1
|
Varisli L, Vlahopoulos S. Epithelial-Mesenchymal Transition in Acute Leukemias. Int J Mol Sci 2024; 25:2173. [PMID: 38396852 PMCID: PMC10889420 DOI: 10.3390/ijms25042173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a metabolic process that confers phenotypic flexibility to cells and the ability to adapt to new functions. This transition is critical during embryogenesis and is required for the differentiation of many tissues and organs. EMT can also be induced in advanced-stage cancers, leading to further malignant behavior and chemotherapy resistance, resulting in an unfavorable prognosis for patients. Although EMT was long considered and studied only in solid tumors, it has been shown to be involved in the pathogenesis of hematological malignancies, including acute leukemias. Indeed, there is increasing evidence that EMT promotes the progression of acute leukemias, leading to the emergence of a more aggressive phenotype of the disease, and also causes chemotherapy resistance. The current literature suggests that the levels and activities of EMT inducers and markers can be used to predict prognosis, and that targeting EMT in addition to conventional therapies may increase treatment success in acute leukemias.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
2
|
Ren WX, Guo H, Lin SY, Chen SY, Long YY, Xu LY, Wu D, Cao YL, Qu J, Yang BL, Xu HP, Li H, Yu YL, Zhang AY, Wang S, Zhang YC, Zhou KS, Chen ZC, Li QB. Targeting cytohesin-1 suppresses acute myeloid leukemia progression and overcomes resistance to ABT-199. Acta Pharmacol Sin 2024; 45:180-192. [PMID: 37644132 PMCID: PMC10770340 DOI: 10.1038/s41401-023-01142-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
Adhesion molecules play essential roles in the homeostatic regulation and malignant transformation of hematopoietic cells. The dysregulated expression of adhesion molecules in leukemic cells accelerates disease progression and the development of drug resistance. Thus, targeting adhesion molecules represents an attractive anti-leukemic therapeutic strategy. In this study, we investigated the prognostic role and functional significance of cytohesin-1 (CYTH1) in acute myeloid leukemia (AML). Analysis of AML patient data from the GEPIA and BloodSpot databases revealed that CYTH1 was significantly overexpressed in AML and independently correlated with prognosis. Functional assays using AML cell lines and an AML xenograft mouse model confirmed that CYTH1 depletion significantly inhibited the adhesion, migration, homing, and engraftment of leukemic cells, delaying disease progression and prolonging animal survival. The CYTH1 inhibitor SecinH3 exerted in vitro and in vivo anti-leukemic effects by disrupting leukemic adhesion and survival programs. In line with the CYTH1 knockdown results, targeting CYTH1 by SecinH3 suppressed integrin-associated adhesion signaling by reducing ITGB2 expression. SecinH3 treatment efficiently induced the apoptosis and inhibited the growth of a panel of AML cell lines (MOLM-13, MV4-11 and THP-1) with mixed-lineage leukemia gene rearrangement, partly by reducing the expression of the anti-apoptotic protein MCL1. Moreover, we showed that SecinH3 synergized with the BCL2-selective inhibitor ABT-199 (venetoclax) to inhibit the proliferation and promote the apoptosis of ABT-199-resistant leukemic cells. Taken together, our results not only shed light on the role of CYTH1 in cell-adhesion-mediated leukemogenesis but also propose a novel combination treatment strategy for AML.
Collapse
Affiliation(s)
- Wen-Xiang Ren
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hao Guo
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Sheng-Yan Lin
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Si-Yi Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yao-Ying Long
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liu-Yue Xu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Di Wu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Lin Cao
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiao Qu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bian-Lei Yang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Pei Xu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - He Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ya-Li Yu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - An-Yuan Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shan Wang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi-Cheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke-Shu Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450000, China.
| | - Zhi-Chao Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Qiu-Bai Li
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Engineering Research Center for Application of Extracellular Vesicles, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
3
|
Quagliano A, Gopalakrishnapillai A, Barwe SP. Tetraspanins set the stage for bone marrow microenvironment-induced chemoprotection in hematologic malignancies. Blood Adv 2023; 7:4403-4413. [PMID: 37561544 PMCID: PMC10432613 DOI: 10.1182/bloodadvances.2023010476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/06/2023] [Indexed: 08/11/2023] Open
Abstract
Despite recent advances in the treatment of hematologic malignancies, relapse still remains a consistent issue. One of the primary contributors to relapse is the bone marrow microenvironment providing a sanctuary to malignant cells. These cells interact with bone marrow components such as osteoblasts and stromal cells, extracellular matrix proteins, and soluble factors. These interactions, mediated by the cell surface proteins like cellular adhesion molecules (CAMs), induce intracellular signaling that leads to the development of bone marrow microenvironment-induced chemoprotection (BMC). Although extensive study has gone into these CAMs, including the development of targeted therapies, very little focus in hematologic malignancies has been put on a family of cell surface proteins that are just as important for mediating bone marrow interactions: the transmembrane 4 superfamily (tetraspanins; TSPANs). TSPANs are known to be important mediators of microenvironmental interactions and metastasis based on numerous studies in solid tumors. Recently, evidence of their possible role in hematologic malignancies, specifically in the regulation of cellular adhesion, bone marrow homing, intracellular signaling, and stem cell dynamics in malignant hematologic cells has come to light. Many of these effects are facilitated by associations with CAMs and other receptors on the cell surface in TSPAN-enriched microdomains. This could suggest that TSPANs play an important role in mediating BMC in hematologic malignancies and could be used as therapeutic targets. In this review, we discuss TSPAN structure and function in hematologic cells, their interactions with different cell surface and signaling proteins, and possible ways to target/inhibit their effects.
Collapse
Affiliation(s)
- Anthony Quagliano
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children’s Hospital, Wilmington, DE
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children’s Hospital, Wilmington, DE
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Sonali P. Barwe
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children’s Hospital, Wilmington, DE
- Department of Biological Sciences, University of Delaware, Newark, DE
| |
Collapse
|
4
|
Lehner KM, Gopalakrishnapillai A, Kolb EA, Barwe SP. Bone Marrow Microenvironment-Induced Chemoprotection in KMT2A Rearranged Pediatric AML Is Overcome by Azacitidine-Panobinostat Combination. Cancers (Basel) 2023; 15:3112. [PMID: 37370721 DOI: 10.3390/cancers15123112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Advances in therapies of pediatric acute myeloid leukemia (AML) have been minimal in recent decades. Although 82% of patients will have an initial remission after intensive therapy, approximately 40% will relapse. KMT2A is the most common chromosomal translocation in AML and has a poor prognosis resulting in high relapse rates and low chemotherapy efficacy. Novel targeted approaches are needed to increase sensitivity to chemotherapy. Recent studies have shown how interactions within the bone marrow (BM) microenvironment help AML cells evade chemotherapy and contribute to relapse by promoting leukemic blast survival. This study investigates how DNA hypomethylating agent azacitidine and histone deacetylase inhibitor panobinostat synergistically overcome BM niche-induced chemoprotection modulated by stromal, endothelial, and mesenchymal stem cells and the extracellular matrix (ECM). We show that direct contact between AML cells and BM components mediates chemoprotection. We demonstrate that azacitidine and panobinostat synergistically sensitize MV4;11 cells and KMT2A rearranged pediatric patient-derived xenograft lines to cytarabine in multicell coculture. Treatment with the epigenetic drug combination reduced leukemic cell association with multicell monolayer and ECM in vitro and increased mobilization of leukemic cells from the BM in vivo. Finally, we show that pretreatment with the epigenetic drug combination improves the efficacy of chemotherapy in vivo.
Collapse
Affiliation(s)
- Kara M Lehner
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children's Hospital, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children's Hospital, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Edward Anders Kolb
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children's Hospital, Wilmington, DE 19803, USA
| | - Sonali P Barwe
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children's Hospital, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
5
|
Parker J, Hockney S, Blaschuk OW, Pal D. Targeting N-cadherin (CDH2) and the malignant bone marrow microenvironment in acute leukaemia. Expert Rev Mol Med 2023; 25:e16. [PMID: 37132370 PMCID: PMC10407222 DOI: 10.1017/erm.2023.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/13/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
This review discusses current research on acute paediatric leukaemia, the leukaemic bone marrow (BM) microenvironment and recently discovered therapeutic opportunities to target leukaemia-niche interactions. The tumour microenvironment plays an integral role in conferring treatment resistance to leukaemia cells, this poses as a key clinical challenge that hinders management of this disease. Here we focus on the role of the cell adhesion molecule N-cadherin (CDH2) within the malignant BM microenvironment and associated signalling pathways that may bear promise as therapeutic targets. Additionally, we discuss microenvironment-driven treatment resistance and relapse, and elaborate the role of CDH2-mediated cancer cell protection from chemotherapy. Finally, we review emerging therapeutic approaches that directly target CDH2-mediated adhesive interactions between the BM cells and leukaemia cells.
Collapse
Affiliation(s)
- Jessica Parker
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Sean Hockney
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | | | - Deepali Pal
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
6
|
Rellick SL, Hu G, Piktel D, Martin KH, Geldenhuys WJ, Nair RR, Gibson LF. Co-culture model of B-cell acute lymphoblastic leukemia recapitulates a transcription signature of chemotherapy-refractory minimal residual disease. Sci Rep 2021; 11:15840. [PMID: 34349149 PMCID: PMC8339057 DOI: 10.1038/s41598-021-95039-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
B-cell acute lymphoblastic leukemia (ALL) is characterized by accumulation of immature hematopoietic cells in the bone marrow, a well-established sanctuary site for leukemic cell survival during treatment. While standard of care treatment results in remission in most patients, a small population of patients will relapse, due to the presence of minimal residual disease (MRD) consisting of dormant, chemotherapy-resistant tumor cells. To interrogate this clinically relevant population of treatment refractory cells, we developed an in vitro cell model in which human ALL cells are grown in co-culture with human derived bone marrow stromal cells or osteoblasts. Within this co-culture, tumor cells are found in suspension, lightly attached to the top of the adherent cells, or buried under the adherent cells in a population that is phase dim (PD) by light microscopy. PD cells are dormant and chemotherapy-resistant, consistent with the population of cells that underlies MRD. In the current study, we characterized the transcriptional signature of PD cells by RNA-Seq, and these data were compared to a published expression data set derived from human MRD B-cell ALL patients. Our comparative analyses revealed that the PD cell population is markedly similar to the MRD expression patterns from the primary cells isolated from patients. We further identified genes and key signaling pathways that are common between the PD tumor cells from co-culture and patient derived MRD cells as potential therapeutic targets for future studies.
Collapse
Affiliation(s)
- Stephanie L Rellick
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV, 26506, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA
- Bioinformatics Core, West Virginia University, Morgantown, WV, 26506, USA
- West Virginia Clinical and Translational Science Institute, Morgantown, WV, 26506, USA
| | - Debra Piktel
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV, 26506, USA
| | - Karen H Martin
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV, 26506, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26506, USA
| | - Rajesh R Nair
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV, 26506, USA
| | - Laura F Gibson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA.
- West Virginia University Cancer Institute, Morgantown, WV, 26506, USA.
| |
Collapse
|
7
|
Acute lymphoblastic leukemia-derived exosome inhibits cytotoxicity of natural killer cells by TGF-β signaling pathway. 3 Biotech 2021; 11:313. [PMID: 34109098 DOI: 10.1007/s13205-021-02817-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/05/2020] [Indexed: 01/14/2023] Open
Abstract
This study was conducted to explore whether acute lymphoblastic leukemia (ALL)-derived exosomes affect natural killer (NK) cells. Exosomes were isolated and identified from Jurkat cells and co-cultured with NK cells. Then, the cytotoxicity, viability, and release of perforin and granzyme B in NK92-MI cells were measured. PCR arrays were used to detect gene expression alterations in the transforming growth factor (TGF)-β pathway of NK92-MI cells treated or not treated with exosomes. The morphology and size of the exosomes isolated from Jurkat cells showed typical characteristics of exosomes, and the expression of cluster of differentiation 63 was detected. Jurkat-derived exosomes were internalized by NK92-MI cells, further inhibiting the proliferation and cytotoxicity of NK92-MI cells. An enzyme-linked immunosorbent assay revealed that the release of perforin and granzyme B from NK92-MI cells decreased after co-culture with exosomes. Similarly, western blot and immunofluorescence staining verified that Jurkat-derived exosomes inhibited the expression of granzyme B and perforin. Furthermore, Jurkat-derived exosomes enhanced the signaling of the TGF-β pathway in NK92-MI cells via the MDS1 and EVI1 complex loci and homeodomain interacting protein kinase 2. In conclusion, we found that ALL-derived exosomes inhibit the biological function of NK cells and provide support for the immunotherapy of ALL.
Collapse
|
8
|
CD81 knockout promotes chemosensitivity and disrupts in vivo homing and engraftment in acute lymphoblastic leukemia. Blood Adv 2021; 4:4393-4405. [PMID: 32926125 DOI: 10.1182/bloodadvances.2020001592] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/02/2020] [Indexed: 12/30/2022] Open
Abstract
Relapse remains a major obstacle to achieving 100% overall survival rate in pediatric hematologic malignancies like acute lymphoblastic leukemia (ALL). Relapse often results from the development of chemoresistance. One of the mechanisms of chemoresistance involves ALL cell interactions with the bone marrow (BM) microenvironment, providing a sanctuary. This phenomenon is known as BM microenvironment-induced chemoprotection. Members of the transmembrane 4 superfamily (tetraspanins; TSPANs) are known to mediate microenvironmental interactions and have been extensively studied in solid tumors. Although the TSPAN family member CD81 is a minimal residual disease marker, its biological role in ALL is not well characterized. We show for the first time that CD81 knockout induces chemosensitivity, reduces cellular adhesion, and disrupts in vivo BM homing and engraftment in B-ALL. This chemosensitization is mediated through control of Bruton tyrosine kinase signaling and induction of p53-mediated cell death. We then show how CD81-related signaling can be disrupted by treatment with the epigenetic drug combination of DNA hypomethylating agent azacitidine (aza) and histone deacetylase inhibitor panobinostat (pano), which we previously used to sensitize ALL cells to chemotherapy under conditions that promote BM microenvironment-induced chemoprotection. Aza/pano-mediated modulation of CD81 surface expression is involved in decreasing BM load by promoting ALL cell mobilization from BM to peripheral blood and increasing response to chemotherapy in disseminated patient-derived xenograft models. This study identifies the novel role of CD81 in BM microenvironment-induced chemoprotection and delineates the mechanism by which aza/pano successfully sensitizes ALL cells via modulation of CD81.
Collapse
|
9
|
The extracellular matrix: A key player in the pathogenesis of hematologic malignancies. Blood Rev 2020; 48:100787. [PMID: 33317863 DOI: 10.1016/j.blre.2020.100787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022]
Abstract
Hematopoietic stem and progenitor cells located in the bone marrow lay the foundation for multiple lineages of mature hematologic cells. Bone marrow niches are architecturally complex with specific cellular, physiochemical, and biomechanical factors. Increasing evidence suggests that the bone marrow microenvironment contributes to the pathogenesis of hematological neoplasms. Numerous studies have deciphered the role of genetic mutations and chromosomal translocations in the development hematologic malignancies. Significant progress has also been made in understanding how the cellular components and cytokine interactions within the bone marrow microenvironment promote the evolution of hematologic cancers. Although the extracellular matrix is known to be a key player in the pathogenesis of various diseases, it's role in the progression of hematologic malignancies is less understood. In this review, we discuss the interactions between the extracellular matrix and malignant cells, and provide an overview of the role of extracellular matrix remodeling in sustaining hematologic malignancies.
Collapse
|
10
|
He Y, Koch R, Budamagunta V, Zhang P, Zhang X, Khan S, Thummuri D, Ortiz YT, Zhang X, Lv D, Wiegand JS, Li W, Palmer AC, Zheng G, Weinstock DM, Zhou D. DT2216-a Bcl-xL-specific degrader is highly active against Bcl-xL-dependent T cell lymphomas. J Hematol Oncol 2020; 13:95. [PMID: 32677976 PMCID: PMC7364785 DOI: 10.1186/s13045-020-00928-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Patients with advanced T cell lymphomas (TCLs) have limited therapeutic options and poor outcomes in part because their TCLs evade apoptosis through upregulation of anti-apoptotic Bcl-2 proteins. Subsets of TCL cell lines, patient-derived xenografts (PDXs), and primary patient samples depend on Bcl-xL for survival. However, small molecule Bcl-xL inhibitors such as ABT263 have failed during clinical development due to on-target and dose-limiting thrombocytopenia. METHODS We have developed DT2216, a proteolysis targeting chimera (PROTAC) targeting Bcl-xL for degradation via Von Hippel-Lindau (VHL) E3 ligase, and shown that it has better anti-tumor activity but is less toxic to platelets compared to ABT263. Here, we examined the therapeutic potential of DT2216 for TCLs via testing its anti-TCL activity in vitro using MTS assay, immunoblotting, and flow cytometry and anti-TCL activity in vivo using TCL cell xenograft and PDX model in mice. RESULTS The results showed that DT2216 selectively killed various Bcl-xL-dependent TCL cells including MyLa cells in vitro. In vivo, DT2216 alone was highly effective against MyLa TCL xenografts in mice without causing significant thrombocytopenia or other toxicity. Furthermore, DT2216 combined with ABT199 (a selective Bcl-2 inhibitor) synergistically reduced disease burden and improved survival in a TCL PDX mouse model dependent on both Bcl-2 and Bcl-xL. CONCLUSIONS These findings support the clinical testing of DT2216 in patients with Bcl-xL-dependent TCLs, both as a single agent and in rational combinations.
Collapse
Affiliation(s)
- Yonghan He
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Raphael Koch
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Vivekananda Budamagunta
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Sajid Khan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Dinesh Thummuri
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yuma T Ortiz
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Xin Zhang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Dongwen Lv
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Janet S Wiegand
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Wen Li
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Adam C Palmer
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Dana 510B, Boston, MA, USA.
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Quagliano A, Gopalakrishnapillai A, Barwe SP. Understanding the Mechanisms by Which Epigenetic Modifiers Avert Therapy Resistance in Cancer. Front Oncol 2020; 10:992. [PMID: 32670880 PMCID: PMC7326773 DOI: 10.3389/fonc.2020.00992] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
The development of resistance to anti-cancer therapeutics remains one of the core issues preventing the improvement of survival rates in cancer. Therapy resistance can arise in a multitude of ways, including the accumulation of epigenetic alterations in cancer cells. By remodeling DNA methylation patterns or modifying histone proteins during oncogenesis, cancer cells reorient their epigenomic landscapes in order to aggressively resist anti-cancer therapy. To combat these chemoresistant effects, epigenetic modifiers such as DNA hypomethylating agents, histone deacetylase inhibitors, histone demethylase inhibitors, along with others have been used. While these modifiers have achieved moderate success when used either alone or in combination with one another, the most positive outcomes were achieved when they were used in conjunction with conventional anti-cancer therapies. Epigenome modifying drugs have succeeded in sensitizing cancer cells to anti-cancer therapy via a variety of mechanisms: disrupting pro-survival/anti-apoptotic signaling, restoring cell cycle control and preventing DNA damage repair, suppressing immune system evasion, regulating altered metabolism, disengaging pro-survival microenvironmental interactions and increasing protein expression for targeted therapies. In this review, we explore different mechanisms by which epigenetic modifiers induce sensitivity to anti-cancer therapies and encourage the further identification of the specific genes involved with sensitization to facilitate development of clinical trials.
Collapse
Affiliation(s)
- Anthony Quagliano
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Anilkumar Gopalakrishnapillai
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Sonali P. Barwe
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
12
|
Ruiz-Aparicio PF, Vanegas NDP, Uribe GI, Ortiz-Montero P, Cadavid-Cortés C, Lagos J, Flechas-Afanador J, Linares-Ballesteros A, Vernot JP. Dual Targeting of Stromal Cell Support and Leukemic Cell Growth by a Peptidic PKC Inhibitor Shows Effectiveness against B-ALL. Int J Mol Sci 2020; 21:ijms21103705. [PMID: 32466311 PMCID: PMC7279155 DOI: 10.3390/ijms21103705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) favour a scenario where leukemic cells survive. The protein kinase C (PKC) is essential to confer MSC support to leukemic cells and may be responsible for the intrinsic leukemic cell growth. Here we have evaluated the capacity of a chimeric peptide (HKPS), directed against classical PKC isoforms, to inhibit leukemic cell growth. HKPS was able to strongly inhibit viability of different leukemic cell lines, while control HK and PS peptides had no effect. Further testing showed that 30% of primary samples from paediatric B-cell acute lymphoblastic leukaemia (B-ALL) were also strongly affected by HKPS. We showed that HKPS disrupted the supportive effect of MSC that promote leukemic cell survival. Interestingly, ICAM-1 and VLA-5 expression increased in MSC during the co-cultures with B-ALL cells, and we found that HKPS inhibited the interaction between MSC and B-ALL cells due to a reduction in the expression of these adhesion molecules. Of note, the susceptibility of B-ALL cells to dexamethasone increased when MSC were treated with HKPS. These results show the relevance of these molecular interactions in the leukemic niche. The use of HKPS may be a new strategy to disrupt intercellular communications, increasing susceptibility to therapy, and at the same time, directly affecting the growth of PKC-dependent leukemic cells.
Collapse
Affiliation(s)
- Paola Fernanda Ruiz-Aparicio
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia; (P.F.R.-A.); (N.-D.P.V.); (P.O.-M.); (C.C.-C.)
| | - Natalia-Del Pilar Vanegas
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia; (P.F.R.-A.); (N.-D.P.V.); (P.O.-M.); (C.C.-C.)
| | - Gloria Inés Uribe
- Grupo de Investigación Oncohematología Pediátrica, Fundación Hospital de la Misericordia, Universidad Nacional de Colombia, Bogotá D. C. 111071, Colombia; (G.I.U.); (J.L.); (J.F.-A); (A.L.-B.)
- Servicio de Patología, Laboratorio de Hematología Especial y Citometría de flujo, Fundación Hospital de la Misericordia, Bogotá D. C. 111071, Colombia
| | - Paola Ortiz-Montero
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia; (P.F.R.-A.); (N.-D.P.V.); (P.O.-M.); (C.C.-C.)
| | - Camila Cadavid-Cortés
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia; (P.F.R.-A.); (N.-D.P.V.); (P.O.-M.); (C.C.-C.)
| | - Jimmy Lagos
- Grupo de Investigación Oncohematología Pediátrica, Fundación Hospital de la Misericordia, Universidad Nacional de Colombia, Bogotá D. C. 111071, Colombia; (G.I.U.); (J.L.); (J.F.-A); (A.L.-B.)
| | - Jessica Flechas-Afanador
- Grupo de Investigación Oncohematología Pediátrica, Fundación Hospital de la Misericordia, Universidad Nacional de Colombia, Bogotá D. C. 111071, Colombia; (G.I.U.); (J.L.); (J.F.-A); (A.L.-B.)
| | - Adriana Linares-Ballesteros
- Grupo de Investigación Oncohematología Pediátrica, Fundación Hospital de la Misericordia, Universidad Nacional de Colombia, Bogotá D. C. 111071, Colombia; (G.I.U.); (J.L.); (J.F.-A); (A.L.-B.)
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia; (P.F.R.-A.); (N.-D.P.V.); (P.O.-M.); (C.C.-C.)
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia
- Correspondence: ; Tel.: +571-316-5000 (ext. 15057); Fax: +571-316-5466
| |
Collapse
|
13
|
Bárcenas-López DA, Núñez-Enríquez JC, Hidalgo-Miranda A, Beltrán-Anaya FO, May-Hau DI, Jiménez-Hernández E, Bekker-Méndez VC, Flores-Lujano J, Medina-Sansón A, Tamez-Gómez EL, López-García VH, Lara-Ramos JR, Núñez-Villegas NN, Peñaloza-González JG, Flores-Villegas LV, Amador-Sánchez R, Espinosa-Elizondo RM, Martín-Trejo JA, Velázquez-Aviña MM, Merino-Pasaye LE, Pérez-Saldívar ML, Duarte-Rodríguez DA, Torres-Nava JR, Cortés-Herrera B, Solís-Labastida KA, González-Ávila AI, Santillán-Juárez JD, García-Velázquez AJ, Rosas-Vargas H, Mata-Rocha M, Sepúlveda-Robles OA, Mejía-Aranguré JM, Jiménez-Morales S. Transcriptome Analysis Identifies LINC00152 as a Biomarker of Early Relapse and Mortality in Acute Lymphoblastic Leukemia. Genes (Basel) 2020; 11:genes11030302. [PMID: 32183133 PMCID: PMC7140896 DOI: 10.3390/genes11030302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Evidence showing the role of long non-coding RNAs (lncRNAs) in leukemogenesis have emerged in the last decade. It has been proposed that these genes can be used as diagnosis and/or prognosis biomarkers in childhood acute lymphoblastic leukemia (ALL). To know if lncRNAs are associated with early relapse and early mortality, a microarray-based gene expression analysis in children with B-lineage ALL (B-ALL) was conducted. Cox regression analyses were performed. Hazard ratios (HR) and 95% confidence intervals (95% CI) were calculated. LINC00152 and LINC01013 were among the most differentially expressed genes in patients with early relapse and early mortality. For LINC00152 high expression, the risks of relapse and death were HR: 4.16 (95% CI: 1.46–11.86) and HR: 1.99 (95% CI: 0.66–6.02), respectively; for LINC01013 low expression, the risks of relapse and death were HR: 3.03 (95% CI: 1.14–8.05) and HR: 6.87 (95% CI: 1.50–31.48), respectively. These results were adjusted by NCI risk criteria and chemotherapy regimen. The lncRNA–mRNA co-expression analysis showed that LINC00152 potentially regulates genes involved in cell substrate adhesion and peptidyl–tyrosine autophosphorylation biological processes. The results of the present study point out that LINC00152 could be a potential biomarker of relapse in children with B-ALL.
Collapse
Affiliation(s)
- Diego Alberto Bárcenas-López
- Programa de Doctorado, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiologia Clínica, UMAE Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (J.C.N.-E.); (J.F.-L.); (M.L.P.-S.); (D.A.D.-R.)
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Fredy Omar Beltrán-Anaya
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Didier Ismael May-Hau
- Programa de Maestría en Investigación Clínica Experimental en Salud, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional “La Raza”, IMSS, Mexico City 02990, Mexico; (E.J.-H.); (N.N.N.-V.)
| | - Vilma Carolina Bekker-Méndez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología “Dr. Daniel Méndez Hernández”, Centro Médico Nacional “La Raza”, IMSS, Mexico City 02990, Mexico;
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiologia Clínica, UMAE Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (J.C.N.-E.); (J.F.-L.); (M.L.P.-S.); (D.A.D.-R.)
| | - Aurora Medina-Sansón
- Servicio de Hemato-Oncologia, Hospital Infantil de México Federico Gómez, Secretaria de Salud (SS), Mexico City 06720, Mexico;
| | - Edna Liliana Tamez-Gómez
- Servicio de Hemato-Oncología Hospital Infantil de Tamaulipas, Secretaría de Salud (SS), Cd. Victoria Tamaulipas 87070, Mexico;
| | - Víctor Hugo López-García
- Servicio de Ortopedia Pediátrica, Hospital Infantil de Tamaulipas, Secretaría de Salud (SS), Cd. Victoria Tamaulipas 87070, Mexico;
| | - José Ramón Lara-Ramos
- Departamento de Genética, Hospital Infantil de Tamaulipas, Secretaría de Salud (SS), Cd. Victoria Tamaulipas 87070, Mexico;
| | - Nora Nancy Núñez-Villegas
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional “La Raza”, IMSS, Mexico City 02990, Mexico; (E.J.-H.); (N.N.N.-V.)
| | - José Gabriel Peñaloza-González
- Servicio de Onco-Pediatría, Hospital Juárez de México, Secretaría de Salud (SS), Mexico City 07760, Mexico; (J.G.P.-G.); (M.M.V.-A.)
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City 03100, Mexico; (L.V.F.-V.); (L.E.M.-P.)
| | - Raquel Amador-Sánchez
- Hospital General Regional 1 “Dr. Carlos McGregor Sánchez Navarro”, IMSS, Mexico City 03103, Mexico; (R.A.-S.); (A.I.G.-Á.)
| | - Rosa Martha Espinosa-Elizondo
- Servicio de Hematología Pediátrica, Hospital General de México “Dr. Eduardo Liceaga”, Secretaría de Salud (SS), Mexico City 06720, Mexico; (R.M.E.-E.); (B.C.-H.)
| | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología Pediátrica UMAE Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional “Siglo XXI”, IMSS, Mexico City 06720, Mexico; (J.A.M.-T.); (K.A.S.-L.)
| | - Martha Margarita Velázquez-Aviña
- Servicio de Onco-Pediatría, Hospital Juárez de México, Secretaría de Salud (SS), Mexico City 07760, Mexico; (J.G.P.-G.); (M.M.V.-A.)
| | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City 03100, Mexico; (L.V.F.-V.); (L.E.M.-P.)
| | - María Luisa Pérez-Saldívar
- Unidad de Investigación Médica en Epidemiologia Clínica, UMAE Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (J.C.N.-E.); (J.F.-L.); (M.L.P.-S.); (D.A.D.-R.)
| | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiologia Clínica, UMAE Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (J.C.N.-E.); (J.F.-L.); (M.L.P.-S.); (D.A.D.-R.)
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaria de Salud del D.F., Mexico City 15530, Mexico;
| | - Beatriz Cortés-Herrera
- Servicio de Hematología Pediátrica, Hospital General de México “Dr. Eduardo Liceaga”, Secretaría de Salud (SS), Mexico City 06720, Mexico; (R.M.E.-E.); (B.C.-H.)
| | - Karina Anastacia Solís-Labastida
- Servicio de Hematología Pediátrica UMAE Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional “Siglo XXI”, IMSS, Mexico City 06720, Mexico; (J.A.M.-T.); (K.A.S.-L.)
| | - Ana Itamar González-Ávila
- Hospital General Regional 1 “Dr. Carlos McGregor Sánchez Navarro”, IMSS, Mexico City 03103, Mexico; (R.A.-S.); (A.I.G.-Á.)
| | - Jessica Denisse Santillán-Juárez
- Servicio de Hemato-Oncología Pediátrica, Hospital Regional No. 1 de Octubre, ISSSTE, Mexico City 07300, Mexico; (J.D.S.-J.); (A.J.G.-V.)
| | - Alejandra Jimena García-Velázquez
- Servicio de Hemato-Oncología Pediátrica, Hospital Regional No. 1 de Octubre, ISSSTE, Mexico City 07300, Mexico; (J.D.S.-J.); (A.J.G.-V.)
| | - Haydee Rosas-Vargas
- Unidad de Investigación en Genética Humana, UMAE Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional “Siglo XXI”, IMSS, Mexico City 06720, Mexico; (H.R.-V.); (M.M.-R.); (O.A.S.-R.)
| | - Minerva Mata-Rocha
- Unidad de Investigación en Genética Humana, UMAE Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional “Siglo XXI”, IMSS, Mexico City 06720, Mexico; (H.R.-V.); (M.M.-R.); (O.A.S.-R.)
| | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación en Genética Humana, UMAE Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional “Siglo XXI”, IMSS, Mexico City 06720, Mexico; (H.R.-V.); (M.M.-R.); (O.A.S.-R.)
| | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Epidemiologia Clínica, UMAE Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (J.C.N.-E.); (J.F.-L.); (M.L.P.-S.); (D.A.D.-R.)
- Coordinación de Investigación en Salud, IMSS, Mexico City 06720, Mexico
- Correspondence: or (J.M.M.-A.); (S.J.-M.); Tel.: +52–55–5350–1900 (ext. 1155) (S.J.-M.)
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
- Correspondence: or (J.M.M.-A.); (S.J.-M.); Tel.: +52–55–5350–1900 (ext. 1155) (S.J.-M.)
| |
Collapse
|