1
|
Li B, Liu S, Han W, Song P, Sun H, Cao X, Di G, Chen P. Aquaporin five deficiency suppresses fatty acid oxidation and delays liver regeneration through the transcription factor PPAR. J Biol Chem 2025; 301:108303. [PMID: 39947476 PMCID: PMC11930093 DOI: 10.1016/j.jbc.2025.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 03/09/2025] Open
Abstract
After 70% partial hepatectomy (PHx), the metabolic pathways leading to hepatocyte lipid droplet accumulation during liver regeneration remain unclear. Aquaporin 5 (Aqp5) is an aquaporin that facilitates the transport of both water and hydrogen peroxide (H2O2). In this study, we observed delayed liver regeneration following PHx in Aqp5 knockout (Aqp5-/-) mice. Considering the role of Aqp5 in H2O2 transport, we hypothesized that deficiency in Aqp5 may induce oxidative stress and hepatocyte injury. Through the measurement of reactive oxygen species (ROS) and redox-related indices, we observed significant alterations in ROS levels as well as malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) concentrations in regenerating livers lacking Aqp5 compared to wild-type controls. Oil Red O and 4-hydroxynonenal (4-HNE) staining results indicated that Aqp5 deficiency caused lipid accumulation during liver regeneration. The transcriptome sequencing results showed that the PPAR pathway is inhibited during the liver regeneration process in Aqp5 gene-knockout mice. The administration of the WY-14643 agonist, which targets the PPAR pathway, significantly mitigated delayed liver regeneration by enhancing hepatocyte proliferation and reducing lipid accumulation caused by Aqp5 deficiency. Our findings highlight the crucial role of Aqp5 in regulating H2O2 levels and lipid metabolism through the PPAR pathway during liver regeneration.
Collapse
Affiliation(s)
- Bin Li
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Shixu Liu
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Wenshuo Han
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Peirong Song
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Hetong Sun
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Xin Cao
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| | - Guohu Di
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong Province, China.
| |
Collapse
|
2
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Xue H, Nie H, Huang Z, Lu B, Wei M, Xu H, Ji L. 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside promotes liver regeneration after partial hepatectomy in mice: The potential involvement of PPARα-mediated fatty acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118513. [PMID: 38969151 DOI: 10.1016/j.jep.2024.118513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside (TSG) is the principal bioactive compound contained in Polygonum multiflorum Thunb. (PMT), which is traditionally recorded to possess tonic and anti-aging efficacy. AIM OF THE STUDY To identify the TSG-provided promotion on liver regeneration (LR) following partial hepatectomy (PHx) in mice and to explicate its involved mechanism. MATERIALS AND METHODS The promotion of TSG on LR was evaluated by hematoxylin and eosin (H&E), 5-bromodeoxyuridinc (BrdU) and Ki-67 staining, and measuring the level of proliferating cell nuclear antigen (PCNA) and Cyclin D1 in mice with PHx at different time points. Gene Expression Omnibus (GEO, GSE15239) database and the label-free quantitative proteomics from liver of mice at 24 h after PHx were integrated to identify potential involved critical proteins, which were verified by Western-blot, Real-time polymerase chain reaction (RT-PCR), molecular docking and luciferase activity assay. Primary hepatocytes isolated from mice were used to investigate the TSG-provided promotion on proliferation in vitro. RESULTS TSG (20 mg/kg) promoted LR in mice after PHx. Results from RNA expression data from clinical samples and proteomic analysis from liver tissues indicated that peroxisome proliferator-activated receptor α (PPARα)-mediated fatty acid metabolism pathway were crucially associated with the TSG-provided promotion on LR. TSG enhanced the nuclear translocation of PPARα and the mRNA expression of a series of PPARα-regulated downstream genes. In addition, TSG lowered hepatic triglyceride (TG) and non-esterified fatty acid (NEFA) amounts and increased hepatic adenosine triphosphate (ATP) level in mice after PHx. TSG up-regulated the transcriptional activity of PPARα in vitro. Next results displayed that TSG promoted cell proliferation as well as ATP level in mice primary hepatocytes, which were abolished when PPARα was suppressed. Meanwhile, the cell viability was also elevated in mice primary hepatocytes treated with ATP. CONCLUSION Activating PPARα-mediated fatty acid β-oxidation (FAO) pathway led to the production of ATP, which contributed to the TSG-provided promotion on LR after PHx in mice.
Collapse
Affiliation(s)
- Haoyu Xue
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huizhong Nie
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Wu D, van de Graaf SFJ. Maladaptive regeneration and metabolic dysfunction associated steatotic liver disease: Common mechanisms and potential therapeutic targets. Biochem Pharmacol 2024; 227:116437. [PMID: 39025410 DOI: 10.1016/j.bcp.2024.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The normal liver has an extraordinary capacity of regeneration. However, this capacity is significantly impaired in steatotic livers. Emerging evidence indicates that metabolic dysfunction associated steatotic liver disease (MASLD) and liver regeneration share several key mechanisms. Some classical liver regeneration pathways, such as HGF/c-Met, EGFR, Wnt/β-catenin and Hippo/YAP-TAZ are affected in MASLD. Some recently established therapeutic targets for MASH such as the Thyroid Hormone (TH) receptors, Glucagon-like protein 1 (GLP1), Farnesoid X receptor (FXR), Peroxisome Proliferator-Activated Receptors (PPARs) as well as Fibroblast Growth Factor 21 (FGF21) are also reported to affect hepatocyte proliferation. With this review we aim to provide insight into common molecular pathways, that may ultimately enable therapeutic strategies that synergistically ameliorate steatohepatitis and improve the regenerating capacity of steatotic livers. With the recent rise of prolonged ex-vivo normothermic liver perfusion prior to organ transplantation such treatment is no longer restricted to patients undergoing major liver resection or transplantation, but may eventually include perfused (steatotic) donor livers or even liver segments, opening hitherto unexplored therapeutic avenues.
Collapse
Affiliation(s)
- Dandan Wu
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, the Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, the Netherlands.
| |
Collapse
|
5
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
6
|
Kim M, So J, Shin D. PPARα activation promotes liver progenitor cell-mediated liver regeneration by suppressing YAP signaling in zebrafish. Sci Rep 2023; 13:18312. [PMID: 37880271 PMCID: PMC10600117 DOI: 10.1038/s41598-023-44935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Despite the robust regenerative capacity of the liver, prolonged and severe liver damage impairs liver regeneration, leading to liver failure. Since the liver co-opts the differentiation of liver progenitor cells (LPCs) into hepatocytes to restore functional hepatocytes, augmenting LPC-mediated liver regeneration may be beneficial to patients with chronic liver diseases. However, the molecular mechanisms underlying LPC-to-hepatocyte differentiation have remained largely unknown. Using the zebrafish model of LPC-mediated liver regeneration, Tg(fabp10a:pt-β-catenin), we present that peroxisome proliferator-activated receptor-alpha (PPARα) activation augments LPC-to-hepatocyte differentiation. We found that treating Tg(fabp10a:pt-β-catenin) larvae with GW7647, a potent PPARα agonist, enhanced the expression of hepatocyte markers and simultaneously reduced the expression of biliary epithelial cell (BEC)/LPC markers in the regenerating livers, indicating enhanced LPC-to-hepatocyte differentiation. Mechanistically, PPARα activation augments the differentiation by suppressing YAP signaling. The differentiation phenotypes resulting from GW7647 treatment were rescued by expressing a constitutively active form of Yap1. Moreover, we found that suppression of YAP signaling was sufficient to promote LPC-to-hepatocyte differentiation. Treating Tg(fabp10a:pt-β-catenin) larvae with the TEAD inhibitor K-975, which suppresses YAP signaling, phenocopied the effect of GW7647 on LPC differentiation. Altogether, our findings provide insights into augmenting LPC-mediated liver regeneration as a regenerative therapy for chronic liver diseases.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, 3501 5th Ave. #5063, Pittsburgh, PA, 15260, USA
| | - Juhoon So
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, 3501 5th Ave. #5063, Pittsburgh, PA, 15260, USA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, 3501 5th Ave. #5063, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
7
|
Hu Y, Wang R, Liu J, Wang Y, Dong J. Lipid droplet deposition in the regenerating liver: A promoter, inhibitor, or bystander? Hepatol Commun 2023; 7:e0267. [PMID: 37708445 PMCID: PMC10503682 DOI: 10.1097/hc9.0000000000000267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/29/2023] [Indexed: 09/16/2023] Open
Abstract
Liver regeneration (LR) is a complex process involving intricate networks of cellular connections, cytokines, and growth factors. During the early stages of LR, hepatocytes accumulate lipids, primarily triacylglycerol, and cholesterol esters, in the lipid droplets. Although it is widely accepted that this phenomenon contributes to LR, the impact of lipid droplet deposition on LR remains a matter of debate. Some studies have suggested that lipid droplet deposition has no effect or may even be detrimental to LR. This review article focuses on transient regeneration-associated steatosis and its relationship with the liver regenerative response.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics. Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Yang J, Yang X, Zhang YF, Tian JN, Fan SC, Gao Y, Li HL, Cai CH, Huang M, Bi HC. Peroxisome proliferator-activated receptor α agonist induces mouse hepatomegaly through the spatial hepatocyte enlargement and proliferation. Acta Pharmacol Sin 2023; 44:2037-2047. [PMID: 37193756 PMCID: PMC10545716 DOI: 10.1038/s41401-023-01096-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/22/2023] [Indexed: 05/18/2023]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) activation-induced hepatomegaly is accompanied by hepatocyte hypertrophy around the central vein (CV) area and hepatocyte proliferation around the portal vein (PV) area. However, the molecular mechanisms underlying this spatial change of hepatocytes remains unclear. In this study, we examined the characteristics and possible reasons for the zonation distinction of hypertrophy and proliferation during PPARα activation-induced mouse liver enlargement. Mice were injected with corn oil or a typical mouse PPARα agonist WY-14643 (100 mg·kg-1·d-1, i.p.) for 1, 2, 3, 5 or 10 days. At each time point, the mice were sacrificed after the final dose, and liver tissues and serum were harvested for analysis. We showed that PPARα activation induced zonal changes in hepatocyte hypertrophy and proliferation in the mice. In order to determine the zonal expression of proteins related to hepatocyte hypertrophy and proliferation in PPARα-induced liver enlargement, we performed digitonin liver perfusion to separately destroy the hepatocytes around the CV or PV areas, and found that PPARα activation-induced increase magnitude of its downstream targets such as cytochrome P450 (CYP) 4 A and acyl-coenzyme A oxidase 1 (ACOX1) levels around the CV area were higher compared with those around the PV area. Upregulation of proliferation-related proteins such as cell nuclear antigen (PCNA) and cyclin A1 (CCNA1) after WY-14643-induced PPARα activation mainly occurred around the PV area. This study reveals that the zonal expression of PPARα targets and proliferation-related proteins is responsible for the spatial change of hepatocyte hypertrophy and proliferation after PPARα activation. These findings provide a new insight into the understanding of PPARα activation-induced liver enlargement and regeneration.
Collapse
Affiliation(s)
- Jie Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Fei Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Ning Tian
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shi-Cheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hui-Lin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng-Hui Cai
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hui-Chang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Chen Y, Chen L, Wu X, Zhao Y, Wang Y, Jiang D, Liu X, Zhou T, Li S, Wei Y, Liu Y, Hu C, Zhou B, Qin J, Ying H, Ding Q. Acute liver steatosis translationally controls the epigenetic regulator MIER1 to promote liver regeneration in a study with male mice. Nat Commun 2023; 14:1521. [PMID: 36934083 PMCID: PMC10024732 DOI: 10.1038/s41467-023-37247-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
The early phase lipid accumulation is essential for liver regeneration. However, whether this acute lipid accumulation can serve as signals to direct liver regeneration rather than simply providing building blocks for cell proliferation remains unclear. Through in vivo CRISPR screening, we identify MIER1 (mesoderm induction early response 1) as a key epigenetic regulator that bridges the acute lipid accumulation and cell cycle gene expression during liver regeneration in male animals. Physiologically, liver acute lipid accumulation induces the phosphorylation of EIF2S1(eukaryotic translation initiation factor 2), which consequently attenuated Mier1 translation. MIER1 downregulation in turn promotes cell cycle gene expression and regeneration through chromatin remodeling. Importantly, the lipids-EIF2S1-MIER1 pathway is impaired in animals with chronic liver steatosis; whereas MIER1 depletion significantly improves regeneration in these animals. Taken together, our studies identify an epigenetic mechanism by which the early phase lipid redistribution from adipose tissue to liver during regeneration impacts hepatocyte proliferation, and suggest a potential strategy to boost liver regeneration.
Collapse
Affiliation(s)
- Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
| | - Lanlan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Xiaoshan Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yongxu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yuchen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Dacheng Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Xiaojian Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Tingting Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Shuang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yuda Wei
- Department of Clinical Laboratory, Linyi People's Hospital, Xuzhou Medical University, Xuzhou, Shandong, 276000, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Cheng Hu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ben Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, P. R. China.
| |
Collapse
|
10
|
Lei X, Liu Q, Qin W, Tong Q, Li Z, Xu W, Liu G, Fu J, Zhang J, Kuang T, Shao Y, Liu C, Fang Y, Cao Z, Yan L, Liu Z, Liu S, Yamamoto H, Mori M, Liang XM, Xu X. TRPM8 contributes to liver regeneration via mitochondrial energy metabolism mediated by PGC1α. Cell Death Dis 2022; 13:1050. [PMID: 36526620 PMCID: PMC9758188 DOI: 10.1038/s41419-022-05475-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Impairment of liver regeneration leads to severe morbidity in acute and chronic severe liver disease. Transient receptor potential melastain 8 (TRPM8) is involved in a variety of processes, including temperature sensing, ion homeostasis, and cell proliferation. However, whether TRPM8 contributes to liver regeneration is still unclear. We assessed the effect and mechanism of TRPM8 in liver regeneration and hepatocyte proliferation in vivo and in vitro. In this study, we found that TRPM8 deficiency impairs liver regeneration in mice. Mechanistically, the results revealed that mitochondrial energy metabolism was attenuated in livers from TRPM8 knockout (KO) mice. Furthermore, we found that TRPM8 contributes to the proliferation of hepatocytes via PGC1α. Taken together, this study shows that TRPM8 contributes to liver regeneration in mice after hepatectomy. Genetic approaches and pharmacological approaches to regulate TRPM8 activity may be beneficial to the promotion of liver regeneration.
Collapse
Affiliation(s)
- Xiaohua Lei
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- The First Affiliated Hospital, Department of Hepato-Biliary-Pancreatic Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Qiang Liu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wei Qin
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qing Tong
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhenghao Li
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wendi Xu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Guoxing Liu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jie Fu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ju Zhang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Tao Kuang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yaoli Shao
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chun Liu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yu Fang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhenyu Cao
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Likun Yan
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhiqiang Liu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Siyuan Liu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Xin M Liang
- Wellman Center for Photomedicine, Division of Hematology and Oncology, Division of Endocrinology, Massachusetts General Hospital, VA Boston Healthcare System, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xundi Xu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- Department of general surgery. Southern China Hospital, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China.
| |
Collapse
|
11
|
Kübler IC, Kretzschmar J, Brankatschk M, Sandoval-Guzmán T. Local problems need global solutions: The metabolic needs of regenerating organisms. Wound Repair Regen 2022; 30:652-664. [PMID: 35596643 PMCID: PMC7613859 DOI: 10.1111/wrr.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Abstract
The vast majority of species that belong to the plant or animal kingdom evolved with two main strategies to counter tissue damage-scar formation and regeneration. Whereas scar formation provides a fast and cost-effective repair to exit life-threatening conditions, complete tissue regeneration is time-consuming and requires vast resources to reinstall functionality of affected organs or structures. Local environments in wound healing are widely studied and findings have provided important biomedical applications. Less well understood are organismic physiological parameters and signalling circuits essential to maintain effective tissue repair. Here, we review accumulated evidence that positions the interplay of local and systemic changes in metabolism as essential variables modulating the injury response. We particularly emphasise the role of lipids and lipid-like molecules as significant components long overlooked.
Collapse
Affiliation(s)
- Ines C. Kübler
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jenny Kretzschmar
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Marko Brankatschk
- Department of Molecular, Cell and Developmental Biology, Technische Universität Dresden, Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Han YH, He XM, Lee SJ, Mao YY, Liu XC, Sun HN, Jin MH, Kwon T. Network analysis for the identification of hub genes and related molecules as potential biomarkers associated with the differentiation of bone marrow-derived stem cells into hepatocytes. Aging (Albany NY) 2022; 14:8243-8257. [PMID: 36279394 PMCID: PMC9648814 DOI: 10.18632/aging.204344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
Abstract
The incidence of liver diseases has been increasing steadily. However, it has some shortcomings, such as high cost and organ donor scarcity. The application of stem cell research has brought new ideas for the treatment of liver diseases. Therefore, it is particularly important to clarify the molecular and regulatory mechanisms of differentiation of bone marrow-derived stem cells (BMSCs) into liver cells. Herein, we screened differentially expressed genes between hepatocytes and untreated BMSCs to identify the genes responsible for the differentiation of BMSCs into hepatocytes. GSE30419 gene microarray data of BMSCs and GSE72088 gene microarray data of primary hepatocytes were obtained from the Gene Expression Omnibus database. Transcriptome Analysis Console software showed that 1896 genes were upregulated and 2506 were downregulated in hepatocytes as compared with BMSCs. Hub genes were analyzed using the STRING and Cytoscape v 3.8.2, revealing that twenty-four hub genes, play a pivotal role in the differentiation of BMSCs into hepatocytes. The expression of the hub genes in the BMSCs and hepatocytes was verified by reverse transcription-quantitative PCR (RT-qPCR). Next, the target miRNAs of hub genes were predicted, and then the lncRNAs regulating miRNAs was discovered, thus forming the lncRNA-miRNA-mRNA interaction chain. The results indicate that the lncRNA-miRNA-mRNA interaction chain may play an important role in the differentiation of BMSCs into hepatocytes, which provides a new therapeutic target for liver disease treatment.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Xin-Mei He
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Seung-Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-Si 56212, Jeonbuk, Republic of Korea
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ying-Ying Mao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Xuan-Chen Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Mei-Hua Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, P.R. China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56216, Jeonbuk, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
13
|
Zhang L, Li Y, Wang Y, Qiu Y, Mou H, Deng Y, Yao J, Xia Z, Zhang W, Zhu D, Qiu Z, Lu Z, Wang J, Yang Z, Mao G, Chen D, Sun L, Liu L, Ju Z. mTORC2 Facilitates Liver Regeneration Through Sphingolipid-Induced PPAR-α-Fatty Acid Oxidation. Cell Mol Gastroenterol Hepatol 2022; 14:1311-1331. [PMID: 35931382 PMCID: PMC9703135 DOI: 10.1016/j.jcmgh.2022.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS During liver regeneration after partial hepatectomy, the function and metabolic pathways governing transient lipid droplet accumulation in hepatocytes remain obscure. Mammalian target of rapamycin 2 (mTORC2) facilitates de novo synthesis of hepatic lipids. Under normal conditions and in tumorigenesis, decreased levels of triglyceride (TG) and fatty acids (FAs) are observed in the mTORC2-deficient liver. However, during liver regeneration, their levels increase in the absence of mTORC2. METHODS Rictor liver-specific knockout and control mice underwent partial hepatectomy, followed by measurement of TG and FA contents during liver regeneration. FA metabolism was evaluated by analyzing the expression of FA metabolism-related genes and proteins. Intraperitoneal injection of the peroxisome proliferator-activated receptor α (PPAR-α) agonist, p53 inhibitor, and protein kinase B (AKT) activator was performed to verify the regulatory pathways involved. Lipid mass spectrometry was performed to identify the potential PPAR-α activators. RESULTS The expression of FA metabolism-related genes and proteins suggested that FAs are mainly transported into hepatocytes during liver regeneration. The PPAR-α pathway is down-regulated significantly in the mTORC2-deficient liver, resulting in the accumulation of TGs. The PPAR-α agonist WY-14643 rescued deficient liver regeneration and survival in mTORC2-deficient mice. Furthermore, lipidomic analysis suggested that mTORC2 deficiency substantially reduced glucosylceramide (GluCer) content. GluCer activated PPAR-α. GluCer treatment in vivo restored the regenerative ability and survival rates in the mTORC2-deficient group. CONCLUSIONS Our data suggest that FAs are mainly transported into hepatocytes during liver regeneration, and their metabolism is facilitated by mTORC2 through the GluCer-PPAR-α pathway, thereby establishing a novel role for mTORC2 in lipid metabolism.
Collapse
Affiliation(s)
- Lingling Zhang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China,Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China,Correspondence Address correspondence to: Lingling Zhang, MD, PhD, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China.
| | - Yanqiu Li
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ying Wang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yugang Qiu
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Hanchuan Mou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yuanyao Deng
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Jiyuan Yao
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhiqing Xia
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Wenzhe Zhang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Di Zhu
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Zeyu Qiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zhongjie Lu
- Department of Thoracic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jirong Wang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Zhouxin Yang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - GenXiang Mao
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Dan Chen
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Leimin Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Leiming Liu
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China,Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China,Leiming Liu, PhD, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China,Zhenyu Ju, MD, PhD, Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Zhao P, Fan S, Gao Y, Huang M, Bi H. Nuclear Receptor-Mediated Hepatomegaly and Liver Regeneration: An Update. Drug Metab Dispos 2022; 50:636-645. [PMID: 35078806 DOI: 10.1124/dmd.121.000454] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/04/2022] [Indexed: 02/13/2025] Open
Abstract
Nuclear receptors (NRs), a superfamily of ligand-activated transcription factors, are critical in cell growth, proliferation, differentiation, metabolism, and numerous biologic events. NRs have been reported to play important roles in hepatomegaly (liver enlargement) and liver regeneration by regulating target genes or interacting with other signals. In this review, the roles and involved molecular mechanisms of NRs in hepatomegaly and liver regeneration are summarized and the future perspectives of NRs in the treatment of liver diseases are discussed. SIGNIFICANCE STATEMENT: NRs play critical roles in hepatomegaly and liver regeneration, indicating the potential of NRs as targets to promote liver repair after liver injury. This paper reviews the characteristics and molecular mechanisms of NRs in regulating hepatomegaly and liver regeneration, providing more evidence for NRs in the treatment of related liver diseases.
Collapse
Affiliation(s)
- Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| |
Collapse
|
15
|
Xie G, Song Y, Li N, Zhang Z, Wang X, Liu Y, Jiao S, Wei M, Yu B, Wang Y, Wang H, Qu A. Myeloid peroxisome proliferator-activated receptor α deficiency accelerates liver regeneration via IL-6/STAT3 pathway after 2/3 partial hepatectomy in mice. Hepatobiliary Surg Nutr 2022; 11:199-211. [PMID: 35464270 DOI: 10.21037/hbsn-20-688] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/19/2021] [Indexed: 12/29/2022]
Abstract
Background Liver regeneration is a fundamental process for sustained body homeostasis and liver function recovery after injury. Emerging evidence demonstrates that myeloid cells play a critical role in liver regeneration by secreting cytokines and growth factors. Peroxisome proliferator-activated receptor α (PPARα), the target of clinical lipid-lowering fibrate drugs, regulates cell metabolism, proliferation, and survival. However, the role of myeloid PPARα in partial hepatectomy (PHx)-induced liver regeneration remains unknown. Methods Myeloid-specific PPARa-deficient (Ppara Mye-/-) mice and the littermate controls (Ppara fl/fl) were subjected to sham or 2/3 PHx to induce liver regeneration. Hepatocyte proliferation and mitosis were assessed by immunohistochemical (IHC) staining for 5-bromo-2'-deoxyuridine (BrdU) and Ki67 as well as hematoxylin and eosin (H&E) staining. Macrophage and neutrophil infiltration into livers were reflected by IHC staining for galectin-3 and myeloperoxidase (MPO) as well as flow cytometry analysis. Macrophage migration ability was evaluated by transwell assay. The mRNA levels for cell cycle or inflammation-related genes were measured by quantitative real-time RT-PCR (qPCR). The protein levels of cell proliferation related protein and phosphorylated signal transducer and activator of transcription 3 (STAT3) were detected by Western blotting. Results Ppara Mye-/- mice showed enhanced hepatocyte proliferation and mitosis at 32 h after PHx compared with Ppara fl/fl mice, which was consistent with increased proliferating cell nuclear antigen (Pcna) mRNA and cyclinD1 (CYCD1) protein levels in Ppara Mye-/- mice at 32 h after PHx, indicating an accelerated liver regeneration in Ppara Mye-/- mice. IHC staining showed that macrophages and neutrophils were increased in Ppara Mye-/- liver at 32 h after PHx. Livers of Ppara Mye-/- mice also showed an enhanced infiltration of M1 macrophages at 32 h after PHx. In vitro, Ppara-deficient bone marrow-derived macrophages (BMDMs) exhibited markedly enhanced migratory capacity and upregulated M1 genes Il6 and Tnfa but downregulated M2 gene Arg1 expressions. Furthermore, the phosphorylation of STAT3, a key transcript factor mediating IL6-promoted hepatocyte survival and proliferation, was reinforced in the liver of Ppara Mye-/- mice after PHx. Conclusions This study provides evidence that myeloid PPARα deficiency accelerates PHx-induced liver regeneration via macrophage polarization and consequent IL-6/STAT3 activation, thus providing a potential target for manipulating liver regeneration.
Collapse
Affiliation(s)
- Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Na Li
- Department of Endocrinology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhenzhen Zhang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Ye Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Ming Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Yan Wang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| |
Collapse
|
16
|
Fan S, Gao Y, Qu A, Jiang Y, Li H, Xie G, Yao X, Yang X, Zhu S, Yagai T, Tian J, Wang R, Gonzalez FJ, Huang M, Bi H. YAP-TEAD mediates PPAR α-induced hepatomegaly and liver regeneration in mice. Hepatology 2022; 75:74-88. [PMID: 34387904 DOI: 10.1002/hep.32105] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Peroxisome proliferator-activated receptor α (PPARα, NR1C1) is a ligand-activated nuclear receptor involved in the regulation of lipid catabolism and energy homeostasis. PPARα activation induces hepatomegaly and plays an important role in liver regeneration, but the underlying mechanisms remain unclear. APPROACH AND RESULTS In this study, the effect of PPARα activation on liver enlargement and regeneration was investigated in several strains of genetically modified mice. PPARα activation by the specific agonist WY-14643 significantly induced hepatomegaly and accelerated liver regeneration after 70% partial hepatectomy (PHx) in wild-type mice and Pparafl/fl mice, while these effects were abolished in hepatocyte-specific Ppara-deficient (PparaΔHep ) mice. Moreover, PPARα activation promoted hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. Mechanistically, PPARα activation regulated expression of yes-associated protein (YAP) and its downstream targets (connective tissue growth factor, cysteine-rich angiogenic inducer 61, and ankyrin repeat domain 1) as well as proliferation-related proteins (cyclins A1, D1, and E1). Binding of YAP with the PPARα E domain was critical for the interaction between YAP and PPARα. PPARα activation further induced nuclear translocation of YAP. Disruption of the YAP-transcriptional enhancer factor domain family member (TEAD) association significantly suppressed PPARα-induced hepatomegaly and hepatocyte enlargement and proliferation. In addition, PPARα failed to induce hepatomegaly in adeno-associated virus-Yap short hairpin RNA-treated mice and liver-specific Yap-deficient mice. Blockade of YAP signaling abolished PPARα-induced hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. CONCLUSIONS This study revealed a function of PPARα in regulating liver size and liver regeneration through activation of the YAP-TEAD signaling pathway. These findings have implications for understanding the physiological functions of PPARα and suggest its potential for manipulation of liver size and liver regeneration.
Collapse
Affiliation(s)
- Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiming Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hua Li
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinpeng Yao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Yang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shuguang Zhu
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tomoki Yagai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jianing Tian
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ruimin Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Hadjittofi C, Feretis M, Martin J, Harper S, Huguet E. Liver regeneration biology: Implications for liver tumour therapies. World J Clin Oncol 2021; 12:1101-1156. [PMID: 35070734 PMCID: PMC8716989 DOI: 10.5306/wjco.v12.i12.1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
The liver has remarkable regenerative potential, with the capacity to regenerate after 75% hepatectomy in humans and up to 90% hepatectomy in some rodent models, enabling it to meet the challenge of diverse injury types, including physical trauma, infection, inflammatory processes, direct toxicity, and immunological insults. Current understanding of liver regeneration is based largely on animal research, historically in large animals, and more recently in rodents and zebrafish, which provide powerful genetic manipulation experimental tools. Whilst immensely valuable, these models have limitations in extrapolation to the human situation. In vitro models have evolved from 2-dimensional culture to complex 3 dimensional organoids, but also have shortcomings in replicating the complex hepatic micro-anatomical and physiological milieu. The process of liver regeneration is only partially understood and characterized by layers of complexity. Liver regeneration is triggered and controlled by a multitude of mitogens acting in autocrine, paracrine, and endocrine ways, with much redundancy and cross-talk between biochemical pathways. The regenerative response is variable, involving both hypertrophy and true proliferative hyperplasia, which is itself variable, including both cellular phenotypic fidelity and cellular trans-differentiation, according to the type of injury. Complex interactions occur between parenchymal and non-parenchymal cells, and regeneration is affected by the status of the liver parenchyma, with differences between healthy and diseased liver. Finally, the process of termination of liver regeneration is even less well understood than its triggers. The complexity of liver regeneration biology combined with limited understanding has restricted specific clinical interventions to enhance liver regeneration. Moreover, manipulating the fundamental biochemical pathways involved would require cautious assessment, for fear of unintended consequences. Nevertheless, current knowledge provides guiding principles for strategies to optimise liver regeneration potential.
Collapse
Affiliation(s)
- Christopher Hadjittofi
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Michael Feretis
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jack Martin
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Simon Harper
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Huguet
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
18
|
Micó-Carnero M, Casillas-Ramírez A, Caballeria-Casals A, Rojano-Alfonso C, Sánchez-González A, Peralta C. Role of Dietary Nutritional Treatment on Hepatic and Intestinal Damage in Transplantation with Steatotic and Non-Steatotic Liver Grafts from Brain Dead Donors. Nutrients 2021; 13:2554. [PMID: 34444713 PMCID: PMC8400262 DOI: 10.3390/nu13082554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Herein, we investigate whether: (1) the administration of glucose or a lipid emulsion is useful in liver transplantation (LT) using steatotic (induced genetically or nutritionally) or non-steatotic livers from donors after brain death (DBDs); and (2) any such benefits are due to reductions in intestinal damage and consequently to gut microbiota preservation. In recipients from DBDs, we show increased hepatic damage and failure in the maintenance of ATP, glycogen, phospholipid and growth factor (HGF, IGF1 and VEGFA) levels, compared to recipients from non-DBDs. In recipients of non-steatotic grafts from DBDs, the administration of glucose or lipids did not protect against hepatic damage. This was associated with unchanged ATP, glycogen, phospholipid and growth factor levels. However, the administration of lipids in steatotic grafts from DBDs protected against damage and ATP and glycogen drop and increased phospholipid levels. This was associated with increases in growth factors. In all recipients from DBDs, intestinal inflammation and damage (evaluated by LPS, vascular permeability, mucosal damage, TLR4, TNF, IL1, IL-10, MPO, MDA and edema formation) was not shown. In such cases, potential changes in gut microbiota would not be relevant since neither inflammation nor damage was evidenced in the intestine following LT in any of the groups evaluated. In conclusion, lipid treatment is the preferable nutritional support to protect against hepatic damage in steatotic LT from DBDs; the benefits were independent of alterations in the recipient intestine.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (A.C.-C.); (C.R.-A.)
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, 87087 Ciudad Victoria, Mexico; (A.C.-R.); (A.S.-G.)
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, 87300 Matamoros, Mexico
| | - Albert Caballeria-Casals
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (A.C.-C.); (C.R.-A.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (A.C.-C.); (C.R.-A.)
| | - Alfredo Sánchez-González
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, 87087 Ciudad Victoria, Mexico; (A.C.-R.); (A.S.-G.)
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (A.C.-C.); (C.R.-A.)
| |
Collapse
|
19
|
Yamakawa Y, Doi T, Naitou Y, Kawai H, Mitsumoto A, Kudo N, Kawashima Y. A single pretreatment with clofibric acid attenuates carbon tetrachloride-induced necrosis, but not steatosis, in rat liver. Food Chem Toxicol 2020; 145:111591. [PMID: 32739454 DOI: 10.1016/j.fct.2020.111591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 01/14/2023]
Abstract
The present study investigated whether a single pretreatment with clofibric acid suppresses liver injury in rats after CCl4 intoxication. Rats received a single pretreatment with clofibric acid (100 mg/kg, i.p.) 1 h prior to a CCl4 (1 mL/kg, p.o.) challenge, and were euthanized 24 h after the CCl4 administration. A single pretreatment with clofibric acid effectively suppressed increases in the serum aminotransferase activities and the severity of necrosis following the CCl4 challenge, whereas the pretreatment did not protect against CCl4-induced fatty liver. The clofibric acid pretreatment did not affect blood concentrations of CCl4 in the early stage after CCl4 dosing, or the level of the CCl4 reaching the liver 1 h after the CCl4 challenge. Moreover, the clofibric acid pretreatment did not affect the intensity of the covalent binding of the [14C]CCl4 metabolite to microsomal proteins and lipids. The clofibric acid pretreatment did not alter microsomal cytochrome P450 2E1 activity. Based on these results, we conclude that protection against CCl4-induced hepatocellular necrosis by a clofibric acid pretreatment does not require its repeated administration, and that a single and brief pre-exposure to clofibric acid prior to CCl4 dosing markedly suppresses necrosis without affecting the development and progression of steatosis.
Collapse
Affiliation(s)
- Yoshihiro Yamakawa
- Research and Development Laboratories, Maruho Co, 1 Awatacho, Chudoji, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Takaaki Doi
- Research and Development Laboratories, Maruho Co, 1 Awatacho, Chudoji, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Yoshizumi Naitou
- Research and Development Laboratories, Maruho Co, 1 Awatacho, Chudoji, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Hiroshi Kawai
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Atsushi Mitsumoto
- Faculty of Pharmaceutical Sciences, Josai International University, Gumyo, Togane, Chiba, 283-8555, Japan
| | - Naomi Kudo
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Yoichi Kawashima
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
20
|
Caldez MJ, Bjorklund M, Kaldis P. Cell cycle regulation in NAFLD: when imbalanced metabolism limits cell division. Hepatol Int 2020; 14:463-474. [PMID: 32578019 PMCID: PMC7366567 DOI: 10.1007/s12072-020-10066-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
Cell division is essential for organismal growth and tissue homeostasis. It is exceptionally significant in tissues chronically exposed to intrinsic and external damage, like the liver. After decades of studying the regulation of cell cycle by extracellular signals, there are still gaps in our knowledge on how these two interact with metabolic pathways in vivo. Studying the cross-talk of these pathways has direct clinical implications as defects in cell division, signaling pathways, and metabolic homeostasis are frequently observed in liver diseases. In this review, we will focus on recent reports which describe various functions of cell cycle regulators in hepatic homeostasis. We will describe the interplay between the cell cycle and metabolism during liver regeneration after acute and chronic damage. We will focus our attention on non-alcoholic fatty liver disease, especially non-alcoholic steatohepatitis. The global incidence of non-alcoholic fatty liver disease is increasing exponentially. Therefore, understanding the interplay between cell cycle regulators and metabolism may lead to the discovery of novel therapeutic targets amenable to intervention.
Collapse
Affiliation(s)
- Matias J Caldez
- WPI Immunology Frontiers Research Centre, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Mikael Bjorklund
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute and 2nd Affiliated Hospital, Zhejiang University School of Medicine, 718 East Haizhou Rd., Haining, 314400, Zhejiang, People's Republic of China
| | - Philipp Kaldis
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden.
| |
Collapse
|
21
|
Pommergaard HC, Preuss Hasselby J, Linno Willemoe G, Ralbovska A, Arendtsen Rostved A, Rasmussen A, Aagaard Schultz N, Hillingsø J, Nørgaard Larsen P, Kugler JM. Peroxisome proliferator-activated receptor activity correlates with poor survival in patients resected for hepatocellular carcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2020; 28:327-335. [PMID: 32359017 DOI: 10.1002/jhbp.745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/02/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND/PURPOSE Few clinically useful biomarkers are known to predict prognosis in patients with hepatocellular carcinoma (HCC). The aim of this study was to investigate the correlation between PPAR activity and ALDH7A1 expression and their prognostic significance using RNA sequencing in patients undergoing liver resection for HCC. METHODS We included patients undergoing liver resection for HCC at a tertiary referral center for hepato-pancreato-biliary surgery between May 2014 and January 2018. PPAR activity and ALDH7A1 expression were evaluated by RNA sequencing and correlated with overall survival, recurrence and histological features. RESULTS We included 52 patients with a median follow-up of 20.9 months, predominantly males (88.5%) with a single tumor (84.6%) in a non-cirrhotic liver (73.1%). Three-year overall survival was 48.6% in patients with a specific PPAR target gene expression profile (cancer cluster 3) compared with 81.7% in controls (P = .04, Log-rank test). This remained significant (odds ratio 14.02, 95% confidence interval 1.92-102.22, P = .009) when adjusted for age, cirrhosis, microvascular invasion, number of tumors and free resection margins. ALDH7A1 expression was not correlated with PPAR or any outcomes. CONCLUSION PPAR activity in a subset of tumor samples was associated with reduced overall survival indicating that PPAR may be a valuable prognostic biomarker.
Collapse
Affiliation(s)
- Hans-Christian Pommergaard
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jane Preuss Hasselby
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gro Linno Willemoe
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Adela Ralbovska
- Institute for Molecular and Cellular Medicine, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - Andreas Arendtsen Rostved
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Allan Rasmussen
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nicolai Aagaard Schultz
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens Hillingsø
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Nørgaard Larsen
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jan-Michael Kugler
- Institute for Molecular and Cellular Medicine, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| |
Collapse
|
22
|
Hu Z, Han Y, Liu Y, Zhao Z, Ma F, Cui A, Zhang F, Liu Z, Xue Y, Bai J, Wu H, Bian H, Chin YE, Yu Y, Meng Z, Wang H, Liu Y, Fan J, Gao X, Chen Y, Li Y. CREBZF as a Key Regulator of STAT3 Pathway in the Control of Liver Regeneration in Mice. Hepatology 2020; 71:1421-1436. [PMID: 31469186 DOI: 10.1002/hep.30919] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS STAT3, a member of the signal transducer and activator of transcription (STAT) family, is strongly associated with liver injury, inflammation, regeneration, and hepatocellular carcinoma development. However, the signals that regulate STAT3 activity are not completely understood. APPROACH AND RESULTS Here we characterize CREB/ATF bZIP transcription factor CREBZF as a critical regulator of STAT3 in the hepatocyte to repress liver regeneration. We show that CREBZF deficiency stimulates the expression of the cyclin gene family and enhances liver regeneration after partial hepatectomy. Flow cytometry analysis reveals that CREBZF regulates cell cycle progression during liver regeneration in a hepatocyte-autonomous manner. Similar results were observed in another model of liver regeneration induced by intraperitoneal injection of carbon tetrachloride (CCl4 ). Mechanistically, CREBZF potently associates with the linker domain of STAT3 and represses its dimerization and transcriptional activity in vivo and in vitro. Importantly, hepatectomy-induced hyperactivation of cyclin D1 and liver regeneration in CREBZF liver-specific knockout mice was reversed by selective STAT3 inhibitor cucurbitacin I. In contrast, adeno-associated virus-mediated overexpression of CREBZF in the liver inhibits the expression of the cyclin gene family and attenuates liver regeneration in CCl4 -treated mice. CONCLUSIONS These results characterize CREBZF as a coregulator of STAT3 to inhibit regenerative capacity, which may represent an essential cellular signal to maintain liver mass homeostasis. Therapeutic approaches to inhibit CREBZF may benefit the compromised liver during liver transplantation.
Collapse
Affiliation(s)
- Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yamei Han
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zehua Zhao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feifei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinyun Bai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Haifu Wu
- Metabolic and Bariatric Surgery of Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Y Eugene Chin
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Ying Yu
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
23
|
Li CX, Wang HW, Jiang WJ, Li GC, Zhang YD, Luo CH, Li XC. The Inhibition of Aldose Reductase Accelerates Liver Regeneration through Regulating Energy Metabolism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3076131. [PMID: 32190170 PMCID: PMC7064854 DOI: 10.1155/2020/3076131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/02/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Our previous study showed that aldose reductase (AR) played key roles in fatty liver ischemia-reperfusion (IR) injury by regulating inflammatory response and energy metabolism. Here, we aim to investigate the role and mechanism of AR in the regeneration of normal and fatty livers after liver surgery. METHODS The association of AR expression with liver regeneration was studied in the rat small-for-size liver transplantation model and the mice major hepatectomy and hepatic IR injury model with or without fatty change. The direct role and mechanism of AR in liver regeneration was explored in the AR knockout mouse model. RESULTS Delayed regeneration was detected in fatty liver after liver surgery in both rat and mouse models. Furthermore, the expression of AR was increased in liver after liver surgery, especially in fatty liver. In a functional study, the knockout of AR promoted liver regeneration at day 2 after major hepatectomy and IR injury. Compared to wild-type groups, the expressions of cyclins were increased in normal and fatty livers of AR knockout mice. AR inhibition increased the expressions of PPAR-α and PPAR-γ in both normal liver and fatty liver groups after major hepatectomy and IR injury. In addition, the knockout of AR promoted the expressions of SDHB, AMPK, SIRT1, and PGC1-α and PPAR. CONCLUSIONS The knockout of AR promoted the regeneration of normal and fatty livers through regulating energy metabolism. AR may be a new potential therapeutic target to accelerate liver regeneration after surgery.
Collapse
Affiliation(s)
- Chang Xian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Nanjing, Jiangsu Province, China
| | - Hong Wei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Nanjing, Jiangsu Province, China
| | - Wang Jie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Nanjing, Jiangsu Province, China
| | - Gao Chao Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Nanjing, Jiangsu Province, China
| | - Yao Dong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Nanjing, Jiangsu Province, China
| | - Chen Huan Luo
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Nanjing, Jiangsu Province, China
| | - Xiang Cheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Nanjing, Jiangsu Province, China
| |
Collapse
|
24
|
Yin L, Wang Y, Lin Y, Yu G, Xia Q. Explorative analysis of the gene expression profile during liver regeneration of mouse: a microarray-based study. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1113-1121. [PMID: 30963776 DOI: 10.1080/21691401.2019.1593851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The liver is an amazing organ due to its powerful regenerative capacity. Although many studies on liver regeneration have been documented, the detailed mechanisms remain unclear. Two-third partial hepatectomy (PH) in rodents plays a crucial role in the study of liver regeneration. In this study, the time series data of gene expression during liver regeneration in mouse were analyzed using the gene set numbered GSE6998 in GEO. A variety of bioinformatics methods, including masigPro, Weighted Gene Co-expression Network Analysis (WGCNA), spatial analysis of functional enrichment (SAFE) and ingenuity canonical pathway analysis (IPA) were used to identify and compare the significantly changed pathways, potential upstream regulators and key genes during liver regeneration. Our study showed that liver regeneration in the mouse is a coordinated process, which cell-cycle-related progress are at the centre of the interaction network involved in liver regeneration. Several candidate upstream regulators including PPARA, NFE2L2, MAD1 and CNR1 and some key genes such as Cdk1, Plk1, Cdc20, Aurka, Racgap1, Cenpa, Rrm1, Rrm2 were identified. In conclusion, these findings could contribute to revealing the molecular mechanism of liver regeneration after PH, which could provide new ideas and treatment methods for regenerative medicine, oncological drug development and oncological treatment.
Collapse
Affiliation(s)
- Li Yin
- a Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine , Hainan Medical University , Haikou , Hainan , China
| | - Yuanyuan Wang
- a Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine , Hainan Medical University , Haikou , Hainan , China
| | - Yingzi Lin
- a Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine , Hainan Medical University , Haikou , Hainan , China
| | - Guoying Yu
- b State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development , Henan Normal University , Xinxiang , Henan , China
| | - Qianfeng Xia
- a Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine , Hainan Medical University , Haikou , Hainan , China
| |
Collapse
|
25
|
Xie G, Yin S, Zhang Z, Qi D, Wang X, Kim D, Yagai T, Brocker CN, Wang Y, Gonzalez FJ, Wang H, Qu A. Hepatocyte Peroxisome Proliferator-Activated Receptor α Enhances Liver Regeneration after Partial Hepatectomy in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:272-282. [PMID: 30448405 DOI: 10.1016/j.ajpath.2018.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/18/2018] [Accepted: 10/10/2018] [Indexed: 12/25/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a key nuclear receptor involved in the control of lipid homeostasis. In rodents, PPARα is also a potent hepatic mitogen. Hepatocyte-specific disruption of PPARα inhibits agonist-induced hepatocyte proliferation; however, little is known about the exact role of PPARα in partial hepatectomy (PHx)-induced liver regeneration. Herein, using hepatocyte-specific PPARα-deficient (PparaΔHep) mice, the function of hepatocyte PPARα in PHx-induced liver regeneration was investigated. PPARα protein level and transcriptional activity were increased in the liver after PHx. Compared with the Pparafl/fl mice, PparaΔHep mice exhibited significantly reduced hepatocyte proliferation at 32 hours after PHx. Consistently, reduced Ccnd1 and Pcna mRNA and CYCD1 and proliferating cell nuclear antigen protein were observed at 32 hours after PHx in PparaΔHep mice. Furthermore, PparaΔHep mice showed increased hepatic lipid accumulation and enhanced hepatic triglyceride contents because of impaired hepatic fatty acid β-oxidation when compared with that observed in Pparafl/fl mice. These results indicate that PPARα promotes liver regeneration after PHx, at least partially via regulating the cell cycle and lipid metabolism.
Collapse
Affiliation(s)
- Guomin Xie
- School of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Capital Medical University, Beijing, China
| | - Shi Yin
- Department of Geriatrics, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Zhenzhen Zhang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Dan Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Capital Medical University, Beijing, China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Capital Medical University, Beijing, China
| | - Donghwan Kim
- Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland
| | - Tomoki Yagai
- Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland
| | - Chad N Brocker
- Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yan Wang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland
| | - Hua Wang
- School of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Oncology, First Affiliated Hospital, Anhui Medical University, Hefei, China; Institute for Liver Diseases, Anhui Medical University, Hefei, China.
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Capital Medical University, Beijing, China.
| |
Collapse
|
26
|
Liver-specific Repin1 deficiency impairs transient hepatic steatosis in liver regeneration. Sci Rep 2018; 8:16858. [PMID: 30442920 PMCID: PMC6237840 DOI: 10.1038/s41598-018-35325-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
Transient hepatic steatosis upon liver resection supposes functional relationships between lipid metabolism and liver regeneration. Repin1 has been suggested as candidate gene for obesity and dyslipidemia by regulating key genes of lipid metabolism and lipid storage. Herein, we characterized the regenerative potential of mice with a hepatic deletion of Repin1 (LRep1−/−) after partial hepatectomy (PH) in order to determine the functional significance of Repin1 in liver regeneration. Lipid dynamics and the regenerative response were analyzed at various time points after PH. Hepatic Repin1 deficiency causes a significantly decreased transient hepatic lipid accumulation. Defects in lipid uptake, as analyzed by decreased expression of the fatty acid transporter Cd36 and Fatp5, may contribute to attenuated and shifted lipid accumulation, accompanied by altered extent and chronological sequence of liver cell proliferation in LRep1−/− mice. In vitro steatosis experiments with primary hepatocytes also revealed attenuated lipid accumulation and occurrence of smaller lipid droplets in Repin1-deficient cells, while no direct effect on proliferation in HepG2 cells was observed. Based on these results, we propose that hepatocellular Repin1 might be of functional significance for early accumulation of lipids in hepatocytes after PH, facilitating efficient progression of liver regeneration.
Collapse
|
27
|
Abstract
The liver has a unique ability of regenerating after injuries or partial loss of its mass. The mechanisms responsible for liver regeneration - mostly occurring when the hepatic tissue is damaged or functionally compromised by metabolic stress - have been studied in considerable detail over the last few decades, because this phenomenon has both basic-biology and clinical relevance. More specifically, recent interest has been focusing on the widespread occurrence of abnormal nutritional habits in the Western world that result in an increased prevalence of non-alcoholic fatty liver disease (NAFLD). NAFLD is closely associated with insulin resistance and dyslipidemia, and it represents a major clinical challenge. The disease may progress to steatohepatitis with persistent inflammation and progressive liver damage, both of which will compromise regeneration under conditions of partial hepatectomy in surgical oncology or in liver transplantation procedures. Here, we analyze the impact of ER stress and SIRT1 in lipid metabolism and in fatty liver pathology, and their consequences on liver regeneration. Moreover, we discuss the fine interplay between ER stress and SIRT1 functioning when contextualized to liver regeneration. An improved understanding of the cellular and molecular intricacies contributing to liver regeneration could be of great clinical relevance in areas as diverse as obesity, metabolic syndrome and type 2 diabetes, as well as oncology and transplantation.
Collapse
Affiliation(s)
| | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
28
|
Apte U, Bhushan B, Dadhania V. Hepatic Defenses Against Toxicity: Liver Regeneration and Tissue Repair. COMPREHENSIVE TOXICOLOGY 2018:368-396. [DOI: 10.1016/b978-0-12-801238-3.64918-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Corton JC, Peters JM, Klaunig JE. The PPARα-dependent rodent liver tumor response is not relevant to humans: addressing misconceptions. Arch Toxicol 2017; 92:83-119. [PMID: 29197930 DOI: 10.1007/s00204-017-2094-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/12/2017] [Indexed: 12/17/2022]
Abstract
A number of industrial chemicals and therapeutic agents cause liver tumors in rats and mice by activating the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). The molecular and cellular events by which PPARα activators induce rodent hepatocarcinogenesis have been extensively studied elucidating a number of consistent mechanistic changes linked to the increased incidence of liver neoplasms. The weight of evidence relevant to the hypothesized mode of action (MOA) for PPARα activator-induced rodent hepatocarcinogenesis is summarized here. Chemical-specific and mechanistic data support concordance of temporal and dose-response relationships for the key events associated with many PPARα activators. The key events (KE) identified in the MOA are PPARα activation (KE1), alteration in cell growth pathways (KE2), perturbation of hepatocyte growth and survival (KE3), and selective clonal expansion of preneoplastic foci cells (KE4), which leads to the apical event-increases in hepatocellular adenomas and carcinomas (KE5). In addition, a number of concurrent molecular and cellular events have been classified as modulating factors, because they potentially alter the ability of PPARα activators to increase rodent liver cancer while not being key events themselves. These modulating factors include increases in oxidative stress and activation of NF-kB. PPARα activators are unlikely to induce liver tumors in humans due to biological differences in the response of KEs downstream of PPARα activation. This conclusion is based on minimal or no effects observed on cell growth pathways and hepatocellular proliferation in human primary hepatocytes and absence of alteration in growth pathways, hepatocyte proliferation, and tumors in the livers of species (hamsters, guinea pigs and cynomolgus monkeys) that are more appropriate human surrogates than mice and rats at overlapping dose levels. Despite this overwhelming body of evidence and almost universal acceptance of the PPARα MOA and lack of human relevance, several reviews have selectively focused on specific studies that, as discussed, contradict the consensus opinion and suggest uncertainty. In the present review, we systematically address these most germane suggested weaknesses of the PPARα MOA.
Collapse
Affiliation(s)
- J Christopher Corton
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr, MD-B105-03, Research Triangle Park, NC, 27711, USA.
| | - Jeffrey M Peters
- The Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16803, USA
| | - James E Klaunig
- Department of Environmental Health, Indiana University, Bloomington, IN, 47402, USA
| |
Collapse
|
30
|
Magadum A, Ding Y, He L, Kim T, Vasudevarao MD, Long Q, Yang K, Wickramasinghe N, Renikunta HV, Dubois N, Weidinger G, Yang Q, Engel FB. Live cell screening platform identifies PPARδ as a regulator of cardiomyocyte proliferation and cardiac repair. Cell Res 2017; 27:1002-1019. [PMID: 28621328 PMCID: PMC5539351 DOI: 10.1038/cr.2017.84] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
Zebrafish can efficiently regenerate their heart through cardiomyocyte proliferation. In contrast, mammalian cardiomyocytes stop proliferating shortly after birth, limiting the regenerative capacity of the postnatal mammalian heart. Therefore, if the endogenous potential of postnatal cardiomyocyte proliferation could be enhanced, it could offer a promising future therapy for heart failure patients. Here, we set out to systematically identify small molecules triggering postnatal cardiomyocyte proliferation. By screening chemical compound libraries utilizing a Fucci-based system for assessing cell cycle stages, we identified carbacyclin as an inducer of postnatal cardiomyocyte proliferation. In vitro, carbacyclin induced proliferation of neonatal and adult mononuclear rat cardiomyocytes via a peroxisome proliferator-activated receptor δ (PPARδ)/PDK1/p308Akt/GSK3β/β-catenin pathway. Inhibition of PPARδ reduced cardiomyocyte proliferation during zebrafish heart regeneration. Notably, inducible cardiomyocyte-specific overexpression of constitutively active PPARδ as well as treatment with PPARδ agonist after myocardial infarction in mice induced cell cycle progression in cardiomyocytes, reduced scarring, and improved cardiac function. Collectively, we established a cardiomyocyte proliferation screening system and present a new drugable target with promise for the treatment of cardiac pathologies caused by cardiomyocyte loss.
Collapse
Affiliation(s)
- Ajit Magadum
- Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, Bad Nauheim 61231, Germany
- Department of Cardiology, Icahn School of Medicine at Mount Sinai Hospital, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Yishu Ding
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL 35294-3360, USA
| | - Lan He
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL 35294-3360, USA
| | - Teayoun Kim
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL 35294-3360, USA
| | | | - Qinqiang Long
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL 35294-3360, USA
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China
| | - Kevin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL 35294-3360, USA
| | - Nadeera Wickramasinghe
- Department for Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Box 1040, New York, NY 10029, USA
| | - Harsha V Renikunta
- Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, Bad Nauheim 61231, Germany
| | - Nicole Dubois
- Department for Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Box 1040, New York, NY 10029, USA
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL 35294-3360, USA
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China
| | - Felix B Engel
- Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, Bad Nauheim 61231, Germany
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, Erlangen 91054, Germany
- Muscle Research Center Erlangen (MURCE)
| |
Collapse
|
31
|
Liu M, Chen P. Proliferation‑inhibiting pathways in liver regeneration (Review). Mol Med Rep 2017; 16:23-35. [PMID: 28534998 DOI: 10.3892/mmr.2017.6613] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/13/2017] [Indexed: 12/14/2022] Open
Abstract
Liver regeneration, an orchestrated process, is the primary compensatory mechanism following liver injury caused by various factors. The process of liver regeneration consists of three stages: Initiation, proliferation and termination. Proliferation‑promoting factors, which stimulate the recovery of mitosis in quiescent hepatocytes, are essential in the initiation and proliferation steps of liver regeneration. Proliferation‑promoting factors act as the 'motor' of liver regeneration, whereas proliferation inhibitors arrest cell proliferation when the remnant liver reaches a suitable size. Certain proliferation inhibitors are also expressed and activated in the first two steps of liver regeneration. Anti‑proliferation factors, acting as a 'brake', control the speed of proliferation and determine the terminal point of liver regeneration. Furthermore, anti‑proliferation factors function as a 'steering‑wheel', ensuring that the regeneration process proceeds in the right direction by preventing proliferation in the wrong direction, as occurs in oncogenesis. Therefore, proliferation inhibitors to ensure safe and stable liver regeneration are as important as proliferation‑promoting factors. Cytokines, including transforming growth factor‑β and interleukin‑1, and tumor suppressor genes, including p53 and p21, are important members of the proliferation inhibitor family in liver regeneration. Certain anti‑proliferation factors are involved in the process of gene expression and protein modification. The suppression of liver regeneration led by metabolism, hormone activity and pathological performance have been reviewed previously. However, less is known regarding the proliferation inhibitors of liver regeneration and further investigations are required. Detailed information regarding the majority of known anti‑proliferation signaling pathways also remains fragmented. The present review aimed to understand the signalling pathways that inhbit proliferation in the process of liver regeneration.
Collapse
Affiliation(s)
- Menggang Liu
- Department of Hepatobiliary Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
32
|
de Jonge J, Olthoff KM. Liver regeneration. BLUMGART'S SURGERY OF THE LIVER, BILIARY TRACT AND PANCREAS, 2-VOLUME SET 2017:93-109.e7. [DOI: 10.1016/b978-0-323-34062-5.00006-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
33
|
Bellet MM, Masri S, Astarita G, Sassone-Corsi P, Della Fazia MA, Servillo G. Histone Deacetylase SIRT1 Controls Proliferation, Circadian Rhythm, and Lipid Metabolism during Liver Regeneration in Mice. J Biol Chem 2016; 291:23318-23329. [PMID: 27634039 PMCID: PMC5087747 DOI: 10.1074/jbc.m116.737114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/12/2016] [Indexed: 12/21/2022] Open
Abstract
Liver regeneration offers a distinctive opportunity to study cell proliferation in vivo Mammalian silent information regulator 1 (SIRT1), a NAD+-dependent histone deacetylase, is an important regulator of various cellular processes, including proliferation, metabolism, and circadian rhythms. In the liver, SIRT1 coordinates the circadian oscillation of clock-controlled genes, including genes that encode enzymes involved in metabolic pathways. We performed partial hepatectomy in WT and liver-specific Sirt1-deficient mice and analyzed the expression of cell cycle regulators in liver samples taken at different times during the regenerative process, by real time PCR, Western blotting analysis, and immunohistochemistry. Lipidomic analysis was performed in the same samples by MS/HPLC. We showed that G1/S progression was significantly affected by absence of SIRT1 in the liver, as well as circadian gene expression. This was associated to lipid accumulation due to defective fatty acid beta-oxidation. Our study revealed for the first time the importance of SIRT1 in the regulation of hepatocellular proliferation, circadian rhythms, and lipid metabolism during liver regeneration in mice. These results represent an additional step toward the characterization of SIRT1 function in the liver.
Collapse
Affiliation(s)
- Marina Maria Bellet
- From the Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy,
| | - Selma Masri
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697
| | - Giuseppe Astarita
- Health Sciences, Waters Corporation, Milford, Massachusetts 01757, and
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington DC 20057
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697
| | | | - Giuseppe Servillo
- From the Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy,
| |
Collapse
|
34
|
Rando G, Tan CK, Khaled N, Montagner A, Leuenberger N, Bertrand-Michel J, Paramalingam E, Guillou H, Wahli W. Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism. eLife 2016; 5. [PMID: 27367842 PMCID: PMC4963200 DOI: 10.7554/elife.11853] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 06/30/2016] [Indexed: 01/12/2023] Open
Abstract
In mammals, hepatic lipid catabolism is essential for the newborns to efficiently use milk fat as an energy source. However, it is unclear how this critical trait is acquired and regulated. We demonstrate that under the control of PPARα, the genes required for lipid catabolism are transcribed before birth so that the neonatal liver has a prompt capacity to extract energy from milk upon suckling. The mechanism involves a fetal glucocorticoid receptor (GR)-PPARα axis in which GR directly regulates the transcriptional activation of PPARα by binding to its promoter. Certain PPARα target genes such as Fgf21 remain repressed in the fetal liver and become PPARα responsive after birth following an epigenetic switch triggered by β-hydroxybutyrate-mediated inhibition of HDAC3. This study identifies an endocrine developmental axis in which fetal GR primes the activity of PPARα in anticipation of the sudden shifts in postnatal nutrient source and metabolic demands. DOI:http://dx.doi.org/10.7554/eLife.11853.001 Birth is a highly stressful and critical event. In the womb, babies rely on the supply of oxygen and nutrients provided by the placenta. However, once they are born they need to breathe for themselves and gain all their nutrients from suckling milk. The placenta provides a sugar-rich diet, while milk is richer in fat. Failing to cope with this change in diet leads to serious complications and sometimes death. Therefore, a better understanding of how the body adapts to these changes may shed light on pathways that are important for good health in later life. The liver plays a central role in processing the nutrients absorbed by the gut. It uses fats to produce molecules called ketone bodies, such as β-hydroxybutyrate, which are then used as fuel by other tissues and organs including the heart, muscle and the brain. A protein called PPARα controls the production of ketone bodies primarily by regulating genes that are involved in the uptake and breakdown of fat in the liver. However, little is known about how this protein affects the development of the liver. Here, Rando, Tan et al. report that mice start to produce more PPARα in the liver shortly before birth. This ultimately activates several genes that encode enzymes that break down fats. The experiments show that during labor, stress hormones called glucocorticoids directly stimulate the production of PPARα in the liver of the fetus to prepare newborn mice for harnessing energy from fat-rich milk. In the absence of PPARα, mouse liver cells are less able to break down fats after birth and so start to accumulate fat, resulting in fewer ketone bodies being produced. Rando, Tan et al. show that β-hydroxybutyrate regulates some PPARα target genes, including one called Fgf21. The activity of this gene increases only after milk suckling starts and it encodes a protein that enhances the breakdown of fats in the liver. Without PPARα, the expression levels of its target genes, including Fgf21, do not increase after birth, which promotes the build up of fats in liver cells, a condition known as liver steatosis. Overall, the results reported by Rando, Tan et al. highlight how stress during labor plays an important role in priming the body to cope with a fat-rich diet after birth. Future studies will need to determine if stress hormones and ketone bodies could be used as therapies for babies born by caesarean section with liver steatosis. DOI:http://dx.doi.org/10.7554/eLife.11853.002
Collapse
Affiliation(s)
- Gianpaolo Rando
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Chek Kun Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, , Singapore
| | - Nourhène Khaled
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alexandra Montagner
- UMR 1331 ToxAlim Research Centre in Food Toxicology, INRA, Université de Toulouse, Toulouse, France
| | - Nicolas Leuenberger
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Justine Bertrand-Michel
- IFR 150 Plateforme Metatoul, Institut Fédératif de Recherche Bio-Médicale de Toulouse INSERM U563, Toulouse, France
| | - Eeswari Paramalingam
- Lee Kong Chian School of Medicine, Nanyang Technological University, , Singapore
| | - Hervé Guillou
- UMR 1331 ToxAlim Research Centre in Food Toxicology, INRA, Université de Toulouse, Toulouse, France
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Lee Kong Chian School of Medicine, Nanyang Technological University, , Singapore.,UMR 1331 ToxAlim Research Centre in Food Toxicology, INRA, Université de Toulouse, Toulouse, France
| |
Collapse
|
35
|
Forced expression of fibroblast growth factor 21 reverses the sustained impairment of liver regeneration in hPPARα(PAC) mice due to dysregulated bile acid synthesis. Oncotarget 2016; 6:9686-700. [PMID: 25991671 PMCID: PMC4496390 DOI: 10.18632/oncotarget.3531] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/17/2015] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator activated receptor α (PPARα) stimulates hepatocellular proliferation is species-specific. Activation of mouse, but not human, PPARα induces hepatocellular proliferation, hepatomegaly, and liver cancer. Here we tested the hypothesis that human and mouse PPARα affects liver regeneration differentially. PPARα-humanized mice (hPPARα(PAC)) were similar to wild type mice in responding to fasting-induced PPARα signaling. However, these mouse livers failed to regenerate in response to partial hepatectomy (PH). The liver-to-body weight ratios did not recover even 3 months after PH in hPPARα(PAC). The mouse PPARα-mediated down-regulation of let-7c was absent in hPPARα(PAC), which might partially be responsible for impaired proliferation. After PH, hPPARα(PAC) displayed steatosis, necrosis, and inflammation mainly in periportal zone 1, which suggested bile-induced toxicity. Quantification of hepatic bile acids (BA) revealed BA overload with increased hydrophobic BA in hPPARα(PAC). Forced FGF21 expression in partial hepatectomized hPPARα(PAC) reduced hepatic steatosis, prevented focal necrosis, and restored liver mass. Compared to mouse PPARα, human PPARα has a reduced capacity to regulate metabolic pathways required for liver regeneration. In addition, FGF21 can compensate for the reduced ability of human PPARα in stimulating liver regeneration, which suggests the potential application of FGF21 in promoting hepatic growth in injured and steatotic livers in humans.
Collapse
|
36
|
Chuah C, Jones MK, McManus DP, Nawaratna SK, Burke ML, Owen HC, Ramm GA, Gobert GN. Characterising granuloma regression and liver recovery in a murine model of schistosomiasis japonica. Int J Parasitol 2016; 46:239-52. [PMID: 26812024 DOI: 10.1016/j.ijpara.2015.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
Abstract
For hepatic schistosomiasis the egg-induced granulomatous response and the development of extensive fibrosis are the main pathologies. We used a Schistosoma japonicum-infected mouse model to characterise the multi-cellular pathways associated with the recovery from hepatic fibrosis following clearance of the infection with the anti-schistosomal drug, praziquantel. In the recovering liver splenomegaly, granuloma density and liver fibrosis were all reduced. Inflammatory cell infiltration into the liver was evident, and the numbers of neutrophils, eosinophils and macrophages were significantly decreased. Transcriptomic analysis revealed the up-regulation of fatty acid metabolism genes and the identification of Peroxisome proliferator activated receptor alpha as the upstream regulator of liver recovery. The aryl hydrocarbon receptor signalling pathway which regulates xenobiotic metabolism was also differentially up-regulated. These findings provide a better understanding of the mechanisms associated with the regression of hepatic schistosomiasis.
Collapse
Affiliation(s)
- Candy Chuah
- QIMR Berghofer Medical Research Institute, Brisbane, Qld 4006, Australia; School of Veterinary Sciences, The University of Queensland, Gatton, Qld 4343, Australia; School of Medical Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia
| | - Malcolm K Jones
- School of Veterinary Sciences, The University of Queensland, Gatton, Qld 4343, Australia
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute, Brisbane, Qld 4006, Australia
| | | | - Melissa L Burke
- QIMR Berghofer Medical Research Institute, Brisbane, Qld 4006, Australia
| | - Helen C Owen
- School of Veterinary Sciences, The University of Queensland, Gatton, Qld 4343, Australia
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, Qld 4006, Australia
| | - Geoffrey N Gobert
- QIMR Berghofer Medical Research Institute, Brisbane, Qld 4006, Australia.
| |
Collapse
|
37
|
Liu HX, Keane R, Sheng L, Wan YJY. Implications of microbiota and bile acid in liver injury and regeneration. J Hepatol 2015; 63:1502-10. [PMID: 26256437 PMCID: PMC4654653 DOI: 10.1016/j.jhep.2015.08.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/15/2015] [Accepted: 08/02/2015] [Indexed: 02/07/2023]
Abstract
Studies examining the mechanisms by which the liver incurs injury and then regenerates usually focus on factors and pathways directly within the liver, neglecting the signaling derived from the gut-liver axis. The intestinal content is rich in microorganisms as well as metabolites generated from both the host and colonizing bacteria. Through the gut-liver axis, this complex "soup" exerts an immense impact on liver integrity and function. This review article summarizes data published in the past 30 years demonstrating the signaling derived from the gut-liver axis in relation to liver injury and regeneration. Due to the intricate networks of implicated pathways as well as scarcity of available mechanistic data, it seems that nutrigenomic, metabolomics, and microbiota profiling approaches are warranted to provide a better understanding regarding the interplay and impact between nutrition, bacteria, and host response in influencing liver function and healing. Therefore elucidating the possible molecular mechanisms that link microbiota alteration to host physiological response and vice versa.
Collapse
Affiliation(s)
- Hui-Xin Liu
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, CA, USA
| | - Ryan Keane
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, CA, USA
| | - Lili Sheng
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, CA, USA.
| |
Collapse
|
38
|
Constitutive Activation of the Nlrc4 Inflammasome Prevents Hepatic Fibrosis and Promotes Hepatic Regeneration after Partial Hepatectomy. Mediators Inflamm 2015; 2015:909827. [PMID: 26635450 PMCID: PMC4655266 DOI: 10.1155/2015/909827] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 01/01/2023] Open
Abstract
TThe molecular mechanisms responsible for the development of hepatic fibrosis are not fully understood. The Nlrc4 inflammasome detects cytosolic presence of bacterial components, activating inflammatory cytokines to facilitate clearance of pathogens and infected cells. We hypothesized that low-grade constitutive activation of the Nlrc4 inflammasome may lead to induced hepatocyte proliferation and prevent the development of hepatic fibrosis. The gene of Nlrc4 contains two single nucleotide polymorphisms (SNPs), one located within the Nlrc4 promoter and one contained within exon 5. These SNPs regulate Nlrc4 gene transcription and activation as measured through gene reporter assays and IL-1β secretion. The 17C-6 mice have increased IL-1β in plasma after chronic carbon tetrachloride (CCl4) administration compared to B6 mice. After two-thirds partial hepatectomy (2/3PH) 17C-6 mice have earlier restoration of liver mass with greater cyclin D1 protein and BrdU incorporation compared to B6 mice at several time points. These data reveal mild constitutive activation of the Nlrc4 inflammasome as the results of two SNPs, which leads to the stimulation of hepatocyte proliferation. The increased liver regeneration induces rapid liver mass recovery after hepatectomy and may prevent the development of hepatotoxin-induced liver fibrosis.
Collapse
|
39
|
Activation of peroxisome proliferator-activated receptor α ameliorates perfluorododecanoic acid-induced production of reactive oxygen species in rat liver. Arch Toxicol 2015; 90:1383-97. [DOI: 10.1007/s00204-015-1559-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/22/2015] [Indexed: 11/25/2022]
|
40
|
Mendes-Braz M, Elias-Miró M, Kleuser B, Fayyaz S, Jiménez-Castro MB, Massip-Salcedo M, Gracia-Sancho J, Ramalho FS, Rodes J, Peralta C. The effects of glucose and lipids in steatotic and non-steatotic livers in conditions of partial hepatectomy under ischaemia-reperfusion. Liver Int 2014; 34:e271-e289. [PMID: 24107124 DOI: 10.1111/liv.12348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/25/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Steatosis is a risk factor in partial hepatectomy (PH) under ischaemia-reperfusion (I/R), which is commonly applied in clinical practice to reduce bleeding. Nutritional support strategies, as well as the role of peripheral adipose tissue as energy source for liver regeneration, remain poorly investigated. AIMS To investigate whether the administration of either glucose or a lipid emulsion could protect steatotic and non-steatotic livers against damage and regenerative failure in an experimental model of PH under I/R. The relevance of peripheral adipose tissue in liver regeneration following surgery is studied. METHODS Steatotic and non-steatotic rat livers were subjected to surgery and the effects of either glucose or lipid treatment on damage and regeneration, and part of the underlying mechanisms, were investigated. RESULTS In non-steatotic livers, treatment with lipids or glucose provided the same protection against damage, regeneration failure and ATP drop. Adipose tissue was not required to regenerate non-steatotic livers. In the presence of hepatic steatosis, lipid treatment, but not glucose, protected against damage and regenerative failure by induction of cell cycle, maintenance of ATP levels and elevation of sphingosine-1-phosphate/ceramide ratio and phospholipid levels. Peripheral adipose tissue was required for regenerating the steatotic liver but it was not used as an energy source. CONCLUSION Lipid treatment in non-steatotic livers provides the same protection as that afforded by glucose in conditions of PH under I/R, whereas the treatment with lipids is preferable to reduce the injurious effects of liver surgery in the presence of steatosis.
Collapse
Affiliation(s)
- Mariana Mendes-Braz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Departamento de Patologia e Medicina Legal, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hashmi SK, Baranov E, Gonzalez A, Olthoff K, Shaked A. Genomics of liver transplant injury and regeneration. Transplant Rev (Orlando) 2014; 29:23-32. [PMID: 24746681 DOI: 10.1016/j.trre.2014.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/19/2014] [Indexed: 12/21/2022]
Abstract
While improved surgical techniques, post-operative care, and immunosuppression regimens have reduced morbidity and mortality associated with orthotopic liver transplantation (OLT), further improvement of outcomes requires personalized treatment and a better understanding of genomic mechanisms involved. Gene expression profiles of ischemia/reperfusion (I/R) injury, regeneration, and rejection, may suggest mechanisms for development of better predictive tools and treatments. The liver is unique in its regenerative potential, recovering lost mass and function after injury from ischemia, resection, and rejection. I/R injury, an inevitable consequence of perfusion cessation, cold storage, and reperfusion, is regulated by the interaction of the immune system, inflammatory cytokines, and reduced microcirculatory blood flow in the liver. Rejection, a common post-operative complication, is mediated by the recipient's immune system through T-cell-dependent responses activating proinflammatory and apoptotic pathways. Characterizing distinctive gene expression signatures for these events can identify therapies to reduce injury, promote regeneration, and improve outcomes. While certain markers of liver injury and regeneration have been observed in animals, many of these are unverified in human studies. Further investigation of these genomic signatures and mechanisms through new technology offers promise, but continues to pose a significant challenge. An overview of the current fund of knowledge in this area is reviewed.
Collapse
Affiliation(s)
- Sohaib Khalid Hashmi
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Esther Baranov
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ana Gonzalez
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kim Olthoff
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Abraham Shaked
- Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 2014; 155:778-92. [PMID: 24209617 DOI: 10.1016/j.cell.2013.09.059] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/23/2013] [Accepted: 09/27/2013] [Indexed: 12/14/2022]
Abstract
Regeneration capacity declines with age, but why juvenile organisms show enhanced tissue repair remains unexplained. Lin28a, a highly conserved RNA-binding protein expressed during embryogenesis, plays roles in development, pluripotency, and metabolism. To determine whether Lin28a might influence tissue repair in adults, we engineered the reactivation of Lin28a expression in several models of tissue injury. Lin28a reactivation improved hair regrowth by promoting anagen in hair follicles and accelerated regrowth of cartilage, bone, and mesenchyme after ear and digit injuries. Lin28a inhibits let-7 microRNA biogenesis; however, let-7 repression was necessary but insufficient to enhance repair. Lin28a bound to and enhanced the translation of mRNAs for several metabolic enzymes, thereby increasing glycolysis and oxidative phosphorylation (OxPhos). Lin28a-mediated enhancement of tissue repair was negated by OxPhos inhibition, whereas a pharmacologically induced increase in OxPhos enhanced repair. Thus, Lin28a enhances tissue repair in some adult tissues by reprogramming cellular bioenergetics. PAPERCLIP:
Collapse
|
43
|
Kohjima M, Tsai TH, Tackett BC, Thevananther S, Li L, Chang BHJ, Chan L. Delayed liver regeneration after partial hepatectomy in adipose differentiation related protein-null mice. J Hepatol 2013; 59:1246-54. [PMID: 23928401 PMCID: PMC4001732 DOI: 10.1016/j.jhep.2013.07.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Adult hepatocytes undergo cell cycle progression and proliferation in response to partial hepatectomy (PH). Transient lipid accumulation within hepatocytes preceding the peak proliferative phase is a characteristic feature of regenerating livers. However, the molecular mediators and mechanisms responsible for lipid accumulation in regenerating livers are not well understood. Adipose differentiation related protein (ADRP; Plin2) regulates hepatic triglyceride storage and Plin2-deficient (Plin2(-/-)) mice have significantly reduced triglyceride (TG) content in the liver. We sought to determine the functional significance of PLIN2 in liver regeneration in response to PH and toxic liver injury and examined whether absence of Plin2 expression modulates hepatocyte proliferation and liver regeneration. METHODS We subjected wild-type (WT) and Plin2(-/-) mice to 70% PH or acute carbon tetrachloride (CCL4) treatment and examined the hepatic lipid content, the expression profile of lipid metabolism-related genes, the rate of cellular proliferation and the dynamics of liver regeneration in the treated animals. RESULTS In response to PH, Plin2(-/-) mice showed decreased hepatic triglyceride accumulation and delayed cell cycle progression, which was associated with impaired liver regeneration. Fatty acid (FA) synthesis and lipid transfer gene expression profile were comparable between Plin2(-/-) and wild-type mice, while VLDL secretion rate was higher in the Plin2(-/-) mice. Downregulated β-oxidation and reduced cytosolic FA level in Plin2(-/-) mice may have contributed to the attenuation of the liver regeneration capacity in these animals. In parallel experiments, we also observed attenuated hepatic lipid accumulation and proliferation in response to CCl4-mediated acute toxic liver injury in Plin2(-/-) mice. CONCLUSIONS We conclude that PLIN2-mediated lipid accumulation and utilization by the liver is important for efficient liver regeneration in response to PH and toxic liver injury.
Collapse
Affiliation(s)
- Motoyuki Kohjima
- Diabetes and Endocrinology Research Center and Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tsung-Huang Tsai
- Diabetes and Endocrinology Research Center and Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bryan C. Tackett
- Diabetes and Endocrinology Research Center and Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sundararajah Thevananther
- Diabetes and Endocrinology Research Center and Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lan Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benny Hung-Junn Chang
- Diabetes and Endocrinology Research Center and Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lawrence Chan
- Diabetes and Endocrinology Research Center and Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
44
|
Corton JC, Cunningham ML, Hummer BT, Lau C, Meek B, Peters JM, Popp JA, Rhomberg L, Seed J, Klaunig JE. Mode of action framework analysis for receptor-mediated toxicity: The peroxisome proliferator-activated receptor alpha (PPARα) as a case study. Crit Rev Toxicol 2013; 44:1-49. [PMID: 24180432 DOI: 10.3109/10408444.2013.835784] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Several therapeutic agents and industrial chemicals induce liver tumors in rodents through the activation of the peroxisome proliferator-activated receptor alpha (PPARα). The cellular and molecular events by which PPARα activators induce rodent hepatocarcinogenesis has been extensively studied and elucidated. This review summarizes the weight of evidence relevant to the hypothesized mode of action (MOA) for PPARα activator-induced rodent hepatocarcinogenesis and identifies gaps in our knowledge of this MOA. Chemical-specific and mechanistic data support concordance of temporal and dose-response relationships for the key events associated with many PPARα activators including a phthalate ester plasticizer di(2-ethylhexyl) phthalate (DEHP) and the drug gemfibrozil. While biologically plausible in humans, the hypothesized key events in the rodent MOA, for PPARα activators, are unlikely to induce liver tumors in humans because of toxicodynamic and biological differences in responses. This conclusion is based on minimal or no effects observed on growth pathways, hepatocellular proliferation and liver tumors in humans and/or species (including hamsters, guinea pigs and cynomolgous monkeys) that are more appropriate human surrogates than mice and rats at overlapping dose levels. Overall, the panel concluded that significant quantitative differences in PPARα activator-induced effects related to liver cancer formation exist between rodents and humans. On the basis of these quantitative differences, most of the workgroup felt that the rodent MOA is "not relevant to humans" with the remaining members concluding that the MOA is "unlikely to be relevant to humans". The two groups differed in their level of confidence based on perceived limitations of the quantitative and mechanistic knowledge of the species differences, which for some panel members strongly supports but cannot preclude the absence of effects under unlikely exposure scenarios.
Collapse
|
45
|
Elucidating the metabolic regulation of liver regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:309-21. [PMID: 24139945 DOI: 10.1016/j.ajpath.2013.04.034] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 02/08/2023]
Abstract
The regenerative capability of liver is well known, and the mechanisms that regulate liver regeneration are extensively studied. Such analyses have defined general principles that govern the hepatic regenerative response and implicated specific extracellular and intracellular signals as regulated during and essential for normal liver regeneration. Nevertheless, the most proximal events that stimulate liver regeneration and the distal signals that terminate this process remain incompletely understood. Recent data suggest that the metabolic response to hepatic insufficiency might be the proximal signal that initiates regenerative hepatocellular proliferation. This review provides an overview of the data in support of a metabolic model of liver regeneration and reflects on the clinical implications and areas for further study suggested by these findings.
Collapse
|
46
|
Kuklin A, Tokovenko B, Makogon N, Oczko-Wojciechowska M, Jarząb B, Obolenskaya M. Hepatocytes response to interferon alpha levels recorded after liver resection. J Interferon Cytokine Res 2013; 34:90-9. [PMID: 24107099 DOI: 10.1089/jir.2012.0125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Extensive damage of liver parenchyma stimulates hepatic cells to transit from quiescence to proliferation with eventual restoration of liver mass and function. Our recent studies have revealed upregulated expression of interferon (IFN)-α and its antiviral activity during the early hours after partial hepatectomy. In this study, we analyzed the response of primary hepatocytes from intact liver to IFN-α mimicking its levels (250 U/mL) during the transition period of liver restoration. The gene expression profile was analyzed with rat genome array 230 2.0 (Affymetrix). After 3- and 6-h treatment we identified respectively 28 and 124 differentially expressed genes responsible for autonomous changes in hepatocytes and those involving non-parenchymal cells in a concerted response to IFN-α. The response has an energy sparing character and affects all levels of gene expression. The factors activating T cells and apoptosis are opposed by those restricting the signal propagation, inhibiting T cells activation, and promoting survival. The partial resemblance between the specific in vitro response to IFN-α and the processes in regenerating liver is discussed. Our study opens the way to a more focused investigation of the liver cell response to quasiphysiological dose of IFN-α.
Collapse
Affiliation(s)
- Andrii Kuklin
- 1 Institute of Molecular Biology and Genetics , National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | | | | | | | |
Collapse
|
47
|
Kumar S, Zou Y, Bao Q, Wang M, Dai G. Proteomic analysis of immediate-early response plasma proteins after 70% and 90% partial hepatectomy. Hepatol Res 2013; 43:876-89. [PMID: 23279269 PMCID: PMC4354878 DOI: 10.1111/hepr.12030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 02/08/2023]
Abstract
AIM Partial hepatectomy (PH) induces robust hepatic regenerative and metabolic responses that are considered to be triggered by humoral factors. The aim of the study was to identify plasma protein factors that potentially trigger or reflect the body's immediate-early responses to liver mass reduction. METHODS Male C57BL/6 mice were subjected to sham operation, 70% PH or 90% PH. Blood was collected from the inferior vena cava at 20, 60 and 180 min after surgery. RESULTS Using a label-free quantitative mass spectrometry-based proteomics approach, we identified 399 proteins exhibiting significant changes in plasma expression between any two groups. Of the 399 proteins, 167 proteins had multiple unique sequences and high peptide ID confidence (>90%) and were defined as priority 1 proteins. A group of plasma proteins largely associated with metabolism is enriched after 70% PH. Among the plasma proteins that respond to 90% PH are a dominant group of proteins that are also associated with metabolism and one known cytokine (platelet factor 4). Ninety percent PH and 70% PH induces similar changes in plasma protein profile. CONCLUSION Our findings enable us to gain insight into the immediate-early response of plasma proteins to liver mass loss. Our data support the notion that increased metabolic demands of the body after massive liver mass loss may function as a sensor that calibrates hepatic regenerative response.
Collapse
Affiliation(s)
- Sudhanshu Kumar
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indiana
| | - Yuhong Zou
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indiana
| | - Qi Bao
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indiana
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Guoli Dai
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indiana
| |
Collapse
|
48
|
Ben Ya'acov A, Lalazar G, Zolotaryova L, Steinhardt Y, Lichtentein Y, Ilan Y, Shteyer E. Impaired liver regeneration by β-glucosylceramide is associated with decreased fat accumulation. J Dig Dis 2013; 14:425-32. [PMID: 23575221 DOI: 10.1111/1751-2980.12062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the effect of β-glucosylceramide (GC), a natural glycolipid, on hepatic fat accumulation and regenerative response after partial hepatectomy (PH). METHODS Male C57Bl/6 mice were assigned to either 70% PH or sham surgery after receiving daily intraperitoneal injection of GC or vehicle for 3 days. Hepatic fat accumulation, cytokines, cell cycle proteins and adipogenic genes expression were assessed at various time points after PH. RESULTS The administration of GC delayed hepatic triglyceride accumulation during hepatic regeneration. This observation was closely correlated with alterations in the expression of four major adipogenic genes during the course of liver regeneration, with reduced expression 3 h after PH and increased expression 48 h post-surgery. GC significantly reduced hepatocellular proliferation 48 h after PH. In GC-treated mice, both tumor necrosis factor-α and interleukin-6 levels were lower 3, 48 and 72 h after PH compared with the control group. CONCLUSIONS Administration of GC delayed hepatic triglyceride accumulation and suppressed early adipogenic gene expression during the hepatic regenerative response. These changes are closely associated with early inhibition of liver regeneration and temporal alteration of cytokine secretion.
Collapse
Affiliation(s)
- Ami Ben Ya'acov
- Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
49
|
Liu HX, Fang Y, Hu Y, Gonzalez FJ, Fang J, Wan YJY. PPARβ Regulates Liver Regeneration by Modulating Akt and E2f Signaling. PLoS One 2013; 8:e65644. [PMID: 23823620 PMCID: PMC3688817 DOI: 10.1371/journal.pone.0065644] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/25/2013] [Indexed: 12/14/2022] Open
Abstract
The current study tests the hypothesis that peroxisome proliferator-activated receptor β (PPARβ) has a role in liver regeneration due to its effect in regulating energy homeostasis and cell proliferation. The role of PPARβ in liver regeneration was studied using two-third partial hepatectomy (PH) in Wild-type (WT) and PPARβ-null (KO) mice. In KO mice, liver regeneration was delayed and the number of Ki-67 positive cells reached the peak at 60 hr rather than at 36-48 hr after PH shown in WT mice. RNA-sequencing uncovered 1344 transcriptomes that were differentially expressed in regenerating WT and KO livers. About 70% of those differentially expressed genes involved in glycolysis and fatty acid synthesis pathways failed to induce during liver regeneration due to PPARβ deficiency. The delayed liver regeneration in KO mice was accompanied by lack of activation of phosphoinositide-dependent kinase 1 (PDK1)/Akt. In addition, cell proliferation-associated increase of genes encoding E2f transcription factor (E2f) 1-2 and E2f7-8 as well as their downstream target genes were not noted in KO livers 36-48 hr after PH. E2fs have dual roles in regulating metabolism and proliferation. Moreover, transient steatosis was only found in WT, but not in KO mice 36 hr after PH. These data suggested that PPARβ-regulated PDK1/Akt and E2f signaling that controls metabolism and proliferation is involved in the normal progression of liver regeneration.
Collapse
Affiliation(s)
- Hui-Xin Liu
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, California, United States of America
| | | | | | | | | | | |
Collapse
|
50
|
Vacca M, Degirolamo C, Massafra V, Polimeno L, Mariani-Costantini R, Palasciano G, Moschetta A. Nuclear receptors in regenerating liver and hepatocellular carcinoma. Mol Cell Endocrinol 2013; 368:108-19. [PMID: 22789748 DOI: 10.1016/j.mce.2012.06.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 12/22/2022]
Abstract
A comprehensive understanding of the pathways underlying hepatocyte turnover and liver regeneration is essential for the development of innovative and effective therapies in the management of chronic liver disease, and the prevention of hepatocellular carcinoma (HCC) in cirrhosis. Nuclear receptors (NRs) are master transcriptional regulators of liver development, differentiation and function. NRs have been implicated in the modulation of hepatocyte priming and proliferation in regenerating liver, chronic hepatitis and HCC development. In this review, we focus on NRs and their pathways regulating hepatocyte proliferation and liver regeneration, with a perspective view on NRs as candidate biomarkers and novel pharmacological targets in the management of liver disease and HCC.
Collapse
Affiliation(s)
- Michele Vacca
- Laboratory of Lipid Metabolism and Cancer, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|