1
|
Wang X, Liao Y, Wang R, Lu Y, Wang Y, Xin Y, Kuang D, Lao X, Xu J, Zhou Z, Hu K. Tribbles Pseudokinase 3 Converts Sorafenib Therapy to Neutrophil-Mediated Lung Metastasis in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413682. [PMID: 39932456 PMCID: PMC11967757 DOI: 10.1002/advs.202413682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/17/2025] [Indexed: 04/05/2025]
Abstract
Rapid development of resistance to sorafenib and subsequent hyperprogression in patients with advanced hepatocellular carcinoma (HCC) pose significant challenges, with the underlying mechanisms still largely unknown. Herein, sorafenib-induced TRIB3 is identified as a liver-specific determinant driving secondary resistance to sorafenib by facilitating the accumulation of protumorigenic neutrophils within tumors. Mechanistically, TRIB3, triggered by the sorafenib-elicited ROS-ER stress axis, operates in an NF-κB-dependent manner to upregulate CXCR1/2 ligands, subsequently promoting neutrophil recruitment into tumors. These enriched neutrophils enhance epithelial-mesenchymal transition processes in malignant cells through the oncostatin M-STAT3 pathway, thereby repurposing the therapeutic efficacy of sorafenib away from anti-angiogenesis and toward lung metastasis. Clinically, elevated TRIB3 expression indicates inferior survival and unfavorable clinical efficacy of sorafenib in HCC patients. Correspondingly, strategies that either inhibiting TRIB3 upregulation or blocking its downstream signaling successfully augment the therapeutic efficacy of sorafenib and prevent sorafenib-induced hyperprogression in vivo. The study thus identifies a pivotal mechanism of sorafenib resistance in HCC, centered on the TRIB3-mediated recruitment of protumorigenic neutrophils and subsequent disease hyperprogression.
Collapse
Affiliation(s)
- Xu‐Yan Wang
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment (No. 2021B1212040004)Zhuhai Institute of Translational MedicineZhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University)Zhuhai519000China
| | - Yuan Liao
- Department of Laboratory MedicineThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Rui‐Qi Wang
- Department of PharmacyZhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University)Zhuhai519000China
| | - Yi‐Tong Lu
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Ying‐Zhe Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Yu‐Qi Xin
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Dong‐Ming Kuang
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Xiang‐Ming Lao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Junying Xu
- Department of OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxi214023China
| | - Zhi‐Ling Zhou
- Department of PharmacyZhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University)Zhuhai519000China
| | - Kunhua Hu
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| |
Collapse
|
2
|
Jiang Y, Wang Y, Su F, Hou Y, Liao W, Li B, Mao W. Insights into NEK2 inhibitors as antitumor agents: From mechanisms to potential therapeutics. Eur J Med Chem 2025; 286:117287. [PMID: 39832390 DOI: 10.1016/j.ejmech.2025.117287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification. Consequently, inhibiting NEK2 is considered as a promising strategy for oncological therapy. To date, no small molecule NEK2-specific inhibitors have advanced into clinical trials, highlighting the necessity for optimized design and the deployment of innovative technologies. In this review, we will provide a comprehensive summary of the chemical structure, biological functions, and disease associations of NEK2, focusing on the existing NEK2 small molecule inhibitors, especially their structure-activity relationships, limitations, and research strategies. Our objective is to provide valuable insights for the future development of NEK2 inhibitors and analysis of challenges faced in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Yizhen Jiang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yutong Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feijing Su
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yaqin Hou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Baichuan Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Xu M, Xie P, Liu S, Gao X, Yang S, Hu Z, Zhao Y, Yi Y, Dong Q, Bruns C, Kong X, Hung MC, Ren N, Zhou C. LCAT deficiency promotes hepatocellular carcinoma progression and lenvatinib resistance by promoting triglyceride catabolism and fatty acid oxidation. Cancer Lett 2025; 612:217469. [PMID: 39842501 DOI: 10.1016/j.canlet.2025.217469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Lecithin cholesterol acyltransferase (LCAT), a crucial enzyme in lipid metabolism, plays important yet poorly understood roles in tumours, especially in hepatocellular carcinoma (HCC). In this study, our investigation revealed that LCAT is a key downregulated metabolic gene and an independent risk factor for poor prognosis in patients with HCC. Functional experiments showed that LCAT inhibited HCC cell proliferation, migration and invasion. Mechanistically, LCAT interacts with caveolin-1 (CAV1) to promote the binding of CAV1 to PRKACA and inhibit its phosphorylation, thereby inhibiting triglyceride (TAG) catabolism. On the other hand, LCAT inhibits fatty acid oxidation (FAO) by interacting with CPT1A to promote its ubiquitination and degradation. These events result in an inadequate supply of raw materials and energy and inhibit the malignant behaviours of HCC cells. In addition, LCAT is a reliable predictive biomarker for the efficacy of lenvatinib treatment in HCC patients, and the inhibition of FAO can increase lenvatinib sensitivity in patients with LCATlow HCC. This study revealed that LCAT plays a critical role in the regulation of lipid metabolic reprogramming and is a reliable predictive biomarker for the efficacy of lenvatinib treatment in HCC patients.
Collapse
Affiliation(s)
- Min Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Peiyi Xie
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Shaoqing Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China; Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Xukang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Shiguang Yang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, PR China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, PR China; Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
| | - Zhiqiu Hu
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, PR China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, PR China; Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, PR China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China.
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China.
| |
Collapse
|
4
|
Hwang H, Kim J, Kim TH, Han Y, Choi D, Cho S, Kim S, Park S, Park T, Piccinini F, Rhee WJ, Pyun JC, Lee M. Exosomal miR-6126 as a novel therapeutic target for overcoming resistance of anti-cancer effect in hepatocellular carcinoma. BMC Cancer 2024; 24:1557. [PMID: 39702014 DOI: 10.1186/s12885-024-13342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) stands as the sixth most prevalent cancer globally, presenting a substantial health challenge, particularly due to late-stage diagnoses that limit treatment effectiveness. Sorafenib, a multi-kinase inhibitor, is the primary chemotherapeutic agent for advanced HCC, but it only extends survival by 2-3 months. However, drug resistance remains a major clinical challenge, necessitating the exploration of new molecular mechanisms, including the role of microRNAs (miRNAs) in sorafenib resistance. In this study, we aimed to identify miRNAs within exosomes derived from sorafenib-resistant HCC cells to elucidate the molecular mechanisms underlying resistance. METHODS Sorafenib-resistant cells were generated by culturing the human HCC cell line Huh7 in a medium containing 20 µM sorafenib for six months. Exosomes were isolated from the conditioned medium 24 h before cell harvest using exosome-depleted serum medium. miRNA sequencing and western blotting were used to analyze the expression profiles of exosomal miRNAs and proteins, respectively. pH measurement was performed to assess pH changes in response to sorafenib treatment and miRNA modulation. RESULTS A total of 180 exosomal miRNAs were found to be dysregulated between sorafenib-treated control Huh7 (Huh7S) and sorafenib-resistant Huh7 (Huh7RS) cells, as well as between untreated control Huh7 and Huh7RS cells. Among these, miR-6126 was significantly downregulated in Huh7RS cells compared to Huh7S cells. Functional studies using 2-dimensional (D) and 3D cell culture systems revealed that miR-6126 overexpression reduced sorafenib resistance in Huh7RS cells, while its inhibition increased resistance in Huh7 cells. miR-6126 downregulated key proteins involved in cancer stem cell maintenance, such as CD44 and HK2. Furthermore, the pH level was elevated in cells overexpressing miR-6126 following sorafenib treatment, whereas inhibiting miR-6126 resulted in a lower pH. CONCLUSIONS Exosomal miR-6126 plays a pivotal role in sorafenib resistance and tumorigenesis, highlighting its potential as a novel therapeutic target for overcoming drug resistance in HCC.
Collapse
Affiliation(s)
- Hyemin Hwang
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jimin Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Yeonju Han
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Dayoung Choi
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sua Cho
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Seunghwan Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sanghee Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Taehyun Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Filippo Piccinini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
5
|
Liu J, Yu Y, Xu B, Liang Q, Fang T, Zhou N, Sun G. NOTCH1 regulates the DNA damage response and sorafenib resistance by activating ATM in hepatocellular carcinoma. Am J Transl Res 2024; 16:7317-7329. [PMID: 39822534 PMCID: PMC11733373 DOI: 10.62347/eafu3015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/30/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVE This study investigates the mechanism underlying sorafenib resistance in hepatocellular carcinoma cells (HCC), focusing on DNA damage repair (DDR) pathways to develop targeted therapeutic strategies. METHODS Bioinformatics analysis was used to screen genes associated with sorafenib resistance, which was further demonstrated by western blotting. Cell proliferation was determined using the EdU assay. The presence of binding sites between valproic acid (VPA) and NOTCH1 was analyzed by molecular docking. Comet and flow cytometry assays evaluated DNA damage and cell cycle arrest induced by VPA in sorafenib-resistant cells, with further mechanistic insights gained via western blotting and co-immunoprecipitation (Co-IP). RESULTS We found that NOTCH1/ATM axis plays a vital role in the prognosis of patients with liver cancer and in the behavior of sorafenib-resistant cells. HCC resistant to sorafenib exhibited enhanced cell proliferation ability. Moreover, overexpression of NOTCH1 in sorafenib-sensitive HCC cells significantly increased liver cancer cell proliferation. Conversely, silencing NOTCH1 expression in sorafenib-resistant HCC cell lines reduced their proliferative activity. Additionally, VPA enhanced the therapeutic efficacy against sorafenib-resistance cells by modulating NOTCH1/ATM/p-BRCA1/p-CHK2/γ-H2AX signaling axis and homologous recombination (HR) activity. CONCLUSION Targeting NOTCH1 and ATM is a promising strategy to overcome sorafenib resistance in HCC, particularly through the combined use of VPA and sorafenib.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| | - Yan Yu
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| | - Bin Xu
- Department of Ultrasonic Medicine, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| | - Qing Liang
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| | - Tingting Fang
- Department of Pharmacy, The Shanghai University of Medicine and Health Sciences279 Zhouzhu Highway, Pudong New Area, Shanghai 201318, China
| | - Ningming Zhou
- Department of Ultrasonic Medicine, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| | - Guangchun Sun
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| |
Collapse
|
6
|
Poddar MS, Chu YD, Yeh CT, Liu CH. Deciphering hepatoma cell resistance to tyrosine kinase inhibitors: insights from a Liver-on-a-Chip model unveiling tumor endothelial cell mechanisms. LAB ON A CHIP 2024; 24:3668-3678. [PMID: 38938178 DOI: 10.1039/d4lc00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Liver cancer represents a significant global burden in terms of cancer-related mortality, with resistance to anti-angiogenic drugs such as Sorafenib and Lenvatinib presenting a formidable challenge. Tumor angiogenesis, characterized by the formation of new blood vessels within tumors, plays a pivotal role in cancer progression and metastasis. Tumor endothelial cells, specialized endothelial cells lining tumor blood vessels, exhibit unique phenotypic and functional traits that drive aberrant vessel formation and contribute to therapy resistance. CD105, a cell-surface glycoprotein that is highly expressed on endothelial cells during angiogenesis, including tumor endothelial cells, regulates endothelial cell proliferation, migration, and vessel formation by modulating transforming growth factor-beta (TGF-β) signaling pathways. Elevated CD105 expression on tumor endothelial cells correlates with increased angiogenic activity and poor prognosis in cancer patients. Targeting CD105 with antibodies presents a promising strategy to inhibit tumor angiogenesis and disrupt tumor vasculature, offering potential therapeutic benefits by interfering with the tumor microenvironment and inhibiting its progression. This study investigates tumor angiogenesis through a three-dimensional (3D) microfluidic co-culture system incorporating endothelial cells and hepatocellular carcinoma (HCC) cells. The primary focus is on the role of CD105 expression within the liver tumor microenvironment and its contribution to increased chemoresistance. Additionally, this research examines the influence of CD105 expression on the efficacy of tyrosine kinase inhibitors (TKIs) and its pivotal function in facilitating angiogenesis in liver tumors. The proposed microfluidic chip model investigates liver cancer cell interactions within a microfluidic chip model designed to simulate aspects of liver tumor angiogenesis.
Collapse
Affiliation(s)
- Madhu Shree Poddar
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30044, Taiwan, Republic of China.
| | - Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, Republic of China
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan, Republic of China
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, Republic of China
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, Republic of China
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan, Republic of China
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, Republic of China
| | - Cheng-Hsien Liu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30044, Taiwan, Republic of China.
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan, Republic of China
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 30044, Taiwan, Republic of China
| |
Collapse
|
7
|
Jin J, Liang X, Bi W, Liu R, Zhang S, He Y, Xie Q, Liu S, Xiao JC, Zhang P. Identification of a Difluorinated Alkoxy Sulfonyl Chloride as a Novel Antitumor Agent for Hepatocellular Carcinoma through Activating Fumarate Hydratase Activity. Pharmaceuticals (Basel) 2023; 16:1705. [PMID: 38139831 PMCID: PMC10748328 DOI: 10.3390/ph16121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Fenofibrate is known as a lipid-lowering drug. Although previous studies have reported that fenofibrate exhibits potential antitumor activities, IC50 values of fenofibrate could be as high as 200 μM. Therefore, we investigated the antitumor activities of six synthesized fenofibrate derivatives. We discovered that one compound, SIOC-XJC-SF02, showed significant antiproliferative activity on human hepatocellular carcinoma (HCC) HCCLM3 cells and HepG2 cells (the IC50 values were 4.011 μM and 10.908 μM, respectively). We also found this compound could inhibit the migration of human HCC cells. Transmission electron microscope and flow cytometry assays demonstrated that this compound could induce apoptosis of human HCC cells. The potential binding sites of this compound acting on human HCC cells were identified by mass spectrometry-cellular thermal shift assay (MS-CETSA). Molecular docking, Western blot, and enzyme activity assay-validated binding sites in human HCC cells. The results showed that fumarate hydratase may be a potential binding site of this compound, exerting antitumor effects. A xenograft model in nude mice demonstrated the anti-liver cancer activity and the mechanism of action of this compound. These findings indicated that the antitumor effect of this compound may act via activating fumarate hydratase, and this compound may be a promising antitumor candidate for further investigation.
Collapse
Affiliation(s)
- Jin Jin
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xujun Liang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wu Bi
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ruijie Liu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Sai Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi He
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qingming Xie
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shilei Liu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
8
|
Khafaga DSR, El-Khawaga AM, Elfattah Mohammed RA, Abdelhakim HK. Green synthesis of nano-based drug delivery systems developed for hepatocellular carcinoma treatment: a review. Mol Biol Rep 2023; 50:10351-10364. [PMID: 37817020 PMCID: PMC10676320 DOI: 10.1007/s11033-023-08823-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
This review presents an overview of one of the effective strategies for improving the anticancer impact of many drugs including sorafenib using a drug delivery system by employing nanoparticles that is produced through a biological system. The biological process has a lot of benefits, including being inexpensive and safe for the environment. Sorafenib is one of a multi-kinase inhibitor that inhibits molecularly targeted kinases. Because of its poor pharmacokinetic characteristics, such as fast elimination and limited water solubility, the bioavailability of Sorafenib is extremely low. More intelligent nano formulations of sorafenib have been developed to boost both the drug's target ability and bioavailability. Researchers in a wide variety of sectors, including nanomedicine, have recently been interested in the topic of nanotechnology. It is possible for the body to develop resistance to widely used drugs available for treatment of liver cancer, including sorafenib. As a result, our goal of this research is to highlight the efficacy of nanomedicine-based drug delivery system to enhance drug's cancer-fighting properties. Because of their magnetic properties, certain nanoparticle materials can be employed as a carrier for the medicine to the exact place where the cancer is located. This can lower the amount of the drug that is administered with no impact on the normal cells.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, 43511, Egypt.
| | - Ahmed M El-Khawaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, 43511, Egypt.
| | | | - Heba K Abdelhakim
- Biochemistry Division, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
9
|
Xiang J, Wu X, Liu W, Wei H, Zhu Z, Liu S, Song C, Gu Q, Wei S, Zhang Y. Bioinformatic analyzes and validation of cystathionine gamma-lyase as a prognostic biomarker and related to immune infiltrates in hepatocellular carcinoma. Heliyon 2023; 9:e16152. [PMID: 37251842 PMCID: PMC10209420 DOI: 10.1016/j.heliyon.2023.e16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
Background The role of cystathionine γ-lyase (CTH) in the prognosis and immune invasion of hepatocellular carcinoma (HCC) remains poorly understood. Methods In this study, the clinical data of patients with HCC were analyzed, and the expression level of CTH was compared between HCC and normal tissues using the R package and various databases. Results We found that CTH expression was significantly decreased in HCC compared with normal tissues, and its expression was associated with various clinicopathological factors, including tumor stage, gender, tumor status, residual tumor, histologic stage, race, alpha-fetoprotein (AFP), albumin, drinking, and smoking. Our results suggest that CTH might be a protective factor for the survival of patients with HCC. Further functional analysis revealed that high CTH expression was enriched in the Reactome signaling by interleukins and the Reactome neutrophil degranulation. Moreover, CTH expression was closely correlated with a variety of immune cells, including a negative correlation with the CD56 (bright) NK cells and follicular helper T cell (TFH), while a positive correlation with Th17 cells and central memory T cell (Tcm). High expression of CTH in immune cells predicted a better prognosis of HCC. Our findings further indicated Pyridoxal phosphate, l-cysteine, Carboxymethylthio-3-(3-chlorophenyl)-1,2,4-oxadiazol, 2-[(3-Hydroxy-2-Methyl-5-Phosphonooxymethyl-Pyridin-4-Ylmethyl)-Imino]-5-phosphono-pent-3-enoic acid and L-2-amino-3-butynoic acid as potential target candidate medications for HCC treatment based on CTH. Conclusion Our study suggests that CTH can serve as a biomarker to predict the prognosis and immune infiltration of HCC.
Collapse
Affiliation(s)
- Jianfeng Xiang
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinrui Wu
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wangrui Liu
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Huagen Wei
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Zhu Zhu
- Medical School of Nantong University, China
| | - Shifan Liu
- Medical School of Nantong University, China
| | | | - Qiang Gu
- Affiliated Maternity and Child Health Care Hospital of Nantong University, China
| | - Shiyin Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yichi Zhang
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Wei S, Dai M, Zhang C, Teng K, Wang F, Li H, Sun W, Feng Z, Kang T, Guan X, Xu R, Cai M, Xie D. KIF2C: a novel link between Wnt/β-catenin and mTORC1 signaling in the pathogenesis of hepatocellular carcinoma. Protein Cell 2021; 12:788-809. [PMID: 32748349 PMCID: PMC8464548 DOI: 10.1007/s13238-020-00766-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the fourth-leading cause of cancer-related deaths worldwide. HCC is refractory to many standard cancer treatments and the prognosis is often poor, highlighting a pressing need to identify biomarkers of aggressiveness and potential targets for future treatments. Kinesin family member 2C (KIF2C) is reported to be highly expressed in several human tumors. Nevertheless, the molecular mechanisms underlying the role of KIF2C in tumor development and progression have not been investigated. In this study, we found that KIF2C expression was significantly upregulated in HCC, and that KIF2C up-regulation was associated with a poor prognosis. Utilizing both gain and loss of function assays, we showed that KIF2C promoted HCC cell proliferation, migration, invasion, and metastasis both in vitro and in vivo. Mechanistically, we identified TBC1D7 as a binding partner of KIF2C, and this interaction disrupts the formation of the TSC complex, resulting in the enhancement of mammalian target of rapamycin complex1 (mTORC1) signal transduction. Additionally, we found that KIF2C is a direct target of the Wnt/β-catenin pathway, and acts as a key factor in mediating the crosstalk between Wnt/β-catenin and mTORC1 signaling. Thus, the results of our study establish a link between Wnt/β-catenin and mTORC1 signaling, which highlights the potential of KIF2C as a therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Shi Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Miaomiao Dai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chi Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Kai Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250200, China
| | - Fengwei Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hongbo Li
- Department of Musculoskeletal Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Weipeng Sun
- Department of Anorectal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 510370, China
| | - Zihao Feng
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xinyuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ruihua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Muyan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
11
|
Wang K, Miao X, Kong F, Huang S, Mo J, Jin C, Zheng Y. Integrating Network Pharmacology and Experimental Verification to Explore the Mechanism of Effect of Zuojin Pills in Pancreatic Cancer Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3749-3764. [PMID: 34511884 PMCID: PMC8427689 DOI: 10.2147/dddt.s323360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Background and Aim Pancreatic cancer is one of the most malignant tumors worldwide. Zuojin pills (ZJP), a traditional Chinese medicine (TCM) formula, which can treat a variety of cancers. However, the active compounds present in ZJP and the potential mechanisms through which ZJP acts against pancreatic cancer have not been thoroughly investigated. Methods Data on pancreatic cancer-related genes, bioactive compounds, and potential targets of ZJP were downloaded from public databases. Bioinformatics analysis, including protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, was conducted to identify important components, potential targets, and signaling pathways through which ZJP affects pancreatic cancer. The results of this analysis were verified by in vitro experiments. Results The network pharmacology analysis results showed that 41 compounds and 130 putative target genes of ZJP were associated with anti-pancreatic cancer effects. ZJP may exert its inhibitory effects against pancreatic cancer by acting on key targets such as JUN, TP53, and MAPK1. Moreover, KEGG analysis indicated that the anti-pancreatic cancer effect of ZJP was mediated by multiple pathways, such as the PI3K-AKT, IL-17, TNF, HIF-1, and P53 signaling pathways. Among these, the PI3K-AKT signaling pathway, which included the highest number of enriched genes, may play a more important role in treating pancreatic cancer. The in vitro results showed that ZJP significantly inhibits the cell cycle and cell proliferation through the PI3K/AKT/caspase pathway and that it can induce apoptosis of pancreatic cancer cells, consistent with the results predicted by network pharmacological methods. Conclusion This study preliminarily investigated the pharmacological effects of ZJP, which appear to be mediated by multiple compounds, targets and pathways, and its potential therapeutic effect on pancreatic cancer. Importantly, our work provides a promising approach for the identification of compounds in TCM and the characterization of therapeutic mechanisms.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, People's Republic of China
| | - Xiongying Miao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Fanhua Kong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Siqi Huang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, People's Republic of China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, People's Republic of China
| | - Yanwen Zheng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| |
Collapse
|
12
|
Alkhouri N, Reddy GK, Lawitz E. Oligonucleotide-Based Therapeutics: An Emerging Strategy for the Treatment of Chronic Liver Diseases. Hepatology 2021; 73:1581-1593. [PMID: 32978989 DOI: 10.1002/hep.31569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Naim Alkhouri
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX
| | - G Kesava Reddy
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX
| | - Eric Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX
| |
Collapse
|
13
|
Li D, Wang T, Sun FF, Feng JQ, Peng JJ, Li H, Wang C, Wang D, Liu Y, Bai YD, Shi ML, Zhang T. MicroRNA-375 represses tumor angiogenesis and reverses resistance to sorafenib in hepatocarcinoma. Cancer Gene Ther 2021; 28:126-140. [PMID: 32616906 PMCID: PMC7886652 DOI: 10.1038/s41417-020-0191-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 11/09/2022]
Abstract
Sorafenib was originally identified as an inhibitor of multiple oncogenic kinases and remains the first-line systemic therapy for advanced hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) have been reported to play critical roles in the initiation, progression, and drug resistance of HCC. In this study, we aimed to identify sorafenib-induced miRNAs and demonstrate their regulatory roles. First, we identified that the expression of the tumor-suppressive miRNA miR-375 was significantly induced in hepatoma cells treated with sorafenib, and miR-375 could exert its antiangiogenic effect partially via platelet-derived growth factor C (PDGFC) inhibition. Then, we demonstrated that sorafenib inhibited PDGFC expression by inducing the expression of miR-375 and a transcription factor, achaete-scute homolog-1 (ASH1), mediated the induction of miR-375 by sorafeinb administration in hepatoma cells. Finally, we verified that the expression of miR-375 was reduced in sorafenib-resistant cells and that the restoration of miR-375 could resensitize sorafenib-resistant cells to sorafenib partially by the degradation of astrocyte elevated gene-1 (AEG-1). In conclusion, our data demonstrate that miR-375 is a critical determinant of HCC angiogenesis and sorafenib tolerance, revealing a novel miRNA-mediated mechanism underlying sorafenib treatment.
Collapse
Affiliation(s)
- Dong Li
- Department of Oncology, The General Hospital of Western Theater Command PLA, Chengdu, 610083, Sichuan Province, China
| | - Tao Wang
- Department of Oncology, The General Hospital of Western Theater Command PLA, Chengdu, 610083, Sichuan Province, China
| | - Fei-Fan Sun
- Department of Oncology, The General Hospital of Western Theater Command PLA, Chengdu, 610083, Sichuan Province, China
| | - Jian-Qiong Feng
- Department of Oncology, The General Hospital of Western Theater Command PLA, Chengdu, 610083, Sichuan Province, China
| | - Jing-Jing Peng
- Department of Oncology, The General Hospital of Western Theater Command PLA, Chengdu, 610083, Sichuan Province, China
| | - Hua Li
- Department of Oncology, The General Hospital of Western Theater Command PLA, Chengdu, 610083, Sichuan Province, China
| | - Chao Wang
- Department of Pathology, The General Hospital of Western Theater Command PLA, Chengdu, 610083, Sichuan Province, China
| | - Dan Wang
- Department of Oncology, The General Hospital of Western Theater Command PLA, Chengdu, 610083, Sichuan Province, China
| | - Yu Liu
- Department of Oncology, The General Hospital of Western Theater Command PLA, Chengdu, 610083, Sichuan Province, China
| | - Yu-Di Bai
- Department of Oncology, The General Hospital of Western Theater Command PLA, Chengdu, 610083, Sichuan Province, China
| | - Mao-Lin Shi
- Department of Oncology, The General Hospital of Western Theater Command PLA, Chengdu, 610083, Sichuan Province, China
| | - Tao Zhang
- Department of Oncology, The General Hospital of Western Theater Command PLA, Chengdu, 610083, Sichuan Province, China.
| |
Collapse
|
14
|
Xu H, Huang J, Hua S, Liang L, He X, Zhan M, Lu L, Chu J. Interactome analysis of gene expression profiles identifies CDC6 as a potential therapeutic target modified by miR-215-5p in hepatocellular carcinoma. Int J Med Sci 2020; 17:2926-2940. [PMID: 33173413 PMCID: PMC7646103 DOI: 10.7150/ijms.51145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/07/2020] [Indexed: 01/11/2023] Open
Abstract
Background: Illustrating the pathogenesis of hepatocellular carcinoma (HCC) pathogenesis as well as identifying specific biomarkers are of great significance. Methods: The original CEL files were obtain from Gene Expression Omnibus, then affymetrix package was used to preprocess the CEL files, the function of DEGs were investigated by multiple bioinformatics approach. Finally, typical HCC cell lines and tissue samples were using to validate the role of CDC6 in vitro. Bioinformatics software was used to predict potential microRNA of CDC6. Luciferase assay was used to verify the interactions between CDC6 and microRNA. Results: A total of 445 DEGs were identified in HCC tissues based on two GEO datasets. GSEA results showed that the significant enriched gene sets were only associated with cell cycle signaling pathway. In the co-expression analysis, there were 370 hub genes from the blue modules were screened. We integrated DEGs, hub genes, TCGA cohort and GSEA analyses to further obtain 10 upregulated genes for validation. These genes were overexpressed in HCC tissues and negatively associated with overall and disease-free survival in HCC patients and related to immune cell infiltration in HCC microenvironments. Finally, Cell Division Cycle 6 (CDC6) was highlighted as one of the most probable genes among the 10 candidates participating in cancer process. The expression of CDC6 either in public datasets and HCC tissues sample were commonly high than the non-cancerous counterpart. Furthermore, we recognized that miR-215-5p, could directly bind to the 3'UTR of CDC6. In addition, CDC6 promoted proliferation via regulation of G1 phase checkpoint and was negative regulated by miR-215-5p to involve in the proliferation of HCC. Conclusion: Our study suggested that CDC6 served as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Hongfa Xu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| | - Jianwen Huang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| | - Shengni Hua
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| | - Linjun Liang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| | - Xu He
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| | - Jing Chu
- Department of Urology, Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| |
Collapse
|
15
|
Ni JY, Sun HL, Luo JH, Jiang XY, Chen D, Wang WD, Chen YT, Huang JH, Xu LF. Transarterial Chemoembolization and Sorafenib Combined with Microwave Ablation for Advanced Primary Hepatocellular Carcinoma: A Preliminary Investigation of Safety and Efficacy. Cancer Manag Res 2020; 11:9939-9950. [PMID: 32063720 PMCID: PMC6884964 DOI: 10.2147/cmar.s224532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/28/2019] [Indexed: 01/28/2023] Open
Abstract
Purpose The aim of this study was to investigate the safety and efficacy of transarterial chemoembolization and sorafenib (TACE-S) combined with microwave ablation (TACE-S-MWA) for the treatment of patients with advanced primary hepatocellular carcinoma (HCC). Methods Between January 2015 and December 2018, 152 consecutive advanced HCC patients, who underwent TACE-S-MWA (MWA group, n=77) or TACE-S (Non-MWA group, n=75), were investigated. Overall survival (OS), time to progression (TTP) and safety were compared between the two groups. Prognostic factors were analyzed using the Cox proportional hazard regression model. Results Baseline patient characteristics were balanced between the two groups. MWA group was associated with a higher OS (median, 19.0 vs 13.0 months; P<0.001) and a longer TTP (median, 6.0 vs 3.0 months; P<0.001) compared with non-MWA group. Multivariate analyses showed that portal vein tumor thrombosis (PVTT) (P=0.002), duration of sorafenib (P<0.001), and MWA treatment (P=0.011) were independently associated with OS. MWA treatment strategy (P<0.001) was a significant predictor of TTP. There were no treatment-related mortalities in either group. The rates of minor complications (42.9% vs 38.7%, P=0.599) and major complications (1.29% vs 1.33%, P=0.985) in the MWA group were similar to those in the non-MWA group. Conclusion TACE-S-MWA was safe and effective for advanced primary HCC. TACE-S-MWA resulted in better OS and TTP than did TACE-S for treatment of patients with advanced primary HCC.
Collapse
Affiliation(s)
- Jia-Yan Ni
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, People's Republic of China.,Department of Interventional Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, People's Republic of China.,Department of Minimally Invasive Interventional Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Cancer for Cancer Medicine, Guangzhou, Guangdong Province 510060, People's Republic of China
| | - Hong-Liang Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, People's Republic of China.,Department of Interventional Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, People's Republic of China
| | - Jiang-Hong Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, People's Republic of China.,Department of Interventional Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, People's Republic of China
| | - Xiong-Ying Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, People's Republic of China.,Department of Interventional Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, People's Republic of China
| | - Dong Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, People's Republic of China.,Department of Interventional Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, People's Republic of China
| | - Wei-Dong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, People's Republic of China.,Department of Interventional Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, People's Republic of China
| | - Yao-Ting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, People's Republic of China.,Department of Interventional Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, People's Republic of China
| | - Jin-Hua Huang
- Department of Minimally Invasive Interventional Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Cancer for Cancer Medicine, Guangzhou, Guangdong Province 510060, People's Republic of China
| | - Lin-Feng Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, People's Republic of China.,Department of Interventional Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510120, People's Republic of China
| |
Collapse
|
16
|
Geng N, Jin Y, Li Y, Zhu S, Bai H. AKR1B10 Inhibitor Epalrestat Facilitates Sorafenib-Induced Apoptosis and Autophagy Via Targeting the mTOR Pathway in Hepatocellular Carcinoma. Int J Med Sci 2020; 17:1246-1256. [PMID: 32547320 PMCID: PMC7294918 DOI: 10.7150/ijms.42956] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Sorafenib is the standard systemic treatment for advanced hepatocellular carcinoma (HCC), and improving its therapeutic effects is crucial for addressing cancer aggression. We previously reported that epalrestat, an aldo-keto reductase 1B10 inhibitor, enhanced sorafenib's inhibitory effects on HCC xenograft in nude mice. This study aimed to elucidate the mechanism of epalrestat's anti-tumour enhancing effects on sorafenib. HepG2 cells were treated with sorafenib, epalrestat, and their combination. Cell proliferation was assessed with Cell Counting Kit-8 and colony formation assays. AKR1B10 supernate concentration and enzyme activity were detected by ELISA assay and the decrease of optical density of NADPH at 340 nm. Cell cycle and apoptosis analyses were performed with flow cytometry. Western blots clarified the molecular mechanism underlying effects on cell cycle, apoptosis, and autophagy. The anti-tumour mechanism was then validated in vivo through TUNEL and immunohistochemistry staining of HCC xenograft sections. Epalrestat combined with sorafenib inhibited HepG2 cellular proliferation in vitro, arrested the cell cycle at G0/G1, and promoted apoptosis and autophagy. Treatment with a specific mTOR activator MHY-1485 increased mTOR phosphorylation, while suppressing apoptosis and autophagy. Consistent with in vitro results, data from the HCC-xenograft nude mouse model also indicated that combined treatment inhibited the mTOR pathway and promoted apoptosis and autophagy. In conclusion, epalrestat heightens sorafenib's anti-cancer effects via blocking the mTOR pathway, thus inducing cell cycle arrest, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Nan Geng
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Yurong Li
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shixuan Zhu
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Han Bai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
17
|
Alqahtani A, Khan Z, Alloghbi A, Said Ahmed TS, Ashraf M, Hammouda DM. Hepatocellular Carcinoma: Molecular Mechanisms and Targeted Therapies. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E526. [PMID: 31450841 PMCID: PMC6780754 DOI: 10.3390/medicina55090526] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumors worldwide. HCC is a complex process that is associated with several etiological factors, which in turn result in aberrant activation of different cellular and molecular pathways and the disruption of balance between activation and inactivation of protooncogenes and tumor suppressor genes, respectively. Since HCC most often occurs in the setting of a diseased or cirrhotic liver and most of the patients are diagnosed at the late stage of disease, prognosis is generally poor. At present, limited treatment options with marginal clinical benefits are available. Systemic therapy, particularly in the form of conventional cytotoxic drugs, are generally ineffective. In recent years, molecular-targeted therapies have been clinically used to treat various cancers, including liver cancer. This approach inhibits the growth of tumor cells by interfering with molecules that are involved in carcinogenesis, which makes it more selective and specific than cytotoxic chemotherapy. Many clinical trials have been carried out while using molecular targeted drugs in advanced HCC with many more in progress. The clinical trials in HCC to date have evaluated a single-targeted therapy alone, or two or more targeted therapies in parallel. The aim of this review is to provide insight of various molecular mechanisms, leading to HCC development and progression, and also the range of experimental therapeutics for patients with advanced HCC. The review will summarize different clinical trials data the successes and failures of these treatments, as well as the most effective and approved drugs designed against HCC.
Collapse
Affiliation(s)
- Ali Alqahtani
- Department of Internal Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA.
| | - Zubair Khan
- Division of Gastroenterology and Hepatology, Health Science Center at Houston, The University of Texas, Houston, TX 77030, USA
| | - Abdurahman Alloghbi
- Department of Internal Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Tamer S Said Ahmed
- Department of Internal Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Mushtaq Ashraf
- Division of Hematology and Medical Oncology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Danae M Hammouda
- Division of Hematology and Medical Oncology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
18
|
An oral 2-hydroxypropyl-β-cyclodextrin-loaded spirooxindole-pyrrolizidine derivative restores p53 activity via targeting MDM2 and JNK1/2 in hepatocellular carcinoma. Pharmacol Res 2019; 148:104400. [PMID: 31425749 DOI: 10.1016/j.phrs.2019.104400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/21/2022]
Abstract
Validation of a small molecular compound targeting the oncogenic pathways is the primary approach for the development of the anti-cancer drugs. In the present study, we employed the computational mimic drug targets prediction software to foresee the molecular targets of a series of spirooxindole-pyrrolizidine derivatives, which were synthesized by our laboratory viatargeted combinational chemistry. We found that CPHSP, a novel spirooxindole-pyrrolizidine derivative, can target the MDM2/p53 signaling that is essential for the tumorigenesis of hepatocellular carcinoma (HCC). To validate its anti-tumoral function, we firstly established the soluble receipt of CPHSP through 2-hydroxypropyl-β-cyclodextrin (HBC) loading and showed that oral administration of HBC-loaded CPHSP significantly inhibited the tumor growth and prolonged the survival time of tumor-bearing mice in the subcutaneously human hepatoma cells-xenografted nude mouse model of HCC. Immunohistochemistry staining showed that HBC-loaded CPHSP treatment suppressed the proliferation and induced apoptosis of tumor cells in this model. Our mechanistic studies showed that CPHSP treatment inhibited MDM2 protein expression and up-regulated p53 activity and activated MKK4/MKK7/JNK1/2/C-Jun signaling pathway, which resulted in cell cycle arrest and apoptosis of HepG2 cells in vitro. Moreover, we showed that JNK1/2 activation could also up-regulate p53 expression in CPHSP-treated HepG2 cells. Finally, we documented the antitumor activities of oral administration of the HBC-loaded CPHSP in the ML-1 bearing orthotopic mouse model. In summary, this study suggests that oral administration of HBC-loaded CPHSP is a safe and effective treatment for HCC, of which the clinical potency for patients with HCC warrants further studies.
Collapse
|
19
|
Han X, Yang J, Li D, Guo Z. Overexpression of Uric Acid Transporter SLC2A9 Inhibits Proliferation of Hepatocellular Carcinoma Cells. Oncol Res 2019. [PMID: 29523220 PMCID: PMC7848443 DOI: 10.3727/096504018x15199489058224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated mortality worldwide. Although the mechanisms of HCC progression are not well understood, recent studies demonstrated the potential contribution of uric acid transporter SLC2A9 to tumor suppression. However, the roles and underlying mechanisms are still unknown. We aimed to study the roles and mechanisms of SLC2A9 in HCC. The present study showed that SLC2A9 expression was decreased in human HCC tissues and cell lines. In addition, overexpression of SLC2A9 inhibited HCC cell proliferation. SCL2A9 induced HCC cell apoptosis by inhibiting the expression of caspase 3. Our study also revealed that upregulation of SLC2A9 reduced intracellular reactive oxygen species (ROS) accumulation. Furthermore, SLC2A9 increased the mRNA and protein expression of tumor suppressor p53 in HCC cells. Probenecid inhibits SLC2A9-mediated uric acid transport, which promotes cell proliferation, inhibits cell apoptosis, induces intracellular ROS, and decreases the expression of p53 in HCC cells. Therefore, the present study demonstrated that SLC2A9 may be a novel tumor suppressor gene and a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Xiaoying Han
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, P.R. China
| | - Jing Yang
- Department of Oncology, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, P.R. China
| | - Dong Li
- Department of Oncology, Xuzhou Central Hospital, Xuzhou, Jiangsu, P.R. China
| | - Zewei Guo
- Department of Internal Medicine, Huangshan Traditional Chinese Medicine, Huangshan, Anhui, P.R. China
| |
Collapse
|
20
|
Menyhárt O, Nagy Á, Győrffy B. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181006. [PMID: 30662724 PMCID: PMC6304123 DOI: 10.1098/rsos.181006] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/08/2018] [Indexed: 05/03/2023]
Abstract
Background: Potential prognostic biomarker candidates for hepatocellular carcinoma (HCC) are abundant, but their generalizability is unexplored. We cross-validated markers of overall survival (OS) and vascular invasion in independent datasets. Methods: The literature search yielded 318 genes related to survival and 52 related to vascular invasion. Validation was performed in three datasets (RNA-seq, n = 371; Affymetrix arrays, n = 91; Illumina gene chips, n = 135) by uni- and multivariate Cox regression and Mann-Whitney U-test, separately for Asian and Caucasian patients. Results: One hundred and eighty biomarkers remained significant in Asian and 128 in Caucasian subjects at p < 0.05. After multiple testing correction BIRC5 (p = 1.9 × 10-10), CDC20 (p = 2.5 × 10-9) and PLK1 (p = 3 × 10-9) endured as best performing genes in Asian patients; however, none remained significant in the Caucasian cohort. In a multivariate analysis, significance was reached by stage (p = 0.0018) and expression of CENPH (p = 0.0038) and CDK4 (p = 0.038). KIF18A was the only gene predicting vascular invasion in the Affymetrix and Illumina cohorts (p = 0.003 and p = 0.025, respectively). Conclusion: Overall, about half of biomarker candidates failed to retain prognostic value and none were better than stage predicting OS. Impact: Our results help to eliminate biomarkers with limited capability to predict OS and/or vascular invasion.
Collapse
Affiliation(s)
- Otília Menyhárt
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Ádám Nagy
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Author for correspondence: Balázs Győrffy e-mail:
| |
Collapse
|
21
|
Hajiasgharzadeh K, Somi MH, Shanehbandi D, Mokhtarzadeh A, Baradaran B. Small interfering RNA-mediated gene suppression as a therapeutic intervention in hepatocellular carcinoma. J Cell Physiol 2018; 234:3263-3276. [PMID: 30362510 DOI: 10.1002/jcp.27015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the lethal and difficult-to-cure cancers worldwide. Owing to the late diagnosis and drug resistance of malignant hepatocytes, treatment of this cancer by conventional chemotherapy agents is challenging, and researchers are seeking new alternative treatment options to overcome therapy resistance in this neoplasm. RNA interference (RNAi) is a potent and specific approach in targeting gene expression and has emerged as a novel therapeutic tool for many diseases, including cancers. Small interfering RNA (siRNA) is a type of RNAi that is produced intracellularly from exogenous synthetic oligonucleotides and can selectively knock down target gene expression in a sequence-specific manner. Various factors play roles in the initiation and progression of HCC and provide multiple candidate targets for siRNA intervention. In addition, due to the liver's unique architecture and availability of some hepatic siRNA delivery methods, this organ has received much more attention as a target tissue for such oligonucleotide action. Recent advances in designing nanoparticle systems for the in vivo delivery of siRNAs have markedly enhanced the potency of siRNA-mediated gene silencing under clinical development for HCC therapy. The utility of siRNAs as anti-HCC agents is the subject of the current review. siRNA-based gene therapies could be one of the main feasible approaches for HCC therapy in the future.
Collapse
Affiliation(s)
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Liu X, Liang Y, Song R, Yang G, Han J, Lan Y, Pan S, Zhu M, Liu Y, Wang Y, Meng F, Cui Y, Wang J, Zhang B, Song X, Lu Z, Zheng T, Liu L. Long non-coding RNA NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular carcinoma proliferation. Mol Cancer 2018; 17:90. [PMID: 29764424 PMCID: PMC5953401 DOI: 10.1186/s12943-018-0838-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 04/25/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Abnormal metabolism, including abnormal lipid metabolism, is a hallmark of cancer cells. Some studies have demonstrated that the lipogenic pathway might promote the development of hepatocellular carcinoma (HCC). However, the role of the lipolytic pathway in HCC has not been elucidated. METHODS We compared levels of adipose triglyceride lipase (ATGL) in human HCC and healthy liver tissues by real time PCR, western blot and immunohistochemistry. We measured diacylglycerol(DAG) and free fatty acid (FFA) levels in HCC cells driven by the NEAT1-ATGL axis and in HCC tissues. We also assessed the effects of ATGL, DAG, FFA, and NEAT1 on HCC cells proliferation in vitro and in an orthotopic xenograft HCC mouse model. We also performed a luciferase reporter assay to investigate the interaction between NEAT1/ATGL and miR-124-3p. RESULTS We found that the lipolytic enzyme, ATGL is highly expressed in human HCC tissues and predicts poor prognosis. We also found that high levels of DAG and FFA are present in HCC tissues. Furthermore, the lncRNA-NEAT1 was found to modulate ATGL expression and disrupt lipolysis in HCC cells via ATGL. Notably, ATGL and its products, DAG and FFA, were shown to be responsible for NEAT1-mediated HCC cell growth. NEAT1 regulated ATGL expression by binding miR-124-3p. Additionally, NEAT1 knockdown attenuated HCC cell growth through miR-124-3p/ATGL/DAG+FFA/PPARα signaling. CONCLUSION Our results reveal that NEAT1-modulates abnormal lipolysis via ATGL to drive HCC proliferation.
Collapse
Affiliation(s)
- Xirui Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yingjian Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Ruipeng Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Guangchao Yang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Jihua Han
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yaliang Lan
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Mingxi Zhu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yao Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yan Wang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Fanzheng Meng
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yifeng Cui
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Jiabei Wang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Bo Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Xuan Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Zhaoyang Lu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province, China.
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China.
| |
Collapse
|
23
|
Ridruejo E, Romero-Caími G, Obregón MJ, Kleiman de Pisarev D, Alvarez L. Potential Molecular Targets of Statins in the Prevention of Hepatocarcinogenesis. Ann Hepatol 2018; 17:490-500. [PMID: 29735800 DOI: 10.5604/01.3001.0011.7394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) represents 90% of liver tumors. Statins, may reduce the incidence of various tumors, including HCC. Antitumoral activities may be mediated by changes in transforming growth factor-beta (TGF-β1) and thyroid hormones (TH) regulation. INTRODUCTION AND AIM Hepatocellular carcinoma (HCC) represents 90% of liver tumors. Statins, may reduce the incidence of various tumors, including HCC. Antitumoral activities may be mediated by changes in transforming growth factor-beta (TGF-β1) and thyroid hormones (TH) regulation. Aim. The aim of our study is to establish the statins mechanism of action and the potential key molecules involved in an in vivo and in vitro HCC model. MATERIALS AND METHODS We used two models: in vivo (in rats) using diethylnitrosamine (DEN) and hexachlorobenzene (HCB) to develop HCC. We analyzed cell proliferation parameters (proliferating cel nuclear antigen, PCNA) and cholesterol metabolism (hydroxy-methylglutaryl-CoA reductase, HMGCoAR). In vitro (Hep-G2 cells) we evaluated the effects of different doses of Atorvastatin (AT) and Simvastatin (SM) on HCB induced proliferation and analyzed proliferative parameters, cholesterol metabolism, TGF-β1 mRNA, c-Src and TH levels. RESULTS In vivo, we observed that cell proliferation significantly increased as well as cholesterol serum levels in rats treated with HCB. In vitro, we observed the same results on PCNA as in vivo. The statins prevented the increase in HMG-CoAR mRNA levels induced by HCB, reaching levels similar to controls at maximum doses: AT (30 μM), and SM (20 μM). Increases in PCNA, TGF-β1, and pc-Src, and decreases in deiodinase I mRNA levels induced by HCB were not observed when cells were pre-treated with AT and SM at maximum doses. CONCLUSION Statins can prevent the proliferative HCB effects on Hep-G2 cells. TGF-β1, c-Src and TH may be the statins molecular targets in hepatocarcinogenesis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Atorvastatin/pharmacology
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/prevention & control
- Cell Proliferation/drug effects
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Diethylnitrosamine
- Female
- Hep G2 Cells
- Hexachlorobenzene
- Humans
- Hydroxymethylglutaryl CoA Reductases/genetics
- Hydroxymethylglutaryl CoA Reductases/metabolism
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/prevention & control
- Proliferating Cell Nuclear Antigen/metabolism
- Rats, Wistar
- Signal Transduction/drug effects
- Simvastatin/pharmacology
- Thyroid Hormones/metabolism
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Ezequiel Ridruejo
- Hepatology Section, Department of Medicine. Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC). Ciudad Autónoma de Buenos Aires, Argentina
| | - Giselle Romero-Caími
- Laboratory of Biological Effects of Environmental Pollutants, Department of Human Biochemistry, School of Medicine. Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| | - María J Obregón
- Department of Molecular Pathophysiology, Instituto de Investigaciones Biomédicas (Centro mixto CSIC-UAM). Madrid, Spain
| | - Diana Kleiman de Pisarev
- Laboratory of Biological Effects of Environmental Pollutants, Department of Human Biochemistry, School of Medicine. Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Alvarez
- Laboratory of Biological Effects of Environmental Pollutants, Department of Human Biochemistry, School of Medicine. Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
24
|
Synthetic Dibenzoxanthene Derivatives Induce Apoptosis Through Mitochondrial Pathway in Human Hepatocellular Cancer Cells. Appl Biochem Biotechnol 2018. [DOI: 10.1007/s12010-018-2721-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Cheng L, Liu YY, Lu PH, Peng Y, Yuan Q, Gu XS, Jin Y, Chen MB, Bai XM. Identification of DNA-PKcs as a primary resistance factor of TIC10 in hepatocellular carcinoma cells. Oncotarget 2018; 8:28385-28394. [PMID: 28415690 PMCID: PMC5438657 DOI: 10.18632/oncotarget.16073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/27/2017] [Indexed: 01/07/2023] Open
Abstract
The current study tested the anti-hepatocellular carcinoma (HCC) cell activity of TIC10, a first-in-class small-molecule tumor necrosis (TNF)-related apoptosis-inducing ligand (TRAIL) inducer. TIC10 exerted potent anti-proliferative and pro-apoptotic actions in primary and established human HCC cells. TIC10 blocked Akt-Erk activation, leading to Foxo3a nuclear translocation, as well as TRAIL and death receptor-5 (DR5) transcription in HCC cells. We propose that DNA-PKcs is a major resistance factor of TIC10 possibly via inhibiting Foxo3a nuclear translocation. DNA-PKcs inhibition, knockdown or mutation facilitated TIC10-induced Foxo3a nuclear translocation, TRAIL/DR5 expression and cell apoptosis. Reversely, exogenous DNA-PKcs over-expression inhibited above actions by TIC10. In vivo, oral administration of TIC10 significantly inhibited HepG2 tumor growth in nude mice, which was further potentiated with Nu7026 co-administration. Thus, TIC10 shows promising anti-HCC activity, alone or together with DNA-PKcs inhibitors.
Collapse
Affiliation(s)
- Long Cheng
- Department of Interventional Radiology, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yuan-Yuan Liu
- Department of Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Pei-Hua Lu
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yi Peng
- Department of Radiotherapy, Hubei Cancer Hospital, Wuhan, China
| | - Qiang Yuan
- Department of Interventional Radiology, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xin-Shi Gu
- Department of Interventional Radiology, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yong Jin
- Department of Interventional Radiology, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Min-Bin Chen
- Department of Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Xu-Ming Bai
- Department of Interventional Radiology, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
26
|
Tanaka S. Precision medicine based on surgical oncology in the era of genome-scale analysis and genome editing technology. Ann Gastroenterol Surg 2018; 2:106-115. [PMID: 29863171 PMCID: PMC5881373 DOI: 10.1002/ags3.12059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/21/2017] [Indexed: 12/25/2022] Open
Abstract
Accumulated evidence suggests that multiple molecular and cellular interactions promote cancer evolution in vivo. Surgical oncology is of growing significance to a comprehensive understanding of the malignant diseases for therapeutic application. We have analyzed more than 1000 clinical samples from surgically resected tissue to identify molecular biomarkers and therapeutic targets for advanced malignancies. Cancer stemness and mitotic instability were then determined as the essential predictors of aggressive phenotype with poor prognosis. Recently, whole genome/exome sequencing showed a mutational landscape underlying phenotype heterogeneity in caners. In addition, integrated genomic, epigenomic, transcriptomic, metabolic, proteomic and phenomic analyses elucidated several molecular subtypes that cluster in liver, pancreatic, biliary, esophageal and gastroenterological cancers. Identification of each molecular subtype is expected to realize the precise medicine targeting subtype-specific molecules; however, there are obstacle limitations to determine matching druggable targets or synthetic lethal interactions. Current breakthroughs in genome editing technology can provide us with unprecedented opportunity to recapitulate subtype-specific pathophysiology in vitro and in vivo. Given a great potential, on-demand editing system can design actionable strategy and revolutionize precision cancer medicine based on surgical oncology.
Collapse
Affiliation(s)
- Shinji Tanaka
- Department of Molecular OncologyTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
27
|
Zhen MC, Wang FQ, Wu SF, Zhao YL, Liu PG, Yin ZY. Identification of mTOR as a primary resistance factor of the IAP antagonist AT406 in hepatocellular carcinoma cells. Oncotarget 2018; 8:9466-9475. [PMID: 28036295 PMCID: PMC5354745 DOI: 10.18632/oncotarget.14326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of inhibitor of apoptosis (IAP) proteins (IAPs) in hepatocellular carcinoma (HCC) is often associated with poor prognosis. Here we showed that AT406, an IAP antagonist, was cytotoxic and pro-apoptotic to both established (HepG2, SMMC-7721 lines) and primary HCC cells. Activation of mTOR could be a key resistance factor of AT406 in HCC cells. mTOR inhibition (by OSI-027), kinase-dead mutation or knockdown remarkably enhanced AT406-induced lethality in HCC cells. Reversely, forced-activation of mTOR by adding SC79 or exogenous expressing a constitutively active S6K1 (T389E) attenuated AT406-induced cytotoxicity against HCC cells. We showed that AT406 induced degradation of IAPs (cIAP-1 and XIAP), but didn't affect another anti-apoptosis protein Mcl-1. Co-treatment of OSI-027 caused simultaneous Mcl-1 downregulation to overcome AT406's resistance. Significantly, shRNA knockdown of Mcl-1 remarkably facilitated AT406-induced apoptosis in HCC cells. In vivo, AT406 oral administration suppressed HepG2 tumor growth in nude mice. Its activity was potentiated with co-administration of OSI-027. We conclude that mTOR could be a key resistance factor of AT406 in HCC cells.
Collapse
Affiliation(s)
- Mao-Chuan Zhen
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, 361004, China
| | - Fu-Qiang Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, 361004, China
| | - Shao-Feng Wu
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, 361004, China
| | - Yi-Lin Zhao
- Department of Tumor Interventional Radiology, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China
| | - Ping-Guo Liu
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, 361004, China
| | - Zhen-Yu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, 361004, China
| |
Collapse
|
28
|
Chen MB, Zhou ZT, Yang L, Wei MX, Tang M, Ruan TY, Xu JY, Zhou XZ, Chen G, Lu PH. KU-0060648 inhibits hepatocellular carcinoma cells through DNA-PKcs-dependent and DNA-PKcs-independent mechanisms. Oncotarget 2017; 7:17047-59. [PMID: 26933997 PMCID: PMC4941370 DOI: 10.18632/oncotarget.7742] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/05/2016] [Indexed: 01/01/2023] Open
Abstract
Here we tested anti-tumor activity of KU-0060648 in preclinical hepatocellular carcinoma (HCC) models. Our results demonstrated that KU-0060648 was anti-proliferative and pro-apoptotic in established (HepG2, Huh-7 and KYN-2 lines) and primary human HCC cells, but was non-cytotoxic to non-cancerous HL-7702 hepatocytes. DNA-PKcs (DNA-activated protein kinase catalytic subunit) is an important but not exclusive target of KU-0060648. DNA-PKcs knockdown or dominant negative mutation inhibited HCC cell proliferation. On the other hand, overexpression of wild-type DNA-PKcs enhanced HepG2 cell proliferation. Importantly, KU-0060648 was still cytotoxic to DNA-PKcs-silenced or -mutated HepG2 cells, although its activity in these cells was relatively weak. Further studies showed that KU-0060648 inhibited PI3K-AKT-mTOR activation, independent of DNA-PKcs. Introduction of constitutively-active AKT1 (CA-AKT1) restored AKT-mTOR activation after KU-0060648 treatment in HepG2 cells, and alleviated subsequent cytotoxicity. In vivo, intraperitoneal (i.p.) injection of KU-0060648 significantly inhibited HepG2 xenograft growth in nude mice. AKT-mTOR activation was also inhibited in xenografted tumors. Finally, we showed that DNA-PKcs expression was significantly upregulated in human HCC tissues. Yet miRNA-101, an anti-DNA-PKcs miRNA, was downregulated. Over-expression of miR-101 in HepG2 cells inhibited DNA-PKcs expression and cell proliferation. Together, these results indicate that KU-0060648 inhibits HCC cells through DNA-PKcs-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Min-Bin Chen
- Department of Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, China
| | - Zhen-Tao Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Lan Yang
- Department of Breast Surgery, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Mu-Xin Wei
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Min Tang
- Department of Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, China
| | - Ting-Yan Ruan
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Jun-Ying Xu
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Xiao-Zhong Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Gang Chen
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Pei-Hua Lu
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| |
Collapse
|
29
|
Liu HX, Xu MQ, Li SP, Tian S, Guo MX, Qi JY, He CJ, Zhao XS. Jujube leaf green tea extracts inhibits hepatocellular carcinoma cells by activating AMPK. Oncotarget 2017; 8:110566-110575. [PMID: 29299169 PMCID: PMC5746404 DOI: 10.18632/oncotarget.22821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
Here we evaluated the anti-hepatocellular carcinoma activity by the Jujube leaf green tea extracts (JLGTE). We showed that JLGTE exerted anti-proliferative, cytotoxic and pro-apoptotic activities against HepG2 and primary human hepatocellular carcinoma cells. It was however non-cytotoxic to the normal hepatocytes. JLGTE activated AMP-activated protein kinase (AMPK) signaling, which was required for its cytotoxicity against hepatocellular carcinoma cells. Silence of AMPKα1, via targeted short hairpin RNAs or CRISPR-Cas9 genome editing, inhibited JLGTE-induced AMPK activation and HepG2 cell apoptosis. Further, in-activation of AMPK by a dominant negative AMPKα1 (T172A) also alleviated JLGTE's cytotoxicity against HepG2 cells. On the other hand, forced-activation of AMPK by introduction of a constitutively-active AMPKα1 (T172D) mimicked JLGTE's actions and led to HepG2 cell apoptosis. These results suggest that JLGTE inhibits human hepatocellular carcinoma cells possibly via activating AMPK.
Collapse
Affiliation(s)
- H X Liu
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, Luoyang, China
| | - M Q Xu
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, Luoyang, China
| | - S P Li
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, Luoyang, China
| | - S Tian
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, Luoyang, China
| | - M X Guo
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, Luoyang, China
| | - J Y Qi
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, Luoyang, China
| | - C J He
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, Luoyang, China
| | - X S Zhao
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, Luoyang, China
| |
Collapse
|
30
|
Lu PH, Chen MB, Liu YY, Wu MH, Li WT, Wei MX, Liu CY, Qin SK. Identification of sphingosine kinase 1 (SphK1) as a primary target of icaritin in hepatocellular carcinoma cells. Oncotarget 2017; 8:22800-22810. [PMID: 28206952 PMCID: PMC5410263 DOI: 10.18632/oncotarget.15205] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/08/2016] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive neoplasm. We aim to explore the anti-HCC activity by a natural prenylflavonoid icaritin. Icaritin was cytotoxic and pro-apoptotic when added to established (HepG2, KYN-2 and Huh-7 lines) and primary human HCC cells. At the signaling level, icaritin inhibited sphingosine kinase 1 (SphK1) activity in HCC cells, which led to pro-apoptotic ceramide production and JNK1 activation. SphK1 inhibition or silence (by shRNA/microRNA) mimicked icaritin-mediated cytotoxicity, and almost nullified icaritin's activity in HepG2 cells. Reversely, exogenous over-expression of SphK1 sensitized icaritin-induced HepG2 cell apoptosis. In vivo, oral administration of icaritin dramatically inhibited HepG2 xenograft growth in SCID mice. Further, SphK1 activity in icaritin-treated tumors was largely inhibited. In summary, icaritin exerts potent anti-HCC activity in vitro and in vivo. SphK1 inhibition could be the primary mechanism of its actions in HCC cells.
Collapse
Affiliation(s)
- Pei-Hua Lu
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor of Nanjing University of Chinese Medicine, Nanjing, China
| | - Min-Bin Chen
- Department of Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Yuan-Yuan Liu
- Department of Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Mian-Hua Wu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen-Ting Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mu-Xin Wei
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao-Ying Liu
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Shu-Kui Qin
- People's Liberation Army Cancer Center, 81st Hospital of People's Liberation Army, Nanjing, China
| |
Collapse
|
31
|
Eg5 Overexpression Is Predictive of Poor Prognosis in Hepatocellular Carcinoma Patients. DISEASE MARKERS 2017; 2017:2176460. [PMID: 28684886 PMCID: PMC5480051 DOI: 10.1155/2017/2176460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/25/2017] [Accepted: 04/19/2017] [Indexed: 01/01/2023]
Abstract
Eg5 (kinesin spindle protein) plays an essential role in mitosis. Inhibition of Eg5 function results in cell cycle arrest at mitosis, which leads to cell death. To date, Eg5 expression and its prognostic significance have not been studied in hepatocellular carcinoma (HCC). In this study, 26 freshly frozen HCC tissue samples and matched peritumoral tissue samples were evaluated with a one-step qPCR test and immunohistochemical (IHC) analysis was conducted on 156 HCC samples to investigate the relationships among Eg5 expression, clinicopathological factors, and prognosis. Eg5 mRNA and protein expression levels were significantly higher in HCC tissues relative to matched noncancerous tissues (p < 0.05). High Eg5 protein expression was significantly related to liver cirrhosis (p = 0.038) and TNM stage (p = 0.008). Kaplan-Meier survival and Cox regression analyses revealed that Eg5 overexpression (p = 0.001), liver cirrhosis (p = 0.009), and TNM stage (p = 0.025) were independent prognostic factors for overall survival. These findings indicate that Eg5 expression can be used as a biomarker of poor prognosis and as a novel therapeutic target for HCC.
Collapse
|
32
|
The anti-hepatocellular carcinoma cell activity by a novel mTOR kinase inhibitor CZ415. Biochem Biophys Res Commun 2017; 487:494-499. [DOI: 10.1016/j.bbrc.2017.03.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022]
|
33
|
Integrative bioinformatics analysis identifies ROBO1 as a potential therapeutic target modified by miR-218 in hepatocellular carcinoma. Oncotarget 2017; 8:61327-61337. [PMID: 28977866 PMCID: PMC5617426 DOI: 10.18632/oncotarget.18099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023] Open
Abstract
Patients diagnosed with advanced hepatocellular carcinoma (HCC) presented poor prognosis and short survival time. Althouth accumulating contribution of continuous research has gradually revealed complex tumorigenesis mechanism of HCC with numerous and jumbled biomarkers, those specific ones for HCC diagnose and therapeutic treatment are required illustration. Multiple genes over-expressed in HCC specimens with at least 1.5 fold change were cohorted, compared with the non-cancerous tissues through integrative bioinformatics analysis from Gene Expression Omnibus (GEO) datasets GSE14520 and GSE6764, including 445 and 45 cases of samples spearatly, along with intensive exploration on the Cancer Genome Altas (TCGA) dataset of liver cancer. Thirteen genes significantly highly expressed, overlapping in the datasets above. The Database for Annotation Visualization and Integrated Discovery (DAVID) program was utilized for functional pathway enrichment analysis. Protein-protein Interaction (PPI) analysis was conducted through the Search Tool for the Retrieval of Interacting Genes (STRING) database. ROBO1 was highlighted as one of the most probable molecules among the 13 candidates participating in cancer process. Cancer Cell Line Encycolopedia (CCLE) database was utilized exploring ROBO1 expression in cell lines. Immunochemistry analysis and qRT-PCR assay were performed in our medical center, which indicates significant over-expression status in either HCC tumor specimens and 3 HCC cell lines. Furtherly, we recognized that miR-218, a tumor suppressor, might be an upstream regulator for ROBO1 directly binding to the mRNA 3’UTR and potentially modifying the expression and function of ROBO1. Herein, we conclude that ROBO1 is a mighty therapeutic targets modified by miR-218 in HCC deserving further investigation.
Collapse
|
34
|
Jung KH, Yoo W, Stevenson HL, Deshpande D, Shen H, Gagea M, Yoo SY, Wang J, Eckols TK, Bharadwaj U, Tweardy DJ, Beretta L. Multifunctional Effects of a Small-Molecule STAT3 Inhibitor on NASH and Hepatocellular Carcinoma in Mice. Clin Cancer Res 2017; 23:5537-5546. [PMID: 28533225 DOI: 10.1158/1078-0432.ccr-16-2253] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/16/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022]
Abstract
Purpose: The incidence of hepatocellular carcinoma is increasing in the United States, and liver cancer is the second leading cause of cancer-related mortality worldwide. Nonalcoholic steatohepatitis (NASH) is becoming an important risk for hepatocellular carcinoma, and most patients with hepatocellular carcinoma have underlying liver cirrhosis and compromised liver function, which limit treatment options. Thus, novel therapeutic strategies to prevent or treat hepatocellular carcinoma in the context of NASH and cirrhosis are urgently needed.Experimental Design: Constitutive activation of STAT3 is frequently detected in hepatocellular carcinoma tumors. STAT3 signaling plays a pivotal role in hepatocellular carcinoma survival, growth, angiogenesis, and metastasis. We identified C188-9, a novel small-molecule STAT3 inhibitor using computer-aided rational drug design. In this study, we evaluated the therapeutic potential of C188-9 for hepatocellular carcinoma treatment and prevention.Results: C188-9 showed antitumor activity in vitro in three hepatocellular carcinoma cell lines. In mice with hepatocyte-specific deletion of Pten (HepPten- mice), C188-9 treatment blocked hepatocellular carcinoma tumor growth, reduced tumor development, and reduced liver steatosis, inflammation, and bile ductular reactions, resulting in improvement of the pathological lesions of NASH. Remarkably, C188-9 also greatly reduced liver injury in these mice as measured by serum aspartate aminotransferase and alanine transaminase levels. Analysis of gene expression showed that C188-9 treatment of HepPten- mice resulted in inhibition of signaling pathways downstream of STAT3, STAT1, TREM-1, and Toll-like receptors. In contrast, C188-9 treatment increased liver specification and differentiation gene pathways.Conclusions: Our results suggest that C188-9 should be evaluated further for the treatment and/or prevention of hepatocellular carcinoma. Clin Cancer Res; 23(18); 5537-46. ©2017 AACR.
Collapse
Affiliation(s)
- Kwang Hwa Jung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wonbeak Yoo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heather L Stevenson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Dipti Deshpande
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Shen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mihai Gagea
- Department of Veterinary Medicine & Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suk-Young Yoo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - T Kris Eckols
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
35
|
Jiang H, Wu D, Xu D, Yu H, Zhao Z, Ma D, Jin J. Eupafolin Exhibits Potent Anti-Angiogenic and Antitumor Activity in Hepatocellular Carcinoma. Int J Biol Sci 2017; 13:701-711. [PMID: 28655996 PMCID: PMC5485626 DOI: 10.7150/ijbs.17534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 04/20/2017] [Indexed: 12/13/2022] Open
Abstract
Eupafolin is a flavonoid extracted from the common sage herb which has been used in China as traditional medicine. Previous studies had reported that eupafolin had antioxidative, anti-inflammatory and antitumor effects. However, the function and the mechanism of eupafolin to exert its antitumor activity, especially its effect on tumor angiogenesis, have not been elucidated. Herein, we showed that eupafolin significantly inhibited vascular endothelial growth factor (VEGF)-induced cell proliferation, migration and tube formation of human umbilical vascular endothelial cells (HUVECs) in a dose-dependent manner. Meanwhile, the new blood microvessels induced by VEGF in the matrigel plug were also substantially suppressed by eupafolin. The results of HCC xenograft experiments demonstrated eupafolin remarkably inhibited tumor growth and tumor angiogenesis in vivo, suggesting the antitumor activity exerted by eupafolin was closely correlated with its potency on tumor angiogenesis. Mechanism investigations revealed that eupafolin significantly blocked VEGF-induced activation of VEGFR2 in HUVEC cells as well as its downstream signaling pathway. In addition to the effect on endothelial cells, through inhibiting Akt activity in tumor cells, VEGF secretion in HepG2 was dramatically decreased after eupafolin treatment. Our study was the first to report the activity of eupafolin against tumor angiogenesis as well as the underlying mechanism by which eupafolin to exert its anti-angiogenic activity.
Collapse
Affiliation(s)
- Honglei Jiang
- General Surgery department, the fourth affiliated hospital of China medical university, Shenyang, China
| | - Dan Wu
- Infectious disease department, Shengjing hospital of China medical university, Shenyang, China
| | - Dong Xu
- General Surgery department, the fourth affiliated hospital of China medical university, Shenyang, China
| | - Hao Yu
- General Surgery department, the fourth affiliated hospital of China medical university, Shenyang, China
| | - Zheming Zhao
- General Surgery department, the fourth affiliated hospital of China medical university, Shenyang, China
| | - Dongyan Ma
- General Surgery department, the fourth affiliated hospital of China medical university, Shenyang, China
| | - Junzhe Jin
- General Surgery department, the fourth affiliated hospital of China medical university, Shenyang, China
| |
Collapse
|
36
|
Wang W, Zhang H, Tang M, Liu L, Zhou Z, Zhang S, Wang L. MicroRNA-592 targets IGF-1R to suppress cellular proliferation, migration and invasion in hepatocellular carcinoma. Oncol Lett 2017; 13:3522-3528. [PMID: 28529580 PMCID: PMC5431753 DOI: 10.3892/ol.2017.5902] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/20/2016] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRs) can function as tumor suppressors or oncogenes in different types of human malignancy, and may provide an effective therapy for cancer. The expression and functions of miR-592 have previously been studied in relation to cancer. However, the expression and potential functions of miR-592 in hepatocellular carcinoma (HCC) are still unknown. Using quantitative polymerase chain reaction, MTT assays, cellular migration and invasion assays, bioinformatics software, western blot analysis and dual-luciferase report assays, the present study explored the expression and roles of miR-592 in HCC. It was identified that miR-592 was significantly downregulated in HCC tissues and cell lines. The statistical analysis revealed that low expression of miR-592 was evidently associated with tumor node metastasis stage and lymph node metastasis. Additionally, the present study provided the first evidence that miR-592 was likely to directly target the insulin-like growth factor 1 receptor in vitro. The present results indicated that miR-592 could be investigated as an efficacious therapeutic target for HCC in the future.
Collapse
Affiliation(s)
- Wenyao Wang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Hongfei Zhang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Mao Tang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Longlong Liu
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhengfang Zhou
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shaojun Zhang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Lichao Wang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
37
|
Oba A, Shimada S, Akiyama Y, Nishikawaji T, Mogushi K, Ito H, Matsumura S, Aihara A, Mitsunori Y, Ban D, Ochiai T, Kudo A, Asahara H, Kaida A, Miura M, Tanabe M, Tanaka S. ARID2 modulates DNA damage response in human hepatocellular carcinoma cells. J Hepatol 2017; 66:942-951. [PMID: 28238438 DOI: 10.1016/j.jhep.2016.12.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 12/15/2016] [Accepted: 12/22/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND & AIMS Recent genomic studies have identified frequent mutations of AT-rich interactive domain 2 (ARID2) in hepatocellular carcinoma (HCC), but it is not still understood how ARID2 exhibits tumor suppressor activities. METHODS We established the ARID2 knockout human HCC cell lines by using CRISPR/Cas9 system, and investigated the gene expression profiles and biological functions. RESULTS Bioinformatic analysis indicated that UV-response genes were negatively regulated in the ARID2 knockout cells, and they were sensitized to UV irradiation. ARID2 depletion attenuated nucleotide excision repair (NER) of DNA damage sites introduced by exposure to UV as well as chemical compounds known as carcinogens for HCC, benzo[a]pyrene and FeCl3, since xeroderma pigmentosum complementation group G (XPG) could not accumulate without ARID2. By using large-scale public data sets, we validated that ARID2 knockout could lead to similar molecular changes between in vitro and in vivo settings. A higher number of somatic mutations in the ARID2-mutated subtypes than that in the ARID2 wild-type across various types of cancers including HCC was observed. CONCLUSIONS We provide evidence that ARID2 knockout could contribute to disruption of NER process through inhibiting the recruitment of XPG, resulting in susceptibility to carcinogens and potential hypermutation. These findings have implications for therapeutic targets in cancers harboring ARID2 mutations. LAY SUMMARY Recent genomic studies have identified frequent mutations of ARID2, a component of the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, in hepatocellular carcinoma, but it is not still understood how ARID2 exhibits tumor suppressor activities. In current study, we provided evidence that ARID2 knockout could contribute to disruption of DNA repair process, resulting in susceptibility to carcinogens and potential hypermutation. These findings have far-reaching implications for therapeutic targets in cancers harboring ARID2 mutations.
Collapse
Affiliation(s)
- Atsushi Oba
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan; Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taketo Nishikawaji
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kaoru Mogushi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromitsu Ito
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Matsumura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Arihiro Aihara
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Mitsunori
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Ban
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Ochiai
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kudo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems Biomedicine, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kaida
- Department of Oral Health Sciences, Graduate School of Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiko Miura
- Department of Oral Health Sciences, Graduate School of Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan; Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
38
|
Zhu YJ, Zheng B, Wang HY, Chen L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin 2017; 38:614-622. [PMID: 28344323 PMCID: PMC5457690 DOI: 10.1038/aps.2017.5] [Citation(s) in RCA: 506] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/19/2017] [Indexed: 12/13/2022]
Abstract
Sorafenib is an oral multikinase inhibitor that suppresses tumor cell proliferation and angiogenesis and promotes tumor cell apoptosis. It was approved by the FDA for the treatment of advanced renal cell carcinoma in 2006, and as a unique target drug for advanced hepatocellular carcinoma (HCC) in 2007. Sorafenib can significantly extend the median survival time of patients but only by 3-5 months. Moreover, it is associated with serious adverse side effects, and drug resistance often develops. Therefore, it is of great importance to explore the mechanisms underlying sorafenib resistance and to develop individualized therapeutic strategies for coping with these problems. Recent studies have revealed that in addition to the primary resistance, several mechanisms are underlying the acquired resistance to sorafenib, such as crosstalk involving PI3K/Akt and JAK-STAT pathways, the activation of hypoxia-inducible pathways, and epithelial-mesenchymal transition. Here, we briefly describe the function of sorafenib, its clinical application, and the molecular mechanisms for drug resistance, especially for HCC patients.
Collapse
Affiliation(s)
- Yan-Jing Zhu
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
| | - Bo Zheng
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
| | - Hong-Yang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
- National Center for Liver Cancer, Shanghai 201805, China
| | - Lei Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
- National Center for Liver Cancer, Shanghai 201805, China
| |
Collapse
|
39
|
Cao Y, Ke R, Wang S, Zhu X, Chen J, Huang C, Jiang Y, Lv L. DNA topoisomerase IIα and Ki67 are prognostic factors in patients with hepatocellular carcinoma. Oncol Lett 2017; 13:4109-4116. [PMID: 28599412 PMCID: PMC5453054 DOI: 10.3892/ol.2017.5999] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 02/07/2017] [Indexed: 01/23/2023] Open
Abstract
The present study was designed to determine the significance of DNA topoisomerase IIa (TopoIIα) and Ki67 in hepatocellular carcinoma cells (HCCs). The present study included 353 patients with HCC. The association of clinicopathological data with the expression of TopoIIα and Ki67 by immunohistochemistry was analyzed by χ2 test. Cox multivariate proportional hazards regression analysis and Kaplan-Meier analysis were performed with all the variables to derive risk estimates associated with overall survival (OS)/recurrence-free survival (RFS) and to control for confounders. TopoIIα and Ki67 were detected in the nuclei of the tumor cells. With TopoIIα, 35.7% of cells exhibited high expression, which was associated with tumor-node-metastasis stage, tumor size and α-fetoprotein level. With Ki67, 37.1% of cells exhibited high expression, which was associated with tumor-node-metastasis stage, tumor size and α-fetoprotein level. Correlation was identified between the expression level of TopoIIα and Ki67 in HCCs (r=0.444). Multivariate analysis revealed that high TopoIIα expression is a prognostic indicator for RFS [hazard ratio (HR), 2.002; 95% confidence interval (CI), 1.429–2.806] and OS (HR, 2.749; 95% CI, 1.919–3.939), and high Ki67 expression is a prognostic indicator for OS (HR, 1.816; 95% CI, 1.273–2.589). The TopoIIα-low group had a significantly increased RFS rate (55.6 vs. 31.7%) and OS rate (66.5 vs. 23.8%) compared with the TopoIIα-high group. The OS rate was increased in the Ki67-low group compared with the Ki67-high group (67.0 vs. 26.5%). Expression of TopoIIα and Ki67 are independent prognostic factors for survival in HCCs. TopoIIα was positively associated with Ki67 expression.
Collapse
Affiliation(s)
- Yi Cao
- Department of Hepatobiliary Surgery, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Ruisheng Ke
- Department of Hepatobiliary Surgery, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Shaohu Wang
- Department of Hepatobiliary Surgery, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Xu Zhu
- Department of Hepatobiliary Surgery, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Jianwei Chen
- Department of Hepatobiliary Surgery, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Chao Huang
- Department of Hepatobiliary Surgery, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Yi Jiang
- Department of Hepatobiliary Surgery, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Lizhi Lv
- Department of Hepatobiliary Surgery, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
40
|
Yao X, Li X, Zhang D, Xie Y, Sun B, Li H, Sun L, Zhang X. B-cell lymphoma 2 inhibitor ABT-737 induces Beclin1- and reactive oxygen species-dependent autophagy in Adriamycin-resistant human hepatocellular carcinoma cells. Tumour Biol 2017; 39:1010428317695965. [PMID: 28351336 DOI: 10.1177/1010428317695965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
ABT-737, a B-cell lymphoma 2 homology 3 mimetic, not only induces cell apoptosis by inhibiting the interaction of B-cell lymphoma 2 and Bax but also induces cell autophagy by interrupting the interaction of B-cell lymphoma 2 and Beclin1. Several recent studies have reported that ABT-737 has antitumor efficacy in diverse cancers. However, another study showed that hepatocellular carcinoma cells with high B-cell lymphoma 2 expression were resistant to ABT-737 compared to hepatocellular carcinoma cells with low B-cell lymphoma 2 expression. It was also found that ABT-737-induced autophagy is crucial for drug resistance. Here, we observed that of B-cell lymphoma 2 expression in Adriamycin-resistant human hepatocellular carcinoma HepG2/ADM cells is higher than that in human hepatocellular carcinoma HepG2 cells. Therefore, we further confirmed the mechanism and effect of autophagy induced by ABT-737 on apoptosis in HepG2/ADM cells with high B-cell lymphoma 2 expression. Our results showed that ABT-737 induced apoptosis and autophagy in time- and dose-dependent manner in HepG2/ADM cells, and this ABT-737-induced autophagy was Beclin1-dependent. In addition, we demonstrated that ABT-737 induced reactive oxygen species-mediated autophagy, and the reactive oxygen species-inhibitor N-acetyl-l-cysteine suppressed the reactive oxygen species-induced autophagy and ABT-737-induced increase in HepG2/ADM cell apoptosis. Furthermore, autophagy inhibitors increased HepG2/ADM cell apoptosis. In conclusion, our study further confirms that Beclin1- and reactive oxygen species-dependent autophagy induced by ABT-737 also plays a protective function in HepG2/ADM cells, which show B-cell lymphoma 2 expression higher than that in HepG2 cells.
Collapse
Affiliation(s)
- Xiaoxiao Yao
- Department of Hepatobiliary & Pancreatic Surgery, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Xiaoning Li
- Department of Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatobiliary & Pancreatic Surgery, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Yingjun Xie
- Department of Hepatobiliary & Pancreatic Surgery, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary & Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hang Li
- Department of Hepatobiliary & Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liankun Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuewen Zhang
- Department of Hepatobiliary & Pancreatic Surgery, The Second Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Xie Z, Wang J, Liu M, Chen D, Qiu C, Sun K. CC-223 blocks mTORC1/C2 activation and inhibits human hepatocellular carcinoma cells in vitro and in vivo. PLoS One 2017; 12:e0173252. [PMID: 28334043 PMCID: PMC5363890 DOI: 10.1371/journal.pone.0173252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 02/17/2017] [Indexed: 11/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related human mortalities. Over-activation of mammalian target of rapamycin (mTOR) is important for HCC tumorigenesis and progression. The current study assessed the potential anti-HCC activity by a novel mTOR kinase inhibitor, CC-223. We demonstrate that CC-223, at nM concentrations, induced profound cytotoxic and anti-proliferative activities against established HCC cell lines (HepG2, KYN-2 and Huh-7) and primary human HCC cells. Meanwhile, CC-223 activated caspase-3/-9 and apoptosis in the above HCC cells. CC-223 concurrently blocked mTORC1 and mTORC2 activation, and its cytotoxicity against HCC cells was much more potent than the traditional mTORC1 inhibitors (RAD001 and rapamycin). Further studies demonstrated that CC-223 disrupted mitochondrial function, and induced mitochondrial permeability transition pore (mPTP) opening and reactive oxygen species (ROS) production. On the other hand, ROS scavengers and mPTP blockers (cyclosporin A or sanglifehrin A) largely attenuated CC-223-induced HepG2 cell apoptosis. In vivo studies showed that oral administration of CC-223 dramatically inhibited growth of HepG2 xenografts in severe combined immuno-deficient (SCID) mice. mTORC1/2 activation was also blocked in xenografts with CC-223 administration. Together, CC-223 simultaneously blocks mTORC1/2 and efficiently inhibits human HCC cells.
Collapse
Affiliation(s)
- Zichen Xie
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiqin Wang
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Mei Liu
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Deshan Chen
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Chao Qiu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail: (KS); (CQ)
| | - Keyu Sun
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
- * E-mail: (KS); (CQ)
| |
Collapse
|
42
|
Chang W, Zhang L, Xian Y, Yu Z. MicroRNA-33a promotes cell proliferation and inhibits apoptosis by targeting PPARα in human hepatocellular carcinoma. Exp Ther Med 2017; 13:2507-2514. [PMID: 28565872 DOI: 10.3892/etm.2017.4236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/20/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-33a (miR-33a) is dysregulated in a number of human cancers, where it functions as an oncogenic miRNA. However, the clinical significance of miR-33a and its underlying molecular pathways regarding the progression of hepatocellular carcinoma (HCC) are currently unknown. In the present study, it was observed that the level of miR-33a expression was significantly increased in HCC tissues, relative to adjacent non-tumor tissues. Increased miR-33a expression was significantly correlated with poor prognostic features of HCC, including larger tumor size, higher Edmondson-Steiner grading and higher tumor-node-metastasis tumor stage. Furthermore, high levels of miR-33a expression were associated with decreases in the 5-year overall survival rate and recurrence-free survival of patients with HCC. In addition, functional experiments indicated that overexpression of miR-33a led to increased proliferation and reduced apoptosis of the HCC cell line Huh7, while knockdown of miR-33a decreased proliferation and induced apoptosis in the HCC cell line HepG2. Furthermore, peroxisome proliferator activated receptor alpha (PPARα) was identified as a direct target of miR-33a in HCC. Upregulation of miR-33a was found to reduce the levels of PPARα expression in Huh7 cells, while inhibition of miR-33a lead to a downregulation in PPARα expression in HepG2 cells. Collectively, these results suggest that miR-33a regulates the proliferation and apoptosis of HCC cells, and is a potential prognostic marker of HCC.
Collapse
Affiliation(s)
- Weiping Chang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Lei Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Yao Xian
- Department of Nutrition, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhaoxiang Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| |
Collapse
|
43
|
Li G, Zhong Y, Shen Q, Zhou Y, Deng X, Li C, Chen J, Zhou Y, He M. NEK2 serves as a prognostic biomarker for hepatocellular carcinoma. Int J Oncol 2017; 50:405-413. [PMID: 28101574 PMCID: PMC5238800 DOI: 10.3892/ijo.2017.3837] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Never in mitosis gene A (NIMA)-related kinase 2 (NEK2) is a microtubule-associated protein that regulates spindle assembly in human cells and is overexpressed in various malignancies. However, the role of NEK2 in hepatocellular carcinoma (HCC) remains undetermined. We performed RNA-seq of the HCC cell line SMMC-7721 and the normal liver cell line HL-7702 using the Ion Proton System. NEK2 expression was detected using quantitative reverse transcription polymerase chain reaction in two cell lines and 5 matched HCC and adjacent non-tumorous liver tissues. The correlation between survival and NEK2 expression was analyzed in 359 patients with HCC using RNASeqV2 data available from The Cancer Genome Atlas (TCGA) website (https://tcga-data.nci.nih.gov/tcga/). The expression of NEK2, phospho-AKT and MMP-2 was evaluated by immunohistochemistry in 63 cases of HCC and matched adjacent non-tumorous liver tissues. Relationships between protein expression and clinicopathological parameters were assessed, and the correlations between NEK2 with phospho-AKT and MMP-2 expressions were evaluated. A total of 610 differentially expressed genes (DEGs) were revealed in the transcriptome comparison, 297 of which were upregulated and 313 were downregulated in HCC. NEK2, as the most obviously different DEG in cells and tissues from the RNA-seq data, was listed as an HCC candidate biomarker for further verification. NEK2 was overexpressed in HCC cells and tissues (P=0.002, P=0.013) and HCC patients with a high expression of NEK2 had a poor prognosis (P=0.0145). Clinical analysis indicated that the overexpression of NEK2 in HCC was significantly correlated with diolame complete (P<0.001), tumor nodule number (P=0.012) and recurrence (P=0.004). NEK2 expression was positively correlated with the expression of phospho-AKT (r=0.883, P<0.01) and MMP-2 (r=0.781, P<0.01). Overexpression of NEK2 was associated with clinicopathological characteristics and poor patient outcomes, suggesting that NEK2 serves as a prognostic biomarker for HCC. Alteration of NEK2 protein levels may contribute to invasion and metastasis of HCC, which may occur through activation of AKT signaling and promotion of MMP-2 expression.
Collapse
Affiliation(s)
- Gang Li
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yanping Zhong
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qingrong Shen
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi Zhou
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaofang Deng
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Cuiping Li
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiagui Chen
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ying Zhou
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
44
|
Szparecki G, Ilczuk T, Gabzdyl N, Stocka-Łabno E, Górnicka B. Expression of c-MET Protein in Various Subtypes of Hepatocellular Adenoma Compared to Hepatocellular Carcinoma and Non-Neoplastic Liver in Human Tissue. Folia Biol (Praha) 2017; 63:146-154. [PMID: 29256857 DOI: 10.14712/fb2017063040146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hepatocellular adenoma (HA) is a benign neoplasm of the liver, whose aetiopathogenesis is little known. Newest research allowed dividing all cases into three types based on molecular characteristics: inflammatory HA, HA with HNF1A mutation, β-catenin-mutated HA. The clinical significance of HA is chiefly due to the possibility of malignant transformation into hepatocellular carcinoma (HCC). The aim of the present study was to immunohistochemically assess the expression pattern and level of c-MET protein in hepatocellular adenoma (taking into account its status of Wnt/β-catenin pathway functioning) and intertwining the results into a wider pattern of expression in non-neoplastic liver and hepatocellular carcinoma of various histological grades. It was found that expression of c-MET in poorly-differentiated HCC was significantly higher than in non-neoplastic liver and well- to moderately-differentiated HCC. The expression in HA was variable and differed between molecular subtypes of this neoplasm: inflammatory and HNF1A mutation-associated type are characterized by overexpression of c-MET to an extent comparable with poorly-differentiated HCC, whereas Wnt/β-catenin dysfunction-associated type lacks overexpression, and the amount of c-MET protein accumulated in its cells is similar to the levels in non-neoplastic tissue and well- to moderately-differentiated HCC. These findings suggest that c-MET overexpression in HA is not an early event in hepatocarcinogenesis, but constitutes a divergent molecular pathway leading to neoplastic change compared to overexpression observed in the late stages of tumour progression.
Collapse
Affiliation(s)
- G Szparecki
- Department of Pathology, Medical University of Warsaw, Poland
| | - T Ilczuk
- Department of Pathology, Medical University of Warsaw, Poland
| | - N Gabzdyl
- Department of Pathology, Medical University of Warsaw, Poland
| | - E Stocka-Łabno
- Department of Pathology, Medical University of Warsaw, Poland
| | - B Górnicka
- Department of Pathology, Medical University of Warsaw, Poland
| |
Collapse
|
45
|
"Hepatocellular carcinoma: A life-threatening disease". Biomed Pharmacother 2016; 84:1679-1688. [PMID: 27823920 DOI: 10.1016/j.biopha.2016.10.078] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 02/07/2023] Open
Abstract
An estimated rise in liver cancer incidence will increase to 95374 new cases by 2020. Hepatocellular Carcinoma (HCC), the most common primary malignant tumour of the liver, is considered to be the third leading cause of all cancer-related deaths and fifth common cancer worldwide. The reported data shows that the rate of HCC incidence in male population is three to four times higher compared with the female population. In the United States, HCV-induced liver cancer is increasing very fast because of the lack of proper treatment option. There are various treatment strategies available for HCC like liver transplantation, resection, ablation, embolization and chemotherapy still the prognosis is destitute. If the patient is eligible, liver transplantation is the only therapeutic option that may give around 90% survival rate, but the scarcity of liver donor limits its broad applicability. A sudden address is necessary to develop specific drugs, personalized medicine, for HCC.
Collapse
|
46
|
Zhang Q, Yang M, Qu Z, Zhou J, Jiang Q. Autophagy prevention sensitizes AKTi-1/2-induced anti-hepatocellular carcinoma cell activity in vitro and in vivo. Biochem Biophys Res Commun 2016; 480:334-340. [PMID: 27756618 DOI: 10.1016/j.bbrc.2016.10.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/15/2016] [Indexed: 01/03/2023]
Abstract
Molecule-targeted therapy has become the research focus for hepatocellular carcinoma (HCC). Persistent PI3K-AKT activation is often detected in HCC, representing a valuable oncotarget for treatment. Here, we tested the anti-HCC activity by a potent AKT inhibitor: AKT inhibitor 1/2 (AKTi-1/2). In both established (HepG2 and Huh-7) and primary human HCC cells, treatment with AKTi-1/2 inhibited cell survival and proliferation, but induced cell apoptosis. AKTi-1/2 blocked AKT-mTOR activation, yet simultaneously provoked cytoprotective autophagy in HCC cells. The latter was evidenced by ATG-5 and Beclin-1 upregulation, p62 downregulation as well as LC3B-GFP puncta formation. Autophagy inhibition, via pharmacological inhibitors (3-methyladenine, ammonium chloride, and bafilomycin A1) or Beclin-1 siRNA knockdown, significantly potentiated AKTi-1/2-induced HepG2 cell death and apoptosis. In nude mice, AKTi-1/2 intraperitoneal injection inhibited HepG2 tumor growth. Significantly, its anti-tumor activity in vivo was further sensitized when combined with Beclin-1 shRNA knockdown in HepG2 tumors. Together, these results demonstrate that autophagy activation serves as a main resistance factor of AKTi-1/2 in HCC cells. Autophagy prevention therefore sensitizes AKTi-1/2-induced anti-HCC activity in vitro and in vivo.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Manyi Yang
- National Hepatobiliary & Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Zhan Qu
- Department of Hepatobiliary & Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jixiang Zhou
- National Hepatobiliary & Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Jiang
- Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
47
|
Liu H, Xu H, Zhang C, Gao M, Gao X, Ma C, Lv L, Gao D, Deng S, Wang C, Tian Y. Emodin-Loaded PLGA-TPGS Nanoparticles Combined with Heparin Sodium-Loaded PLGA-TPGS Nanoparticles to Enhance Chemotherapeutic Efficacy Against Liver Cancer. Pharm Res 2016; 33:2828-43. [PMID: 27511028 DOI: 10.1007/s11095-016-2010-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/29/2016] [Indexed: 11/28/2022]
Abstract
PURPOSE Heparin sodium (HS)-loaded polylactic-co-glycolic acid-D-α-tocopheryl polyethylene glycol 1000 succinate (PLGA-TPGS) nanoparticles (HPTNs) were prepared as a sustained and targeting delivery carrier and combined with emodin (EMO)-loaded PLGA-TPGS nanoparticles (EPTNs), which were investigated previously to form a combination therapy system for the treatment of liver cancer. METHODS To assess cellular uptake and evaluate the liver-targeting capacity by analyzing the drug concentrations and frozen slices, HS/eosin-loaded PLGA-TPGS nanoparticles, HS/fluorescein- loaded PLGA-TPGS nanoparticles and EMO/C6-loaded PLGA-TPGS nanoparticles, which contained eosin, fluorescein and C6 as fluorescent probes, respectively, were also prepared. All of these nanoparticles were characterized in terms of their size, size distribution, surface charge, drug loading, encapsulation efficiency, in vitro release profile and cellular uptake. The apoptosis of HepG2 cells induced by EPTNs in combination with HPTNs was determined by Annexin V-FITC staining and PI labelling. RESULTS Transmission electron microscopy indicated that these nanoparticles were stably dispersed spheres with sizes ranging from 100 to 200 nm. The results demonstrated that fluorescent nanoparticles were internalized into HepG2 and HCa-F cells efficiently and had improved liver-targeting properties. The combination of EPTNs and HPTNs effectively inhibited cell growth in vitro and had a remarkable synergistic anticancer effect in vivo. EPTNs combined with HPTNs induced HepG2 cell apoptosis with synergistic effects. The liver H&E slice images of a hepatocarcinogenic mouse model indicated that EPTNs in combination with HPTNs significantly suppressed tumour growth in vivo. CONCLUSIONS The research suggests that the combination therapy system of EPTNs and HPTNs could be a new direction for liver cancer therapy.
Collapse
Affiliation(s)
- Hongyan Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Hong Xu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chenghong Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Meng Gao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Xiaoguang Gao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Chuchu Ma
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Li Lv
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Dongyan Gao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Sa Deng
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Changyuan Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yan Tian
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
48
|
Evodiamine exerts anti-tumor effects against hepatocellular carcinoma through inhibiting β-catenin-mediated angiogenesis. Tumour Biol 2016; 37:12791-12803. [DOI: 10.1007/s13277-016-5251-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
|
49
|
Dumortier J, Dharancy S, Calmus Y, Duvoux C, Durand F, Salamé E, Saliba F. Use of everolimus in liver transplantation: The French experience. Transplant Rev (Orlando) 2016; 30:161-70. [DOI: 10.1016/j.trre.2015.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 12/14/2015] [Indexed: 12/18/2022]
|
50
|
Wang K, Fan Y, Chen G, Wang Z, Kong D, Zhang P. MEK-ERK inhibition potentiates WAY-600-induced anti-cancer efficiency in preclinical hepatocellular carcinoma (HCC) models. Biochem Biophys Res Commun 2016; 474:330-337. [DOI: 10.1016/j.bbrc.2016.04.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/12/2022]
|