-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2012] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The expression of Heat Shock Proteins (HSPs) is increased in various cancers and has been shown to correlate with biological tumor behaviour. This study aimed to investigate the impact of HSP70, HSP60 and HSP27 expression in colon cancer. MATERIAL AND METHODS HSP expression was determined by immunohistochemistry on a tissue microarray with 355 primary resected colon carcinomas of all stages. Expression patterns were correlated with pathologic features (UICC pTNM category, tumor grading) and survival. RESULTS Expression of HSP27, HSP60 and HSP70 ranged from negative to high. There was no correlation between HSP27, HSP60 and HSP70 expression among each other and with UICC pT category, presence of lymph node or distant metastases or tumor grading. High HSP70 expression was associated with worse overall survival (p < 0.001) and was an independent prognostic factor (p = 0.004) in multivariate analysis including the pathological parameters mentioned above. For patients without lymph node or distant metastases (UICC stages I/II) and with complete tumor excision, HSP70 expression was the only independent prognostic factor for survival (p = 0.001) and superior to UICC pT category. In left sided UICC stage I/II carcinomas, high HSP27 expression also had adverse prognostic impact and was an independent prognostic factor (p = 0.016) besides HSP70 (p = 0.002). CONCLUSION High HSP70 and HSP27 expression is associated with worse clinical outcome in colon cancer. Determination of tumoral HSP70 and HSP27 may be used as additional biomarker for risk stratification especially for UICC stage I/II patients.
Collapse
Affiliation(s)
- Karina Bauer
- Institute of Pathology, Technische Universität München, Trogerstr. 18, 81675 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
de Souza JA, Alexander GC. Unsupported off-label use of cancer therapies: new challenges in the era of biopharmaceuticals. Expert Rev Pharmacoecon Outcomes Res 2012; 11:495-8. [PMID: 21958092 DOI: 10.1586/erp.11.63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Verma M. Personalized medicine and cancer. J Pers Med 2012; 2:1-14. [PMID: 25562699 PMCID: PMC4251363 DOI: 10.3390/jpm2010001] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 01/18/2012] [Accepted: 01/21/2012] [Indexed: 12/31/2022] Open
Abstract
Cancer is one of the leading causes of death in the United States, and more than 1.5 million new cases and more than 0.5 million deaths were reported during 2010 in the United States alone. Following completion of the sequencing of the human genome, substantial progress has been made in characterizing the human epigenome, proteome, and metabolome; a better understanding of pharmacogenomics has been developed, and the potential for customizing health care for the individual has grown tremendously. Recently, personalized medicine has mainly involved the systematic use of genetic or other information about an individual patient to select or optimize that patient’s preventative and therapeutic care. Molecular profiling in healthy and cancer patient samples may allow for a greater degree of personalized medicine than is currently available. Information about a patient’s proteinaceous, genetic, and metabolic profile could be used to tailor medical care to that individual’s needs. A key attribute of this medical model is the development of companion diagnostics, whereby molecular assays that measure levels of proteins, genes, or specific mutations are used to provide a specific therapy for an individual’s condition by stratifying disease status, selecting the proper medication, and tailoring dosages to that patient’s specific needs. Additionally, such methods can be used to assess a patient’s risk factors for a number of conditions and to tailor individual preventative treatments. Recent advances, challenges, and future perspectives of personalized medicine in cancer are discussed.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genetics Research Program (EGRP), Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), 6130 Executive Boulevard, Rockville, MD 20852, USA.
| |
Collapse
|
23
|
Tampellini M, Ottone A, Bellini E, Alabiso I, Baratelli C, Bitossi R, Brizzi MP, Ferrero A, Sperti E, Leone F, Miraglia S, Forti L, Bertona E, Ardissone F, Berruti A, Alabiso O, Aglietta M, Scagliotti GV. The role of lung metastasis resection in improving outcome of colorectal cancer patients: results from a large retrospective study. Oncologist 2012; 17:1430-8. [PMID: 22956535 PMCID: PMC3500365 DOI: 10.1634/theoncologist.2012-0142] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The role of surgery for lung metastases (LM) secondary to colorectal cancer (CRC) remains controversial. The bulk of evidence is derived from single surgical series, hampering any definitive conclusions. The aim of this study was to compare the outcomes of CRC patients with LM submitted to surgery with those who were not. PATIENTS AND METHODS Data from 409 patients with LM as the first evidence of advanced disease were extracted from a database of 1,411 patients. Patients were divided into three groups: G1, comprised of 155 patients with pulmonary and extrapulmonary metastases; G2, comprised of 104 patients with LM only and no surgery; G3, comprised of 50 patients with LM only and submitted to surgery. RESULTS No difference in response rates emerged between G1 and G2. Median progression-free survival (PFS) times were: 10.3 months, 10.5 months, and 26.2 months for G1, G2, and G3, respectively. No difference in PFS times was observed between G1 and G2, whereas there was a statistically significant difference between G2 and G3. Median overall survival times were 24.2 months, 31.5 months, and 72.4 months, respectively. Survival times were longer in resected patients: 17 survived >5 years and three survived >10 years. In patients with LM only and no surgery, four survived for 5 years and none survived >10 years. CONCLUSIONS Even though patients with resectable LM are more likely to be those with a better outcome, our study provides evidence suggesting an active role of surgery in improving survival outcomes in this patient subset.
Collapse
Affiliation(s)
- Marco Tampellini
- Oncology Unit, Department of Clinical and Biological Sciences, University of Torino, San Luigi di Orbassano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
T cells and adoptive immunotherapy: recent developments and future prospects in gastrointestinal oncology. Clin Dev Immunol 2011; 2011:320571. [PMID: 22110523 PMCID: PMC3216375 DOI: 10.1155/2011/320571] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/24/2011] [Indexed: 12/15/2022]
Abstract
Gastrointestinal oncology is one of the foremost causes of death: the gastric cancer accounts for 10.4% of cancer deaths worldwide, the pancreatic cancer for 6%, and finally, the colorectal cancer for 9% of all cancer-related deaths. For all these gastrointestinal cancers, surgical tumor resection remains the primary curative treatment, but the overall 5-year survival rate remains poor, ranging between 20-25%; the addition of combined modality strategies (pre- or postoperative chemoradiotherapy or perioperative chemotherapy) results in 5-year survival rates of only 30-35%. Therefore, many investigators believe that the potential for making significant progress lies on understanding and exploiting the molecular biology of gastrointestinal tumors to investigate new therapeutic strategies such as specific immunotherapy. In this paper we will focus on recent knowledge concerning the role of T cells and the use of T adoptive immunotherapy in the treatment of gastrointestinal cancers.
Collapse
|