1
|
Yeo SG, Oh YJ, Lee JM, Yeo JH, Kim SS, Park DC. Production and Role of Nitric Oxide in Endometrial Cancer. Antioxidants (Basel) 2025; 14:369. [PMID: 40227440 PMCID: PMC11939365 DOI: 10.3390/antiox14030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Endometrial cancer ranks as the fourth most common cancer among women in the United States. While early-stage treatment is generally effective with a cure rate of approximately 90%, the five-year survival rate dramatically decreases to 10-15% for advanced-stage diagnoses. Consequently, ongoing research seeks to improve treatment outcomes for endometrial cancer. Nitric oxide (NO) is implicated in various biological processes, including cancer progression, and is believed to play a significant role in human endometrial cancer. However, its specific function remains controversial. This study aims to elucidate the effects of NO in endometrial cancer through a comprehensive literature review. A thorough review of the literature was conducted using Cochrane Libraries, EMBASE, Google Scholar, PubMed, and SCOPUS databases to assess the induction and role of NO in the development of endometrial cancer. Out of 33 initially reviewed articles, 7 studies were included in the final review after excluding those unrelated to endometrial cancer or NO. Of these, six studies (85.7%) reported increased NO levels in endometrial cancer, whereas one study (14.3%) noted decreased NO levels or a defensive mechanism role. NO production was linked to tumor-promoting effects such as invasiveness, metastasis, angiogenesis, interaction with omental adipose stromal cells (O-ASCs), adipogenesis, and mitochondrial suppression. Conversely, NO also exhibited tumor-suppressive effects, including cell-cycle arrest, apoptosis induction, promotion of cancer stem-like cells, and upregulation of tumor suppressor genes like CDKN1A and RASSF1A. NO production is associated with the pathogenesis, development, and prognosis of endometrial cancer, with effects varying based on NO level fluctuations. Differences in NO production and function were observed according to the type of nitric oxide synthase (NOS) involved, control conditions, subtype, grade, and invasiveness of the cancer, as well as the experimental methodologies employed. NO demonstrated dual action in endometrial cancer: low concentrations promoted tumor growth by protecting cells and inhibiting apoptosis, while high concentrations exerted cytotoxic effects, suppressing tumor growth. However, no studies have precisely defined the concentration thresholds or mechanisms by which NO contributes to either tumorigenesis or tumor suppression in endometrial cancer. To effectively harness the therapeutic potential of NO in treating endometrial cancer, a deeper understanding of these dual-effect mechanisms is necessary.
Collapse
Affiliation(s)
- Seung Geun Yeo
- Department of Medicine, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea; (S.G.Y.); (Y.J.O.); (J.M.L.)
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Convergence Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon Ju Oh
- Department of Medicine, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea; (S.G.Y.); (Y.J.O.); (J.M.L.)
| | - Jae Min Lee
- Department of Medicine, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea; (S.G.Y.); (Y.J.O.); (J.M.L.)
| | - Joon Hyung Yeo
- Public Health Center, Danyang-gun 27010, Chungcheongbuk-do, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Dong Choon Park
- Department of Obstetrics and Gynecology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Vasilijic S, Seist R, Yin Z, Xu L, Stankovic KM. Immune profiling of human vestibular schwannoma secretions identifies TNF-α and TWEAK as cytokines with synergistic potential to impair hearing. J Neuroinflammation 2025; 22:35. [PMID: 39923035 PMCID: PMC11807327 DOI: 10.1186/s12974-025-03364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Vestibular schwannoma (VS) is an intracranial tumor arising from the Schwann cells of the vestibular nerve and is an important cause of sensorineural hearing loss (SNHL) in humans. The mechanisms underlying this SNHL are incompletely understood and currently, there are no drugs FDA approved specifically for VS. This knowledge gap significantly limits the development of effective treatments aimed at preventing, stabilizing, or reversing VS-induced SNHL. METHODS To identify effector molecules involved in VS-induced SNHL, we analyzed 47 immune-related factors secreted by tumor tissue in over 50 patients with sporadic VS and studied their correlation with preoperative hearing ability and tumor size. The most promising effector molecules were validated in vivo in an anatomically accurate mouse model of VS, and in vitro with mouse fibroblasts (L929) and auditory cell lines representing pro-sensory precursors of hair cells (UB-OC1) and auditory neuroblasts (US-VOT-N33). RESULTS We demonstrated that VS-induced SNHL was linked to increased secretion of TNF-α, IL-2R, CD163, eotaxin, and HGF, while larger tumor size was associated with higher levels of TNF-α, TNF-R2, IL-1α, IFN-α, MIP-1β, and IL-21 secretion. We identified heterogeneity among VS tumors in their capacity to secrete TNF-α. Tumors with high levels of TNF-α secretion released cytokines and chemokines that significantly correlated with poor hearing (TWEAK and eotaxin) or better hearing (LIF, GRO-α, MIP-1α, MIP-3α, and IL-1α). Among these, TWEAK was notably abundant, with levels exceeding those in normal nerve tissue, elevated in patients with non-serviceable hearing and strongly linked to poor hearing in patients with TNF-α high-secreting tumors. In vivo, we demonstrated that VS-secreted factors reach the inner ear, with elevated TNF-α and TWEAK in the perilymph and blood of tumor-bearing mice with impaired hearing. In vitro, TWEAK amplified TNF-α -mediated cytotoxicity in TNF-α sensitive cells (L929) and auditory cell lines (UB-OC1 and US-VOT-N33) at tumor-secreted concentrations. CONCLUSION This study provides compelling evidence that VS-secreted TNF-α and TWEAK act synergistically to drive tumor-induced SNHL. Targeting the TNF-α/TWEAK axis presents a promising new avenue for preventing VS-induced SNHL.
Collapse
Affiliation(s)
- Sasa Vasilijic
- Department of Otolaryngology- Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Rd, Palo Alto, Stanford, CA, 94304, USA
| | - Richard Seist
- Department of Otolaryngology- Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Rd, Palo Alto, Stanford, CA, 94304, USA
| | - Zhenzhen Yin
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lei Xu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Konstantina M Stankovic
- Department of Otolaryngology- Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Rd, Palo Alto, Stanford, CA, 94304, USA.
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Aden D, Sureka N, Zaheer S, Chaurasia JK, Zaheer S. Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment. Immunology 2025; 174:30-72. [PMID: 39462179 DOI: 10.1111/imm.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
4
|
Tsoupras A, Adamantidi T, Finos MA, Philippopoulos A, Detopoulou P, Tsopoki I, Kynatidou M, Demopoulos CA. Re-Assessing the Role of Platelet Activating Factor and Its Inflammatory Signaling and Inhibitors in Cancer and Anti-Cancer Strategies. FRONT BIOSCI-LANDMRK 2024; 29:345. [PMID: 39473406 DOI: 10.31083/j.fbl2910345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 01/03/2025]
Abstract
Since 2000s, we have outlined the multifaceted role of inflammation in several aspects of cancer, via specific inflammatory mediators, including the platelet activating factor (PAF) and PAF-receptor (PAFR) related signaling, which affect important inflammatory junctions and cellular interactions that are associated with tumor-related inflammatory manifestations. It is now well established that disease-related unresolved chronic inflammatory responses can promote carcinogenesis. At the same time, tumors themselves are able to promote their progression and metastasis, by triggering an inflammation-related vicious cycle, in which PAF and its signaling play crucial role(s), which usually conclude in tumor growth and angiogenesis. In parallel, new evidence suggests that PAF and its signaling also interact with several inflammation-related cancer treatments by inducing an antitumor immune response or, conversely, promoting tumor recurrence. Within this review article, the current knowledge and future perspectives of the implication of PAF and its signaling in all these important aspects of cancer are thoroughly re-assessed. The potential beneficial role of PAF-inhibitors and natural or synthetic modulators of PAF-metabolism against tumors, tumor progression and metastasis are evaluated. Emphasis is given to natural and synthetic molecules with dual anti-PAF and anti-cancer activities (Bio-DAPAC-tives), with proven evidence of their antitumor potency through clinical trials, as well as on metal-based anti-inflammatory mediators that constitute a new class of potent inhibitors. The way these compounds may promote anti-tumor effects and modulate the inflammatory cellular actions and immune responses is also discussed. Limitations and future perspectives on targeting of PAF, its metabolism and receptor, including PAF-related inflammatory signaling, as part(s) of anti-tumor strategies that involve inflammation and immune response(s) for an improved outcome, are also evaluated.
Collapse
Affiliation(s)
- Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Marios Argyrios Finos
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Athanassios Philippopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Paraskevi Detopoulou
- Department of Nutritional Sciences and Dietetics, University of the Peloponnese, 24100 Kalamata, Greece
| | - Ifigeneia Tsopoki
- Department of Dietetics and Nutrition, Harokopio University, 17676 Kallithea, Greece
| | - Maria Kynatidou
- Department of Dietetics and Nutrition, Harokopio University, 17676 Kallithea, Greece
| | - Constantinos A Demopoulos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
5
|
Xiao Y, Li Y, Zhao H. Spatiotemporal metabolomic approaches to the cancer-immunity panorama: a methodological perspective. Mol Cancer 2024; 23:202. [PMID: 39294747 PMCID: PMC11409752 DOI: 10.1186/s12943-024-02113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Metabolic reprogramming drives the development of an immunosuppressive tumor microenvironment (TME) through various pathways, contributing to cancer progression and reducing the effectiveness of anticancer immunotherapy. However, our understanding of the metabolic landscape within the tumor-immune context has been limited by conventional metabolic measurements, which have not provided comprehensive insights into the spatiotemporal heterogeneity of metabolism within TME. The emergence of single-cell, spatial, and in vivo metabolomic technologies has now enabled detailed and unbiased analysis, revealing unprecedented spatiotemporal heterogeneity that is particularly valuable in the field of cancer immunology. This review summarizes the methodologies of metabolomics and metabolic regulomics that can be applied to the study of cancer-immunity across single-cell, spatial, and in vivo dimensions, and systematically assesses their benefits and limitations.
Collapse
Affiliation(s)
- Yang Xiao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Huakan Zhao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
6
|
XIU WEIGANG, LIU XINGYU, HU KAIXIN, ZHANG QIN, SHI HUASHAN. The role of cholesterol metabolism in lung cancer. Oncol Res 2024; 32:1613-1621. [PMID: 39308527 PMCID: PMC11413819 DOI: 10.32604/or.2024.047933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/04/2024] [Indexed: 09/25/2024] Open
Abstract
Elevated serum cholesterol metabolism is associated with a reduced risk of lung cancer. Disrupted cholesterol metabolism is evident in both lung cancer patients and tumor cells. Inhibiting tumor cell cholesterol uptake or biosynthesis pathways, through the modulation of receptors and enzymes such as liver X receptor and sterol-regulatory element binding protein 2, effectively restrains lung tumor growth. Similarly, promoting cholesterol excretion yields comparable effects. Cholesterol metabolites, including oxysterols and isoprenoids, play a crucial role in regulating cholesterol metabolism within tumor cells, consequently impacting cancer progression. In lung cancer patients, both the cholesterol levels in the tumor microenvironment and within tumor cells significantly influence cell growth, proliferation, and metastasis. The effects of cholesterol metabolism are further mediated by the reprogramming of immune cells such as T cells, B cells, macrophages, myeloid-derived suppressor cells, among others. Ongoing research is investigating drugs targeting cholesterol metabolism for clinical treatments. Statins, targeting the cholesterol biosynthesis pathway, are widely employed in lung cancer treatment, either as standalone agents or in combination with other drugs. Additionally, drugs focusing on cholesterol transportation have shown promise as effective therapies for lung cancer. In this review, we summarized current research regarding the rule of cholesterol metabolism and therapeutic advances in lung cancer.
Collapse
Affiliation(s)
- WEIGANG XIU
- Department of Thoracic Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - XINGYU LIU
- Department of Thoracic Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - KAIXIN HU
- Department of Thoracic Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - QIN ZHANG
- Department of Postgraduate Students, West China School of Medicine, Chengdu, 610041, China
| | - HUASHAN SHI
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
7
|
Swanton C, Bernard E, Abbosh C, André F, Auwerx J, Balmain A, Bar-Sagi D, Bernards R, Bullman S, DeGregori J, Elliott C, Erez A, Evan G, Febbraio MA, Hidalgo A, Jamal-Hanjani M, Joyce JA, Kaiser M, Lamia K, Locasale JW, Loi S, Malanchi I, Merad M, Musgrave K, Patel KJ, Quezada S, Wargo JA, Weeraratna A, White E, Winkler F, Wood JN, Vousden KH, Hanahan D. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024; 187:1589-1616. [PMID: 38552609 PMCID: PMC12077170 DOI: 10.1016/j.cell.2024.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.
Collapse
Affiliation(s)
- Charles Swanton
- The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Elsa Bernard
- The Francis Crick Institute, London, UK; INSERM U981, Gustave Roussy, Villejuif, France
| | | | - Fabrice André
- INSERM U981, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Paris Saclay University, Kremlin-Bicetre, France
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Allan Balmain
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gerard Evan
- The Francis Crick Institute, London, UK; Kings College London, London, UK
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrés Hidalgo
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Area of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Johanna A Joyce
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Katja Lamia
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA; Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Department of Medical Oncology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Miriam Merad
- Department of immunology and immunotherapy, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn Musgrave
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK; Department of Haematology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sergio Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Jennifer A Wargo
- Department of Surgical Oncology, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashani Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton, NJ, USA
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John N Wood
- Molecular Nociception Group, WIBR, University College London, London, UK
| | | | - Douglas Hanahan
- Lausanne Branch, Ludwig Institute for Cancer Research, Lausanne, Switzerland; Swiss institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Agora Translational Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
8
|
Masel R, Roche ME, Martinez-Outschoorn U. Hodgkin Lymphoma: A disease shaped by the tumor micro- and macroenvironment. Best Pract Res Clin Haematol 2023; 36:101514. [PMID: 38092473 DOI: 10.1016/j.beha.2023.101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 12/18/2023]
Abstract
The tumor microenvironment (TMicroE) and tumor macroenvironment (TMacroE) are defining features of classical Hodgkin lymphoma (cHL). They are of critical importance to clinicians since they explain the common signs and symptoms, allow us to classify these neoplasms, develop prognostic and predictive biomarkers, bioimaging and novel treatments. The TMicroE is defined by effects of cancer cells to their immediate surrounding and within the tumor. Effects of cancer cells at a distance or outside of the tumor define the TMacroE. Paraneoplastic syndromes are signs and symptoms due to effects of cancer at a distance or the TMacroE, which are not due to direct cancer cell infiltration. The most common paraneoplastic symptoms are B-symptoms, which manifest as fevers, chills, drenching night sweats, and/or weight loss. Less common paraneoplastic syndromes include those that affect the central nervous system, skin, kidney, and hematological autoimmune phenomena including hemophagocytic lymphohistiocytosis (HLH). Paraneoplastic signs such as leukocytosis, lymphopenia, anemia, and hypoalbuminemia are prognostic biomarkers. The neoplastic cells in cHL are the Hodgkin and Reed Sternberg (HRS) cells, which are preapoptotic germinal center B cells with a high mutational burden and almost universal genetic alterations at the 9p24.1 locus primarily through copy gain and amplification with strong activation of signaling via PD-L1, JAK-STAT, NFkB, and c-MYC. In the majority of cases of cHL over 95% of the tumor cells are non-neoplastic. In the TMicroE, HRS cells recruit and mold non-neoplastic cells vigorously via extracellular vesicles, chemokines, cytokines and growth factors such as CCL5, CCL17, IL6, and TGF-β to promote a feed-forward inflammatory loop, which drives cancer aggressiveness and anti-cancer immune evasion. Novel single cell profiling techniques provide critical information on the role in cHL of monocytes-macrophages, neutrophils, T helper, Tregs, cytotoxic CD8+ T cells, eosinophils, mast cells and fibroblasts. Here, we summarize the effects of EBV on the TMicroE and TMacroE. In addition, how the metabolism of the TMicroE of cHL affects bioimaging and contributes to cancer aggressiveness is reviewed. Finally, we discuss how the TMicroE is being leveraged for risk adapted treatment strategies based on bioimaging results and novel immune therapies. In sum, it is clear that we cannot effectively manage patients with cHL without understanding the TMicroE and TMacroE and its clinical importance is expected to continue to grow rapidly.
Collapse
Affiliation(s)
- Rebecca Masel
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University-Philadelphia, USA; Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University-Philadelphia, USA
| | - Megan E Roche
- Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University-Philadelphia, USA
| | - Ubaldo Martinez-Outschoorn
- Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University-Philadelphia, USA.
| |
Collapse
|
9
|
Montoya C, Spieler B, Welford SM, Kwon D, Pra AD, Lopes G, Mihaylov IB. Predicting response to immunotherapy in non-small cell lung cancer- from bench to bedside. Front Oncol 2023; 13:1225720. [PMID: 38033493 PMCID: PMC10686412 DOI: 10.3389/fonc.2023.1225720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Background Immune checkpoint inhibitor (ICI) therapy is first-line treatment for many advanced non-small cell lung cancer (aNSCLC) patients. Predicting response could help guide selection of intensified or alternative anti-cancer regimens. We hypothesized that radiomics and laboratory variables predictive of ICI response in a murine model would also predict response in aNSCLC patients. Methods Fifteen mice with lung carcinoma tumors implanted in bilateral flanks received ICI. Pre-ICI laboratory and computed tomography (CT) data were evaluated for association with systemic ICI response. Baseline clinical and CT data for 117 aNSCLC patients treated with nivolumab were correlated with overall survival (OS). Models for predicting treatment response were created and subjected to internal cross-validation, with the human model further tested on 42 aNSCLC patients who received pembrolizumab. Results Models incorporating baseline NLR and identical radiomics (surface-to-mass ratio, average Gray, and 2D kurtosis) predicted ICI response in mice and OS in humans with AUCs of 0.91 and 0.75, respectively. The human model successfully sorted pembrolizumab patients by longer vs. shorter predicted OS (median 35 months vs. 6 months, p=0.026 by log-rank). Discussion This study advances precision oncology by non-invasively classifying aNSCLC patients according to ICI response using pre-treatment data only. Interestingly, identical radiomics features and NLR correlated with outcomes in the preclinical study and with ICI response in 2 independent patient cohorts, suggesting translatability of the findings. Future directions include using a radiogenomic approach to optimize modeling of ICI response.
Collapse
Affiliation(s)
- Chris Montoya
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL, United States
| | - Benjamin Spieler
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL, United States
| | - Scott M. Welford
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL, United States
| | - Deukwoo Kwon
- Division of Clinical and Translational Sciences, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Alan Dal Pra
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL, United States
| | - Gilberto Lopes
- Department of Medical Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL, United States
| | - Ivaylo B. Mihaylov
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
10
|
Singh P, Yadav R, Verma M, Chhabra R. Analysis of the Inhibitory Effect of hsa-miR-145-5p and hsa-miR-203a-5p on Imatinib-Resistant K562 Cells by GC/MS Metabolomics Method. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2117-2126. [PMID: 37706267 DOI: 10.1021/jasms.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Imatinib (IM) resistance is considered to be a significant challenge in the management of chronic myeloid leukemia (CML). Previous studies have reported that hsa-miR-145-5p and hsa-miR-203a-5p can overcome IM resistance and hsa-miR-203a-5p can alter glutathione metabolism in IM-resistant cells. The purpose of this study was to examine whether hsa-miR-145-5p or hsa-miR-203a-5p counters IM resistance by targeting the overall metabolic profile of IM-resistant K562 cells. The metablic profiling of cell lysates obtained from IM-sensitive, IM-resistant, and miR-transfected IM-resistant K562 cells was carried out using the GC-MS technique. Overall, 75 major metabolites were detected, of which 32 were present in all samples. The pathway analysis of MetaboAnalyst 5.0 revealed that the majorly enriched pathways included glucose metabolism, fatty acid biosynthesis, lipogenesis, and nucleotide metabolism. Eleven of identified metabolites, l-glutamine, l-glutamic acid, l-lactic acid, phosphoric acid, 9,12-octadecadienoic acid, 9-octadecenoic acid, myristic acid, palmitic acid, cholesterol, and β-alanine, appeared in enriched pathways. IM-resistant cells had comparatively higher concentrations of all of these metabolites. Notably, the introduction of hsa-miR-145-5p or hsa-miR-203a-5p into resistant cells resulted in a decrease in levels of these metabolites. The efficacy of miR-203a-5p was particularly remarkable in comparison with miR-145-5p, as evidenced by partial least-squares-discriminant analysis (PLS-DA), which showed a high level of similarity in metabolic profile between IM-sensitive K562 cells and IM-resistant cells transfected with hsa-miR-203a-5p. The results indicate that GC-MS-based metabolic profiling has the potential to distinguish between drug-resistant and -sensitive cells. This approach can also be used to routinely monitor therapeutic response in drug-resistant patients, thus, enabling personalized therapy.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Radheshyam Yadav
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Malkhey Verma
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
11
|
Park KY, Snyder AZ, Olufawo M, Trevino G, Luckett PH, Lamichhane B, Xie T, Lee JJ, Shimony JS, Leuthardt EC. Glioblastoma induces whole-brain spectral change in resting state fMRI: Associations with clinical comorbidities and overall survival. Neuroimage Clin 2023; 39:103476. [PMID: 37453204 PMCID: PMC10371854 DOI: 10.1016/j.nicl.2023.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Glioblastoma, a highly aggressive form of brain tumor, is a brain-wide disease. We evaluated the impact of tumor burden on whole brain resting-state functional magnetic resonance imaging (rs-fMRI) activity. Specifically, we analyzed rs-fMRI signals in the temporal frequency domain in terms of the power-law exponent and fractional amplitude of low-frequency fluctuations (fALFF). We contrasted 189 patients with newly-diagnosed glioblastoma versus 189 age-matched healthy reference participants from an external dataset. The patient and reference datasets were matched for age and head motion. The principal finding was markedly flatter spectra and reduced grey matter fALFF in the patients as compared to the reference dataset. We posit that the whole-brain spectral change is attributable to global dysregulation of excitatory and inhibitory balance and metabolic demand in the tumor-bearing brain. Additionally, we observed that clinical comorbidities, in particular, seizures, and MGMT promoter methylation, were associated with flatter spectra. Notably, the degree of change in spectra was predictive of overall survival. Our findings suggest that frequency domain analysis of rs-fMRI activity provides prognostic information in glioblastoma patients and offers a means of noninvasively studying the effects of glioblastoma on the whole brain.
Collapse
Affiliation(s)
- Ki Yun Park
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Abraham Z Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael Olufawo
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Gabriel Trevino
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick H Luckett
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bidhan Lamichhane
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA; Center for Health Sciences, Oklahoma State University, 1013 E 66th Pl, Tulsa, OK 74136, USA
| | - Tao Xie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - John J Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA; Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Razi S, Haghparast A, Chodari Khameneh S, Ebrahimi Sadrabadi A, Aziziyan F, Bakhtiyari M, Nabi-Afjadi M, Tarhriz V, Jalili A, Zalpoor H. The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Commun Signal 2023; 21:143. [PMID: 37328876 PMCID: PMC10273768 DOI: 10.1186/s12964-023-01129-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 06/18/2023] Open
Abstract
In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In this line, the effects of mechanical forces on CSCs such as epithelial-mesenchymal transition, cellular plasticity, etc., the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress has been made in research, more studies will be required in the future to explore more aspects of how CSCs contribute to cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | | | | | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
- Cytotech and Bioinformatics Research Group, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran.
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran.
- Parvaz Research Ideas Supporter Institute, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Soeroso NN, Ananda FR, Sitanggang JS, Vinolina NS. The role of oncogenes and tumor suppressor genes in determining survival rates of lung cancer patients in the population of North Sumatra, Indonesia. F1000Res 2023; 11:853. [PMID: 37427014 PMCID: PMC10329197 DOI: 10.12688/f1000research.113303.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Background: Gaining a better understanding of molecular alterations in the pathogenesis of lung cancer reveals a significant change in approach to the management and prognosis of lung cancer. Several oncogenes and tumor suppressor genes have been identified and have different roles related to survival rates in lung cancer patients. This study aims to determine the role of KRAS, EGFR, and TP53 mutations in the survival rate of lung cancer patients in the population of North Sumatra. Methods: This is a retrospective cohort study involving 108 subjects diagnosed with lung cancer from histopathology specimens. DNA extractions were performed using FFPE followed by PCR examinations for assessing the expressions of EGFR, RAS, and TP53 protein. Sequencing analysis was carried out to determine the mutations of EGFR exon 19 and 21, RAS protein exon 2, and TP53 exon 5-6 and 8-9. Data input and analysis were conducted using statistical analysis software for Windows. The survival rate analysis was presented with Kaplan Meier. Results: 52 subjects completed all procedures in this study. Most of the subjects are male (75%), above 60 years old (53.8%), heavy smokers (75%), and suffer from adenocarcinoma type of lung cancer (69.2%). No subjects showed KRAS exon 2 mutations. Overall survival rates increased in patients with EGFR mutations (15 months compared to 8 months; p=0.001) and decreased in patients with TP53 mutations (7 months compared to 9 months; p=0.148). Also, there was increasing Progression-Free Survival in patients with EGFR mutations (6 months compared to 3 months) ( p=0.19) and decreasing PFS in patients with TP53 mutations (3 months compared to 6 months) ( p=0.07). Conclusions: There were no KRAS mutations in this study. EGFR mutations showed a higher survival rate, while TP53 mutations showed a lower survival rate in overall survival and progression-free survival.
Collapse
Affiliation(s)
- Noni Novisari Soeroso
- Thoracic Oncology Division, Department of Pulmonology and Respiratory Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, 20155, Indonesia
| | - Fannie Rizki Ananda
- Department of Pulmonology and Respiratory Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, 20155, Indonesia
| | | | | |
Collapse
|
14
|
Wu J, Meng F, Ran D, Song Y, Dang Y, Lai F, Yang L, Deng M, Song Y, Zhu J. The Metabolism and Immune Environment in Diffuse Large B-Cell Lymphoma. Metabolites 2023; 13:734. [PMID: 37367892 DOI: 10.3390/metabo13060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Cells utilize different metabolic processes to maintain their growth and differentiation. Tumor cells have made some metabolic changes to protect themselves from malnutrition. These metabolic alterations affect the tumor microenvironment and macroenvironment. Developing drugs targeting these metabolic alterations could be a good direction. In this review, we briefly introduce metabolic changes/regulations of the tumor macroenvironment and microenvironment and summarize potential drugs targeting the metabolism in diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Jianbo Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Fuqing Meng
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Danyang Ran
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Yalong Song
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yunkun Dang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Fan Lai
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Longyan Yang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Mi Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
15
|
Li X, Yi Y, Wu T, Chen N, Gu X, Xiang L, Jiang Z, Li J, Jin H. Integrated microbiome and metabolome analysis reveals the interaction between intestinal flora and serum metabolites as potential biomarkers in hepatocellular carcinoma patients. Front Cell Infect Microbiol 2023; 13:1170748. [PMID: 37260707 PMCID: PMC10227431 DOI: 10.3389/fcimb.2023.1170748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Globally, liver cancer poses a serious threat to human health and quality of life. Despite numerous studies on the microbial composition of the gut in hepatocellular carcinoma (HCC), little is known about the interactions of the gut microbiota and metabolites and their role in HCC. This study examined the composition of the gut microbiota and serum metabolic profiles in 68 patients with HCC, 33 patients with liver cirrhosis (LC), and 34 healthy individuals (NC) using a combination of metagenome sequencing and liquid chromatography-mass spectrometry (LC-MS). The composition of the serum metabolites and the structure of the intestinal microbiota were found to be significantly altered in HCC patients compared to non-HCC patients. LEfSe and metabolic pathway enrichment analysis were used to identify two key species (Odoribacter splanchnicus and Ruminococcus bicirculans) and five key metabolites (ouabain, taurochenodeoxycholic acid, glycochenodeoxycholate, theophylline, and xanthine) associated with HCC, which then were combined to create panels for HCC diagnosis. The study discovered that the diagnostic performance of the metabolome was superior to that of the microbiome, and a panel comprised of key species and key metabolites outperformed alpha-fetoprotein (AFP) in terms of diagnostic value. Spearman's rank correlation test was used to determine the relationship between the intestinal flora and serum metabolites and their impact on hepatocarcinogenesis and progression. A random forest model was used to assess the diagnostic performance of the different histologies alone and in combination. In summary, this study describes the characteristics of HCC patients' intestinal flora and serum metabolism, demonstrates that HCC is caused by the interaction of intestinal flora and serum metabolites, and suggests that two key species and five key metabolites may be potential markers for the diagnosis of HCC.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongxiang Yi
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing, China
| | - Tongxin Wu
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nan Chen
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Gu
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liangliang Xiang
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaodi Jiang
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junwei Li
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Heiying Jin
- Department of Colorectal Surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Yang YF, Tsai KW, Chang PMH, Chang YC. Editorial: Metabolism-based omics integrations, biosensors, and molecular mechanisms in human cancers. Front Oncol 2023; 13:1159545. [PMID: 37007146 PMCID: PMC10062387 DOI: 10.3389/fonc.2023.1159545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Affiliation(s)
- Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Peter Mu-Hsin Chang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imagine and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Yu-Chan Chang,
| |
Collapse
|
17
|
Anticancer Potential of Apigenin and Isovitexin with Focus on Oncogenic Metabolism in Cancer Stem Cells. Metabolites 2023; 13:metabo13030404. [PMID: 36984844 PMCID: PMC10051376 DOI: 10.3390/metabo13030404] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
It has been demonstrated that cancer stem cells (CSCs) go through metabolic changes that differentiate them from non-CSCs. The altered metabolism of CSCs plays a vital role in tumor initiation, progression, immunosuppression, and resistance to conventional therapy. Therefore, defining the role of CSC metabolism in carcinogenesis has emerged as a main focus in cancer research. Two natural flavonoids, apigenin and isovitexin, have been shown to act synergistically with conventional chemotherapeutic drugs by sensitizing CSCs, ultimately leading to improved therapeutic efficacy. The aim of this study is to present a critical and broad evaluation of the anti-CSC capability of apigenin and isovitexin in different cancers as novel and untapped natural compounds for developing drugs. A thorough review of the included literature supports a strong association between anti-CSC activity and treatment with apigenin or isovitexin. Additionally, it has been shown that apigenin or isovitexin affected CSC metabolism and reduced CSCs through various mechanisms, including the suppression of the Wnt/β-catenin signaling pathway, the inhibition of nuclear factor-κB protein expression, and the downregulation of the cell cycle via upregulation of p21 and cyclin-dependent kinases. The findings of this study demonstrate that apigenin and isovitexin are potent candidates for treating cancer due to their antagonistic effects on CSC metabolism.
Collapse
|
18
|
Manaf NA, Wahab AA, Rasheed HA, Aziz MNC, Salim MIM, Sahalan M, Hum YC, Lai KW. Investigation of single beam ultrasound sensitivity as a monitoring tool for local hyperthermia treatment in breast cancer. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 82:5011-5030. [DOI: 10.1007/s11042-021-11845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 09/17/2021] [Accepted: 12/23/2021] [Indexed: 09/01/2023]
|
19
|
Chen G, Tan C, Liu X, Wang X, Tan Q, Chen Y. Associations between Systemic Immune-Inflammation Index and Diabetes Mellitus Secondary to Pancreatic Ductal Adenocarcinoma. J Clin Med 2023; 12:756. [PMID: 36769405 PMCID: PMC9917636 DOI: 10.3390/jcm12030756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND There is a high prevalence of diabetes mellitus (DM) in patients with pancreatic ductal adenocarcinoma (PDAC). An inflammatory response is considered as a potential mechanism involved in the process. The systemic immune-inflammation (SII) index is an integrated and novel inflammatory indicator developed in recent years. The purpose of this study was to determine the relationship between the SII and DM secondary to PDAC. METHOD Patients with a confirmed diagnosis of PDAC were analyzed in this cross-sectional study. Anthropometric measures, glucose-related data (including fasting glucose, 2 h OGTT, glycated hemoglobin, fasting insulin, and fasting c-peptide), tumor characteristics (tumor volumes, location and stages), and the periphery blood inflammatory index (white blood cell count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and SII) were recorded. The inflammation index was analyzed for its association with glucose-related parameters. Multivariable logistic regression analysis was used to analyze the association between SII levels and DM secondary to PDAC. RESULTS Blood cell results showed that the white blood cell count, neutrophils, lymphocytes, monocytes, platelets, the neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio were higher in patients with diabetes. It was worth noting that SII significantly increased in patients with diabetes secondary to PDAC (4.41 vs. 3.19, p < 0.0001). Multivariable logistic regression analysis showed that SII (OR: 2.024, 95%CI: 1.297, 3.157, p = 0.002) and age (OR: 1.043, 95%CI: 1.01, 1.077, p = 0.011) were the risk factors for DM secondary to PDAC after adjusting for covariates. According to Spearmen correlation analysis, SII was positively correlated with fasting glucose (r = 0.345, p < 0.0001), 2 h OGTT (r = 0.383, p < 0.0001), HbA1c (r = 0.211, p = 0.005), fasting insulin (r = 0.435, p < 0.0001), fasting C-peptide (r = 0.420, p < 0.0001), and HOMA2-IR (r = 0.491, p < 0.0001). CONCLUSIONS In conclusion, SII is significantly increased among patients with DM secondary to PDAC and is associated with the DM in patients with PDAC (OR: 2.382, 95% CI: 1.157, 4.903, p = 0.019). Additionally, SII is significantly correlated with insulin resistance. We are the first to investigate the relationship between SII and diabetes secondary to PDAC and further confirm the role of an inflammatory response in this process. More studies need to be designed to clarify how inflammatory responses participate.
Collapse
Affiliation(s)
| | | | | | | | | | - Yonghua Chen
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Luo M, Wang YT, Wang XK, Hou WH, Huang RL, Liu Y, Wang JQ. A multi-granularity convolutional neural network model with temporal information and attention mechanism for efficient diabetes medical cost prediction. Comput Biol Med 2022; 151:106246. [PMID: 36343403 DOI: 10.1016/j.compbiomed.2022.106246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/30/2022] [Accepted: 10/22/2022] [Indexed: 12/27/2022]
Abstract
As the cost of diabetes treatment continues to grow, it is critical to accurately predict the medical costs of diabetes. Most medical cost studies based on convolutional neural networks (CNNs) ignore the importance of multi-granularity information of medical concepts and time interval characteristics of patients' multiple visit sequences, which reflect the frequency of patient visits and the severity of the disease. Therefore, this paper proposes a new end-to-end deep neural network structure, MST-CNN, for medical cost prediction. The MST-CNN model improves the representation quality of medical concepts by constructing a multi-granularity embedding model of medical concepts and incorporates a time interval vector to accurately measure the frequency of patient visits and form an accurate representation of medical events. Moreover, the MST-CNN model integrates a channel attention mechanism to adaptively adjust the channel weights to focus on significant medical features. The MST-CNN model systematically addresses the problem of deep learning models for temporal data representation. A case study and three comparative experiments are conducted using data collected from Pingjiang County. Through experiments, the methods used in the proposed model are analyzed, and the super contribution of the model performance is demonstrated.
Collapse
Affiliation(s)
- Min Luo
- School of Business, Central South University, Changsha, 410083, PR China
| | - Yi-Ting Wang
- School of Business, Central South University, Changsha, 410083, PR China
| | - Xiao-Kang Wang
- School of Business, Central South University, Changsha, 410083, PR China
| | - Wen-Hui Hou
- School of Business, Central South University, Changsha, 410083, PR China
| | - Rui-Lu Huang
- School of Business, Central South University, Changsha, 410083, PR China
| | - Ye Liu
- School of Business, Central South University, Changsha, 410083, PR China
| | - Jian-Qiang Wang
- School of Business, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
21
|
Palacka P, Kucharská J, Obertová J, Rejleková K, Slopovský J, Mego M, Světlovská D, Kollárik B, Mardiak J, Gvozdjáková A. Changes in CoQ 10/Lipids Ratio, Oxidative Stress, and Coenzyme Q 10 during First-Line Cisplatin-Based Chemotherapy in Patients with Metastatic Urothelial Carcinoma (mUC). Int J Mol Sci 2022; 23:ijms232113123. [PMID: 36361913 PMCID: PMC9657286 DOI: 10.3390/ijms232113123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022] Open
Abstract
Oxidative stress plays an important role in cancer pathogenesis, and thiobarbituric acid-reactive substance level (TBARS)—a parameter of lipid peroxidation—has prognostic significance in chemotherapy-naive patients with metastatic urothelial carcinoma (mUC). However, the effect of cisplatin (CDDP)-based chemotherapy on oxidative stress, coenzyme Q10, and antioxidants remains unknown. The objective of this prospective study was to determine possible changes in the CoQ10 (coenzyme Q10)/lipids ratio, antioxidants (α-tocopherol, γ-tocopherol, β-carotene, CoQ10), total antioxidant status (TAS), and TBARS in plasma at baseline and during first-line chemotherapy based on CDDP in mUC subjects. In this prospective study, 63 consecutive patients were enrolled. The median age was 66 years (range 39−84), performance status according to the Eastern Cooperative Oncology Group (ECOG) was 2 in 7 subjects (11.1%), and visceral metastases were present in 31 (49.2%) patients. Plasma antioxidants were determined by HPLC and TAS and TBARS spectrophotometrically. After two courses of chemotherapy, we recorded significant enhancements compared to baseline for total cholesterol (p < 0.0216), very low-density lipoprotein (VLDL) cholesterol (p < 0.002), triacylglycerols (p < 0.0083), α-tocopherol (p < 0.0044), and coenzyme Q10-TOTAL (p < 0.0001). Ratios of CoQ10/total cholesterol, CoQ10/HDL-cholesterol, and CoQ10/LDL-cholesterol increased during chemotherapy vs. baseline (p < 0.0048, p < 0.0101, p < 0.0032, respectively), while plasma TBARS declined (p < 0.0004). The stimulation of antioxidants could be part of the defense mechanism during CDDP treatment. The increased index of CoQ10-TOTAL/lipids could reflect the effect of CDDP protecting lipoproteins from peroxidation.
Collapse
Affiliation(s)
- Patrik Palacka
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia
- National Cancer Institute, 833 10 Bratislava, Slovakia
- Correspondence:
| | - Jarmila Kucharská
- Pharmacobiochemical Laboratory of the 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Jana Obertová
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia
- National Cancer Institute, 833 10 Bratislava, Slovakia
| | - Katarína Rejleková
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia
- National Cancer Institute, 833 10 Bratislava, Slovakia
| | - Ján Slopovský
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia
- National Cancer Institute, 833 10 Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia
- National Cancer Institute, 833 10 Bratislava, Slovakia
| | - Daniela Světlovská
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia
- National Cancer Institute, 833 10 Bratislava, Slovakia
| | - Boris Kollárik
- Department of Urology, University Hospital in Bratislava, 851 07 Bratislava, Slovakia
| | - Jozef Mardiak
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, 833 10 Bratislava, Slovakia
- National Cancer Institute, 833 10 Bratislava, Slovakia
| | - Anna Gvozdjáková
- Pharmacobiochemical Laboratory of the 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| |
Collapse
|
22
|
Yang Y. Editorial: The adipose tissue microenvironment in cancer: Molecular mechanisms and targets for treatment. Front Cell Dev Biol 2022; 10:954645. [PMID: 36340036 PMCID: PMC9627479 DOI: 10.3389/fcell.2022.954645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2023] Open
Affiliation(s)
- Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Xiong H, Liu X, Xie Z, Zhu L, Lu H, Wang C, Yao J. Metabolic Symbiosis-Blocking Nano-Combination for Tumor Vascular Normalization Treatment. Adv Healthc Mater 2022; 11:e2102724. [PMID: 35708141 DOI: 10.1002/adhm.202102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/02/2022] [Indexed: 01/27/2023]
Abstract
The clinical anti-vascular endothelial growth factor (anti-VEGF) drugs and metronomic chemotherapy (MET) induced tumor vascular normalization treatment (TVNT) are easily antagonized by tumor microenvironment metabolic cross-talk between tumor cells and endothelial cells (ECs). To overcome this dilemma, nanodrug with the ability of ECs targeted glycolysis inhibition and nanodrug with the ability of tumor cell glycolysis inhibition, anti-VEGF, and MET are combined to prepare Nano-combination the pathways related to angiogenesis, tumor cell proliferation, and immunosuppression and breaking the negative sugar-lipid-protein metabolism balance in tumor microenvironment. Thus, stronger and more lasting normalized tumor vascular network and remarkable antitumor efficacy are obtained after treatment, constructing a positive feedback loop between TVNT and anti-tumor therapy. Above all, this study provides a new insight for solving the bottleneck of clinical TVNT.
Collapse
Affiliation(s)
- Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Xiaoyan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Zuohan Xie
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Linyuan Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Haipeng Lu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, No. 21 Middle Gehu Road, Changzhou, 213164, P. R. China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| |
Collapse
|
24
|
Lazar IM, Karcini A, Haueis JRS. Mapping the cell-membrane proteome of the SKBR3/HER2+ cell line to the cancer hallmarks. PLoS One 2022; 17:e0272384. [PMID: 35913978 PMCID: PMC9342750 DOI: 10.1371/journal.pone.0272384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
The hallmarks of biological processes that underlie the development of cancer have been long recognized, yet, existing therapeutic treatments cannot prevent cancer from continuing to be one of the leading causes of death worldwide. This work was aimed at exploring the extent to which the cell-membrane proteins are implicated in triggering cancer hallmark processes, and assessing the ability to pinpoint tumor-specific therapeutic targets through a combined membrane proteome/cancer hallmark perspective. By using GO annotations, a database of human proteins associated broadly with ten cancer hallmarks was created. Cell-membrane cellular subfractions of SKBR3/HER2+ breast cancer cells, used as a model system, were analyzed by high resolution mass spectrometry, and high-quality proteins (FDR<3%) identified by at least two unique peptides were mapped to the cancer hallmark database. Over 1,400 experimentally detected cell-membrane or cell-membrane associated proteins, representing ~18% of the human cell-membrane proteome, could be matched to the hallmark database. Representative membrane constituents such as receptors, CDs, adhesion and transport proteins were distributed over the entire genome and present in every hallmark category. Sustained proliferative signaling/cell cycle, adhesion/tissue invasion, and evasion of immune destruction emerged as prevalent hallmarks represented by the membrane proteins. Construction of protein-protein interaction networks uncovered a high level of connectivity between the hallmark members, with some receptor (EGFR, ERBB2, FGFR, MTOR, CSF1R), antigen (CD44), and adhesion (MUC1) proteins being implicated in most hallmark categories. An illustrative subset of 138 hallmark proteins that included 42 oncogenes, 24 tumor suppressors, 9 oncogene/tumor suppressor, and 45 approved drug targets was subjected to a more in-depth analysis. The existing drug targets were implicated mainly in signaling processes. Network centrality analysis revealed that nodes with high degree, rather than betweenness, represent a good resource for informing the selection of putative novel drug targets. Through heavy involvement in supporting cancer hallmark processes, we show that the functionally diverse and networked landscape of cancer cell-membrane proteins fosters unique opportunities for guiding the development of novel therapeutic interventions, including multi-agent, immuno-oncology and precision medicine applications.
Collapse
Affiliation(s)
- Iulia M. Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
- Academy of Integrated Science/Systems Biology, Virginia Tech, Blacksburg, VA, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States of America
- Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States of America
- * E-mail:
| | - Arba Karcini
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Joshua R. S. Haueis
- Academy of Integrated Science/Systems Biology, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
25
|
Chen F, Dai X, Zhou CC, Li KX, Zhang YJ, Lou XY, Zhu YM, Sun YL, Peng BX, Cui W. Integrated analysis of the faecal metagenome and serum metabolome reveals the role of gut microbiome-associated metabolites in the detection of colorectal cancer and adenoma. Gut 2022; 71:1315-1325. [PMID: 34462336 PMCID: PMC9185821 DOI: 10.1136/gutjnl-2020-323476] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 08/12/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To profile gut microbiome-associated metabolites in serum and investigate whether these metabolites could distinguish individuals with colorectal cancer (CRC) or adenoma from normal healthy individuals. DESIGN Integrated analysis of untargeted serum metabolomics by liquid chromatography-mass spectrometry and metagenome sequencing of paired faecal samples was applied to identify gut microbiome-associated metabolites with significantly altered abundance in patients with CRC and adenoma. The ability of these metabolites to discriminate between CRC and colorectal adenoma was tested by targeted metabolomic analysis. A model based on gut microbiome-associated metabolites was established and evaluated in an independent validation cohort. RESULTS In total, 885 serum metabolites were significantly altered in both CRC and adenoma, including eight gut microbiome-associated serum metabolites (GMSM panel) that were reproducibly detected by both targeted and untargeted metabolomics analysis and accurately discriminated CRC and adenoma from normal samples. A GMSM panel-based model to predict CRC and colorectal adenoma yielded an area under the curve (AUC) of 0.98 (95% CI 0.94 to 1.00) in the modelling cohort and an AUC of 0.92 (83.5% sensitivity, 84.9% specificity) in the validation cohort. The GMSM model was significantly superior to the clinical marker carcinoembryonic antigen among samples within the validation cohort (AUC 0.92 vs 0.72) and also showed promising diagnostic accuracy for adenomas (AUC=0.84) and early-stage CRC (AUC=0.93). CONCLUSION Gut microbiome reprogramming in patients with CRC is associated with alterations of the serum metabolome, and GMSMs have potential applications for CRC and adenoma detection.
Collapse
Affiliation(s)
- Feng Chen
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xudong Dai
- Dept of Clinical Research, Precogify Pharmaceutical Co, Ltd, Beijing, China
| | - Chang-Chun Zhou
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ke-Xin Li
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yu-Juan Zhang
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao-Ying Lou
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan-Min Zhu
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Yan-Lai Sun
- Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bao-Xiang Peng
- Clinical Laboratory, Linyi Cancer Hospital, Linyi, China
| | - Wei Cui
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
26
|
Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A, Martínez-Guardado I, Navarro-Jiménez E, Tornero-Aguilera JF. Nutritional and Exercise Interventions in Cancer-Related Cachexia: An Extensive Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4604. [PMID: 35457471 PMCID: PMC9025820 DOI: 10.3390/ijerph19084604] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023]
Abstract
One of the common traits found in cancer patients is malnutrition and cachexia, which affects between 25% to 60% of the patients, depending on the type of cancer, diagnosis, and treatment. Given the lack of current effective pharmacological solutions for low muscle mass and sarcopenia, holistic interventions are essential to patient care, as well as exercise and nutrition. Thus, the present narrative review aimed to analyze the nutritional, pharmacological, ergonutritional, and physical exercise strategies in cancer-related cachexia. The integration of multidisciplinary interventions could help to improve the final intervention in patients, improving their prognosis, quality of life, and life expectancy. To reach these aims, an extensive narrative review was conducted. The databases used were MedLine (PubMed), Cochrane (Wiley), Embase, PsychINFO, and CinAhl. Cancer-related cachexia is a complex multifactorial phenomenon in which systemic inflammation plays a key role in the development and maintenance of the symptomatology. Pharmacological interventions seem to produce a positive effect on inflammatory state and cachexia. Nutritional interventions are focused on a high-energy diet with high-density foods and the supplementation with antioxidants, while physical activity is focused on strength-based training. The implementation of multidisciplinary non-pharmacological interventions in cancer-related cachexia could be an important tool to improve traditional treatments and improve patients' quality of life.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (L.R.-F.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (L.R.-F.); (A.R.-Z.); (J.F.T.-A.)
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (L.R.-F.); (A.R.-Z.); (J.F.T.-A.)
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain;
| | | | | |
Collapse
|
27
|
Feunteun J, Ostyn P, Delaloge S. TUMOR CELL MALIGNANCY: A COMPLEX TRAIT BUILT THROUGH RECIPROCAL INTERACTIONS BETWEEN TUMORS AND TISSUE-BODY SYSTEM. iScience 2022; 25:104217. [PMID: 35494254 PMCID: PMC9044163 DOI: 10.1016/j.isci.2022.104217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of oncogenes and tumor suppressor genes in the late past century, cancer research has been overwhelmingly focused on the genetics and biology of tumor cells and hence has addressed mostly cell-autonomous processes with emphasis on traditional driver/passenger genetic models. Nevertheless, over that same period, multiple seminal observations have accumulated highlighting the role of non-cell autonomous effectors in tumor growth and metastasis. However, given that cell autonomous and non-autonomous events are observed together at the time of diagnosis, it is in fact impossible to know whether the malignant transformation is initiated by cell autonomous oncogenic events or by non-cell autonomous conditions generated by alterations of the tissue-body ecosystem. This review aims at addressing this issue by taking the option of defining malignancy as a complex genetic trait incorporating genetically determined reciprocal interactions between tumor cells and tissue-body ecosystem.
Collapse
Affiliation(s)
- Jean Feunteun
- INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- UMR 9019, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Corresponding author
| | - Pauline Ostyn
- UMR 9019, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Suzette Delaloge
- Breast Cancer Group, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
28
|
The metabolism of cells regulates their sensitivity to NK cells depending on p53 status. Sci Rep 2022; 12:3234. [PMID: 35217717 PMCID: PMC8881467 DOI: 10.1038/s41598-022-07281-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Leukemic cells proliferate faster than non-transformed counterparts. This requires them to change their metabolism to adapt to their high growth. This change can stress cells and facilitate recognition by immune cells such as cytotoxic lymphocytes, which express the activating receptor Natural Killer G2-D (NKG2D). The tumor suppressor gene p53 regulates cell metabolism, but its role in the expression of metabolism-induced ligands, and subsequent recognition by cytotoxic lymphocytes, is unknown. We show here that dichloroacetate (DCA), which induces oxidative phosphorylation (OXPHOS) in tumor cells, induces the expression of such ligands, e.g. MICA/B, ULBP1 and ICAM-I, by a wtp53-dependent mechanism. Mutant or null p53 have the opposite effect. Conversely, DCA sensitizes only wtp53-expressing cells to cytotoxic lymphocytes, i.e. cytotoxic T lymphocytes and NK cells. In xenograft in vivo models, DCA slows down the growth of tumors with low proliferation. Treatment with DCA, monoclonal antibodies and NK cells also decreased tumors with high proliferation. Treatment of patients with DCA, or a biosimilar drug, could be a clinical option to increase the effectiveness of CAR T cell or allogeneic NK cell therapies.
Collapse
|
29
|
The Complex Biology of the Obesity-Induced, Metastasis-Promoting Tumor Microenvironment in Breast Cancer. Int J Mol Sci 2022; 23:ijms23052480. [PMID: 35269622 PMCID: PMC8910079 DOI: 10.3390/ijms23052480] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most prevalent cancers in women contributing to cancer-related death in the advanced world. Apart from the menopausal status, the trigger for developing breast cancer may vary widely from race to lifestyle factors. Epidemiological studies refer to obesity-associated metabolic changes as a critical risk factor behind the progression of breast cancer. The plethora of signals arising due to obesity-induced changes in adipocytes present in breast tumor microenvironment, significantly affect the behavior of adjacent breast cells. Adipocytes from white adipose tissue are currently recognized as an active endocrine organ secreting different bioactive compounds. However, due to excess energy intake and increased fat accumulation, there are morphological followed by secretory changes in adipocytes, which make the breast microenvironment proinflammatory. This proinflammatory milieu not only increases the risk of breast cancer development through hormone conversion, but it also plays a role in breast cancer progression through the activation of effector proteins responsible for the biological phenomenon of metastasis. The aim of this review is to present a comprehensive picture of the complex biology of obesity-induced changes in white adipocytes and demonstrate the relationship between obesity and breast cancer progression to metastasis.
Collapse
|
30
|
Cytotoxicity of Mahanimbine from Curry Leaves in Human Breast Cancer Cells (MCF-7) via Mitochondrial Apoptosis and Anti-Angiogenesis. Molecules 2022; 27:molecules27030971. [PMID: 35164236 PMCID: PMC8838323 DOI: 10.3390/molecules27030971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/23/2022] Open
Abstract
Mahanimbine (MN) is a carbazole alkaloid present in the leaves of Murraya koenigii, which is an integral part of medicinal and culinary practices in Asia. In the present study, the anticancer, apoptotic and anti-invasive potential of MN has been delineated in vitro. Apoptosis cells determination was carried out utilizing the acridine orange/propidium iodide double fluorescence test. During treatment, caspase-3/7,-8, and-9 enzymes and mitochondrial membrane potentials (Δψm) were evaluated. Anti-invasive properties were tested utilizing a wound-healing scratch test. Protein and gene expression studies were used to measure Bax, Bcl2, MMP-2, and -9 levels. The results show that MN could induce apoptosis in MCF-7 cells at 14 µM concentration IC50. MN-induced mitochondria-mediated apoptosis, with loss in Δψm, regulation of Bcl2/Bax, and accumulation of ROS (p ≤ 0.05). Caspase-3/7 and -9 enzyme activity were detected in MCF-7 cells after 24 and 48 h of treatment with MN. The anti-invasive property of MN was shown by inhibition of wound healing at the dose-dependent level and significantly suppressed mRNA and protein expression on MMP-2 and -9 in MCF-7 cells treated with a sub-cytotoxic dose of MN. The overall results indicate MN is a potential therapeutic compound against breast cancer as an apoptosis inducer and anti-invasive agent.
Collapse
|
31
|
A chimeric switch-receptor PD1-DAP10-41BB augments NK92-cell activation and killing for human lung Cancer H1299 Cell. Biochem Biophys Res Commun 2022; 600:94-100. [DOI: 10.1016/j.bbrc.2022.02.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/25/2022]
|
32
|
Kaltschmidt B, Witte KE, Greiner JFW, Weissinger F, Kaltschmidt C. Targeting NF-κB Signaling in Cancer Stem Cells: A Narrative Review. Biomedicines 2022; 10:biomedicines10020261. [PMID: 35203471 PMCID: PMC8869483 DOI: 10.3390/biomedicines10020261] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/14/2022] Open
Abstract
Among the cell populations existing within a tumor, cancer stem cells are responsible for metastasis formation and chemotherapeutic resistance. In the present review, we focus on the transcription factor NF-κB, which is present in every cell type including cancer stem cells. NF-κB is involved in pro-tumor inflammation by its target gene interleukin 1 (IL1) and can be activated by a feed-forward loop in an IL1-dependent manner. Here, we summarize current strategies targeting NF-κB by chemicals and biologicals within an integrated cancer therapy. Specifically, we start with a tyrosine kinase inhibitor targeting epidermal growth factor (EGF)-receptor-mediated phosphorylation. Furthermore, we summarize current strategies of multiple myeloma treatment involving lenalidomide, bortezomib, and dexamethasone as potential NF-κB inhibitors. Finally, we discuss programmed death-ligand 1 (PD-L1) as an NF-κB target gene and its role in checkpoint therapy. We conclude, that NF-κB inhibition by specific inhibitors of IκB kinase was of no clinical use but inhibition of upstream and downstream targets with drugs or biologicals might be a fruitful way to treat cancer stem cells.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Molecular Neurobiology, Faculty of Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany;
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
| | - Kaya E. Witte
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Johannes F. W. Greiner
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Florian Weissinger
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Hematology, Oncology, Internal Medicine, Bone Marrow and Stem Cell Transplantation, Palliative Medicine, and Tumor Center, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Schildescher Str. 99, 33611 Bielefeld, Germany
| | - Christian Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Correspondence: ; Tel.: +49-521-106-5625
| |
Collapse
|
33
|
Szczygieł M, Markiewicz M, Szafraniec MJ, Hojda A, Fiedor L, Urbanska K. Systemic Mobilization of Breast Cancer Resistance Protein in Response to Oncogenic Stress. Cancers (Basel) 2022; 14:cancers14020313. [PMID: 35053477 PMCID: PMC8773772 DOI: 10.3390/cancers14020313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The drug efflux mediated by xenobiotic transporters is one of the best recognized mechanisms of multidrug resistance in cancer that leads to the failure of therapeutic approaches. The aim of our research was to examine the influence of a growing tumor on the activity of xenobiotic transport in the host. Our study reveals a strong correlation between the development of melanoma tumor in mice and the level of breast cancer resistance protein, one of the major xenobiotic transporters, and its transcript in the normal tissues of the hosts distant from the tumor site. The systemic effects of the tumor are confirmed by a drastically enhanced xenobiotic transport, which is correlated with changes in the level of cytokines in blood. Such an unexpected type of tumor–host interaction, which leads to the systemic upregulation of breast cancer resistance protein, and very likely of other xenobiotic transporters too, has broad implications for cancer therapies, including chemotherapy and photodynamic therapy. Our findings shed new light on the biology of cancer and the complexity of cancer–host interactions that should be taken into account in the design of new generations of anti-cancer drugs and personalized medicine. Abstract The breast cancer resistance protein (BCRP or ABCG2) involved in cancer multidrug resistance (MDR), transports many hydrophobic compounds, including a number of anti-cancer drugs. Our comprehensive study using a mouse model reveals that a subcutaneously growing tumor strongly affects the expression of BCRP in the host’s normal organs on both the transcriptional and translational level. Additionally, the efflux of BCRP substrates is markedly enhanced. The levels of BCRP and its transcript in normal tissues distant from the tumor site correlate with tumor growth and the levels of cytokines in the peripheral blood. Thus, oncogenic stress causes transient systemic upregulation of BCRP in the host’s normal tissues and organs, which is possibly mediated via cytokines. Because BCRP upregulation takes place in many organs as early as the initial stages of tumor development, it reveals a most basic mechanism that may be responsible for the induction of primary MDR. We hypothesize that such effects are not tumor-specific responses, but rather constitute a more universal defense strategy. The xenobiotic transporters are systemically mobilized due to various stresses, seemingly in a pre-emptive manner so that the body can be quickly and efficiently detoxified. Our findings shed new light on the biology of cancer and on the complexity of cancer–host interactions and are highly relevant to cancer therapies as well as to the design of new generations of therapeutics and personalized medicine.
Collapse
Affiliation(s)
- Małgorzata Szczygieł
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.M.); (M.J.S.); (A.H.); (K.U.)
- Correspondence: (M.S.); (L.F.)
| | - Marcin Markiewicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.M.); (M.J.S.); (A.H.); (K.U.)
| | - Milena Julia Szafraniec
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.M.); (M.J.S.); (A.H.); (K.U.)
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| | - Agnieszka Hojda
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.M.); (M.J.S.); (A.H.); (K.U.)
| | - Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.M.); (M.J.S.); (A.H.); (K.U.)
- Correspondence: (M.S.); (L.F.)
| | - Krystyna Urbanska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.M.); (M.J.S.); (A.H.); (K.U.)
| |
Collapse
|
34
|
Gao Z, Xu M, Yue S, Shan H, Xia J, Jiang J, Yang S. Abnormal sialylation and fucosylation of saliva glycoproteins: Characteristics of lung cancer-specific biomarkers. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 3:100079. [PMID: 35005612 PMCID: PMC8718573 DOI: 10.1016/j.crphar.2021.100079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 10/31/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022] Open
Abstract
Dysregulated surface glycoproteins play an important role in tumor cell proliferation and progression. Abnormal glycosylation of these glycoproteins may activate tumor signal transduction and lead to tumor development. The tumor microenvironment alters its molecular composition, some of which regulate protein glycosylation biosynthesis. The glycosylation of saliva proteins in lung cancer patients is different from healthy controls, in which the glycans of cancer patients are highly sialylated and hyperfucosylated. Most studies have shown that O-glycans from cancer are truncated O-glycans, while N-glycans contain fucoses and sialic acids. Because glycosylation analysis is challenging, there are few reports on how glycosylation of saliva proteins is related to the occurrence or progression of lung cancer. In this review, we discussed glycoenzymes involved in protein glycosylation, their changes in tumor microenvironment, potential tumor biomarkers present in body fluids, and abnormal glycosylation of saliva or lung glycoproteins. We further explored the effect of glycosylation changes on tumor signal transduction, and emphasized the role of receptor tyrosine kinases in tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Ziyuan Gao
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
- Department of Respiratory and Critical Care Medicine, Dushu Lake Hospital to Soochow University, Suzhou, Jiangsu, 215125, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University; Suzhou Jiangsu, 215006, China
| | - Mingming Xu
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Shuang Yue
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Huang Shan
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Jun Xia
- Department of Clinical Laboratory Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Junhong Jiang
- Department of Respiratory and Critical Care Medicine, Dushu Lake Hospital to Soochow University, Suzhou, Jiangsu, 215125, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University; Suzhou Jiangsu, 215006, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| |
Collapse
|
35
|
A Blueprint for Cancer-Related Inflammation and Host Innate Immunity. Cells 2021; 10:cells10113211. [PMID: 34831432 PMCID: PMC8623541 DOI: 10.3390/cells10113211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
Both in situ and allograft models of cancer in juvenile and adult Drosophila melanogaster fruit flies offer a powerful means for unravelling cancer gene networks and cancer-host interactions. They can also be used as tools for cost-effective drug discovery and repurposing. Moreover, in situ modeling of emerging tumors makes it possible to address cancer initiating events-a black box in cancer research, tackle the innate antitumor immune responses to incipient preneoplastic cells and recurrent growing tumors, and decipher the initiation and evolution of inflammation. These studies in Drosophila melanogaster can serve as a blueprint for studies in more complex organisms and help in the design of mechanism-based therapies for the individualized treatment of cancer diseases in humans. This review focuses on new discoveries in Drosophila related to the diverse innate immune responses to cancer-related inflammation and the systemic effects that are so detrimental to the host.
Collapse
|
36
|
Zeng W, Zheng W, Hu S, Zhang J, Zhang W, Xu J, Yu D, Peng J, Zhang L, Gong M, Wei Y. Application of Lipidomics for Assessing Tissue Lipid Profiles of Patients With Squamous Cell Carcinoma. Technol Cancer Res Treat 2021; 20:15330338211049903. [PMID: 34761720 PMCID: PMC8591777 DOI: 10.1177/15330338211049903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Lipid metabolism disorders play a key role in the pathogenesis of squamous cell carcinoma (SqCC). Herein we used lipidomics to study the tissue lipid profiles of 40 patients with SqCC. Methods: Lipidomics, based on ultrahigh-performance liquid chromatography-Q Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry, was applied to identify altered lipid metabolites between tumor and adjacent noninvolved tissues (ANIT), and partial least squares-discriminant analysis model facilitated the identification of differentially abundant lipids. The area under the receiver operator characteristic curve and variable importance in projection scores of the aforementioned model were calculated to select lipid profiles. Metabolic pathway analyses were completed using Kyoto Encyclopedia of Genes and Genomes and MetaboAnalyst. Results: Differences in lipid profiles were found between tumor and ANIT, early- and advanced-stage SqCC, and positive and negative lymph node metastases. The lipid profile panel was composed of five lipids-PC(44:4), diacylglycerol(36:5), sphingomyelin(d18:1/20:0), phosphatidylinositol(46:7), and HexCer-AP(t8:0/32:2 + O)-and could effectively differentiate between tumor and ANIT. Further, pathway analyses revealed alterations in several lipid metabolism pathways, including glycerophospholipid metabolism, glycosylphosphatidylinositol anchor biosynthesis, linoleic acid metabolism, glycerolipid metabolism, and sphingolipid metabolism. Conclusion: Our data revealed several changes in the tissue lipid profiles of patients with SqCC; moreover, we identified a lipid profile panel that could effectually distinguish tumor tissues from ANIT. We believe that our results provide new insights into the biological behavior of lung SqCC.
Collapse
Affiliation(s)
- Weibiao Zeng
- 196534The Second Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Wen Zheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network34753West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Sheng Hu
- 196534The Second Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Jianyong Zhang
- 74720The Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China
| | - Wenxiong Zhang
- 196534The Second Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Jianjun Xu
- 196534The Second Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Dongliang Yu
- 196534The Second Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Jinhua Peng
- 196534The Second Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Lu Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network34753West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network34753West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yiping Wei
- 196534The Second Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| |
Collapse
|
37
|
Urinary Metabolic Markers of Bladder Cancer: A Reflection of the Tumor or the Response of the Body? Metabolites 2021; 11:metabo11110756. [PMID: 34822414 PMCID: PMC8621503 DOI: 10.3390/metabo11110756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
This work will review the metabolic information that various studies have obtained in recent years on bladder cancer, with particular attention to discovering biomarkers in urine for the diagnosis and prognosis of this disease. In principle, they would be capable of complementing cystoscopy, an invasive but nowadays irreplaceable technique or, in the best case, of replacing it. We will evaluate the degree of reproducibility that the different experiments have shown in the indication of biomarkers, and a synthesis will be attempted to obtain a consensus list that is more likely to become a guideline for clinical practice. In further analysis, we will inquire into the origin of these dysregulated metabolites in patients with bladder cancer. For this purpose, it will be helpful to compare the imbalances measured in urine with those known inside tumor cells or tissues. Although the urine analysis is sometimes considered a liquid biopsy because of its direct contact with the tumor in the bladder wall, it contains metabolites from all organs and tissues of the body, and the tumor is separated from urine by the most impermeable barrier found in mammals. The distinction between the specific and systemic responses can help understand the disease and its consequences in more depth.
Collapse
|
38
|
de Jesus JDCR, Murari ASDP, Radloff K, de Moraes RCM, Figuerêdo RG, Pessoa AFM, Rosa-Neto JC, Matos-Neto EM, Alcântara PSM, Tokeshi F, Maximiano LF, Bin FC, Formiga FB, Otoch JP, Seelaender M. Activation of the Adipose Tissue NLRP3 Inflammasome Pathway in Cancer Cachexia. Front Immunol 2021; 12:729182. [PMID: 34630405 PMCID: PMC8495409 DOI: 10.3389/fimmu.2021.729182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background Cachexia is a paraneoplastic syndrome that accompanies and compromises cancer treatment, especially in advanced stages, affecting the metabolism and function of several organs. The adipose tissue is the first to respond to the presence of the tumor, contributing to the secretion of factors which drive the systemic inflammation, a hallmark of the syndrome. While inflammation is a defensive innate response, the control mechanisms have been reported to be disrupted in cachexia. On the other hand, little is known about the role of NLRP3 inflammasome in this scenario, a multiprotein complex involved in caspase-1 activation and the processing of the cytokines IL-1β and IL-18. Aim based on the evidence from our previous study with a rodent model of cachexia, we examined the activation of the NLRP3 inflammasome pathway in two adipose tissue depots obtained from patients with colorectal cancer and compared with that another inflammatory pathway, NF-κB. Results For CC we found opposite modulation in ScAT and PtAT for the gene expression of TLR4, Caspase-1 (cachectic group) and for NF-κB p50, NF-κB p65, IL-1β. CD36, expression was decreased in both depots while that of NLRP3 and IL-18 was higher in both tissues, as compared with controls and weight stable patients (WSC). Caspase-1 basal protein levels in the ScAT culture supernatant were higher in WSC and (weight stable patients) CC, when compared to controls. Basal ScAT explant culture medium IL-1β and IL-18 protein content in ScAT supernatant was decreased in the WSC and CC as compared to CTL explants. Conclusions The results demonstrate heterogeneous responses in the activation of genes of the NLRP3 inflammasome pathway in the adipose tissue of patients with cancer cachexia, rendering this pathway a potential target for therapy aiming at decreasing chronic inflammation in cancer.
Collapse
Affiliation(s)
- Joyce de Cassia Rosa de Jesus
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ariene Soares de Pinho Murari
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Katrin Radloff
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ruan Carlos Macêdo de Moraes
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Raquel Galvão Figuerêdo
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Flavia Marçal Pessoa
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - José César Rosa-Neto
- Immunometabolism Laboratory, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Emídio Marques Matos-Neto
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo S M Alcântara
- University Hospital, Department of Surgical Clinic, Universidade de São Paulo, São Paulo, Brazil
| | - Flavio Tokeshi
- University Hospital, Department of Surgical Clinic, Universidade de São Paulo, São Paulo, Brazil
| | - Linda Ferreira Maximiano
- University Hospital, Department of Surgical Clinic, Universidade de São Paulo, São Paulo, Brazil
| | - Fang Chia Bin
- Department of Coloproctology, Santa Casa de São Paulo, São Paulo, Brazil
| | | | - José P Otoch
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,University Hospital, Department of Surgical Clinic, Universidade de São Paulo, São Paulo, Brazil
| | - Marilia Seelaender
- Cancer Metabolism Research Group, Department of Surgery Laboratório de Investigação Médica (LIM26), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Aiello I, Mul Fedele ML, Román FR, Golombek DA, Paladino N. Circadian disruption induced by tumor development in a murine model of melanoma. Chronobiol Int 2021; 39:12-25. [PMID: 34482768 DOI: 10.1080/07420528.2021.1964519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The circadian system induces oscillations in most physiological variables, with periods close to 24 hours. Dysfunctions in clock-controlled body functions, such as sleep disorders, as well as deregulation of clock gene expression or glucocorticoid levels have been observed in cancer patients. Moreover, these disorders have been associated with a poor prognosis or worse response to treatment. This work explored the circadian rhythms at behavioral and molecular levels in a murine melanoma model induced by subcutaneous inoculation of B16 tumoral cells. We observed that the presence of the tumors induced a decrease in the robustness of the locomotor activity rhythms and in the amount of nighttime activity, together with a delay in the acrophase and in the activity onset. Moreover, these differences were more marked when the tumor size was larger than in the initial stages of the tumorigenesis protocol. In addition, serum glucocorticoids, which exhibit strong clock-controlled rhythms, lost their circadian patterns. Similarly, the rhythmic expression of the clock genes Bmal1 and Cry1 in the hypothalamic Suprachiasmatic Nuclei (SCN) were also deregulated in mice carrying tumors. Altogether, these results suggest that tumor-secreted molecules could modulate the function of the central circadian pacemaker (SCN). This could account for the worsening of the peripheral biological rhythms such as locomotor activity or serum glucocorticoids. Since disruption of the circadian rhythms might accelerate tumorigenesis, monitoring circadian patterns in cancer patients could offer a new tool to get a better prognosis for this disease.
Collapse
Affiliation(s)
- Ignacio Aiello
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Malena Lis Mul Fedele
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Fernanda Ruth Román
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Diego Andrés Golombek
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Natalia Paladino
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
40
|
Yang L, Sun J, Li M, Long Y, Zhang D, Guo H, Huang R, Yan J. Oxidized low-density lipoprotein links hypercholesterolemia and bladder cancer aggressiveness by promoting cancer stemness. Cancer Res 2021; 81:5720-5732. [PMID: 34479964 DOI: 10.1158/0008-5472.can-21-0646] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/20/2021] [Accepted: 09/02/2021] [Indexed: 01/17/2023]
Abstract
Hypercholesterolemia is a prevalent metabolic disorder that has been implicated in the development of steroid-targeted cancers. However, the link between hypercholesterolemia and urinary bladder cancer (UBC), a non-steroid-targeted cancer, remains unresolved. Here we show that diet- and Ldlr deficiency-induced hypercholesterolemia enhances both UBC stemness and progression. Inhibition of intestinal cholesterol absorption by Ezetimibe reversed diet-induced hypercholesterolemia and cancer stemness. As a key component in hypercholesterolemic sera, oxidized low-density lipoprotein (ox-LDL), but not native low-density lipoprotein-cholesterol or metabolite 27-hydroxycholesterol, increased cancer stemness through its receptor CD36. Depletion of CD36, ectopic expression of an ox-LDL binding-disabled mutant form of CD36(K164A), and the neutralization of ox-LDL and CD36 via neutralizing antibodies all reversed ox-LDL-induced cancer stemness. Mechanistically, ox-LDL enhanced the interaction of CD36 and JAK2, inducing phosphorylation of JAK2 and subsequently activating STAT3 signaling, which was not mediated by JAK1 or Src in UBC cells. Finally, ox-LDL levels in serum predicted poor prognosis, and the ox-LDLhigh signature predicted worse survival in UBC patients. These findings indicate that ox-LDL links hypercholesterolemia with UBC progression by enhancing cancer stemness. Lowering serum ox-LDL or targeting the CD36/JAK2/STAT3 axis might serve as a potential therapeutic strategy for UBCs with hypercholesterolemia. Moreover, elevated ox-LDL may serve as a biomarker for UBC.
Collapse
Affiliation(s)
- Lin Yang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University
| | - Jingya Sun
- Pharmacology, Shanghai Institute of Materia Medica
| | - Meiqian Li
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University
| | - Yiming Long
- Molecular Imaging Research Center, Shanghai Institute of Materia Medica
| | - Dianzheng Zhang
- Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University
| | - Ruimin Huang
- Molecular Imaging Research Center, Shanghai Institute of Materia Medica
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University
| |
Collapse
|
41
|
Orel VE, Ashykhmin A, Golovko T, Rykhalskyi O, Orel VB. Texture Analysis of Tumor and Peritumoral Tissues Based on 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Hybrid Imaging in Patients With Rectal Cancer. J Comput Assist Tomogr 2021; 45:820-828. [PMID: 34469907 DOI: 10.1097/rct.0000000000001218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to determine whether texture parameters could be used in differentiation between the tumor and the peritumoral tissues based on hybrid 18F-Fluorodeoxyglucose positron emission tomography/computed tomography imaging for patients with rectal cancer. METHODS Seven parameters, including heterogeneity, entropy, energy, skewness, kurtosis, standard deviation, and average brightness, were extracted from positron emission tomography/computed tomography scans of 22 patients (12 male and 10 female; mean age, 61 ± 2 years). RESULTS The peritumoral tissue had a significantly lower value of the heterogeneity parameter (23%) than the tumor. Tumor size (r = -0.48, P < 0.05) and extramural venous invasion scores (r = 0.64, P < 0.05) correlated with heterogeneity in the peritumoral tissue. There were significant differences (P < 0.05) in the correlation coefficients between men and women. CONCLUSIONS Therefore, we provided additional quantitative information to differentiate the tumor from the peritumoral tissue and indicated possible application for extramural venous invasion evaluation in rectal cancer.
Collapse
|
42
|
Paul D, Komarova NL. Multi-scale network targeting: A holistic systems-biology approach to cancer treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:72-79. [PMID: 34428429 DOI: 10.1016/j.pbiomolbio.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/15/2022]
Abstract
The vulnerabilities of cancer at the cellular and, recently, with the introduction of immunotherapy, at the tissue level, have been exploited with variable success. Evaluating the cancer system vulnerabilities at the organismic level through analysis of network topology and network dynamics can potentially predict novel anti-cancer drug targets directed at the macroscopic cancer networks. Theoretical work analyzing the properties and the vulnerabilities of the multi-scale network of cancer needs to go hand-in-hand with experimental research that uncovers the biological nature of the relevant networks and reveals new targetable vulnerabilities. It is our hope that attacking cancer on different spatial scales, in a concerted integrated approach, may present opportunities for novel ways to prevent treatment resistance.
Collapse
Affiliation(s)
- Doru Paul
- Medical Oncology, Weill Cornell Medicine, 1305 York Avenue 12th Floor, New York, NY, 10021, USA.
| | - Natalia L Komarova
- Department of Mathematics, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
43
|
Verlande A, Chun SK, Goodson MO, Fortin BM, Bae H, Jang C, Masri S. Glucagon regulates the stability of REV-ERBα to modulate hepatic glucose production in a model of lung cancer-associated cachexia. SCIENCE ADVANCES 2021; 7:eabf3885. [PMID: 34172439 PMCID: PMC8232919 DOI: 10.1126/sciadv.abf3885] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/13/2021] [Indexed: 05/14/2023]
Abstract
Lung adenocarcinoma is associated with cachexia, which manifests as an inflammatory response that causes wasting of adipose tissue and skeletal muscle. We previously reported that lung tumor-bearing (TB) mice exhibit alterations in inflammatory and hormonal signaling that deregulate circadian pathways governing glucose and lipid metabolism in the liver. Here, we define the molecular mechanism of how de novo glucose production in the liver is enhanced in a model of lung adenocarcinoma. We found that elevation of serum glucagon levels stimulates cyclic adenosine monophosphate production and activates hepatic protein kinase A (PKA) signaling in TB mice. In turn, we found that PKA targets and destabilizes the circadian protein REV-ERBα, a negative transcriptional regulator of gluconeogenic genes, resulting in heightened de novo glucose production. Together, we identified that glucagon-activated PKA signaling regulates REV-ERBα stability to control hepatic glucose production in a model of lung cancer-associated cachexia.
Collapse
Affiliation(s)
- Amandine Verlande
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Sung Kook Chun
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Maggie O Goodson
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Bridget M Fortin
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Hosung Bae
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA.
| |
Collapse
|
44
|
Visualizing Extracellular Vesicles and Their Function in 3D Tumor Microenvironment Models. Int J Mol Sci 2021; 22:ijms22094784. [PMID: 33946403 PMCID: PMC8125158 DOI: 10.3390/ijms22094784] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived nanostructures that mediate intercellular communication by delivering complex signals in normal tissues and cancer. The cellular coordination required for tumor development and maintenance is mediated, in part, through EV transport of molecular cargo to resident and distant cells. Most studies on EV-mediated signaling have been performed in two-dimensional (2D) monolayer cell cultures, largely because of their simplicity and high-throughput screening capacity. Three-dimensional (3D) cell cultures can be used to study cell-to-cell and cell-to-matrix interactions, enabling the study of EV-mediated cellular communication. 3D cultures may best model the role of EVs in formation of the tumor microenvironment (TME) and cancer cell-stromal interactions that sustain tumor growth. In this review, we discuss EV biology in 3D culture correlates of the TME. This includes EV communication between cell types of the TME, differences in EV biogenesis and signaling associated with differing scaffold choices and in scaffold-free 3D cultures and cultivation of the premetastatic niche. An understanding of EV biogenesis and signaling within a 3D TME will improve culture correlates of oncogenesis, enable molecular control of the TME and aid development of drug delivery tools based on EV-mediated signaling.
Collapse
|
45
|
Glucose and fatty acid metabolism involved in the protective effect of metformin against ulipristal-induced endometrial changes in rats. Sci Rep 2021; 11:8863. [PMID: 33893356 PMCID: PMC8065147 DOI: 10.1038/s41598-021-88346-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/09/2021] [Indexed: 11/29/2022] Open
Abstract
Ulipristal acetate (UPA) is effective in the treatment of uterine fibroids. However, its clinical use is hampered by the development of pathologic progesterone receptor modulator-associated endometrial changes (PAECs). The current study was designed to test the hypothesis that UPA-induced PAECs are associated with deranged expression of some metabolic genes. In addition, metformin can mitigate UPA-induced PAECs through modulating the expression of these genes. In the present study, twenty-eight female non-pregnant, nulligravid Wistar rats were treated with UPA (0.1 mg/kg/day, intragastric) and/or metformin (50 mg/kg/day, intragastric) for 8 weeks. Our results demonstrated that co-treatment with metformin significantly reduced UPA-induced PAECs. In addition, co-treatment with metformin and UPA was associated with significant increase in the Bax and significant reduction in Bcl-2, PCNA, Cyclin-D1and ER-α as compared to treatment with UPA alone. Furthermore, treatment with UPA alone was associated with deranged expression of 3-phosphoglycerate dehydrogenase (3-PHGDH), glucose-6-phosphate dehydrogenase (G6PD), transketolase (TKT), fatty acid synthase (FAS) and CD36. Most importantly, co-treatment with metformin markedly reduced UPA-induced altered expression of these metabolic genes in endometrial tissues. In conclusion, UPA-induced PAECs are associated with altered expression of genes involved in cell proliferation, apoptosis, estrogen receptor, glucose metabolism and lipid metabolism. Co-treatment with metformin abrogated UPA-induced PAECs most likely through the modulation of the expression of these genes.
Collapse
|
46
|
Guillemin A, Stumpf MPH. Noise and the molecular processes underlying cell fate decision-making. Phys Biol 2021; 18:011002. [PMID: 33181489 DOI: 10.1088/1478-3975/abc9d1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell fate decision-making events involve the interplay of many molecular processes, ranging from signal transduction to genetic regulation, as well as a set of molecular and physiological feedback loops. Each aspect offers a rich field of investigation in its own right, but to understand the whole process, even in simple terms, we need to consider them together. Here we attempt to characterise this process by focussing on the roles of noise during cell fate decisions. We use a range of recent results to develop a view of the sequence of events by which a cell progresses from a pluripotent or multipotent to a differentiated state: chromatin organisation, transcription factor stoichiometry, and cellular signalling all change during this progression, and all shape cellular variability, which becomes maximal at the transition state.
Collapse
Affiliation(s)
- Anissa Guillemin
- School of BioSciences, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
47
|
Sharma NK, Pal JK. Metabolic Ink Lactate Modulates Epigenomic Landscape: A Concerted Role of Pro-tumor Microenvironment and Macroenvironment During Carcinogenesis. Curr Mol Med 2021; 21:177-181. [PMID: 32436828 DOI: 10.2174/1566524020666200521075252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/22/2022]
Abstract
Tumor heterogeneity is influenced by various factors including genetic, epigenetic and axis of metabolic-epigenomic regulation. In recent years, metabolic-epigenomic reprogramming has been considered as one of the many tumor hallmarks and it appears to be driven by both microenvironment and macroenvironment factors including diet, microbiota and environmental pressures. Epigenetically, histone lysine residues are altered by various post-translational modifications (PTMs) such as acetylation, acylation, methylation and lactylation. Furthermore, lactylation is suggested as a new form of PTM that uses a lactate substrate as a metabolic ink for epigenetic writer enzyme that remodels histone proteins. Therefore, preclinical and clinical attempts are warranted to disrupt the pathway of metabolic-epigenomic reprogramming that will turn pro-tumor microenvironment into an anti-tumor microenvironment. This paper highlights the metabolicepigenomic regulation events including lactylation and its metabolic substrate lactate in the tumor microenvironment.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra 411033, India
| | - Jayanta K Pal
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra 411033, India
| |
Collapse
|
48
|
Topkan E, Selek U, Mertsoylu H, Ozdemir Y, Kucuk A, Torun N, Besen AA. Pretreatment Photopenia on 18F-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography Scans Predicts Poor Prognosis in Nasopharyngeal Cancer Patients Undergoing Concurrent Chemoradiotherapy. Clin Exp Otorhinolaryngol 2020; 13:407-414. [PMID: 32075362 PMCID: PMC7669310 DOI: 10.21053/ceo.2019.01298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/04/2019] [Accepted: 10/24/2019] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES To investigate the influence of pretreatment primary tumor or nodal photopenia (PP) on 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT), an indicator of tumor ischemia, on survival results of nasopharyngeal cancers (NPCs) treated with concurrent chemoradiotherapy (C-CRT). METHODS The pre-C-CRT FDG PET-CT scans of 104 patients with NPC (cT1-4 N0-3 M0) were retrospectively examined to determine the presence of PP (PP+). Our primary endpoint was the influence of PP+ on overall survival (OS), while the progression-free survival (PFS) and locoregional PFS (LRPFS) constituted the secondary endpoints. RESULTS The PP+ was detected in 29 (27.9%): nine (8.7%), seven (6.7%), and 13 (12.5%) in the primary tumor alone, primary tumor plus neck nodes, and neck nodes alone, respectively. Because the PP+ cases were small by count per location, all comparative analyses were performed according to overall PP+/ PP- status instead of per detected site. At a median follow-up of 67.8 months (range, 9 to 130 months), the median survival times were not reached (NR) for the entire population, while 5-year OS, LRPFS, and PFS rates were 73.3%, 68.2%, and 63.4%, respectively. Comparatively the PP+ patients exhibited significantly poorer median OS (49.8 months vs. NR, P<0.001), LRPFS (40.7 months vs. NR, P=0.001), and PFS (31.8 months vs. NR, P=0.002) durations than their PP- counterparts. Furthermore, the PP+ retained its independent prognostic significance in multivariate analysis (P<0.001). CONCLUSION Present results uncovered the pre-C-CRT PP as an independent predictor of poor prognosis for NPC patients, which underscore the requirement for the fortification of the local and systemic treatments in hypoxic NPCs.
Collapse
Affiliation(s)
- Erkan Topkan
- Department of Radiation Oncology, Baskent University Medical Faculty, Adana, Turkey
| | - Ugur Selek
- Department of Radiation Oncology, Koc University School of Medicine, Istanbul, Turkey
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hüseyin Mertsoylu
- Department of Medical Oncology, Baskent University Medical Faculty, Adana, Turkey
| | - Yurday Ozdemir
- Department of Radiation Oncology, Baskent University Medical Faculty, Adana, Turkey
| | - Ahmet Kucuk
- Clinics of Radiation Oncology, Mersin City Hospital, Mersin, Turkey
| | - Nese Torun
- Department of Nuclear Medicine, Baskent University Medical Faculty, Adana, Turkey
| | - Ali Ayberk Besen
- Department of Medical Oncology, Baskent University Medical Faculty, Adana, Turkey
| |
Collapse
|
49
|
Mravec B, Horvathova L, Hunakova L. Neurobiology of Cancer: the Role of β-Adrenergic Receptor Signaling in Various Tumor Environments. Int J Mol Sci 2020; 21:ijms21217958. [PMID: 33114769 PMCID: PMC7662752 DOI: 10.3390/ijms21217958] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
The development and progression of cancer depends on both tumor micro- and macroenvironments. In addition, psychosocial and spiritual “environments” might also affect cancer. It has been found that the nervous system, via neural and humoral pathways, significantly modulates processes related to cancer at the level of the tumor micro- and macroenvironments. The nervous system also mediates the effects of psychosocial and noetic factors on cancer. Importantly, data accumulated in the last two decades have clearly shown that effects of the nervous system on cancer initiation, progression, and the development of metastases are mediated by the sympathoadrenal system mainly via β-adrenergic receptor signaling. Here, we provide a new complex view of the role of β-adrenergic receptor signaling within the tumor micro- and macroenvironments as well as in mediating the effects of the psychosocial and spiritual environments. In addition, we describe potential preventive and therapeutic implications.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, 814 39 Bratislava, Slovakia;
- Correspondence: ; Tel.: +421-(2)-59357527; Fax: +421-(2)-59357601
| | - Lubica Horvathova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, 814 39 Bratislava, Slovakia;
| | - Luba Hunakova
- Institute of Microbiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| |
Collapse
|
50
|
The free amino acid profiles and metabolic biomarkers of predicting the chemotherapeutic response in advanced sarcoma patients. Clin Transl Oncol 2020; 22:2213-2221. [PMID: 32948983 DOI: 10.1007/s12094-020-02494-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE Metabolomics is an emerging field in cancer research. Plasma free amino acid profiles (PFAAs) have shown different features in various cancers, but the characteristic in advanced sarcoma remains unclear. We aimed to uncover the specific PFAAs in advanced sarcoma and to find the relationship between the altering of PFAAs and response to chemotherapy. PATIENTS AND METHODS We analyzed the differences in PFAAs between 23 sarcoma patients and 30 healthy subjects basing on liquid chromatography-tandem mass spectrometry (LC-MS/MS). Then, we compared the dynamics of PFAAs after chemotherapy between improvement group and deterioration group. RESULTS We identified seven biological differential amino acids and four pathways which were perturbed in the sarcoma patients compared with healthy subjects. After one cycle chemotherapy, the levels of γ-aminobutyric acid (GABA) and carnosine (Car) decreased significantly in the improvement group but not in deterioration group. The levels of α-aminobutyric acid (Abu) increased significantly in the deterioration group but not in the improvement group. CONCLUSION Our study suggests the potential specific PFAAs in sarcoma patients. The unusual amino acids and metabolic pathways may provide ideas for clinical drugs targeting therapy. Three amino acids including Car, GABA and Abu may be metabolic biomarkers playing a role in dynamic monitoring of the therapeutic effect.
Collapse
|