1
|
Gancheva S, Roden M, Castera L. Diabetes as a risk factor for MASH progression. Diabetes Res Clin Pract 2024; 217:111846. [PMID: 39245423 DOI: 10.1016/j.diabres.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Non-alcoholic (now: metabolic) steatohepatitis (MASH) is the progressive inflammatory form of metabolic dysfunction-associated steatotic liver disease (MASLD), which often coexists and mutually interacts with type 2 diabetes (T2D), resulting in worse hepatic and cardiovascular outcomes. Understanding the intricate mechanisms of diabetes-related MASH progression is crucial for effective therapeutic strategies. This review delineates the multifaceted pathways involved in this interplay and explores potential therapeutic implications. The synergy between adipose tissue, gut microbiota, and hepatic alterations plays a pivotal role in disease progression. Adipose tissue dysfunction, particularly in the visceral depot, coupled with dysbiosis in the gut microbiota, exacerbates hepatic injury and insulin resistance. Hepatic lipid accumulation, oxidative stress, and endoplasmic reticulum stress further potentiate inflammation and fibrosis, contributing to disease severity. Dietary modification with weight reduction and exercise prove crucial in managing T2D-related MASH. Additionally, various well-known but also novel anti-hyperglycemic medications exhibit potential in reducing liver lipid content and, in some cases, improving MASH histology. Therapies targeting incretin receptors show promise in managing T2D-related MASH, while thyroid hormone receptor-β agonism has proven effective as a treatment of MASH and fibrosis.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Laurent Castera
- Department of Hepatology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France; Université Paris-Cité, INSERM UMR 1149, Centre de Recherche sur l'Inflammation Paris, Montmartre, Paris, France.
| |
Collapse
|
2
|
De la Cruz-Color L, Dominguez-Rosales JA, Maldonado-González M, Ruíz-Madrigal B, Sánchez Muñoz MP, Zaragoza-Guerra VA, Espinoza-Padilla VH, Ruelas-Cinco EDC, Ramírez-Meza SM, Torres Baranda JR, González-Gutiérrez MDR, Hernandez Nazara ZH. Evidence That Peripheral Leptin Resistance in Omental Adipose Tissue and Liver Correlates with MASLD in Humans. Int J Mol Sci 2024; 25:6420. [PMID: 38928125 PMCID: PMC11203746 DOI: 10.3390/ijms25126420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Leptin regulates lipid metabolism, maximizing insulin sensitivity; however, peripheral leptin resistance is not fully understood, and its contribution to metabolic dysfunction-associated steatotic liver disease (MASLD) is unclear. This study evaluated the contribution of the leptin axis to MASLD in humans. Forty-three participants, mostly female (86.04%), who underwent cholecystectomy were biopsied. Of the participants, 24 were healthy controls, 8 had MASLD, and 11 had metabolic dysfunction-associated steatohepatitis (MASH). Clinical and biochemical data and the gene expression of leptin, leptin receptor (LEPR), suppressor of cytokine signaling 3 (SOCS3), sterol regulatory element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1), and patatin-like phospholipase domain-containing protein 2 (PNPLA2), were determined from liver and adipose tissue. Higher serum leptin and LEPR levels in the omental adipose tissue (OAT) and liver with MASH were found. In the liver, LEPR was positively correlated with leptin expression in adipose tissue, and SOCS3 was correlated with SREBF1-SCD1. In OAT, SOCS3 was correlated with insulin resistance and transaminase enzymes (p < 0.05 for all. In conclusion, we evidenced the correlation between the peripheral leptin resistance axis in OAT-liver crosstalk and the complications of MASLD in humans.
Collapse
Affiliation(s)
- Lucia De la Cruz-Color
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47820, C.P., Mexico;
- Instituto de Investigación en Enfermedades Crónicas Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico (V.H.E.-P.)
| | - Jose Alfredo Dominguez-Rosales
- Instituto de Investigación en Enfermedades Crónicas Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico (V.H.E.-P.)
| | - Montserrat Maldonado-González
- Laboratorio de Investigación en Microbiología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico; (M.M.-G.); (B.R.-M.); (J.R.T.B.)
| | - Bertha Ruíz-Madrigal
- Laboratorio de Investigación en Microbiología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico; (M.M.-G.); (B.R.-M.); (J.R.T.B.)
| | - Martha P. Sánchez Muñoz
- Nuevo Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Unidad de Cirugía Bariátrica y Metabólica, Guadalajara 44340, C.P., Mexico;
| | - Vianney Alejandrina Zaragoza-Guerra
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Guadalajara, Escuela de Medicina y Ciencias de la Salud, Zapopan 45201, C.P., Mexico; (V.A.Z.-G.); (M.d.R.G.-G.)
| | - Victor H. Espinoza-Padilla
- Instituto de Investigación en Enfermedades Crónicas Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico (V.H.E.-P.)
| | | | - Sandra M. Ramírez-Meza
- Coordinación de la Licenciatura en Nutrición, División de Estudios de la Salud Centro Universitario de los Valles, Universidad de Guadalajara, Ameca Km. 45.5, Ameca 46600, C.P., Mexico;
| | - José R. Torres Baranda
- Laboratorio de Investigación en Microbiología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico; (M.M.-G.); (B.R.-M.); (J.R.T.B.)
| | - María del R. González-Gutiérrez
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Guadalajara, Escuela de Medicina y Ciencias de la Salud, Zapopan 45201, C.P., Mexico; (V.A.Z.-G.); (M.d.R.G.-G.)
| | - Zamira Helena Hernandez Nazara
- Instituto de Investigación en Enfermedades Crónicas Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico (V.H.E.-P.)
| |
Collapse
|
3
|
Nakamura A, Kagaya Y, Saito H, Kanazawa M, Sato K, Miura M, Kondo M, Endo H. Impact of pemafibrate on lipid profile and insulin resistance in hypertriglyceridemic patients with coronary artery disease and metabolic syndrome. Heart Vessels 2024; 39:486-495. [PMID: 38393377 DOI: 10.1007/s00380-024-02363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/18/2024] [Indexed: 02/25/2024]
Abstract
This study examined the effects of pemafibrate, a selective peroxisome proliferator-activated receptor α agonist, on the serum biochemical parameters of male patients with coronary artery disease and metabolic syndrome (MetS). This was a post hoc analysis of a randomized, crossover study that treated hypertriglyceridemia with pemafibrate or bezafibrate for 24 weeks, followed by a crossover of another 24 weeks. Of the 60 patients enrolled in the study, 55 were male. Forty-one of 55 male patients were found to have MetS. In this sub-analysis, male patients with MetS (MetS group, n = 41) and those without MetS (non-MetS group, n = 14) were compared. The primary endpoint was a change in fasting serum triglyceride (TG) levels during pemafibrate therapy, and the secondary endpoints were changes in insulin resistance-related markers and liver function parameters. Serum TG levels significantly decreased (MetS group, from 266.6 to 148.0 mg/dL, p < 0.001; non-MetS group, from 203.9 to 97.6 mg/dL, p < 0.001); however, a percent change (%Change) was not significantly different between the groups (- 44.1% vs. - 51.6%, p = 0.084). Serum insulin levels and homeostasis model assessment of insulin resistance significantly decreased in the MetS group but not in the non-MetS group. %Change in liver enzyme levels was markedly decreased in the MetS group compared with that in the non-MetS group (alanine aminotransferase, - 25.1% vs. - 11.3%, p = 0.027; gamma-glutamyl transferase, - 45.8% vs. - 36.2%, p = 0.020). In conclusion, pemafibrate can effectively decrease TG levels in patients with MetS, and it may be a more efficient drug for improving insulin resistance and liver function in such patients.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan.
| | - Yuta Kagaya
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Hiroki Saito
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Masanori Kanazawa
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Kenjiro Sato
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Masanobu Miura
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Masateru Kondo
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Hideaki Endo
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| |
Collapse
|
4
|
Gîlcă-Blanariu GE, Budur DS, Mitrică DE, Gologan E, Timofte O, Bălan GG, Olteanu VA, Ștefănescu G. Advances in Noninvasive Biomarkers for Nonalcoholic Fatty Liver Disease. Metabolites 2023; 13:1115. [PMID: 37999211 PMCID: PMC10672868 DOI: 10.3390/metabo13111115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) currently represents one of the most common liver diseases worldwide. Early diagnosis and disease staging is crucial, since it is mainly asymptomatic, but can progress to nonalcoholic steatohepatitis (NASH) or cirrhosis or even lead to the development of hepatocellular carcinoma. Over time, efforts have been put into developing noninvasive diagnostic and staging methods in order to replace the use of a liver biopsy. The noninvasive methods used include imaging techniques that measure liver stiffness and biological markers, with a focus on serum biomarkers. Due to the impressive complexity of the NAFLD's pathophysiology, biomarkers are able to assay different processes involved, such as apoptosis, fibrogenesis, and inflammation, or even address the genetic background and "omics" technologies. This article reviews not only the currently validated noninvasive methods to investigate NAFLD but also the promising results regarding recently discovered biomarkers, including biomarker panels and the combination of the currently validated evaluation methods and serum markers.
Collapse
Affiliation(s)
- Georgiana-Emmanuela Gîlcă-Blanariu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Daniela Simona Budur
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Dana Elena Mitrică
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Elena Gologan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Oana Timofte
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gheorghe Gh Bălan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Vasile Andrei Olteanu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gabriela Ștefănescu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| |
Collapse
|
5
|
Hazime H, Ducasa GM, Santander AM, Brito N, González EE, Ban Y, Kaunitz J, Akiba Y, Fernández I, Burgueño JF, Abreu MT. Intestinal Epithelial Inactivity of Dual Oxidase 2 Results in Microbiome-Mediated Metabolic Syndrome. Cell Mol Gastroenterol Hepatol 2023; 16:557-572. [PMID: 37369278 PMCID: PMC10468370 DOI: 10.1016/j.jcmgh.2023.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND & AIMS Metabolic syndrome (MetS) is characterized by obesity, glucose intolerance, and hepatic steatosis. Alterations in the gut microbiome play important roles in the development of MetS. However, the mechanisms by which this occurs are poorly understood. Dual oxidase 2 (DUOX2) is an antimicrobial reduced nicotinamide adenine dinucleotide phosphate oxidase expressed in the gut epithelium. Here, we posit that epithelial DUOX2 activity provides a mechanistic link between the gut microbiome and the development of MetS. METHODS Mice carrying an intestinal epithelial-specific deletion of dual oxidase maturation factor 1/2 (DA IEC-KO), and wild-type littermates were fed a standard diet and killed at 24 weeks. Metabolic alterations were determined by glucose tolerance, lipid tests, and body and organ weight measurements. DUOX2 activity was determined by Amplex Red. Intestinal permeability was determined by fluorescein isothiocyanate-dextran, microbial translocation assessments, and portal vein lipopolysaccharide measurements. Metagenomic analysis of the stool microbiome was performed. The role of the microbiome was assessed in antibiotic-treated mice. RESULTS DA IEC-KO males showed increased body and organ weights accompanied by glucose intolerance and increased plasma lipid and liver enzyme levels, and increased adiposity in the liver and adipose tissue. Expression of F4/80, CD68, uncoupling protein 1, carbohydrate response element binding protein, leptin, and adiponectin was altered in the liver and adipose tissue of DA IEC-KO males. DA IEC-KO males produced less epithelial H2O2, had altered relative abundance of Akkermansiaceae and Lachnospiraceae in stool, and showed increased portal vein lipopolysaccharides and intestinal permeability. Females were protected from barrier defects and MetS, despite producing less H2O2. Antibiotic depletion abrogated all MetS phenotypes observed. CONCLUSIONS Intestinal epithelial inactivity of DUOX2 promotes MetS in a microbiome-dependent manner.
Collapse
Affiliation(s)
- Hajar Hazime
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida; Department of Microbiology and Immunology, University of Miami-Miller School of Medicine, Miami, Florida
| | - G Michelle Ducasa
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Ana M Santander
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Nivis Brito
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Eddy E González
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Yuguang Ban
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami-Miller School of Medicine, Miami, Florida
| | - Jonathan Kaunitz
- Medical Service and Research Services, VA Greater Los Angeles Healthcare System, Los Angeles, California; Medical Service, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Yasutada Akiba
- Medical Service and Research Services, VA Greater Los Angeles Healthcare System, Los Angeles, California; Medical Service, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Irina Fernández
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Juan F Burgueño
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida
| | - Maria T Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami-Miller School of Medicine, Miami, Florida; Department of Microbiology and Immunology, University of Miami-Miller School of Medicine, Miami, Florida.
| |
Collapse
|
6
|
Lactobacillus sakei MJM60958 as a Potential Probiotic Alleviated Non-Alcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet by Modulating Lipid Metabolism, Inflammation, and Gut Microbiota. Int J Mol Sci 2022; 23:ijms232113436. [PMID: 36362221 PMCID: PMC9658623 DOI: 10.3390/ijms232113436] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease with a rapidly increasing number of cases worldwide. This study aimed to evaluate the effects of Lactobacillus sakei MJM60958 (MJM60958) on NAFLD in vitro and in vivo. In in vitro tests, MJM60958 significantly inhibited lipid accumulation by 46.79% in HepG2 cells stimulated with oleic acid and cholesterol (OA-C). Moreover, MJM60958 showed safe and probiotic characteristics in vitro. In the animal study, MJM60958 administration in a high-fat diet-induced NAFLD mouse model significantly reduced body weight and liver weight, and controlled aspartate aminotransferase (ALT), aspartate transaminase (AST), triglyceride (TG), urea nitrogen (BUN), and uric acid (UA) levels in the blood, which are features of NAFLD. Further, treatment with MJM60958 also reduced steatosis scores in liver tissues, serum leptin and interleukin, and increased serum adiponectin content. Moreover, administration of MJM60958 resulted in a significantly decreased expression of some genes and proteins which are related to lipid accumulation, such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein 1 (SREBP-1), and also upregulated genes and protein expression of lipid oxidation such as peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1a (CPT1A). Administration of MJM60958 increased the relative abundance of specific microbial taxa such as Verrucomicrobia, which are abundant in non-NAFLD mice, and reduced Firmicutes, which are a major group in NAFLD mice. MJM60958 affected the modulation of gut microbiota and altered the strain profile of short-chain fatty acids (SCFAs) production in the cecum by reduced lactic acid and enhanced acetic acid production. Overall, MJM60958 showed potential as a probiotic that can prevent and treat NAFLD.
Collapse
|
7
|
Chayanupatkul M, Sawatdee W, Chutaputti A, Tangkijvanich P. The Efficacy of Oligonol in Nonalcoholic Fatty Liver Disease: A Randomized Double-Blinded Placebo-Controlled Trial. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2022; 28:904-908. [PMID: 36074799 DOI: 10.1089/jicm.2021.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Introduction: Oligonol, an oligomerized-polyphenol from Litchi chinensis extract, has been shown to alleviate metabolic syndrome. The aim of this study was to evaluate the effects of oligonol in patients with nonalcoholic fatty liver disease (NAFLD). Methods: Adult patients with NAFLD defined by magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF) ≥11% were enrolled and then randomly assigned to receive either oligonol or placebo capsules. Primary endpoint was ≥30% reduction in MRI-PDFF at 24 weeks. Secondary outcomes were reductions in bodyweight, waist circumference, alanine transaminase, fasting blood sugar, and lipid profiles at week 24. Results: Forty patients were enrolled (n = 20/group). Primary endpoint was achieved in 20% in the oligonol group and 15% in the placebo group (p = 0.50). The authors found a reduction in MRI-PDFF between weeks 0 and 24 in the oligonol group; however, the change was not different from the placebo group. Secondary outcomes were similar between two groups. Discussion: Oligonol has not shown a significant therapeutic effect in NAFLD. Future studies with a longer duration of therapy might be needed to achieve the primary endpoint. Clinical Trial Registration Number: Thai Clinical Trial Registry identification number: TCTR20200814001.
Collapse
Affiliation(s)
- Maneerat Chayanupatkul
- Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases Research Unit, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Waleerat Sawatdee
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Anuchit Chutaputti
- Department of Medicine, Phramongkutklao Hospital, Ratchathewi, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
8
|
Wei W, Liu L, Liu X, Tao Y, Zhao X, Gong J, Wang Y, Liu S. Exploring the Therapeutic Effects of Black Ginseng on Non-alcoholic Fatty Liver Disease by Using Network Pharmacology and Molecular Docking. Chem Biodivers 2022; 19:e202200719. [PMID: 36040357 DOI: 10.1002/cbdv.202200719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022]
Abstract
This study aimed to investigate the therapeutic effect of BG on non-alcoholic fatty liver disease (NAFLD) using network pharmacology combined with the molecular docking strategy. The saponin composition of BG was analyzed by liquid chromatography-mass spectrometry (LC-MS) instrument. Then the network pharmacology was applied to explore the potential targets and related mechanisms of BG in the treatment of NAFLD. After screening out key targets, molecular docking was used to predict the binding modes between ginsenoside and target. Finally, a methionine and choline deficiency (MCD) diet-induced NAFLD mice model was established to further confirm the therapeutic effect of BG on NAFLD. Twenty-four ginsenosides were annotated based on the MS and tandem MS information. Ten proteins were screened out as key targets closely related to BG treatment of NAFLD. The molecular docking showed that most of the ginsenosides had good binding affinities with ALT1. The validation experiment revealed that BG administration could reduce serum ALT, and AST levels and improve the MCD diet-induced histological changes in liver tissue. Moreover, BG could upregulate the phosphorylation level of AKT in the liver of NAFLD mice, thereby exerting the therapeutic effect on NAFLD. Further studies on the active ginsenosides as well as their synergistic action on NAFLD will be required to reveal the underlying mechanisms in-depth. This study demonstrates that network pharmacological prediction in conjunction with molecular docking is a viable technique for screening the active chemicals and related targets of BG that can be applied to other herbal medicines.
Collapse
Affiliation(s)
- Wei Wei
- Changchun University of Chinese Medicine, Jilin ginseng academy, Boshuo Road 1035, Changchun, Jilin, China, 130117, Changchun, CHINA
| | - Liming Liu
- Jilin Agricultural Science and Technology University, College of Animal Science and Technology, Hanlin Road 77, Jilin, CHINA
| | - Xiaokang Liu
- Changchun University of Chinese Medicine, School of Pharmaceutical Sciences, Boshuo Road 1035, Changchun, Jilin, China, 130117, Changchun, CHINA
| | - Ye Tao
- Changchun University of Chinese Medicine, School of Pharmaceutical Sciences, Boshuo Road 1035, Changchun, Jilin, China, 130117, Changchun, CHINA
| | - Xu Zhao
- Chinese PLA General Hospital Fifth Medical Center South Campus, Department of Hepatology, Beijing, Beijing, CHINA
| | - Jiyu Gong
- Changchun University of Chinese Medicine, School of Pharmaceutical Sciences, Boshuo Road 1035, Changchun, Jilin, China, 130117, Changchun, CHINA
| | - Yang Wang
- Changchun University of Chinese Medicine, Jilin Ginseng Academy, Boshuo Road 1035, Changchun, Jilin, China, 130117, Changchun, CHINA
| | - Shuying Liu
- Changchun University of Chinese Medicine, Jilin ginseng academy, Boshuo Road 1035, Changchun, Jilin, China, 130117, Changchun, CHINA
| |
Collapse
|
9
|
Mitsala A, Tsalikidis C, Romanidis K, Pitiakoudis M. Non-Alcoholic Fatty Liver Disease and Extrahepatic Cancers: A Wolf in Sheep’s Clothing? Curr Oncol 2022; 29:4478-4510. [PMID: 35877216 PMCID: PMC9325209 DOI: 10.3390/curroncol29070356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now considered the main driver and leading cause of chronic liver disease globally. The umbrella term NAFLD describes a range of liver conditions closely related to insulin resistance, metabolic syndrome, diabetes mellitus, obesity, and dyslipidemia. At the same time, several malignancies, including hepatocellular carcinoma and colorectal cancer, are considered to be common causes of death among patients with NAFLD. At first, our review herein aims to investigate the role of NAFLD in developing colorectal neoplasms and adenomatous polyps based on the current literature. We will also explore the connection and the missing links between NAFLD and extrahepatic cancers. Interestingly, any relationship between NAFLD and extrahepatic malignancies could be attributable to several shared metabolic risk factors. Overall, obesity, insulin resistance, metabolic syndrome, and related disorders may increase the risk of developing cancer. Therefore, early diagnosis of NAFLD is essential for preventing the progression of the disease and avoiding its severe complications. In addition, cancer screening and early detection in these patients may improve survival and reduce any delays in treatment.
Collapse
|
10
|
Kasacka I, Piotrowska Ż, Domian N, Lewandowska A, Acewicz M. Immunohistochemical identification and assessment of the location of leptin, visfatin and chemerin in the liver of men with different body mass index. BMC Gastroenterol 2022; 22:233. [PMID: 35549673 PMCID: PMC9097377 DOI: 10.1186/s12876-022-02299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Adipokines such as leptin, visfatin and chemerin play a pivotal role not only in the pathogenesis of excessive weight gain but also impact on hepatic metabolism. However, alterations in the production of these peptides in the liver of overweight individuals have not been fully elucidated yet. The aim of the study was to evaluate changes in leptin, visfatin and chemerin biosynthesis in the liver of men with different BMI. Methods Fourteen adult men without symptoms from the digestive system were recruited. Research material consisted of liver samples. Study participants were divided into two groups: lean (BMI ≤ 25 kg/m2) and overweight subjects (BMI > 25 kg/m2). Paraffin liver sections were processed by immunohistochemistry for detection of leptin, visfatin and chemerin. Hepatic expression of leptin, visfatin and chemerin genes was determined by qRT-PCR method. Results Increased immunoreactivity for leptin and chemerin, and decreased immunoreaction for visfatin were observed in the liver of overweight men in comparison to lean subjects. Overweight subjects with hepatic steatosis displayed increased immunoreactivity for leptin and weaker immunoreaction against visfatin and chemerin in the liver, compared to individuals with normal organ structure. Expression of leptin and chemerin was enhanced in the liver of overweight individuals, with the highest expression observed in subjects with hepatic steatosis. Conversely, expression of visfatin in the male liver was decreased in overweight subjects and those with and liver steatosis. Conclusions The present study proves that the expression of leptin, visfatin and chemerin in the male liver is altered in overweight individuals. Our report also indicates the potential importance of these peptides in hepatic steatosis associated with overweight.
Collapse
Affiliation(s)
- I Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Mickiewicza 2C Street, 15-222, Białystok, Poland.
| | - Ż Piotrowska
- Department of Histology and Cytophysiology, Medical University of Białystok, Mickiewicza 2C Street, 15-222, Białystok, Poland
| | - N Domian
- Department of Histology and Cytophysiology, Medical University of Białystok, Mickiewicza 2C Street, 15-222, Białystok, Poland
| | - A Lewandowska
- Department of Histology and Cytophysiology, Medical University of Białystok, Mickiewicza 2C Street, 15-222, Białystok, Poland
| | - M Acewicz
- Department of Histology and Cytophysiology, Medical University of Białystok, Mickiewicza 2C Street, 15-222, Białystok, Poland
| |
Collapse
|
11
|
Zeng B, Wu R, Chen Y, Chen W, Liu Y, Liao X, Guo G, Wang X. FTO knockout in adipose tissue effectively alleviates hepatic steatosis partially via increasing the secretion of adipocyte-derived IL-6. Gene 2022; 818:146224. [PMID: 35085712 DOI: 10.1016/j.gene.2022.146224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/05/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Adipose dysfunction affects the secretion of adipokines and mediates the hepatic physiological changes. Fat mass and obesity associated protein (FTO) plays a crucial part in fat deposition but the crosstalk between FTO-mediated secretion of adipokines and hepatic steatosis is not clear. METHODS Firstly, adipose-selective FTO knockout (FTOAKO) and control (FTOflox/flox) mice were induced by high fat diet (HFD). Then qRT-PCR assay was performed to analyze the expressions of hepatic lipid metabolism genes and adipocytokines gene of inguinal white adipose tissue (iWAT) and epididymal white adipose tissue (eWAT). Afterwards, 3T3-L1 cells were knocked out IL-6 and co-cultured with AML12 cells (3T3-L1 siIL-6/AML12) and the expressions of hepatic lipid lipolysis genes were measured. Finally, we detected the hepatic lipid metabolism genes expressions in AML12 cells with the medium from 3T3-L1 cells or IL-6 treatment. RESULTS FTOAKO effectively alleviated HFD-induced hepatic steatosis in mice and improved the transcription level of genes involved in hepatic lipolysis. Further investigation demonstrated that FTO knockout increased level of IL-6 in adipose tissues and 3T3-L1 cells. Compared to 3T3-L1/AML12, our results showed lipolysis-related genes expressions were dramatically inhibited in 3T3-L1 siIL-6/AML12. Finally, both depletion of FTO in adipocytes and IL-6 supplement led to increased lipolysis genes expressions in AML12 cells. CONCLUSIONS FTO knockout in adipose tissue alleviated hepatic steatosis via targeting adipocyte-derived IL-6.
Collapse
Affiliation(s)
- Botao Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Ruifan Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Xing Liao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Guanqun Guo
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
12
|
Ou MY, Zhang H, Tan PC, Zhou SB, Li QF. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis 2022; 13:300. [PMID: 35379822 PMCID: PMC8980023 DOI: 10.1038/s41419-022-04752-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023]
Abstract
Adipose tissue, which is the crucial energy reservoir and endocrine organ for the maintenance of systemic glucose, lipid, and energy homeostasis, undergoes significant changes during aging. These changes cause physiological declines and age-related disease in the elderly population. Here, we review the age-related changes in adipose tissue at multiple levels and highlight the underlying mechanisms regulating the aging process. We also discuss the pathogenic pathways of age-related fat dysfunctions and their systemic negative consequences, such as dyslipidemia, chronic general inflammation, insulin resistance, and type 2 diabetes (T2D). Age-related changes in adipose tissue involve redistribution of deposits and composition, in parallel with the functional decline of adipocyte progenitors and accumulation of senescent cells. Multiple pathogenic pathways induce defective adipogenesis, inflammation, aberrant adipocytokine production, and insulin resistance, leading to adipose tissue dysfunction. Changes in gene expression and extracellular signaling molecules regulate the aging process of adipose tissue through various pathways. In addition, adipose tissue aging impacts other organs that are infiltrated by lipids, which leads to systemic inflammation, metabolic system disruption, and aging process acceleration. Moreover, studies have indicated that adipose aging is an early onset event in aging and a potential target to extend lifespan. Together, we suggest that adipose tissue plays a key role in the aging process and is a therapeutic target for the treatment of age-related disease, which deserves further study to advance relevant knowledge.
Collapse
Affiliation(s)
- Min-Yi Ou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Hao Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Poh-Ching Tan
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Qing-Feng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
13
|
Raeman R. Inflammation: The Straw That Broke the NAFLD Liver! Cell Mol Gastroenterol Hepatol 2022; 13:1273-1274. [PMID: 35031516 PMCID: PMC9073725 DOI: 10.1016/j.jcmgh.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 01/05/2022] [Indexed: 12/10/2022]
Affiliation(s)
- Reben Raeman
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
14
|
Goyale A, Jain A, Smith C, Papatheodoridi M, Misas MG, Roccarina D, Prat LI, Mikhailidis DP, Nair D, Tsochatzis E. Assessment of non-alcoholic fatty liver disease (NAFLD) severity with novel serum-based markers: A pilot study. PLoS One 2021; 16:e0260313. [PMID: 34813621 PMCID: PMC8610238 DOI: 10.1371/journal.pone.0260313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/06/2021] [Indexed: 12/31/2022] Open
Abstract
Background/Aims Non-alcoholic fatty liver disease (NAFLD) represents a significant public health issue. Identifying patients with simple steatosis from those with non-alcoholic steatohepatitis (NASH) is crucial since NASH is correlated with increased morbidity and mortality. Serum-based markers, including adipokines and cytokines, are important in the pathogenesis and progression of NAFLD. Here we assessed the usefulness of such markers in patients with NAFLD. Methods This prospective, cross-sectional study included 105 adult patients with varying severity of NAFLD. Twelve serum-based markers were measured by 3 biochip platforms and 2 enzyme-linked immunosorbent assay (ELISA) methods. We also developed a NAFLD individual fibrosis index (NIFI) using the serum-based markers mostly correlated with fibrosis severity. Results Sixty-one out of 105 patients were male (58.1%) with mean age was 53.5 years. Higher Interleukin-6 (IL-6) increased (p = 0.0321) and lower Matrix Metalloproteinase-9 (MMP-9) serum levels (p = 0.0031) were associated with higher fibrosis as measured by Fibroscan® in multivariable regression analysis. Using receiver-operating characteristic (ROC) curve analysis for the NIFI, area under the curve for predicting Fibroscan values ≥ 7.2 kPa was 0.77 (95%CI: 0.67, 0.88, p<0.001), with sensitivity of 89.3%, specificity of 57.9% and a positive likelihood ratio of 2.8. Conclusions Increasing fibrosis severity in NAFLD is associated with differential expression of IL-6 and MMP-9. NIFI could be valuable for the prediction of advanced NAFLD fibrosis and potentially help avoid unnecessary interventions such as liver biopsy in low-risk patients.
Collapse
Affiliation(s)
- Atul Goyale
- Department of Clinical Biochemistry, Royal Free Hospital, London, United Kingdom
| | - Anjly Jain
- Department of Clinical Biochemistry, Royal Free Hospital, London, United Kingdom
| | - Colette Smith
- UCL Research Department of Infection & Population Health, Royal Free Hospital, London, United Kingdom
| | - Margarita Papatheodoridi
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, United Kingdom
| | - Marta Guerrero Misas
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, United Kingdom
| | - Davide Roccarina
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, United Kingdom
| | - Laura Iogna Prat
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, United Kingdom
| | | | - Devaki Nair
- Department of Clinical Biochemistry, Royal Free Hospital, London, United Kingdom
| | - Emmanuel Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Chang E, Chang JS, Kong ID, Baik SK, Kim MY, Park KS. Multidimensional Biomarker Analysis Including Mitochondrial Stress Indicators for Nonalcoholic Fatty Liver Disease. Gut Liver 2021; 16:171-189. [PMID: 34420934 PMCID: PMC8924798 DOI: 10.5009/gnl210106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is accompanied by a complex and multifactorial pathogenesis with sequential progressions from inflammation to fibrosis and then to cancer. This heterogeneity interferes with the development of precise diagnostic and prognostic strategies for NAFLD. The current approach for the diagnosis of simple steatosis, steatohepatitis, and cirrhosis mainly consists of ultrasonography, magnetic resonance imaging, elastography, and various serological analyses. However, individual dry and wet biomarkers have limitations demanding an integrative approach for the assessment of disease progression. Here, we review diagnostic strategies for simple steatosis, steatohepatitis and hepatic fibrosis, followed by potential biomarkers associated with fat accumulation and mitochondrial stress. For mitochondrial stress indicators, we focused on fibroblast growth factor 21 (FGF21), growth differentiation factor 15 (GDF15), angiopoietin-related growth factor and mitochondrial-derived peptides. Each biomarker may not strongly indicate the severity of steatosis or steatohepatitis. Instead, multidimensional analysis of different groups of biomarkers based on pathogenic mechanisms may provide decisive diagnostic/prognostic information to develop a therapeutic plan for patients with NAFLD. For this purpose, mitochondrial stress indicators, such as FGF21 or GDF15, could be an important component in the multiplexed and contextual interpretation of NAFLD. Further validation of the integrative evaluation of mitochondrial stress indicators combined with other biomarkers is needed in the diagnosis/prognosis of NAFLD.
Collapse
Affiliation(s)
- Eunha Chang
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jae Seung Chang
- Department of Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - In Deok Kong
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Soon Koo Baik
- Department of Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Moon Young Kim
- Department of Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
16
|
Metwally M, Bayoumi A, Khan A, Adams LA, Aller R, García-Monzón C, Arias-Loste MT, Bugianesi E, Miele L, Anna A, Latchoumanin O, Han S, Alenizi S, Sharkawy RE, Elattar A, Gallego-Durán R, Fischer J, Berg T, Liddle C, Romero-Gomez M, George J, Eslam M. Copy number variation and expression of exportin-4 associates with severity of fibrosis in metabolic associated fatty liver disease. EBioMedicine 2021; 70:103521. [PMID: 34388518 PMCID: PMC8365315 DOI: 10.1016/j.ebiom.2021.103521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Liver fibrosis risk is a heritable trait, the outcome of which is the net deposition of extracellular matrix by hepatic stellate cell-derived myofibroblasts. Whereas nucleotide sequence variations have been extensively studied in liver fibrosis, the role of copy number variations (CNV) in which genes exist in abnormal numbers of copies (mostly due to duplication or deletion) has had limited exploration. METHODS The impact of the XPO4 CNV on histological liver damage was examined in a cohort comprised 646 Caucasian patients with biopsy-proven MAFLD and 170 healthy controls. XPO4 expression was modulated and function was examined in human and animal models. FINDINGS Here we demonstrate in a cohort of 816 subjects, 646 with biopsy-proven metabolic associated liver disease (MAFLD) and 170 controls, that duplication in the exportin 4 (XPO4) CNV is associated with the severity of liver fibrosis. Functionally, this occurs via reduced expression of hepatic XPO4 that maintains sustained activation of SMAD3/SMAD4 and promotes TGF-β1-mediated HSC activation and fibrosis. This effect was mediated through termination of nuclear SMAD3 signalling. XPO4 demonstrated preferential binding to SMAD3 compared to other SMADs and led to reduced SMAD3-mediated responses as shown by attenuation of TGFβ1 induced SMAD transcriptional activity, reductions in the recruitment of SMAD3 to target gene promoters following TGF-β1, as well as attenuation of SMAD3 phosphorylation and disturbed SMAD3/SMAD4 complex formation. INTERPRETATION We conclude that a CNV in XPO4 is a critical mediator of fibrosis severity and can be exploited as a therapeutic target for liver fibrosis. FUNDING ME and JG are supported by the Robert W. Storr Bequest to the Sydney Medical Foundation, University of Sydney; a National Health and Medical Research Council of Australia (NHMRC) Program Grant (APP1053206) and Project and ideas grants (APP2001692, APP1107178 and APP1108422). AB is supported by an Australian Government Research Training Program (RTP) scholarship. EB is supported by Horizon 2020 under grant 634413 for the project EPoS.
Collapse
Affiliation(s)
- Mayada Metwally
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Anis Khan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Leon A Adams
- Medical School, Sir Charles Gairdner Hospital Unit, University of Western Australia, Nedlands, WA, Australia
| | - Rocio Aller
- Center of Investigation of Endocrinology and Nutrition, School of Medicine, and Unit of Investigation, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Instituto de Investigacion Sanitaria Princesa, University Hospital Santa Cristina, CIBERehd, Madrid, Spain
| | - María Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Science, University of Turin, Turin, Italy
| | - Luca Miele
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Alisi Anna
- Research Unit of Molecular Genetics of Complex Phenotypes, IRCCS "Bambino Gesù" Children's Hospital, Rome, Italy
| | - Olivier Latchoumanin
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Shuanglin Han
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Shafi Alenizi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Rasha El Sharkawy
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Afaf Elattar
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Rocio Gallego-Durán
- Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, Sevilla, Spain
| | - Janett Fischer
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Manuel Romero-Gomez
- Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, Sevilla, Spain
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
17
|
Jiménez-Cortegana C, García-Galey A, Tami M, del Pino P, Carmona I, López S, Alba G, Sánchez-Margalet V. Role of Leptin in Non-Alcoholic Fatty Liver Disease. Biomedicines 2021; 9:biomedicines9070762. [PMID: 34209386 PMCID: PMC8301314 DOI: 10.3390/biomedicines9070762] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which affects about a quarter of the global population, poses a substantial health and economic burden in all countries, yet there is no approved pharmacotherapy to treat this entity, nor well-established strategies for its diagnosis. Its prevalence has been rapidly driven by increased physical inactivity, in addition to excessive calorie intake compared to energy expenditure, affecting both adults and children. The increase in the number of cases, together with the higher morbimortality that this disease entails with respect to the general population, makes NAFLD a serious public health problem. Closely related to the development of this disease, there is a hormone derived from adipocytes, leptin, which is involved in energy homeostasis and lipid metabolism. Numerous studies have verified the relationship between persistent hyperleptinemia and the development of steatosis, fibrinogenesis and liver carcinogenesis. Therefore, further studies of the role of leptin in the NAFLD spectrum could represent an advance in the management of this set of diseases.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
| | - Alba García-Galey
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
| | - Malika Tami
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
| | - Pilar del Pino
- Unit of Digestive Diseases, Virgen Macarena University Hospital, 41073 Seville, Spain; (P.d.P.); (I.C.)
| | - Isabel Carmona
- Unit of Digestive Diseases, Virgen Macarena University Hospital, 41073 Seville, Spain; (P.d.P.); (I.C.)
| | - Soledad López
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
| | - Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
- Correspondence:
| |
Collapse
|
18
|
Kim H, Lee DS, An TH, Park HJ, Kim WK, Bae KH, Oh KJ. Metabolic Spectrum of Liver Failure in Type 2 Diabetes and Obesity: From NAFLD to NASH to HCC. Int J Mol Sci 2021; 22:ijms22094495. [PMID: 33925827 PMCID: PMC8123490 DOI: 10.3390/ijms22094495] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Liver disease is the spectrum of liver damage ranging from simple steatosis called as nonalcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC). Clinically, NAFLD and type 2 diabetes coexist. Type 2 diabetes contributes to biological processes driving the severity of NAFLD, the primary cause for development of chronic liver diseases. In the last 20 years, the rate of non-viral NAFLD/NASH-derived HCC has been increasing rapidly. As there are currently no suitable drugs for treatment of NAFLD and NASH, a class of thiazolidinediones (TZDs) drugs for the treatment of type 2 diabetes is sometimes used to improve liver failure despite the risk of side effects. Therefore, diagnosis, prevention, and treatment of the development and progression of NAFLD and NASH are important issues. In this review, we will discuss the pathogenesis of NAFLD/NASH and NAFLD/NASH-derived HCC and the current promising pharmacological therapies of NAFLD/NASH. Further, we will provide insights into "adipose-derived adipokines" and "liver-derived hepatokines" as diagnostic and therapeutic targets from NAFLD to HCC.
Collapse
Affiliation(s)
- Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Da Som Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| |
Collapse
|
19
|
Scapaticci S, D’Adamo E, Mohn A, Chiarelli F, Giannini C. Non-Alcoholic Fatty Liver Disease in Obese Youth With Insulin Resistance and Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:639548. [PMID: 33889132 PMCID: PMC8056131 DOI: 10.3389/fendo.2021.639548] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Currently, Non-Alcoholic Fatty Liver Disease (NAFLD) is the most prevalent form of chronic liver disease in children and adolescents worldwide. Simultaneously to the epidemic spreading of childhood obesity, the rate of affected young has dramatically increased in the last decades with an estimated prevalence of NAFLD of 3%-10% in pediatric subjects in the world. The continuous improvement in NAFLD knowledge has significantly defined several risk factors associated to the natural history of this complex liver alteration. Among them, Insulin Resistance (IR) is certainly one of the main features. As well, not surprisingly, abnormal glucose tolerance (prediabetes and diabetes) is highly prevalent among children/adolescents with biopsy-proven NAFLD. In addition, other factors such as genetic, ethnicity, gender, age, puberty and lifestyle might affect the development and progression of hepatic alterations. However, available data are still lacking to confirm whether IR is a risk factor or a consequence of hepatic steatosis. There is also evidence that NAFLD is the hepatic manifestation of Metabolic Syndrome (MetS). In fact, NAFLD often coexist with central obesity, impaired glucose tolerance, dyslipidemia, and hypertension, which represent the main features of MetS. In this Review, main aspects of the natural history and risk factors of the disease are summarized in children and adolescents. In addition, the most relevant scientific evidence about the association between NAFLD and metabolic dysregulation, focusing on clinical, pathogenetic, and histological implication will be provided with some focuses on the main treatment options.
Collapse
Affiliation(s)
| | | | | | | | - Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| |
Collapse
|
20
|
Asbaghi O, Kashkooli S, Mardani M, Rezaei Kelishadi M, Fry H, Kazemi M, Kaviani M. Effect of green coffee bean extract supplementation on liver function and inflammatory biomarkers: A meta-analysis of randomized clinical trials. Complement Ther Clin Pract 2021; 43:101349. [PMID: 33714861 DOI: 10.1016/j.ctcp.2021.101349] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 10/22/2022]
Abstract
Inflammation is considered a major contributor to non-alcoholic fatty liver disease (NAFLD) and several chronic diseases such as, cardiovascular disease and type two diabetes. Green coffee bean extract (GCBE) supplementation has been suggested to enhancing antioxidant capacity in people with obesity but results across studies are mixed. We conducted a meta-analysis of randomized controlled trials of GCBE supplementation in overweight/obese with normal liver function and NAFLD adults with ALT, AST, γ-GTP, ALP, LDH, CRP, IL-6, and TNF-α as outcomes by searching PubMed and other databases. Eight studies were included, totaling 330 participants randomized to GCBE supplementation or placebo ranging from 50 mg/day to 1200 mg/day for 8-12 weeks. GCBE supplementation resulted in lower levels of TNF-α (mean difference = 1.37 pg/mL [95% CI = 0.97-1.76]; p < 0.00001). No significant difference was found in the remaining markers. In conclusion, GCBE supplementation attenuated TNF-α, a circulating inflammatory marker mediator which may be linked with lower systemic inflammation. However, potential cellular and molecular mechanisms by which GCBE exerts this positive effect warrants further investigations in human model studies.
Collapse
Affiliation(s)
- Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Sara Kashkooli
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Mahnaz Mardani
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hillary Fry
- School of Nutrition and Dietetics, Faculty of Pure & Applied Science, Acadia University, Wolfville, Nova Scotia, Canada.
| | - Maryam Kazemi
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, NY, USA.
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Faculty of Pure & Applied Science, Acadia University, Wolfville, Nova Scotia, Canada.
| |
Collapse
|
21
|
Reddy AJ, George ES, Roberts SK, Tierney AC. Effect of dietary intervention, with or without co-interventions, on inflammatory markers in patients with nonalcoholic fatty liver disease: a systematic literature review. Nutr Rev 2021; 77:765-786. [PMID: 31361003 DOI: 10.1093/nutrit/nuz029] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of liver disorders, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), with inflammation acting as a key driver in its pathogenesis and progression. Diet has the potential to mediate the release of inflammatory markers; however, little is known about the effects of various diets. OBJECTIVE This systematic review aimed to evaluate the effect of dietary interventions on cytokines and adipokines in patients with NAFLD. DATA SOURCES The electronic databases MEDLINE, EMBASE, CINAHL, and Cochrane Library were searched for clinical trials investigating dietary interventions, with or without supplementation, on cytokines and adipokines in NAFLD patients. DATA EXTRACTION Basic characteristics of populations, dietary intervention protocol, cytokines, and adipokines were extracted for each study. Quality of evidence was assessed using the American Dietetic Association criteria. DATA ANALYSIS Nineteen studies with a total of 874 participants were included. The most frequently reported inflammatory outcomes were C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), adiponectin, and leptin. Hypocaloric, isocaloric, or low-fat diets significantly (P < 0.05) lowered levels of CRP, TNF-α, and adiponectin. The addition of nutraceutical or pharmacological supplementation to dietary interventions appeared to elicit additional benefits for all of the most frequently reported inflammatory markers. CONCLUSIONS Hypo- or isocaloric diets alone, or with co-interventions that included a nutraceutical or pharmacological supplementation, appear to improve the inflammatory profile in patients with NAFLD. Thus, anti-inflammatory diets may have the potential to improve underlying chronic inflammation that underpins the pathophysiological mechanisms of NAFLD. In the absence of any known liver-sensitive markers, the use of cytokines and adipokines as a surrogate marker of liver disease should be further investigated in well-controlled trials.
Collapse
Affiliation(s)
- Anjana J Reddy
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Bundoora, Victoria, Australia
| | - Elena S George
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Bundoora, Victoria, Australia
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- Department of Nutrition, Alfred Health, Prahran, Victoria, Australia
| | - Stuart K Roberts
- Department of Gastroenterology, Alfred Health, Prahran, Victoria, Australia
| | - Audrey C Tierney
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Bundoora, Victoria, Australia
- Department of Nutrition, Alfred Health, Prahran, Victoria, Australia
- School of Allied Health, University of Limerick, Limerick, Ireland
| |
Collapse
|
22
|
Mohammed ED, Zhang Z, Tian W, Gangarapu V, Al-Gendy AA, Chen J, Wei J, Sun B. Modulation of IR as a therapeutic target to prevent NASH using NRF from Diceratella elliptica (DC.) jonsell. Strong Nrf2 and leptin inducer as well as NF-kB inhibitor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153388. [PMID: 33113501 DOI: 10.1016/j.phymed.2020.153388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Insulin resistance (IR) and lipotoxicity were evidenced as the major nonalcoholic steatohepatitis (NASH) initiators. However, absence of the effective treatment against NASH progression raised our aim to discover a new promising insulin modulator and NSH preventer. PURPOSE Our study aimed to extract and prepare a nitriles rich fraction (NRF) from Diceratella elliptica (DC.) Jonsell, investigate its insulin-sensitizing & anti-NASH potentialities and address its molecular targets in IR-NASH pathogenesis. STUDY DESIGN NRF was prepared using natural autolysis method and compounds were identified. Then, seventy male Wistar rats were feed high fat diet (HFD) or normal pellets for 35 days. In day 14th, HFD rats were injected by Streptozotocin (STZ) once and treatment was started in day 21st with either NRF (30, 60 and 120 mg/kg; orally) or pioglitazone (PioG) (10 mg/kg; i.p) beside HFD. While, NRF-alone rats were treated with NRF (120 mg/kg; orally) beside the normal pellets. Body weight, glucose homeostasis, hepatopathological examinations were performed. METHODS Gas liquid chromatography-mass spectrophotometry (GLC/MS) was used for compounds' identification while spectrophotometer was used for total glucosinolates (GLS) quantification. Also, the biochemical and molecular investigations concerned with liver lipotoxicity, oxidative stress, inflammation and insulin signaling pathway were investigated and confirmed with the computational prediction of the major compounds' targets. RESULTS Butenyl and benzyl GLS were the major along with other volatile compounds. NRF had significantly increased the insulin sensitivity and improved NASH-hisptopathology showing hepatoprotective effect. While, the fraction's anti-NASH potentiality was evidenced in the normalized hepatic steatosis markers, inflammation and oxidative stress key transcriptional factors resulting in induction of insulin receptor substrates (IRSs) phosphorylation and its downstream effectors. CONCLUSION NRF has reversed IR, stimulated leptin secretion and prevented NASH initiation showing promising anti-NASH and anti-fibrotic effects.
Collapse
Affiliation(s)
- Eman D Mohammed
- Department of Clinical Pharmacology, Nanjing Drum Tower Hospital, Pharmacy Collage of Nanjing Medical University, Nanjing 210000, China; Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Natural Products Unit, Medicinal and Aromatic Plants Department, Desert Research Centre, Cairo, Egypt
| | - Zechuan Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Wenfang Tian
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Venkatanarayana Gangarapu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - A A Al-Gendy
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Jun Chen
- Department of Pathology, Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China.
| | - Jifu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital, Pharmacy College of Nanjing Medical University, Nanjing 210000, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210000, China.
| |
Collapse
|
23
|
Bayoumi A, Jalil I, Metwally M, Adams LA, Aller R, García-Monzón C, Arias-Loste MT, Miele L, Petta S, Craxì A, Gallego-Durán R, Fischer J, Berg T, Qiao L, Liddle C, Bugianesi E, Romero-Gomez M, George J, Eslam M. Genetic variation in the TLL1 gene is not associated with fibrosis in patients with metabolic associated fatty liver disease. PLoS One 2020; 15:e0243590. [PMID: 33306709 PMCID: PMC7732106 DOI: 10.1371/journal.pone.0243590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is the most prevalent liver disease in Western nations, with high heritability. A recent study of Japanese patients with the disease suggested that TLL1 rs17047200 is associated with fibrosis; whether a similar association is observed in Caucasian patients with MAFLD is unknown. We investigated the association of the TLL1 rs17047200 polymorphism with liver fibrosis in a cohort of Caucasian patients with MAFLD (n = 728). We also investigated whether TLL1 expression is altered during liver injury in humans, in murine models of fibrosis, and in in-vitro. While TLL1 expression is upregulated in the liver of humans with MAFLD and in mice, the rs17047200 variant was not associated with fibrosis or any other histological features, or with hepatic TLL1 expression. In conclusion, the TLL1 rs17047200 variant is not a risk variant for fibrosis in Caucasian patients with MAFLD. However, TLL1 could be involved in the pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Ismail Jalil
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Mayada Metwally
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Leon A. Adams
- Medical School, Sir Charles Gairdner Hospital Unit, University of Western Australia, Nedlands, WA, Australia
| | - Rocio Aller
- Gastroenterology Svo., Hospital Clinico Universitario de Valladolid, School of Medicine, Valladolid University, Valladolid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Instituto de Investigacion Sanitaria Princesa, University Hospital Santa Cristina, CIBERehd, Madrid, Spain
| | - María Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Santander, Spain
| | - Luca Miele
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Antonio Craxì
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Rocio Gallego-Durán
- Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, Sevilla, Spain
| | - Janett Fischer
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Science, University of Turin, Turin, Italy
| | - Manuel Romero-Gomez
- Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, Sevilla, Spain
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
Godinez-Leiva E, Bril F. Nonalcoholic Fatty Liver Disease (NAFLD) for Primary Care Providers: Beyond the Liver. Curr Hypertens Rev 2020; 17:94-111. [DOI: 10.2174/1573402116999201209203534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/20/2020] [Accepted: 09/15/2020] [Indexed: 11/22/2022]
Abstract
Abstract::
Nonalcoholic fatty liver disease (NAFLD) has consolidated as a major public health problem, affecting ~25% of the global population. This percentage is significantly higher in the setting of obesity and/or type 2 diabetes. Presence of NAFLD is associated with severe liver complications, such as nonalcoholic steatohepatitis (NASH; i.e., presence of inflammation and necrosis), cirrhosis and hepatocellular carcinoma. However, the majority of these patients die of cardiovascular disease. For this reason, management of this condition requires a multidisciplinary team, where primary care providers are at center stage. However, important misconceptions remain among primary care providers, preventing them from appropriately approach these patients. Nonalcoholic fatty liver disease should be understood as part of a systemic disease, characterized for abnormal accumulation of fat in tissues other than the adipose tissue. This, in turn, produces dysfunction of those organs or tissues (process sometimes referred to as lipotoxicity). Therefore, due to the systemic nature of this condition, it should not surprise that NAFLD is closely related to other metabolic conditions. In this review, we will focus on the extrahepatic manifestations of NAFLD and its metabolic and cardiovascular implications. We believe these are the most important issues primary care providers should understand, in order to effectively manage these complicated patients. In addition, we have provided a simple and straightforward approach to the diagnosis and treatment of patients with NAFLD and/or NASH. We hope this review will serve as a guide for primary care providers to approach their patients with NAFLD.
Collapse
Affiliation(s)
- Eddison Godinez-Leiva
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL;, United States
| | - Fernando Bril
- Internal Medicine, Department of Medicine, University of Alabama in Birmingham, Birmingham, AL., United States
| |
Collapse
|
25
|
Unraveling the Role of Leptin in Liver Function and Its Relationship with Liver Diseases. Int J Mol Sci 2020; 21:ijms21249368. [PMID: 33316927 PMCID: PMC7764544 DOI: 10.3390/ijms21249368] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Since its discovery twenty-five years ago, the fat-derived hormone leptin has provided a revolutionary framework for studying the physiological role of adipose tissue as an endocrine organ. Leptin exerts pleiotropic effects on many metabolic pathways and is tightly connected with the liver, the major player in systemic metabolism. As a consequence, understanding the metabolic and hormonal interplay between the liver and adipose tissue could provide us with new therapeutic targets for some chronic liver diseases, an increasing problem worldwide. In this review, we assess relevant literature regarding the main metabolic effects of leptin on the liver, by direct regulation or through the central nervous system (CNS). We draw special attention to the contribution of leptin to the non-alcoholic fatty liver disease (NAFLD) pathogenesis and its progression to more advanced stages of the disease as non-alcoholic steatohepatitis (NASH). Likewise, we describe the contribution of leptin to the liver regeneration process after partial hepatectomy, the mainstay of treatment for certain hepatic malignant tumors.
Collapse
|
26
|
Kaisar HH, Halima ASA. Association of vitamin D supplementation with serum leptin and metabolic parameters in Egyptian patients with non-alcoholic steatohepatitis: a prospective study. EGYPTIAN LIVER JOURNAL 2020. [DOI: 10.1186/s43066-020-00049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Nonalcoholic steatohepatitis (NASH) is the progressive form of NAFLD, a common cause of liver disease, with increased chance of progression to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Circulating leptin is increased in patients with NASH. It is an independent positive predictor of the severity of hepatic steatosis. Vitamin D is a lipophilic molecule essential to maintain calcium and phosphate balance. Moreover, it has antifibrotic, antiproliferative, and anti-inflammatory effects on the liver. Vitamin D deficiency is a worldwide condition and very common in patients with NASH. Low serum vitamin D has been shown to predispose to intrahepatic lipid accumulation leading to NAFLD. The aim of this study was to investigate the association of vitamin D supplementation with serum leptin and metabolic parameters in Egyptian patients with non-alcoholic steatohepatitis
Results
Patients with NASH group had statistically significant higher values of diastolic blood pressure (94.3 ± 11.9 mmHg, p < 0.0001), glycated hemoglobin (8.0 ± 2.4%, p < 0.0001), fasting blood sugar (165.6 ± 62.0 mg/dL, p < 0.0001), fasting insulin level (24.2 ± 3.0 μU/ml, p < 0.0001), homeostatic model assessment of insulin resistance (HOMA-IR) (1.8 ± 0.7, p < 0.0001), alanine transferase (ALT) (78.2 ± 36.7 U/L, p < 0.0001), aspartate transferase (AST) (108.6 ± 85.6 U/L, p < 0.0001), NAFLD fibrosis score (− 0.78 ± 0.9, p < 0.0001), total cholesterol (233.0 ± 40.9 mg/dL, p = 0.0011), low-density lipoprotein (117.5 ± 41.6 mg/dL, p = 0.0084), and triglycerides (229.7 ± 62.1 mg/dL, p < 0.0001) than the control group. Moreover, they had lower serum vitamin D level (15.6 ± 6.6 ng/ml, p = 0.0004) and higher serum leptin level (35.9 ± 28.4 ng/ml, p < 0.0001) than the control group. Following vitamin D supplementation, there was a statistically significant reduction in HbA1c (6.8 ± 1.3%, p = 0.0055), fasting blood sugar (136.1 ± 32.7 mg/dL, p = 0.0094), fasting insulin level (22.9 ± 1.8 μU/ml, p = 0.0236), HOMA-IR (1.4 ± 0.4, p = 0.0026), ALT (55.3 ± 21.3 U/L, p = 0.0010), AST (73.1 ± 54.2 U/L, p = 0.0297), and triglycerides (203.6 ± 49.8 mg/dL, p = 0.0415) in patients with NASH. There was a statistically significant increase in serum vitamin D level (33.0 ± 7.6 ng/ml, p < 0.0001) and decrease in serum leptin level (23.5 ± 12.9 ng/ml, p = 0.0140) after treatment.
Conclusions
Vitamin D supplementation in patients with NASH in a dose of 4000 IU/day for 12 weeks improves severity of hepatic inflammation, decreases insulin resistance, improves glycemic control, corrects dyslipidemia, and protects against lipotoxicity by inhibition of serum leptin.
Collapse
|
27
|
Sarkar S, Bhattacharya S, Alam MJ, Yadav R, Banerjee SK. Hypoxia aggravates non-alcoholic fatty liver disease in presence of high fat choline deficient diet: A pilot study. Life Sci 2020; 260:118404. [PMID: 32920003 DOI: 10.1016/j.lfs.2020.118404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/21/2022]
Abstract
AIM NAFLD is a chronic and progressive disease for which there are no FDA-approved drugs available in the market. Drug discovery is a time-consuming procedure and requires screening of hundreds of small molecules to find new chemical entities (NECs) for a particular disease. Current preclinical NAFLD animal models take a longer time, which enhances the duration and expenses of the screening procedure. Hence to shorten the duration, we have proposed a preclinical animal model for rapid induction of non-alcoholic steatohepatitis (NASH), an advanced stage of NAFLD in rats. METHODOLOGY The animals were divided into three groups; control, high fat choline deficient (HFCD) and high fat choline deficient diet with sodium nitrite (40 mg/kg b.w. i.p. per day) (HFCD + NaNO2) respectively. Four weeks later physical and serum biochemical parameters were assessed, intraperitoneal glucose tolerance test was performed, and histopathology and gene expression were analysed. KEY FINDINGS Hypoxic stress aggravates the lipid accumulation, ballooning, lobular inflammation and fibrosis in hepatic tissue in presence of HFCD diet. SIGNIFICANCE This novel rodent model could be a useful NAFLD model to screen small molecules rapidly for treatment of NASH.
Collapse
Affiliation(s)
- Soumalya Sarkar
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad 121001, Haryana, India
| | - Sankarsan Bhattacharya
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad 121001, Haryana, India
| | - Md Jahangir Alam
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad 121001, Haryana, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Sanjay K Banerjee
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad 121001, Haryana, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India.
| |
Collapse
|
28
|
Shibayama Y, Wada N, Baba S, Obara S, Sakai H, Usubuchi H, Terae S, Nakamura A, Atsumi T. The risk factors for hepatic steatosis in patients with primary aldosteronism. Endocr J 2020; 67:623-629. [PMID: 32213734 DOI: 10.1507/endocrj.ej19-0600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Patients with primary aldosteronism (PA) are complicated by metabolic syndrome more frequently than those without PA. Hyperaldosteronism has been reported to be associated with a higher prevalence of non-alcoholic fatty liver disease (NAFLD). We aimed to clarify the risk factors for hepatic steatosis in the two subtypes of PA, comparing the status of hepatic steatosis in each of these subtypes. This was a retrospective observational study. We enrolled patients with an aldosterone producing adenoma (APA) (n = 33) or idiopathic hyperaldosteronism (IHA) (n = 56). Hepatic fat content was evaluated using the ratio of liver to spleen (L/S) X-ray attenuation on unenhanced computed tomography. L/S ratio <1.0 was utilized for assessing as hepatic steatosis. Age, sex distribution, visceral fat percentage (VF%), and visceral fat area (VFA) did not differ between patients with the two PA subtypes. The percentages of patients with L/S ratio <1.0 was not different between the two subtypes (APA: 21.2 % (7/33) vs. IHA: 19.6 % (11/56), p = 1.00). In both subtypes, the L/S ratio negatively correlated with VF% (APA: r = -0.66, p < 0.001; IHA: r = -0.66, p < 0.001) and with VFA (APA: r = -0.44, p < 0.01; IHA: r = -0.37, p < 0.01). The status of hepatic steatosis, evaluated using L/S ratio, did not differ between patients with APA or IHA. Hepatic steatosis was affected by the amount of visceral fat.
Collapse
Affiliation(s)
- Yui Shibayama
- Department of Diabetes and Endocrinology, Sapporo City General Hospital, 060-8604 Sapporo, Japan
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, 060-8648 Sapporo, Japan
| | - Norio Wada
- Department of Diabetes and Endocrinology, Sapporo City General Hospital, 060-8604 Sapporo, Japan
| | - Shuhei Baba
- Department of Diabetes and Endocrinology, Sapporo City General Hospital, 060-8604 Sapporo, Japan
| | - Shinji Obara
- Department of Diabetes and Endocrinology, Sapporo City General Hospital, 060-8604 Sapporo, Japan
| | - Hidetsugu Sakai
- Department of Radiation Technology, Sapporo City General Hospital, 060-8604 Sapporo, Japan
| | - Hiroaki Usubuchi
- Department of Diagnostic Radiology, Sapporo City General Hospital, 060-8604 Sapporo, Japan
| | - Satoshi Terae
- Department of Diagnostic Radiology, Sapporo City General Hospital, 060-8604 Sapporo, Japan
| | - Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, 060-8648 Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, 060-8648 Sapporo, Japan
| |
Collapse
|
29
|
Plasma Krebs Cycle Intermediates in Nonalcoholic Fatty Liver Disease. J Clin Med 2020; 9:jcm9020314. [PMID: 31979094 PMCID: PMC7073566 DOI: 10.3390/jcm9020314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic liver disease (NAFLD) is manifested with a wide spectrum of clinical symptoms and is closely associated with the metabolic syndrome, inflammation, and mitochondrial dysfunction. Although the mechanism of mitochondrial dysfunction in NAFLD is still not fully elucidated, multiple studies have demonstrated evidence of molecular, biochemical, and biophysical mitochondrial abnormalities in NAFLD. Given the association between NAFLD and mitochondrial dysfunction, the aim of this study is to analyze circulating levels of Krebs cycle intermediates in a cohort of NAFLD-affected individuals and matching healthy controls and to correlate our findings with the liver function metrics. Standard serum biochemistry and Krebs cycle intermediates were analyzed in NAFLD (n = 22) and matched control (n = 67) cohorts. Circulating levels of isocitrate and citrate were significantly (p < 0.05) elevated in the NAFLD cohort of patients. The area under the curve (AUROC) for these two metabolites exhibited a moderate clinical utility. Correlations between plasma Krebs cycle intermediates and standard clinical plasma metrics were explored by Pearson’s correlation coefficient. The data obtained for plasma Krebs cycle intermediates suggest pathophysiological insights that link mitochondrial dysfunction with NAFLD. Our findings reveal that plasma isocitrate and citrate can discriminate between normal and NAFLD cohorts and can be utilized as noninvasive markers of mitochondrial dysfunction in NAFLD. Future studies with large populations at different NAFLD stages are warranted.
Collapse
|
30
|
Horiuchi K, Kogiso T, Sagawa T, Ito T, Taniai M, Miura K, Hattori M, Morisada N, Hashimoto E, Tokushige K. Bardet-Biedl Syndrome Caused by Skipping of SCLT1 Complicated by Microvesicular Steatohepatitis. Intern Med 2020; 59:2719-2724. [PMID: 33132306 PMCID: PMC7691027 DOI: 10.2169/internalmedicine.5045-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We treated the case of a 22-year-old male patient with liver dysfunction. At 1 year of age, hepatic fibrosis was suspected. In addition, due to the presence of retinitis pigmentosa, renal failure, obesity, mental retardation, and hypogonadism, he was diagnosed with Bardet-Biedl syndrome (BBS). Skipping of exons 14 and 17 in the sodium channel and clathrin linker 1 (SCLT1) gene was observed. At 22 years of age, the liver enzyme levels were further elevated and a diagnosis of microvesicular steatohepatitis was made. Insulin resistance, a reduction of muscle mass, an impairment of the fatty acid metabolism, and hyperleptinemia in this syndrome may cause steatohepatitis.
Collapse
Affiliation(s)
- Kentaro Horiuchi
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Japan
| | - Tomomi Kogiso
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Japan
| | - Takaomi Sagawa
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Japan
| | - Taito Ito
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Japan
| | - Makiko Taniai
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Japan
| | - Kenichiro Miura
- Department of Pediatric Nephrology, Tokyo Women's Medical University, Japan
| | - Motoshi Hattori
- Department of Pediatric Nephrology, Tokyo Women's Medical University, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Japan
| | | | - Katsutoshi Tokushige
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, Japan
| |
Collapse
|
31
|
Haghgoo SM, Sharafi H, Alavian SM. Serum cytokines, adipokines and ferritin for non-invasive assessment of liver fibrosis in chronic liver disease: a systematic review. Clin Chem Lab Med 2019; 57:577-610. [PMID: 30231008 DOI: 10.1515/cclm-2018-0357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
Chronic liver disease (CLD) is a major health problem worldwide. Non-alcoholic fatty liver disease (NAFLD), chronic hepatitis C (CHC), chronic hepatitis B (CHB), and alcoholic liver disease (ALD) are the most common etiologies of CLD. Liver biopsy is the gold standard for assessment of liver fibrosis, however, it is an invasive method. This review attempts to evaluate the usefulness of serum adiponectin, serum leptin, serum ferritin, serum transforming growth factor-β1 (TGF-β1), and serum platelet derived growth factor-BB (PDGF-BB) as non-invasive markers in the diagnosis of liver fibrosis/cirrhosis. A systematic search in MEDLINE, Web of Science, Scopus, and local databases was performed to identify articles published in English or Persian as of November 2017. Studies conducted among CLD patients, with biopsy proven fibrosis/cirrhosis, and providing sufficient details of patients' clinicopathological characteristics were included. In the 95 studies included, there were a total of 15,548 CLD patients. More than 83% of studies were carried out in Asia and Europe. The relationship between liver fibrosis/cirrhosis and serum levels of ferritin, adiponectin, leptin, TGF-β1, and PDGF-BB was assessed in 42, 33, 27, nine, and three studies, respectively. Serum levels of the markers, particularly ferritin, could successfully predict liver fibrosis/cirrhosis, however, these data might not be clinically replicated and further studies are needed.
Collapse
Affiliation(s)
- Seyyed Mortaza Haghgoo
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Heidar Sharafi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Middle East Liver Diseases (MELD) Center, Tehran, Iran
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Middle East Liver Diseases (MELD) Center, Tehran, Iran
| |
Collapse
|
32
|
Hassan NF, Nada SA, Hassan A, El-Ansary MR, Al-Shorbagy MY, Abdelsalam RM. Saroglitazar Deactivates the Hepatic LPS/TLR4 Signaling Pathway and Ameliorates Adipocyte Dysfunction in Rats with High-Fat Emulsion/LPS Model-Induced Non-alcoholic Steatohepatitis. Inflammation 2019; 42:1056-1070. [PMID: 30737662 DOI: 10.1007/s10753-019-00967-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The most epidemic liver disorder non-alcoholic steatohepatitis (NASH) is characterized by hepatic steatosis and inflammation with hepatocellular damage. Recently, it is predictable to be the extensive cause for liver transplantation. The absence of an approved therapeutic agent for NASH is the reason for investigating saroglitazar (SAR) which showed promising effects as a dual PPAR-α/γ agonist in recent studies on NASH. Here, we aimed to investigate the effect of SAR on NASH induced in rats by the administration of high-fat emulsion (HFE) and small doses of lipopolysaccharides (LPS) for 5 weeks. Rats were divided into three groups: negative control group (saline and standard rodent chow), model group (HFE(10 ml/kg/day, oral gavage) + LPS(0.5 mg/kg/week, i.p)), and SAR-treated group (HFE(10 ml/kg/day, oral gavage) + LPS(0.5 mg/kg/week, i.p.) + SAR(4 mg/kg/day, oral gavage) starting at week 3.Treatment with SAR successfully ameliorated the damaging effects of HFE with LPS, by counteracting body weight gain and biochemically by normalization of liver function parameters activity, glucose, insulin, homeostasis model of assessment (HOMA-IR) score, lipid profile levels, and histopathological examination. Significant changes in adipokine levels were perceived, resulting in a significant decline in serum leptin and tumor necrosis factor-α (TNF-α) level concurrent with adiponectin normalization. The positive effects observed for SAR on NASH are due to the downregulation of the LPS/TLR4 pathway, as indicated by the suppression of hepatic Toll-like receptor 4 (TLR4), NF-κB, TNF-α, and transforming growth factor-β1 (TGF-β1) expression. In conclusion, this work verified that SAR ameliorates NASH through deactivation of the hepatic LPS/TLR4 pathway and inhibition of adipocyte dysfunction.
Collapse
Affiliation(s)
- Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Somaia A Nada
- Department of Pharmacology and Toxicology, National Research Centre, Giza, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Al-Mokattam, Cairo, Egypt.
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Pharmacy, Newgiza University, Giza, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
33
|
Yahaghi L, Ebrahim‐Habibi A, Hayati‐Roodbari N, Irani S, Yaghmaei P. A simple method for inducing nonalcoholic steatohepatitis with fibrosis. Animal Model Exp Med 2019; 2:282-290. [PMID: 31942560 PMCID: PMC6930990 DOI: 10.1002/ame2.12089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is increasingly occurring in sedentary people, and may progress to NASH and hepatocellular carcinoma. It is essential to design affordable animal models for the study of various diseases, including fatty liver, which was the aim of the study. In this study, a high-fat diet was devised that triggers NASH's animal model quickly and easily. High-fat diet (HFD) was used both with intra-mouth oral gavage and in combination with animal pellets. METHODS Twenty-four male C57BL/6J mice were divided into HFD and ND groups, which received a high-fat diet and a normal diet, respectively. At the end of the experiment (fourth week of treatment), body and liver weights, biochemical parameters, PPAR-α gene expression and histopathologic characteristics of the liver were evaluated. RESULTS During 4 weeks, body weight of mice did not show a significant increase in the HFD group compared to the ND group, while weight gain of the liver was significant. Histological assessment of the HFD group's liver confirmed NASH symptoms. In the HFD group, HDL-c, SOD, catalase, FRAP, adiponectin, and PPAR-α decreased significantly, and lipid profiles, hepatic enzymes, MDA, leptin, and TNF-α showed a significant increase compared to the ND group. CONCLUSION Our high-fat diet has successfully induced all aspects of NASH with fibrosis in 4 weeks, and with low cost.
Collapse
Affiliation(s)
- Leyla Yahaghi
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Azadeh Ebrahim‐Habibi
- Biosensor Research CenterEndocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
- Endocrinology and Metabolism Research CenterTehran University of Medical SciencesTehranIran
| | | | - Shiva Irani
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
34
|
Feijó GDS, de Oliveira S, Thoen R, Schaab EE, de Moura AC, Franco F, Giovenardi M, Porawski M, Guedes RP. Food Selection of Cafeteria Diet Affects Memory Dysfunction Related to Obesity. Neurochem Res 2019; 44:1869-1877. [DOI: 10.1007/s11064-019-02821-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
|
35
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) was first described as a distinct clinical entity four decades ago. However, the condition has become the centre of attention within hepatology owing to its high prevalence and growing contribution to the burden of end-stage liver disease in the general population. This Perspective provides an overview on the development of knowledge related to NAFLD with a focus on landmark findings that have influenced current paradigms and key knowledge gaps that need to be filled to make progress. Specifically, a timeline of scientific discovery of both basic disease mechanisms (with a focus on human data) and the evolution of knowledge about the clinical course of the disease is provided and related to current approaches to treat and eventually prevent NAFLD.
Collapse
Affiliation(s)
- Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
36
|
Aller R, Burgueño Gomez B, Sigüenza R, Fernández-Rodríguez C, Fernández N, Antolín B, Durà M, Pina M, Lorenzo S, García C, de Luis Román D. Comparative study of overweight and obese patients with nonalcoholic fatty liver disease. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2019; 111:256-263. [PMID: 30746959 DOI: 10.17235/reed.2019.5926/2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in the western world. Although NAFLD prevalence is higher in patients with a BMI > 25 kg /m2, it is unclear if there are differences between overweight and obese patients. The associated biochemical, dietary and genetic parameters were compared between overweight and obese patients with NAFLD. METHODS patients with biopsy-proven NAFLD (n = 203) were enrolled in a cross-sectional study. The MEDAS questionnaire was used to assess adherence to the Mediterranean diet. Biochemical, anthropometrical parameters and the I148M variant (rs738409) of the PNPLA3 gene and rs180069 of the TNF-α gene were evaluated. RESULTS overweight patients had higher serum adiponectin levels (22.5 ± 21.9 vs 11.2 ± 18.1 ng/ml; p < 0.05) and lower resistin (3.3 ± 1.7 vs 8.1 ± 8 ng/ml; p < 0.001) and leptin concentrations (22.9 ± 21.9 vs 55.8 ± 45 ng/ml; p < 0.001) than obese patients. Non-alcoholic steatohepatitis (NASH) was more frequent in the obese group (59.3% vs 41.3%; p = 0.02). The multivariate analysis showed adherence to the Mediterranean diet to be an independent protective factor for NASH and liver fibrosis in overweight patients (OR 0.7, 95% CI 0.5-0.8). CONCLUSIONS NASH was more prevalent in obese patients than in overweight subjects. HOMA-IR and adherence to the Mediterranean diet provided protection against fibrosis in overweight patients. Adherence to the Mediterranean diet was the only independent factor associated with NASH in these patients.
Collapse
Affiliation(s)
- Rocío Aller
- Digestivo, Hospital Clínico Universitario de Valladolid, España
| | | | - Rebeca Sigüenza
- Radiodiagnóstico, Hospital Clínico Universitario de Valladolid
| | | | - Natalia Fernández
- Medicina, Centro de investigación de Endocrinologia y Nutrición. Universidad de Valladolid
| | - Beatriz Antolín
- Aparato Digestivo, Hospital Clínico Universitario Valladolid, Spain
| | | | - María Pina
- Radiología, Hospital clinico Universitario
| | - Sara Lorenzo
- Aparato Digestivo, Hospital Clinico Universitario Valladolid
| | | | - Daniel de Luis Román
- Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valladolid
| |
Collapse
|
37
|
Laitakari A, Ollonen T, Kietzmann T, Walkinshaw G, Mennerich D, Izzi V, Haapasaari KM, Myllyharju J, Serpi R, Dimova EY, Koivunen P. Systemic inactivation of hypoxia-inducible factor prolyl 4-hydroxylase 2 in mice protects from alcohol-induced fatty liver disease. Redox Biol 2019; 22:101145. [PMID: 30802717 PMCID: PMC6396018 DOI: 10.1016/j.redox.2019.101145] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
Alcoholic fatty liver disease (AFLD) is a growing health problem for which no targeted therapy is available. We set out to study whether systemic inactivation of the main hypoxia-inducible factor prolyl 4-hydroxylase, HIF-P4H-2 (PHD2/EglN1), whose inactivation has been associated with protection against metabolic dysfunction, could ameliorate it. HIF-P4H-2-deficient and wild-type (WT) mice or HIF-P4H inhibitor-treated WT mice were subjected to an ethanol diet for 3-4 weeks and their metabolic health, liver and white adipose tissue (WAT) were analyzed. Primary hepatocytes from the mice were used to study cellular ethanol metabolism. The HIF-P4H-2-deficient mice retained a healthier metabolic profile, including less adiposity, better lipoprotein profile and restored insulin sensitivity, while on the ethanol diet than the WT. They also demonstrated protection from alcohol-induced steatosis and liver damage and had less WAT inflammation. In liver and WAT the expression of the key lipogenic and adipocytokine mRNAs, such as Fas and Ccl2, were downregulated, respectively. The upregulation of metabolic and antioxidant hypoxia-inducible factor (HIF) target genes, such as Slcs 16a1 and 16a3 and Gclc, respectively, and a higher catalytic activity of ALDH2 in the HIF-P4H-2-deficient hepatocytes improved handling of the toxic ethanol metabolites and oxidative stress. Pharmacological HIF-P4H inhibition in the WT mice phenocopied the protection against AFLD. Our data show that global genetic inactivation of HIF-P4H-2 and pharmacological HIF-P4H inhibition can protect mice from alcohol-induced steatosis and liver injury, suggesting that HIF-P4H inhibitors, now in clinical trials for renal anemia, could also be studied in randomized clinical trials for treatment of AFLD.
Collapse
Affiliation(s)
- Anna Laitakari
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Teemu Ollonen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Valerio Izzi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Kirsi-Maria Haapasaari
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| |
Collapse
|
38
|
Metwally M, Bayoumi A, Romero-Gomez M, Thabet K, John M, Adams LA, Huo X, Aller R, García-Monzón C, Teresa Arias-Loste M, Bugianesi E, Miele L, Gallego-Durán R, Fischer J, Berg T, Liddle C, Qiao L, George J, Eslam M. A polymorphism in the Irisin-encoding gene (FNDC5) associates with hepatic steatosis by differential miRNA binding to the 3'UTR. J Hepatol 2019; 70:494-500. [PMID: 30389552 DOI: 10.1016/j.jhep.2018.10.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/09/2018] [Accepted: 10/21/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Irisin, the cleaved extra-cellular fragment of the Fibronectin type III domain-containing protein 5 (FNDC5) is a myokine that is proposed to have favorable metabolic activity. We aimed to elucidate the currently undefined role of variants in the FNDC5 gene in non-alcoholic fatty liver disease (NAFLD). METHODS We prioritized single nucleotide polymorphisms in FNDC5 on the basis of their putative biological function and identified rs3480 in the 3' untranslated region (3'UTR). We studied the association of rs3480 with liver disease severity and the metabolic profile of 987 Caucasian patients with NAFLD. Functional investigations were undertaken using luciferase reporter assays of the 3'UTR of human FNDC5, pyrosequencing for allele-specific expression of FNDC5 in liver, measurement of serum irisin, and bioinformatics analysis. RESULTS The rs3480 (G) allele was associated with advanced steatosis (OR 1.29; 95% CI 1.08-1.55; p = 0.004), but not with other histological features. This effect was independent but additive to PNPLA3 and TM6SF2. The rs3480 polymorphism influenced FNDC5 mRNA stability and the binding of miR-135a-5P. Compared with controls, hepatic expression of this microRNA was upregulated while FNDC5 expression was downregulated. Elevated serum irisin was associated with reduced steatosis, and an improved metabolic profile. CONCLUSIONS Carriage of the FNDC5 rs3480 minor (G) allele is associated with more severe steatosis in NAFLD through a microRNA-mediated mechanism controlling FNDC5 mRNA stability. Irisin is likely to have a favorable metabolic impact on NAFLD. LAY SUMMARY Irisin is a novel protein produced mainly by muscle, which is known to be released into the circulation, with an unclear role in liver fat deposition. This study demonstrates that genetic variants in the gene encoding the irisin protein modulate the risk of liver fat in patients with fatty liver disease. Interestingly, these effects are independent of, but additive to those of other recently described genetic variants that contribute to liver fat. In functional studies, we have deciphered the detailed molecular mechanisms by which this genetic variant mediates its effects.
Collapse
Affiliation(s)
- Mayada Metwally
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Manuel Romero-Gomez
- Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, Sevilla, Spain
| | - Khaled Thabet
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia; Department of Biochemistry, Faculty of Pharmacy, Minia University, Egypt
| | - Miya John
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Leon A Adams
- Medical School, Sir Charles Gairdner Hospital Unit, University of Western Australia, Nedlands, WA, Australia
| | - Xiaoqi Huo
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Rocio Aller
- Center of Investigation of Endocrinology and Nutrition, School of Medicine, and Unit of Investigation, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Instituto de Investigacion Sanitaria Princesa, University Hospital Santa Cristina, CIBERehd, Madrid, Spain
| | - María Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Science, University of Turin, Turin, Italy
| | - Luca Miele
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Rocio Gallego-Durán
- Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, Sevilla, Spain
| | - Janett Fischer
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| |
Collapse
|
39
|
Cernea S, Roiban AL, Both E, Huţanu A. Serum leptin and leptin resistance correlations with NAFLD in patients with type 2 diabetes. Diabetes Metab Res Rev 2018; 34:e3050. [PMID: 30052309 DOI: 10.1002/dmrr.3050] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/08/2018] [Accepted: 07/18/2018] [Indexed: 12/23/2022]
Abstract
AIMS Leptin/leptin resistance has been suggested to play a role in nonalcoholic fatty liver disease (NAFLD), and therefore we investigated the correlation of leptin/leptin-receptor system with markers of hepatic steatosis (HS) and fibrosis (HF) in patients with type 2 diabetes (T2D). MATERIALS AND METHODS In 159 T2D subjects with disease duration of 6.0 (0.0-27.0) years, HS was evaluated by semi-quantitative ultrasonographic scores and by clinical/biochemical variables: Fatty liver index and Hepatic steatosis index. HF was evaluated by NAFLD fibrosis score (NAFLD-FS). Serum leptin and leptin receptor (sObR) concentrations were measured and leptin resistance estimated by Free Leptin Index (FLpI). Both simple and multiple correlations between the HS and HF with the three parameters of interest were examined. RESULTS Leptin levels and FLpI correlated with diabetes duration (0.25 [95%CI: 0.09-0.39] and 0.24 [95%CI: 0.08-0.39]; P < 0.01 for both). 76.1% of T2D patients had HS and 29% had HF. The univariate analysis indicated positive correlations of HS indexes with serum leptin, FLpI, and negative correlations with serum sObR (P < 0.0001 for all). In the multiple regression analysis leptin, sObR, FLpI, waist-to-hip ratio, HbA1c, lipids, and HOMA-IR correlated independently with HS (P < 0.0001 for all). Although the univariate analyses indicated weak correlations of NAFLD-FS with leptin, sObR, and FLpI, in the multiple regression analyses, only age and waist independently predicted HF. CONCLUSION In patients with T2D, HS correlated positively with serum leptin and leptin resistance, and negatively with sObR, along with variables of adiposity and metabolic control, but neither of them made a significant contribution to HF.
Collapse
Affiliation(s)
- Simona Cernea
- Department M3/Internal Medicine IV, University of Medicine and Pharmacy of Tîrgu Mureş, Tîrgu Mureş, Romania
- Diabetes, Nutrition, and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital Tîrgu Mureş, Tîrgu Mureş, Romania
| | - Andrada Larisa Roiban
- Emergency County Clinical Hospital Tîrgu Mureş, Tîrgu Mureş, Romania
- University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureş, Romania
| | - Emőke Both
- Emergency County Clinical Hospital Tîrgu Mureş, Tîrgu Mureş, Romania
| | - Adina Huţanu
- Department of Laboratory Medicine, University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureş, Romania
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine and Pharmacy of Tîrgu Mureș, Tîrgu Mureş, Romania
| |
Collapse
|
40
|
Rotundo L, Persaud A, Feurdean M, Ahlawat S, Kim HS. The Association of leptin with severity of non-alcoholic fatty liver disease: A population-based study. Clin Mol Hepatol 2018; 24:392-401. [PMID: 30068065 PMCID: PMC6313023 DOI: 10.3350/cmh.2018.0011] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background/Aims Leptin is associated with metabolic disorders, which predispose one to non-alcoholic fatty liver disease (NAFLD). The role of leptin in NAFLD pathogenesis is not fully understood. We aim to investigate the association between serum leptin level and severity of NAFLD using U.S. nationally representative data. Methods Data were obtained from the United States Third National Health and Nutrition Examination Survey. NAFLD was defined by ultrasound detection and severity of hepatic steatosis in the absence of other liver diseases. The severity of hepatic fibrosis was determined by NAFLD fibrosis score (NFS). We used multivariate survey-weighted generalized logistic regression to evaluate the association between leptin level and the degree of NAFLD. We also performed subgroup analyses by body mass index (lean vs. classic NAFLD). Results Among 4,571 people, 1,610 (35%) had NAFLD. By ultrasound findings, there were 621 people with mild, 664 with moderate, and 325 with severe steatosis. There were 885 people with low NFS (<-1.455, no significant fibrosis), 596 with intermediate NFS, and 129 with high NFS (>0.676, advanced fibrosis). Leptin levels for normal, mild, moderate and severe steatosis were 10.7±0.3 ng/mL, 12.1±0.7 ng/mL, 15.6±0.8 ng/mL, 16±1.0 ng/mL, respectively (trend P-value<0.001). Leptin levels for low, intermediate, and high NFS were 11.8±0.5 ng/mL, 15.6±0.8 ng/mL, 28.5±3.5ng/mL, respectively (trend P-value<0.001). This association remained significant even after adjusting for known demographic and metabolic risk factors. In the subgroup analysis, this association was only prominent in classic NAFLD, but not in lean NAFLD. Conclusions Serum leptin level is associated with the severity of NAFLD, especially in classic NAFLD patients.
Collapse
Affiliation(s)
- Laura Rotundo
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Alana Persaud
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Mirela Feurdean
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Sushil Ahlawat
- Department of Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Hyun-Seok Kim
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.,Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
41
|
Francisco V, Pino J, Campos-Cabaleiro V, Ruiz-Fernández C, Mera A, Gonzalez-Gay MA, Gómez R, Gualillo O. Obesity, Fat Mass and Immune System: Role for Leptin. Front Physiol 2018; 9:640. [PMID: 29910742 PMCID: PMC5992476 DOI: 10.3389/fphys.2018.00640] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity is an epidemic disease characterized by chronic low-grade inflammation associated with a dysfunctional fat mass. Adipose tissue is now considered an extremely active endocrine organ that secretes cytokine-like hormones, called adipokines, either pro- or anti-inflammatory factors bridging metabolism to the immune system. Leptin is historically one of most relevant adipokines, with important physiological roles in the central control of energy metabolism and in the regulation of metabolism-immune system interplay, being a cornerstone of the emerging field of immunometabolism. Indeed, leptin receptor is expressed throughout the immune system and leptin has been shown to regulate both innate and adaptive immune responses. This review discusses the latest data regarding the role of leptin as a mediator of immune system and metabolism, with particular emphasis on its effects on obesity-associated metabolic disorders and autoimmune and/or inflammatory rheumatic diseases.
Collapse
Affiliation(s)
- Vera Francisco
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Jesús Pino
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Victor Campos-Cabaleiro
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Clara Ruiz-Fernández
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Antonio Mera
- Servizo Galego de Saude, Division of Rheumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Miguel A Gonzalez-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| |
Collapse
|
42
|
La Cava A. Leptin in inflammation and autoimmunity. Cytokine 2018; 98:51-58. [PMID: 27916613 DOI: 10.1016/j.cyto.2016.10.011] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022]
Abstract
After its discovery as a key controller of metabolic function, leptin has been later extensively implicated in additional functions including important modulatory activities on the innate and adaptive immune response. This review analyzes the known implications of leptin in multiple inflammatory conditions, including autoimmune diseases, and how this knowledge could be instrumental in the design of leptin-based manipulation strategies to help restoration of abnormal immune responses.
Collapse
Affiliation(s)
- Antonio La Cava
- Department of Medicine, University of California Los Angeles, 1000 Veteran Ave. 32-59, Los Angeles, CA 90095, United States.
| |
Collapse
|
43
|
Machado MV, Diehl AM. Pathogenesis of Nonalcoholic Fatty Liver Disease. ZAKIM AND BOYER'S HEPATOLOGY 2018:369-390.e14. [DOI: 10.1016/b978-0-323-37591-7.00025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Gong Z, Tas E, Yakar S, Muzumdar R. Hepatic lipid metabolism and non-alcoholic fatty liver disease in aging. Mol Cell Endocrinol 2017; 455:115-130. [PMID: 28017785 DOI: 10.1016/j.mce.2016.12.022] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/23/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Aging is associated with dysregulation of glucose and lipid metabolism. Various factors that contribute to the dysregulation include both modifiable (e.g. obesity, insulin resistance) and non-modifiable risk factors (age-associated physiologic changes). Although there is no linear relationship between aging and prevalence of non-alcoholic fatty liver disease, current data strongly suggests that advanced age leads to more severe histological changes and poorer clinical outcomes. Hepatic lipid accumulation could lead to significant hepatic and systemic consequences including steatohepatitis, cirrhosis, impairment of systemic glucose metabolism and metabolic syndrome, thereby contributing to age-related diseases. Insulin, leptin and adiponectin are key regulators of the various physiologic processes that regulate hepatic lipid metabolism. Recent advances have expanded our understanding in this field, highlighting the role of novel mediators such as FGF 21, and mitochondria derived peptides. In this review, we will summarize the mediators of hepatic lipid metabolism and how they are altered in aging.
Collapse
Affiliation(s)
- Zhenwei Gong
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Emir Tas
- Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Radhika Muzumdar
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, 5362 Biomedical Sciences Tower, Pittsburgh, PA 15261, USA.
| |
Collapse
|
45
|
Shouhed D, Steggerda J, Burch M, Noureddin M. The role of bariatric surgery in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol 2017; 11:797-811. [PMID: 28712339 DOI: 10.1080/17474124.2017.1355731] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects between 25% and 33% of the population, is more common in obese individuals, and is the most common cause of chronic liver disease in the United States. However, despite rising prevalence, effective treatments remain limited. Areas covered: We performed a literature search across multiple databases (Pubmed, Medline, etc.) to identify significant original research and review articles to provide an up-to-date and concise overview of disease pathogenesis and diagnostic evaluation and to expand on available treatment options with a specific focus on the potential role of bariatric surgery. Here we provide the most comprehensive review of bariatric surgery for the management of NAFLD, noting benefits from different procedures and multiple reports showing improvements in steatosis, inflammation and fibrosis over the duration of follow-up. Expert commentary: The morbidity of NAFLD is significant as it may become the most common indication for liver transplantation within the next 5 years. In addition to known benefits of weight loss and diabetes resolution, bariatric surgery has the potential to halt and reverse disease progression and future controlled trials should be performed to further define its benefit in the treatment of NAFLD in morbidly obese patients.
Collapse
Affiliation(s)
- Daniel Shouhed
- a Department of Surgery , Cedars-Sinai Medical Center , Los Angeles , CA , USA.,b Division of Bariatric Surgery , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Justin Steggerda
- a Department of Surgery , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Miguel Burch
- a Department of Surgery , Cedars-Sinai Medical Center , Los Angeles , CA , USA.,b Division of Bariatric Surgery , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Mazen Noureddin
- c Fatty Liver Disease Program, Division of Digestive and Liver Diseases, Department of Medicine , Comprehensive Transplant Center, Cedars-Sinai Medical Center , Los Angeles , CA , USA
| |
Collapse
|
46
|
Macut D, Božić-Antić I, Bjekić-Macut J, Tziomalos K. MANAGEMENT OF ENDOCRINE DISEASE: Polycystic ovary syndrome and nonalcoholic fatty liver disease. Eur J Endocrinol 2017; 177:R145-R158. [PMID: 28694246 DOI: 10.1530/eje-16-1063] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a frequent endocrine disease in women, with a number of metabolic and reproductive consequences. Obesity, insulin resistance (IR) and type 2 diabetes are prominent metabolic characteristics of PCOS and common factors affecting liver function and generating nonalcoholic fatty liver disease (NAFLD). Multiple genes involved in the synthesis of androgens, cytokines and IR, as well as acquired factors, such as endocrine disruptors, could associate the etiopathogenesis of PCOS and NAFLD. Besides the high prevalence of PCOS in general population, NAFLD was shown to be a frequent condition in transition periods, such as adolescence and menopause. Although liver biopsy is considered to be the gold standard for diagnosing liver damage, its routine use in such a prevalent condition as PCOS can be related to a higher rate of complications. Therefore, it is necessary to be able to diagnose NAFLD using simple and reliable surrogate markers. Recently, fatty liver index and NAFLD fatty liver score analyzed in large cohorts of PCOS women have been shown as accurate markers of liver damage in this metabolically vulnerable population. Lifestyle changes are still the mainstay of the management of NAFLD in PCOS, although prospective randomized controlled clinical studies remain a priority in the field. With regard to medications, metformin may be the drug of choice for treating PCOS patients with NAFLD when pharmacologic therapy is considered. Liraglutide use in obese PCOS has shown favorable effects on the predictors of liver fibrosis. In this review, we aim to summarize the influence of the common risk factors and to discuss the diagnostic approaches and management options for NAFLD in patients with PCOS.
Collapse
Affiliation(s)
- Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases
| | | | - Jelica Bjekić-Macut
- Department of Endocrinology, CHC Bezanijska Kosa, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Konstantinos Tziomalos
- First Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| |
Collapse
|
47
|
Yan C, Yang Q, Shen HM, Spitsbergen JM, Gong Z. Chronically high level of tgfb1a induction causes both hepatocellular carcinoma and cholangiocarcinoma via a dominant Erk pathway in zebrafish. Oncotarget 2017; 8:77096-77109. [PMID: 29100373 PMCID: PMC5652767 DOI: 10.18632/oncotarget.20357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022] Open
Abstract
Liver cancers including both hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) have increased steadily with the prevalence of non-alcoholic steatohepatitis (NASH), but the underlying mechanism for the transition from NASH to liver cancers remains unclear. Here we first employed diet-induced NASH zebrafish and found that elevated level of satiety hormone, leptin, induced overexpression of tgfb1. Then we developed tgfb1a transgenic zebrafish for inducible, hepatocyte-specific expression. Interestingly, chronically high tgfb1a induction in hepatocytes could concurrently drive both HCC and CCA. Molecularly, oncogenicity of Tgfb1 in HCC was dependent on the switch of dominant activated signaling pathway from Smad to Erk in hepatocytes while concurrent activation of both Smad and Erk pathways in cholangiocytes was essential for Tgfb1-induced CCA. These findings pinpointed the novel role of Tgfb1 as a central regulator in the two major types of liver cancers, which was also supported by human liver disease samples.
Collapse
Affiliation(s)
- Chuan Yan
- Department of Biological Sciences, National University of Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Qiqi Yang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jan M Spitsbergen
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
48
|
D'Incao RB, Tovo CV, Mattevi VS, Borges DO, Ulbrich JM, Coral GP, Ramos MJ, Meinhardt NG. Adipokine Levels Versus Hepatic Histopathology in Bariatric Surgery Patients. Obes Surg 2017; 27:2151-2158. [PMID: 28281237 DOI: 10.1007/s11695-017-2627-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Obesity is a worldwide prevalent disease and is an underlying factor of non-alcoholic fatty liver disease (NAFLD). It has been understood as a chronic inflammatory state, being associated with the production of adipokines. The aim of this study was to analyze the levels of adipokines in the serum, visceral, and subcutaneous fat and to compare them with hepatic histopathology in morbidly obese patients. METHODS This is a cross-sectional observational study, which analyzed the findings of liver biopsy in patients undergoing bariatric surgery and who had performed analysis of adipokines mRNA expression (adiponectin-ADIPOQ, leptin-LEP, and resistin-RETN) in subcutaneous and visceral adipose tissue and circulating adipokines in serum. Liver biopsies performed were evaluated according to Kleiner criteria. RESULTS The study analyzed 25 patients undergoing bariatric surgery. The sample was composed exclusively of women. There was a predominance of NAFLD, with 21 patients (84%) with intrahepatic fat accumulation. Twelve patients presented non-alcoholic steatohepatitis (NASH). Glycated hemoglobin levels (HbA1c) were elevated in NASH patients. ADIPOQ levels were directly correlated with high-density lipoprotein (HDL) cholesterol levels and inversely correlated with triglycerides and total cholesterol. LEP levels showed an inverse relationship with the degree of steatosis, and RETN levels showed an inverse relationship with fibrosis stages. CONCLUSION Serum LEP levels were reduced in the presence of increased levels of intrahepatic fat, and serum levels of RETN were diminished in the presence of NASH. HbA1c levels were higher in the presence of NASH, indirectly reflecting insulin resistance. Moreover, ADIPOQ levels were related to blood lipid profile.
Collapse
Affiliation(s)
- Rafael Bergesch D'Incao
- Medicine at Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua São Manoel, 95 / 403; Bairro Rio Branco, Porto Alegre, CEP 90620-110, Brazil.
| | - Cristiane Valle Tovo
- Department and at Post Graduation Program, Hepatology at UFCSPA, Porto Alegre, Brazil
| | - Vanessa Suñé Mattevi
- Department and at Post Graduation Programs, Biosciences, Pathology and Health Sciences at UFCSPA, Porto Alegre, Brazil
| | | | - Jane Maria Ulbrich
- Department of Pathology from Hospital Nossa Senhora da Conceição (HNSC), Porto Alegre, Brazil
| | | | | | | |
Collapse
|
49
|
Murine CD103 + dendritic cells protect against steatosis progression towards steatohepatitis. J Hepatol 2017; 66:1241-1250. [PMID: 28108233 DOI: 10.1016/j.jhep.2017.01.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver (NAFL) is the hepatic consequence of metabolic syndrome and can progress to non-alcoholic steatohepatitis (NASH). The identification of molecular and cellular factors that determine the progression of NASH and lead to irreversible hepatocellular damage are crucial. Dendritic cells (DCs) represent a heterogeneous cell population among which CD103+ DCs play a significant role in immunity and tolerance. We aimed to clarify the role of this DC subset in the pathomechanism of NASH. METHODS Steatosis progression towards steatohepatitis was analysed using multicolor FACS analyses, cytokine and qPCR array in high sucrose diet (HSD) and methionine and choline deficient diet (MCD) fed wild-type and basic leucine zipper transcription factor, ATF-Like-3 (Batf3) deficient animals, which lack CD103+ DCs (classical type-1 DC, cDC1s). RESULTS Metabolic challenge of Batf3-/- animals resulted in the progression of steatosis towards steatohepatitis, manifesting by an increased influx of inflammatory cells into the liver and elevated inflammatory cytokine production of myeloid cells upon innate stimuli. However, the lack of cDC1s did not affect cellular apoptosis and fibrosis progression but altered genes involved in lipid metabolism. The adoptive transfer of CD103+ cDC1s to Batf3 deficient animals reversed these observed changes and more importantly could attenuate cellular damage and inflammation in established murine steatohepatitis. CONCLUSION Here, we have identified the murine CD103+ cDC1s as a protective DC subtype that influences the pro-anti-inflammatory balance and protects the liver from metabolic damage. As guardians of liver integrity, they play a key role in the inflammatory process during the development of steatohepatitis in mice. LAY SUMMARY Non-alcoholic fatty liver (NAFL) is the hepatic consequence of metabolic syndrome and can lead to non-alcoholic steatohepatitis (NASH). The current study demonstrated that a specific murine dendritic cell subtype possesses a potent regulatory role to influence the inflammatory milieu of the liver in this process.
Collapse
|
50
|
Hadizadeh F, Faghihimani E, Adibi P. Nonalcoholic fatty liver disease: Diagnostic biomarkers. World J Gastrointest Pathophysiol 2017; 8:11-26. [PMID: 28573064 PMCID: PMC5437499 DOI: 10.4291/wjgp.v8.i2.11] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/30/2016] [Accepted: 02/13/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease is a common medical condition worldwide and its prevalence has increased notably in the past few years due to the increases in prevalence of obesity and metabolic syndrome. However, diagnosis of this disease is still a matter of debate because of disease variations and pathophysiologic alterations. Specific single markers have gained considerable attention recently, among them markers related to hepatic pathophysiology, inflammation, adipocytokines and so forth. But, it seems that no single marker is sufficient for diagnosis and staging of the disease, and applying a panel including different types of tests may be more useful.
Collapse
|