1
|
Sameem S, Dwivedi V, Kumar V, Dwivedi AR, Pathak P, Singh B, Bhat MA, Verma A. Phyto-Fabrication of Moringa Oleifera Peel-Sourced Silver Nanoparticles: A Promising Approach for Combating Hepatic Cancer by Targeting Proinflammatory Cytokines and Mitigating Cytokine Storms. Chem Biodivers 2024; 21:e202400059. [PMID: 38584309 DOI: 10.1002/cbdv.202400059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Hepatocellular carcinoma (HCC) arises from precancerous nodules, leading to liver damage and inflammation, which triggers the release of proinflammatory cytokines. Dysregulation of these cytokines can escalate into a cytokine storm, causing severe organ damage. Interestingly, Moringa oleifera (M. oleifera) fruit peel, previously discarded as waste, contains an abundance of essential biomolecules and high nutritional value. This study focuses on the eco-friendly synthesis of silver nanoparticles infused with M. oleifera peel extract biomolecules and their impact on regulating proinflammatory cytokines, as well as their potential anticancer effects against Wistar rats. The freshly synthesized nanoformulation underwent comprehensive characterization, followed by antihepatic cancer evaluation using a diethyl nitrosamine-induced model (at a dose of 200 mg kg-1 BW). The study demonstrates a significant reduction in proinflammatory cytokines such as tumor necrosis factor-α, interleukin-6, interleukin-1β, and nuclear factor kappa beta (NF-κB). Furthermore, it confirms that the newly biosynthesized silver nanoparticles exhibit additional potential against hepatic cancer due to their capped biomolecules.
Collapse
Affiliation(s)
- Shahnawaz Sameem
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vivek Dwivedi
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Ashish R Dwivedi
- Department of Medicinal Chemistry, School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, 502329, India
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, 502329, India
| | - Bhupendra Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002, India
- Department of Pharmacy, S. N. Medical College, Agra, 282002, India
| | - Mashooq Ahmad Bhat
- Deptartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| |
Collapse
|
2
|
El Raziky M, Abdel Hafez H, Elsharkawy A, Moneer TA, EL-Sheikh SM, Maher RM, Sharaf SA. Serum level of cytokeratin 19 as a diagnostic and prognostic marker in patients with HCV-related hepatocellular carcinoma. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-021-00125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The heterogeneous nature of human hepatocellular carcinoma (HCC) impedes both treatment strategies and prognostic predictions. Several markers have been proposed for the diagnosis of HCC. Cytoskeleton-associated proteins have been known as cellular integrators in neoplasm formation. Hepatic progenitor cells are thought to express alpha-fetoprotein (AFP) and hematopoietic as well as biliary markers such as cytokeratin 19 (CK 19) and cytokeratin 7. The aim of this study was to verify the role of serum CK 19 alone or in combination with AFP as a diagnostic marker of HCC and to assess the changes in its levels after ablation of HCV-related HCC to evaluate its role as a predictor marker for recurrence of HCC after ablation. The study was conducted on 102 HCV-related cirrhotic patients categorized into three different groups according to the clinical, laboratory, and radiological evaluation: group I—62 patients with early or intermediate HCC who underwent locoregional intervention, group II—20 patients with advanced HCC not fit for any intervention apart from best supportive treatment, and group III—20 cirrhotic patients with no evidence of HCC as proved by two imaging techniques.
Results
The mean serum levels of CK 19 were 6.5 ± 5.7, 10.5 ± 12.5, and 6.8 ± 2.8 ng/ml in groups I, II, and III, respectively, with no significant difference between groups. Sensitivity, specificity, positive, and negative predictive values of combined AFP and human CK 19 at cutoff levels of 25.5 ng/ml and 6.25 ng/ml were 93.9%, 45%, 87.5%, and 64.3%, respectively. In group I patients, CK 19 levels were comparable in patients with ablated focal lesion and those who did not at baseline; then, it was significantly higher in ablated patients than in patients with residual tumor 1 and 6 months after the intervention.
Conclusions
Combination of both AFP and CK 19 levels could increase the diagnostic accuracy of suspected HCCs. CK 19 levels are good predictors of ablation/recurrence in patients who underwent interventional procedures minimizing the need for follow-up imaging modalities.
Collapse
|
3
|
Gu Y, Zheng X, Ji J. Liver cancer stem cells as a hierarchical society: yes or no? Acta Biochim Biophys Sin (Shanghai) 2020; 52:723-735. [PMID: 32490517 DOI: 10.1093/abbs/gmaa050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells (CSCs) are cells possessing abilities of self-renewal, differentiation, and tumorigenicity in NOD/SCID mice. Based on this definition, multiple cell surface markers (such as CD24, CD133, CD90, and EpCAM) as well as chemical methods are discovered to enrich liver CSCs in the recent decade. Accumulated studies have revealed molecular signatures and signaling pathways involved in regulating different liver CSCs. Among liver CSCs positive for different markers, some molecular features and regulatory pathways are commonly shared, while some are only unique in certain CSC populations. These studies imply that liver CSCs exhibit diverse heterogeneity, while a functional relationship also exists. The aim of this review is to revisit the society of liver CSCs and summarize the common or unique molecular features of known liver CSCs. We hope to call for attention of researchers on the relationship of the liver CSC subgroups and to provide clues on the hierarchical structure of the liver CSC society.
Collapse
Affiliation(s)
- Yuanzhuo Gu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xin Zheng
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Junfang Ji
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Pan J, Lu Y, Zhang S, Li Y, Sun J, Liu HC, Gong Z, Huang J, Cao C, Wang Y, Li Y, Liu T. Differential changes in the pharmacokinetics of doxorubicin in diethylnitrosamine-induced hepatocarcinoma model rats. Xenobiotica 2020; 50:1251-1257. [DOI: 10.1080/00498254.2020.1765049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jie Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yuan Lu
- Key Laboratory of Pharmaceutics of Guizhou Provincial, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Shuai Zhang
- Department of Interventional Radiology, Guizhou Medical University, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Yueting Li
- Key Laboratory of Pharmaceutics of Guizhou Provincial, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Jia Sun
- Key Laboratory of Pharmaceutics of Guizhou Provincial, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Hua Chunhua Liu
- School of Pharmacy, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Zipeng Gong
- Key Laboratory of Pharmaceutics of Guizhou Provincial, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Jing Huang
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Chuang Cao
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yonglin Wang
- Key Laboratory of Pharmaceutics of Guizhou Provincial, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Ting Liu
- Key Laboratory of Pharmaceutics of Guizhou Provincial, State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Prasad S, Ramachandran S, Gupta N, Kaushik I, Srivastava SK. Cancer cells stemness: A doorstep to targeted therapy. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165424. [PMID: 30818002 DOI: 10.1016/j.bbadis.2019.02.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 02/07/2023]
Abstract
Recent advances in research on cancer have led to understand the pathogenesis of cancer and development of new anticancer drugs. Despite of these advancements, many tumors have been found to recur, undergo metastasis and develop resistance to therapy. Accumulated evidences suggest that small population of cancer cells known as cancer stem cells (CSC) are responsible for reconstitution and propagation of the disease. CSCs possess the ability to self-renew, differentiate and proliferate like normal stem cells. CSCs also appear to have resistance to anti-cancer therapies and subsequent relapse. The underlying stemness properties of the CSCs are reliant on multiple molecular targets such as signaling pathways, cell surface molecules, tumor microenvironment, apoptotic pathways, microRNA, stem cell differentiation, and drug resistance markers. Thus an effective therapeutic strategy relies on targeting CSCs to overcome the possible tumor relapse and chemoresistance. The targeted inhibition of these stem cell biomarkers is one of the promising approaches to eliminate cancer stemness. This review article summarizes possible targets of cancer cell stemness for the complete treatment of cancer.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sharavan Ramachandran
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Nehal Gupta
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Itishree Kaushik
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
6
|
Zahran AM, Abdel-Rahim MH, Refaat A, Sayed M, Othman MM, Khalak LMR, Hetta HF. Circulating hematopoietic stem cells, endothelial progenitor cells and cancer stem cells in hepatocellular carcinoma patients: contribution to diagnosis and prognosis. Acta Oncol 2020; 59:33-39. [PMID: 31478425 DOI: 10.1080/0284186x.2019.1657940] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background and aim: Circulating hematopoietic stem cells (HSCs), circulating endothelial progenitor cells (EPCs) and cancer stem cells (CSCs) contribute to tumor development and progression and can predict patient outcome. The aim of this study was to investigate the frequency of circulating HSCs, EPCs and CSCs in the peripheral blood of patients with hepatocellular carcinoma (HCC) and to explore their potential prognostic significance for HCC patients.Methods: The study included 30 HCC patients and 20 healthy controls. The HSCs and EPCs were enumerated with CD45, CD34, CD133, CD144 markers, while CSCs were enumerated with CD45, CD44, CD133 markers using flow cytometry.Results: The mean percentages of circulating HSCs were significantly lower in HCC patients than the controls (p = .001), whereas the mean percentages of EPCs within the HSCs subpopulation were significantly higher in the HCC patients than the controls (p = .002). The absolute count of CSCs within 100,000 peripheral blood mononuclear cells was 23.5 ± 3.4 in the HCC patients. Also, the mean percentages of circulating HSCs, EPCs and the number of CSCs were significantly increased in patients with multiple hepatic focal lesions than in patients with a single hepatic focal lesion. Both circulating HSCs and EPCs showed significant positive correlation with the level of AFP and with the numbers of CSCs. In the meantime, the numbers of CSCs revealed significant direct correlation with ALT, AST and AFP levels. The one-year overall survival (OS) of the patients was 77.5%. High levels of CSCs, HSCs and EPCs at diagnosis were all associated with worse outcome for the HCC patients.Conclusions: Significant changes in the levels of the circulating HSCs, EPCs and CSCs occur in HCC. These changes help the diagnosis and the prediction of HCC outcome, as higher levels of these cells are associated with worse OS.
Collapse
Affiliation(s)
- Asmaa M. Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Mona H. Abdel-Rahim
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Refaat
- Medical Oncology, South Egypt Cancer Institute, Assiut, Egypt
| | - Mona Sayed
- Radiotherapy Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Mostafa M. Othman
- Radiodiagnosis Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Lamiaa M. R. Khalak
- Radiodiagnosis Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
7
|
Ogunwobi OO, Harricharran T, Huaman J, Galuza A, Odumuwagun O, Tan Y, Ma GX, Nguyen MT. Mechanisms of hepatocellular carcinoma progression. World J Gastroenterol 2019; 25:2279-2293. [PMID: 31148900 PMCID: PMC6529884 DOI: 10.3748/wjg.v25.i19.2279] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver. It is the second leading cause of cancer-related deaths worldwide, with a very poor prognosis. In the United States, there has been only minimal improvement in the prognosis for HCC patients over the past 15 years. Details of the molecular mechanisms and other mechanisms of HCC progression remain unclear. Consequently, there is an urgent need for better understanding of these mechanisms. HCC is often diagnosed at advanced stages, and most patients will therefore need systemic therapy, with sorafenib being the most common at the present time. However, sorafenib therapy only minimally enhances patient survival. This review provides a summary of some of the known mechanisms that either cause HCC or contribute to its progression. Included in this review are the roles of viral hepatitis, non-viral hepatitis, chronic alcohol intake, genetic predisposition and congenital abnormalities, toxic exposures, and autoimmune diseases of the liver. Well-established molecular mechanisms of HCC progression such as epithelial-mesenchymal transition, tumor-stromal interactions and the tumor microenvironment, cancer stem cells, and senescence bypass are also discussed. Additionally, we discuss the roles of circulating tumor cells, immunomodulation, and neural regulation as potential new mechanisms of HCC progression. A better understanding of these mechanisms could have implications for the development of novel and more effective therapeutic and prognostic strategies, which are critically needed.
Collapse
Affiliation(s)
- Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, United States
- The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016, United States
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
- Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, United States
| | - Trisheena Harricharran
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, United States
- The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016, United States
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
- Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, United States
| | - Jeannette Huaman
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, United States
- The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016, United States
- Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, United States
| | - Anna Galuza
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, United States
- Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, United States
| | - Oluwatoyin Odumuwagun
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, United States
- Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, United States
| | - Yin Tan
- Center for Asian Health, School of Medicine, Temple University, Philadelphia, PA 19140, United States
| | - Grace X Ma
- Center for Asian Health, School of Medicine, Temple University, Philadelphia, PA 19140, United States
| | - Minhhuyen T Nguyen
- Department of Medicine, Fox Chase Cancer Center, Philadelphia, PA 19111, United States
| |
Collapse
|
8
|
Wang K, Sun D. Cancer stem cells of hepatocellular carcinoma. Oncotarget 2018; 9:23306-23314. [PMID: 29796190 PMCID: PMC5955417 DOI: 10.18632/oncotarget.24623] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma is a malignant tumor arising from hepatocytes. The hepatocellular carcinoma is dictated by a subset of cells with stem cell-like features. These cells are apoptosis-resistant and have particular biomarkers, which serve as seeds in different stages of tumorigenesis including initiation, progression, metastasis, and relapse of hepatocellular carcinoma. Signaling pathways of cancer stem cells are novel targets for the radical intervention of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kewei Wang
- Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, China.,Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin, China.,Key Laboratory of Etiology and Epidemiology (23618504), National Health and Family Planning Commission of the People's Republic of China, Harbin, China.,Harbin Medical University, Harbin, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin, China.,Key Laboratory of Etiology and Epidemiology (23618504), National Health and Family Planning Commission of the People's Republic of China, Harbin, China.,Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Immune response involved in liver damage and the activation of hepatic progenitor cells during liver tumorigenesis. Cell Immunol 2018; 326:52-59. [PMID: 28860007 DOI: 10.1016/j.cellimm.2017.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
|
10
|
Qiu L, Li H, Fu S, Chen X, Lu L. Surface markers of liver cancer stem cells and innovative targeted-therapy strategies for HCC. Oncol Lett 2018; 15:2039-2048. [PMID: 29434903 PMCID: PMC5776936 DOI: 10.3892/ol.2017.7568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
Liver cancer stem cells (LCSCs) have important roles in the occurrence, development, recurrence, therapy resistance and metastasis of hepatocellular carcinoma (HCC). Therefore, intensive studies are undergoing to identify the mechanisms by which LCSCs contribute to HCC invasion and metastasis, and to design more efficient treatments for this disease. With continuous efforts in LCSC research over the years, therapies targeting LCSCs are thought to have great potential for the clinical treatment and prognosis of liver cancer. Novel LCSC surface markers are continuously discovered and several have been used in targeted therapies to reduce HCC recurrence, metastasis, and drug resistance following tumor resection. The present review describes the surface markers characterizing LCSCs and the recent progress in therapies targeting these markers, including antibodies and polypeptides.
Collapse
Affiliation(s)
- Lige Qiu
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
| | - Hailiang Li
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Sirui Fu
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
| | - Xiaofang Chen
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
- Stem Cell and Regenerative Medicine Laboratory, Beijing Institute of Transfusion Medicine, Beijing 100850, P.R. China
| | - Ligong Lu
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
11
|
Dietary restriction protects against diethylnitrosamine-induced hepatocellular tumorigenesis by restoring the disturbed gene expression profile. Sci Rep 2017; 7:43745. [PMID: 28262799 PMCID: PMC5338348 DOI: 10.1038/srep43745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/30/2017] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent malignancies, worse still, there are very limited therapeutic measures with poor clinical outcomes. Dietary restriction (DR) has been known to inhibit spontaneous and induced tumors in several species, but the mechanisms are little known. In the current study, by using a diethylnitrosamine (DEN)-induced HCC mice model, we found that DR significantly reduced the hepatic tumor number and size, delayed tumor development, suppressed proliferation and promoted apoptosis. Further transcriptome sequencing of liver tissues from the DEN and the DEN accompanied with DR (DEN+DR) mice showed that DEN induced profound changes in the gene expression profile, especially in cancer-related pathways while DR treatment reversed most of the disturbed gene expression induced by DEN. Finally, transcription factor enrichment analysis uncovered the transcription factor specificity protein 1 (SP1) probably functioned as the main regulator of gene changes, orchestrating the protective effects of DR on DEN induced HCC. Taken together, by the first comprehensive transcriptome analysis, we elucidate that DR protects aginst DEN-induced HCC by restoring the disturbed gene expression profile, which holds the promise to provide effective molecular targets for cancer therapies.
Collapse
|
12
|
Kowalik MA, Sulas P, Ledda-Columbano GM, Giordano S, Columbano A, Perra A. Cytokeratin-19 positivity is acquired along cancer progression and does not predict cell origin in rat hepatocarcinogenesis. Oncotarget 2016; 6:38749-63. [PMID: 26452031 PMCID: PMC4770734 DOI: 10.18632/oncotarget.5501] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023] Open
Abstract
Although the expression of the stem/progenitor cell marker cytokeratin-19 (CK-19) has been associated with the worst clinical prognosis among all HCC subclasses, it is yet unknown whether its presence in HCC is the result of clonal expansion of hepatic progenitor cells (HPCs) or of de-differentiation of mature hepatocytes towards a progenitor-like cell phenotype. We addressed this question by using two rat models of hepatocarcinogenesis: the Resistant-Hepatocyte (R-H) and the Choline-methionine deficient (CMD) models. Our data indicate that the expression of CK-19 is not the result of a clonal expansion of HPCs (oval cells in rodents), but rather of a further step of preneoplastic hepatocytes towards a less differentiated phenotype and a more aggressive behavior. Indeed, although HCCs were positive for CK-19, very early preneoplastic foci (EPFs) were completely negative for this marker. While a few weeks later the vast majority of preneoplastic nodules remained CK-19 negative, a minority became positive, suggesting that CK-19 expression is the result of de-differentiation of a subset of EPFs, rather than a marker of stem/progenitor cells. Moreover, the gene expression profile of CK-19-negative EPFs clustered together with CK-19-positive nodules, but was clearly distinct from CK-19 negative nodules and oval cells.
Collapse
Affiliation(s)
- Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Pia Sulas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Silvia Giordano
- University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS Candiolo, Torino, Italy
| | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
13
|
The in vivo antineoplastic and therapeutic efficacy of troxerutin on rat preneoplastic liver: biochemical, histological and cellular aspects. Eur J Nutr 2016; 56:2353-2366. [PMID: 27488610 DOI: 10.1007/s00394-016-1275-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/11/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Troxerutin (TXER), a trihydroxyethylated derivative of the natural bioflavonoid rutin, abundantly found in tea, various fruits and vegetables, is known to exhibit ample pharmacological properties. In the present investigation, we examined the antineoplastic, therapeutic efficacy and furthermore the possible mechanisms of action of TXER against NAFLD/NASH progression to hepatocarcinogenesis. METHODS The effect of TXER (12.5, 25 or 50 mg/kg b.w/day) was evaluated on the nitrosodiethylamine (NDEA) model of hepatocarcinogenesis in rats, after 16 weeks of oral treatment, with special focus on liver specific enzymes, xenobiotic metabolizing enzymes, antioxidant status, lipid peroxidation profile, DNA damage, fibrosis, cell proliferation and inflammatory status. RESULTS Administration of TXER to hepatocellular carcinoma-bearing rats restored the enzyme activities and the hepatic architecture. Furthermore, TXER significantly curtailed NDEA-induced DNA damage, cell proliferation, inflammation, fibrosis and hepatic hyperplasia. CONCLUSION This study provides the evidence that troxerutin exerts a significant therapeutic effect against liver cancer by modulating liver function enzymes, xenobiotic enzymes, oxidative damage, inhibiting cell proliferation, suppressing inflammatory response and induction of apoptosis.
Collapse
|
14
|
Anfuso B, El-Khobar KE, Sukowati CHC, Tiribelli C. The multiple origin of cancer stem cells in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2015; 39 Suppl 1:S92-S97. [PMID: 26186879 DOI: 10.1016/j.clinre.2015.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 6% of all new cancer cases diagnosed, and due to its aggressiveness, it is the second most common cause of cancer mortality worldwide. Based on different etiological factors, genetic backgrounds, and longtime development of the disease, HCC is characterized by a high phenotypic and functional heterogeneity. Tumor variability occurs both among patients (intertumoral heterogeneity) and within a single tumor (intratumoral heterogeneity). The intratumoral heterogeneity, in particular the variability of the markers of cancer stem cells (CSC) population may determine specific behavior and prognosis of the tumor. Understanding the cellular mechanisms originating CSC will provide an important hint in the management of HCC. The characterization of the cells of origin of cancer can have significant implication in early diagnosis, in the development of appropriate therapies and in the prevention of relapse. Here, we review recent evidences on the possible cellular origin of CSC that play a role in the heterogeneity of the HCC.
Collapse
Affiliation(s)
- Beatrice Anfuso
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14km 163.5, 34149 Trieste, Italy.
| | - Korri E El-Khobar
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10310 Jakarta, Indonesia; Storr Liver Centre, Westmead Millennium Institute, University of Sydney and Westmead Hospital, NSW 2145, Sydney, Australia
| | - Caecilia H C Sukowati
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14km 163.5, 34149 Trieste, Italy; Department of Medicine, Surgery, and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14km 163.5, 34149 Trieste, Italy; Department of Medicine, Surgery, and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| |
Collapse
|
15
|
Ye P, Wang T, Liu WH, Li XC, Tang LJ, Tian FZ. Enhancing HOTAIR/MiR-10b Drives Normal Liver Stem Cells Toward a Tendency to Malignant Transformation Through Inducing Epithelial- to-Mesenchymal Transition. Rejuvenation Res 2015; 18:332-340. [PMID: 25708830 DOI: 10.1089/rej.2014.1642] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Previously, other groups and our team consistently have demonstrated that the possible origination of liver cancer stem cells (LCSCs) is the malignant transformation from liver normal stem cells (LNSCs). However, this complex and multi-step process is far from clear due to the accumulation of various gene dysregulations. Because non-coding RNAs (ncRNAs) could regulate multiple genes, a family of genes, and even whole chromosomes, this study further investigated the effect of dysregulated short ncRNA microRNA-10b and long ncRNA HOX transcript antisense RNA (HOTAIR) between LNSCs and LCSCs on phenotype reversion. To clarify the role of ncRNA in malignant transformation of LNSCs, we used lentivirus transduction to enhance the miR-10b and HOTAIR expression levels in our previously isolated rat LNSCs. The malignant abilities of proliferation, invasiveness, and tumorigenesis were observed and compared in cells before and after ncRNAs enhancement. After microRNA-10b and HOTAIR were enhanced separately, several cancer stem cell (CSC)-like traits appeared in these LNSCs, including in vitro-enhanced proliferative capacity, expression of putative LCSC markers, progressive invasive ability, and even in vivo aggravation into and taking the place of normal liver tissue. Furthermore, strengthened expression of these ncRNAs partially degraded E-cadherin in LNSCs, which is one of the classic markers in epithelial-to-mesenchymal transition (EMT). HOTAIR or miR-10b enhanced in LNSCs may drive the LNSCs to a tendency toward malignant transformation. This study partially uncovers the mechanism by which miR-10b or HOTAIR promotes malignant transformation of LNSCs through down-regulating E-cadherin and inducing EMT.
Collapse
Affiliation(s)
- Ping Ye
- 1 Third Military Medical University , Chongqing, China
| | - Tao Wang
- 2 General Surgery Center, Chengdu Military General Hospital , Chengdu, Sichuan Province, China
| | - Wei-Hui Liu
- 2 General Surgery Center, Chengdu Military General Hospital , Chengdu, Sichuan Province, China
| | - Xiu-Chuan Li
- 3 Department of Cardiology, Chengdu Military General Hospital , Chengdu, Sichuan, Province, China
| | - Li-Jun Tang
- 2 General Surgery Center, Chengdu Military General Hospital , Chengdu, Sichuan Province, China
| | - Fu-Zhou Tian
- 2 General Surgery Center, Chengdu Military General Hospital , Chengdu, Sichuan Province, China
| |
Collapse
|
16
|
Eun JR. Cellular origin of liver cancer stem cells. Yeungnam Univ J Med 2015. [DOI: 10.12701/yujm.2015.32.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Jong Ryeol Eun
- Department of Internal Medicine, Myongji Hospital, Seonam University College of Medicine, Goyang, Korea
| |
Collapse
|
17
|
Facciorusso A, Antonino M, Del Prete V, Neve V, Scavo MP, Barone M. Are hematopoietic stem cells involved in hepatocarcinogenesis? Hepatobiliary Surg Nutr 2014; 3:199-206. [PMID: 25202697 DOI: 10.3978/j.issn.2304-3881.2014.06.02] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/10/2014] [Indexed: 12/13/2022]
Abstract
THE LIVER HAS THREE CELL LINEAGES ABLE TO PROLIFERATE AFTER A HEPATIC INJURY: the mature hepatocyte, the ductular "bipolar" progenitor cell termed "oval cell" and the putative periductular stem cell. Hepatocytes can only produce other hepatocytes whereas ductular progenitor cells are considerate bipolar since they can give rise to biliary cells or hepatocytes. Periductular stem cells are rare in the liver, have a very long proliferation potential and may be multipotent, being this aspect still under investigation. They originate in the bone marrow since their progeny express genetic markers of donor hematopoietic cells after bone marrow transplantation. Since the liver is the hematopoietic organ of the fetus, it is possible that hematopoietic stem cells may reside in the liver of the adult. This assumption is proved by the finding that oval cells express hematopoietic markers like CD34, CD45, CD 109, Thy-1, c-kit, and others, which are also expressed by bone marrow-derived hematopoietic stem cells (BMSCs). Few and discordant studies have evaluated the role of BMSC in hepatocarcinogenesis so far and further studies in vitro and in vivo are warranted in order to definitively clarify such an issue.
Collapse
Affiliation(s)
- Antonio Facciorusso
- 1 Gastroenterology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy ; 2 Methodist Research Institute, Houston, USA
| | - Matteo Antonino
- 1 Gastroenterology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy ; 2 Methodist Research Institute, Houston, USA
| | - Valentina Del Prete
- 1 Gastroenterology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy ; 2 Methodist Research Institute, Houston, USA
| | - Viviana Neve
- 1 Gastroenterology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy ; 2 Methodist Research Institute, Houston, USA
| | - Maria Principia Scavo
- 1 Gastroenterology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy ; 2 Methodist Research Institute, Houston, USA
| | - Michele Barone
- 1 Gastroenterology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy ; 2 Methodist Research Institute, Houston, USA
| |
Collapse
|
18
|
Tu T, Budzinska MA, Maczurek AE, Cheng R, Di Bartolomeo A, Warner FJ, McCaughan GW, McLennan SV, Shackel NA. Novel aspects of the liver microenvironment in hepatocellular carcinoma pathogenesis and development. Int J Mol Sci 2014; 15:9422-58. [PMID: 24871369 PMCID: PMC4100103 DOI: 10.3390/ijms15069422] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer that is derived from hepatocytes and is characterised by high mortality rate and poor prognosis. While HCC is driven by cumulative changes in the hepatocyte genome, it is increasingly recognised that the liver microenvironment plays a pivotal role in HCC propensity, progression and treatment response. The microenvironmental stimuli that have been recognised as being involved in HCC pathogenesis are diverse and include intrahepatic cell subpopulations, such as immune and stellate cells, pathogens, such as hepatitis viruses, and non-cellular factors, such as abnormal extracellular matrix (ECM) and tissue hypoxia. Recently, a number of novel environmental influences have been shown to have an equally dramatic, but previously unrecognized, role in HCC progression. Novel aspects, including diet, gastrointestinal tract (GIT) microflora and circulating microvesicles, are now being recognized as increasingly important in HCC pathogenesis. This review will outline aspects of the HCC microenvironment, including the potential role of GIT microflora and microvesicles, in providing new insights into tumourigenesis and identifying potential novel targets in the treatment of HCC.
Collapse
Affiliation(s)
- Thomas Tu
- Liver Cell Biology, Centenary Institute, Sydney, NSW 2050, Australia.
| | | | | | - Robert Cheng
- Liver Cell Biology, Centenary Institute, Sydney, NSW 2050, Australia.
| | - Anna Di Bartolomeo
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Fiona J Warner
- Liver Cell Biology, Centenary Institute, Sydney, NSW 2050, Australia.
| | | | - Susan V McLennan
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
19
|
SONG KAI, WU JUNHUA, JIANG CHUNPING. Dysregulation of signaling pathways and putative biomarkers in liver cancer stem cells (Review). Oncol Rep 2012; 29:3-12. [DOI: 10.3892/or.2012.2082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/25/2012] [Indexed: 02/06/2023] Open
|
20
|
Heindryckx F, Kuchnio A, Casteleyn C, Coulon S, Olievier K, Colle I, Geerts A, Libbrecht L, Carmeliet P, Van Vlierberghe H. Effect of prolyl hydroxylase domain-2 haplodeficiency on the hepatocarcinogenesis in mice. J Hepatol 2012; 57:61-8. [PMID: 22420978 DOI: 10.1016/j.jhep.2012.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/21/2012] [Accepted: 02/26/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The two major primary liver cancers in adults are hepatocellular carcinoma and cholangiocarcinoma. These tumors rapidly outgrow their vascular supply and become hypoxic, resulting in the production of hypoxia inducible factors. Recently, interest has grown in the regulators of these factors. Several reports have been published describing the role of prolyl hydroxylase domains--the key oxygen sensor responsible for the degradation of hypoxia inducible factors--tumor progression and vascularisation. The effect of prolyl hydroxylase domain 2 on the pathogenesis of liver cancer has never been studied. METHODS A diethylnitrosamine-induced mouse model was used in this study, allowing primary hepatic tumors to occur as a result of chronic liver damage. Several parameters of prolyl hydroxylase domain 2-haplodeficient mice were compared to those of wild type mice, thereby focussing on the expression of angiogenic factors and on the hepatic progenitor cell activation and differentiation. RESULTS This study shows that inhibiting prolyl hydroxylase domain 2 increases the hepatocarcinogenesis and stimulates the development of cholangiocarcinoma. Furthermore, PHD2 deficiency and the accompanying continuous HIF activation, selected for a more metastatic tumor phenotype. CONCLUSIONS The effect of prolyl hydroxylase domain 2 deficiency on hepatocarcinogenesis hold a great potential for therapeutic intervention, since hypoxia and the selection for a more aggressive cholangiocarcinoma phenotype might also have a repercussion on patients receiving long-term treatment with anti-angiogenic compounds.
Collapse
Affiliation(s)
- Femke Heindryckx
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yoon SK. The biology of cancer stem cells and its clinical implication in hepatocellular carcinoma. Gut Liver 2012; 6:29-40. [PMID: 22375168 PMCID: PMC3286736 DOI: 10.5009/gnl.2012.6.1.29] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/18/2011] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with limited treatment options in its advanced state. The molecular mechanisms underlying HCC remain unclear because of the complexity of its multi-step development process. Cancer stem cells (CSCs) are defined as a small population of cells within a tumor that possess the capability for self-renewal and the generation of heterogeneous lineages of cancer cells. To date, there have been two theories concerning the mechanism of carcinogenesis, i.e., the stochastic (clonal evolution) model and the hierarchical (cancer stem cell-driven) model. The concept of the CSC has been established over the past decade, and the roles of CSCs in the carcinogenic processes of various cancers, including HCC, have been emphasized. Previous experimental and clinical evidence indicated the existence of liver CSCs; however, the potential mechanistic links between liver CSCs and the development of HCC in humans are not fully understood. Although definitive cell surface markers for liver CSCs have not yet been found, several putative markers have been identified, which allow the prospective isolation of CSCs from HCC. The identification and characterization of CSCs in HCC is essential for a better understanding of tumor initiation or progression in relation to signaling pathways. These markers could be used along with clinical parameters for the prediction of chemoresistance, radioresistance, metastasis and survival and may represent potential targets for the development of new molecular therapies against HCC. This review describes the current evidence for the existence and function of liver CSCs and discuss the clinical implications of CSCs in patients demonstrating resistance to conventional anti-cancer therapies, as well as clinical outcomes. Such data may provide a future perspective for targeted therapy in HCC.
Collapse
Affiliation(s)
- Seung Kew Yoon
- Division of Hepatology-Gastroenterology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Aleksic K, Lackner C, Geigl JB, Schwarz M, Auer M, Ulz P, Fischer M, Trajanoski Z, Otte M, Speicher MR. Evolution of genomic instability in diethylnitrosamine-induced hepatocarcinogenesis in mice. Hepatology 2011; 53:895-904. [PMID: 21374661 DOI: 10.1002/hep.24133] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
UNLABELLED Diethylnitrosamine (DEN) is a hepatic procarcinogen which is frequently used as an inducer of hepatocellular carcinoma (HCC) in mice. Although mice after DEN exposure are among the most widely used models for liver tumorigenesis, a detailed, mechanistic characterization of the longitudinal changes in the respective tumor genomes has never been performed. Here we established the chronological order of genetic alterations during DEN carcinogenesis by examining mice at different points in time. Tumor samples were isolated by laser microdissection and subjected to array-comparative genomic hybridization (array-CGH) and sequencing analysis. Chromosomal gains and losses were observed in tumors by week 32 and increased significantly by week 56. Loss of distal chromosome 4q, including the tumor suppressors Runx3 and Nr0b2/Shp, was a frequent early event and persisted during all tumor stages. Surprisingly, sequencing revealed that β-catenin mutations occurred late and were clearly preceded by chromosomal instability. Thus, contrary to common belief, β-catenin mutations and activation of the Wnt/β-catenin pathway are not involved in tumor initiation in this model of chemical hepatocarcinogenesis. CONCLUSION Our study suggests that the majority of the current knowledge about genomic changes in HCC is based on advanced tumor lesions and that systematic analyses of the chronologic order including early lesions may reveal new, unexpected findings.
Collapse
Affiliation(s)
- Kristina Aleksic
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Hepatocellular carcinoma (HCC) invariably develops within a setting of chronic inflammation caused by either hepatotropic viruses, toxins, metabolic liver disease or autoimmunity. Mechanisms that link these two processes are not completely understood, but transcription factors of the NF-κB family and signal transducer and activator of transcription 3 (STAT3), cytokines such as IL-6 and IL-1α and ligands of the epidermal growth factor receptor (EGFR) family are clearly pivotal players. HCC may have its origins in either hepatocytes or hepatic progenitor cells (HPCs), and HCCs, like other solid tumours appear to be sustained by a minority population of cancer stem cells.
Collapse
Affiliation(s)
- Malcolm R Alison
- Centre for Diabetes, Barts and The London School of Medicine and Dentistry, BICMS, 4 Newark Street, London, E1 2AT, UK.
| | | | | |
Collapse
|
24
|
Aravalli RN. Progress in stem cell-derived technologies for hepatocellular carcinoma. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2010; 3:81-92. [PMID: 24198513 PMCID: PMC3781728 DOI: 10.2147/sccaa.s6886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Primary hepatocellular carcinoma (HCC) is a common malignancy that has a poor prognosis because it is often diagnosed at an advanced stage. HCC normally develops as a consequence of underlying liver disease and is most often associated with cirrhosis. Surgical resection and liver transplantation are the current best options to treat liver cancer. However, problems associated with liver transplantation, such as shortage of donors, risk of immune rejection, and tissue damage following surgery provided the impetus for development of alternative therapies. The emerging field of stem cell therapy has raised hopes for finding curative options for liver cancer. Stem cells have the ability not only to proliferate after transplantation but also to differentiate into most mammalian cell types in vivo. In this review, progress on stem cell-derived technologies for the treatment of liver cancer is discussed.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
25
|
Stem cell origins and animal models of hepatocellular carcinoma. Dig Dis Sci 2010; 55:1241-50. [PMID: 19513833 DOI: 10.1007/s10620-009-0861-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 05/19/2009] [Indexed: 12/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor that almost always occurs within a preexisting background of chronic liver disease and cirrhosis. Currently, medical therapy is not effective in treating most HCC, and the only hope of cure is either resection or liver transplantation. A small minority of patients is eligible for these therapies, which entail major morbidity at the very least. In spite of immense scientific advances during the past 3 decades, patient survival has improved very little. In order to reduce morbidity and mortality from HCC, improvements in early diagnosis and development of novel local and systemic therapies for advanced disease are essential, in addition to efforts geared towards primary prevention. Studies with experimental animal models that closely mimic human disease are very valuable in understanding physiological, cellular and molecular mechanisms underlying the disease. Furthermore, appropriate animal models have the potential to increase our understanding of the effects of image-guided minimally invasive therapies and thereby help to improve such therapies. In this review, we examine the evidence for stem cell origins of such tumors, critically evaluate existing models and reflect on how to develop new models for minimally invasive, image-guided treatment of HCC.
Collapse
|
26
|
Abstract
Cancer stem cells have been identified in various human tumors. However, it remains controversial as to whether or not liver cancer stem cells (LCSCs) exist until now. There are two hypotheses to explain the origin of liver cancer stem cells: the dedifferentiation of mature hepatocytes and the maturation arrest of liver stem cells. Now, the latter is generally acknowledged to be the better one. To obtain direct evidence for the existence of LCSCs, many researchers focus their studies on the surface markers on LCSCs to identify ideal markers for isolation of LCSCs. Besides, the relationship between side population (SP) cells and LCSCs also attracts much attention. Therefore, the study of LCSCs is probably of great significance for the diagnosis and treatment of liver cancer.
Collapse
|
27
|
Wu CX, Zheng JF, Liang LJ. Possibility of differentiation and malignant transformation of bone marrow stromal cells in the liver of mice. Shijie Huaren Xiaohua Zazhi 2009; 17:2984-2989. [DOI: 10.11569/wcjd.v17.i29.2984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the possibility of differentiation and malignant transformation of bone marrow stromal cells (BMSCs) in a mouse model of chemical hepatocarcinogenesis.
METHODS: BMSCs were harvested from male BALB/c mice, cultured and transplanted into the liver of female syngeneic BALB/c mice via the portal vein. Diethylnitrosamine was administered to mice for six months to induce hepatocarcinogenesis. Six months later, liver samples were taken and used to evaluate the expression of placental form of glutathione-S-transferase, α-fetoprotein and cytokeratin 19 by immunohistochemistry. Y chromosome-positive hepatocytes were detected by fluorescence in situ hybridization (FISH).
RESULTS: BMSCs were shown to differentiate into hepatocyte-like phenotypes after hepatocyte growth factor treatment in vitro. Twenty-six percent of recipient mice survived and developed multiple hepatocellular carcinomas (HCCs). Immunohistochemically, HCCs expressed placental form of glutathione-S-transferase and α-fetoprotein, but did not express cytokeratin 19. Y chromosome-positive hepatocytes were detected by FISH in the liver of mice that were treated with diethylnitrosamine after BMSC transplantation while no such hepatocytes were identified in the liver of mice that were not treated with diethylnitrosamine. No hepatocellular carcinoma cells positive for Y chromosome marker were detected.
CONCLUSION: Transplanted BMSCs can differentiate into hepatocytes but have low malignant potential in the mouse model of chemical hepatocarcinogenesis.
Collapse
|
28
|
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumour with a poor prognosis. Current therapeutic strategies against this disease target mostly rapidly growing differentiated tumour cells. However, the result is often dismal due to the chemoresistant nature of this tumour type. Recent research efforts on stem cells and cancer biology have shed light on new directions for the eradication of cancer stem cells (CSCs) in HCC. The liver is a distinctive organ with the ability of tissue renewal in response to injury. Based on the hypothesis that cancer development is derived from the hierarchy of the stem cell system, we will briefly discuss the origin of liver stem cells and its relation to HCC development. We will also summarize the current CSC markers in HCC and discuss their relevance to the treatment of this deadly disease.
Collapse
Affiliation(s)
- Terence Kin Wah Lee
- Liver Cancer and Hepatitis Research Laboratory and S. H. Ho Foundation Research Laboratories, Department of Pathology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | |
Collapse
|
29
|
Alison MR, Islam S, Lim S. Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J Pathol 2009; 217:282-98. [PMID: 18991329 DOI: 10.1002/path.2453] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The worldwide shortage of donor livers to transplant end stage liver disease patients has prompted the search for alternative cell therapies for intractable liver diseases, such as acute liver failure, cirrhosis and hepatocellular carcinoma (HCC). Under normal circumstances the liver undergoes a low rate of hepatocyte 'wear and tear' renewal, but can mount a brisk regenerative response to the acute loss of two-thirds or more of the parenchymal mass. A body of evidence favours placement of a stem cell niche in the periportal regions, although the identity of such stem cells in rodents and man is far from clear. In animal models of liver disease, adopting strategies to provide a selective advantage for transplanted hepatocytes has proved highly effective in repopulating recipient livers, but the poor success of today's hepatocyte transplants can be attributed to the lack of a clinically applicable procedure to force a similar repopulation of the human liver. The activation of bipotential hepatic progenitor cells (HPCs) is clearly vital for survival in many cases of acute liver failure, and the signals that promote such reactions are being elucidated. Bone marrow cells (BMCs) make, at best, a trivial contribution to hepatocyte replacement after damage, but other BMCs contribute to the hepatic collagen-producing cell population, resulting in fibrotic disease; paradoxically, BMC transplantation may help alleviate established fibrotic disease. HCC may have its origins in either hepatocytes or HPCs, and HCCs, like other solid tumours appear to be sustained by a minority population of cancer stem cells.
Collapse
Affiliation(s)
- M R Alison
- Centre for Diabetes and Metabolic Medicine, St Bartholomew's Hospital and the London School of Medicine and Dentistry, London, UK.
| | | | | |
Collapse
|
30
|
Beer S, Komatsubara K, Bellovin DI, Kurobe M, Sylvester K, Felsher DW. Hepatotoxin-induced changes in the adult murine liver promote MYC-induced tumorigenesis. PLoS One 2008; 3:e2493. [PMID: 18560566 PMCID: PMC2423614 DOI: 10.1371/journal.pone.0002493] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 05/15/2008] [Indexed: 12/23/2022] Open
Abstract
Background Overexpression of the human c-MYC (MYC) oncogene is one of the most frequently implicated events in the pathogenesis of hepatocellular carcinoma (HCC). Previously, we have shown in a conditional transgenic mouse model that MYC overexpression is restrained from inducing mitotic cellular division and tumorigenesis in the adult liver; whereas, in marked contrast, MYC induces robust proliferation associated with the very rapid onset of tumorigenesis in embryonic and neonatal mice. Methodology/Principal Findings Here, we show that non-genotoxic hepatotoxins induce changes in the liver cellular context associated with increased cellular proliferation and enhanced tumorigenesis. Both 5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) and carbon tetrachloride (CCl4) cooperate with MYC to greatly accelerate the onset of liver cancer in an adult host to less than 7 days versus a mean latency of onset of over 35 weeks for MYC alone. These hepatotoxin-enhanced liver tumors grossly and histologically resemble embryonic and neonatal liver tumors. Importantly, we found that MYC overexpression is only capable of inducing expression of the mitotic Cyclin B1 in embryonic/neonatal hosts or adult hosts that were treated with either carcinogen. Conclusion/Significance Our results suggest a model whereby oncogenes can remain latently activated, but exposure of the adult liver to hepatotoxins that promote hepatocyte proliferation can rapidly uncover their malignant potential.
Collapse
Affiliation(s)
- Shelly Beer
- Department of Medicine, Division of Oncology, School of Medicine, Center for Clinical Sciences Research, Stanford University, Stanford, California, United States of America
- Department of Pathology, Division of Oncology, School of Medicine, Center for Clinical Sciences Research, Stanford University, Stanford, California, United States of America
| | - Kimberly Komatsubara
- Department of Medicine, Division of Oncology, School of Medicine, Center for Clinical Sciences Research, Stanford University, Stanford, California, United States of America
- Department of Pathology, Division of Oncology, School of Medicine, Center for Clinical Sciences Research, Stanford University, Stanford, California, United States of America
| | - David I. Bellovin
- Department of Medicine, Division of Oncology, School of Medicine, Center for Clinical Sciences Research, Stanford University, Stanford, California, United States of America
- Department of Pathology, Division of Oncology, School of Medicine, Center for Clinical Sciences Research, Stanford University, Stanford, California, United States of America
| | - Masashi Kurobe
- Department of Surgery, Division of Pediatric Surgery, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Karl Sylvester
- Department of Surgery, Division of Pediatric Surgery, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Dean W. Felsher
- Department of Medicine, Division of Oncology, School of Medicine, Center for Clinical Sciences Research, Stanford University, Stanford, California, United States of America
- Department of Pathology, Division of Oncology, School of Medicine, Center for Clinical Sciences Research, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Zheng JF, Liang LJ. Transplanted bone marrow stromal cells are not cellular origin of hepatocellular carcinomas in a mouse model of carcinogenesis. World J Gastroenterol 2008; 14:3015-20. [PMID: 18494052 PMCID: PMC2712168 DOI: 10.3748/wjg.14.3015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the malignant potential of hepatic stem cells derived from the bone marrow stromal cells (BMSCs) in a mouse model of chemical hepatocarcino-genesis.
METHODS: BMSCs from male BALB/c mice were harvested and cultured, then transplanted into female syngenic BALB/c mice via portal vein. Hepato-carcinogenesis was induced by 6 mo of treatment with diethylnitrosamine (DEN). Six months later, the liver was removed from each treated mouse and evaluated by immunohistochemistry and fluorescence in situ hybridization (FISH).
RESULTS: Twenty-six percent of recipient mice survived and developed multiple hepatocellular carcinomas (HCCs). Immunohistochemically, HCC expressed placental form of glutathione-S-transferase (GST-P) and α-fetoprotein, but did not express cytokeratin 19. Y chromosome positive hepatocytes were detected by fluorescent in situ hybridization (FISH) in the liver of mice treated with DEN after BMSCs transplantation while no such hepatocytes were identified in the liver of mice not treated with DEN. No HCC was positive for the Y chromosome by FISH.
CONCLUSION: Hepatic stem cells derived from the bone marrow stromal cells have a low malignant potential in our mouse model of chemical hepatocarcinogenesis.
Collapse
|
32
|
Kubota K, Soeda J, Misawa R, Mihara M, Miwa S, Ise H, Takahashi M, Miyagawa S. Bone marrow-derived cells fuse with hepatic oval cells but are not involved in hepatic tumorigenesis in the choline-deficient ethionine-supplemented diet rat model. Carcinogenesis 2008; 29:448-54. [DOI: 10.1093/carcin/bgm279] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
33
|
Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:23-61. [PMID: 18039107 DOI: 10.1146/annurev.pathol.1.110304.100230] [Citation(s) in RCA: 593] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among the many viruses that are known to infect the human liver, hepatitis B virus (HBV) and hepatitis C virus (HCV) are unique because of their prodigious capacity to cause persistent infection, cirrhosis, and liver cancer. HBV and HCV are noncytopathic viruses and, thus, immunologically mediated events play an important role in the pathogenesis and outcome of these infections. The adaptive immune response mediates virtually all of the liver disease associated with viral hepatitis. However, it is becoming increasingly clear that antigen-nonspecific inflammatory cells exacerbate cytotoxic T lymphocyte (CTL)-induced immunopathology and that platelets enhance the accumulation of CTLs in the liver. Chronic hepatitis is characterized by an inefficient T cell response unable to completely clear HBV or HCV from the liver, which consequently sustains continuous cycles of low-level cell destruction. Over long periods of time, recurrent immune-mediated liver damage contributes to the development of cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Luca G Guidotti
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
34
|
Lacoeuille F, Hindre F, Moal F, Roux J, Passirani C, Couturier O, Cales P, Le Jeune JJ, Lamprecht A, Benoit JP. In vivo evaluation of lipid nanocapsules as a promising colloidal carrier for paclitaxel. Int J Pharm 2007; 344:143-9. [PMID: 17646066 DOI: 10.1016/j.ijpharm.2007.06.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 06/08/2007] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
Paclitaxel-loaded lipid nanocapsules (PX-LNC) exhibit interesting in vitro characteristics with improved antitumoral activity compared with free PX formulation. Biodistribution studies were realized with the use of (14)C-trimyristin ((14)C-TM) or (14)C-phosphatidylcholine ((14)C-PC) whereas antitumoral activity of PX-LNC formulations was based on the animal survival in a chemically induced hepatocellular carcinoma (HCC) model in Wistar rats. Blood concentration-time profiles for both labeled (14)C-TM-LNC and (14)C-PC-LNC were similar; the t(1/2) and MRT values (over 2h and close to 3h, respectively, for both formulations) indicated the long circulating properties of the LNC carrier with a slow distribution and elimination phase. Survival curves of paclitaxel treated groups showed a statistical significant difference compared to the control survival curve (P=0.0036 and 0.0408). Animals treated with 4x 70 mg/m(2) of PX-LNC showed the most significant increase in mean survival times compared to the controls (IST(mean) 72%) and cases of long-term survivors were preferentially observed in the PX-LNC treated group (37.5%; 3/8). These results demonstrate the great interest to use LNC as drug delivery system for paclitaxel, permitting with an equivalent therapeutic efficiency to avoid the use of excipients such as polyoxyethylated castor oil for its formulation.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/pharmacokinetics
- Antineoplastic Agents, Phytogenic/therapeutic use
- Area Under Curve
- Biological Availability
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/mortality
- Colloids
- Drug Carriers
- Drug Compounding
- Half-Life
- Lipids
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/mortality
- Nanocapsules
- Paclitaxel/administration & dosage
- Paclitaxel/pharmacokinetics
- Paclitaxel/therapeutic use
- Rats
- Rats, Wistar
- Survival Rate
Collapse
Affiliation(s)
- F Lacoeuille
- Inserm U646, 10 rue A. Boquel, F-49100 Angers, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cany J, Avril A, Pichard V, Aubert D, Ferry N, Conchon S. A transgenic mouse with beta-Galactosidase as a fetal liver self-antigen for immunotherapy studies. J Hepatol 2007; 47:396-403. [PMID: 17462783 DOI: 10.1016/j.jhep.2007.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/01/2007] [Accepted: 03/05/2007] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS To optimise vaccination strategies for immunotherapy in the liver, we have generated a line of transgenic mice expressing beta-Galactosidase downstream of the alpha-fetoprotein promoter (AFP/betaGal). METHODS betaGal expression was documented by qRT-PCR, enzyme activity and immunohistochemistry. betaGal-specific CD8+ T-cell activation in mice immunised with various vectors was measured by interferon-gamma ELISpot. RESULTS Like AFP, betaGal expression was detected in fetal hepatocytes and disappeared around birth. In adult mice, a CD8+ T-cell response to betaGal was observed after immunisation with betaGal adenovirus or plasmid DNA but not with betaGal protein or after retroviral infection. When betaGal was re-expressed in adult hepatocytes, immunisation with betaGal adenovirus triggered T-cell mediated elimination of betaGal-expressing hepatocytes. However, the response was weaker than in AFP/betaGal animals in which betaGal was only present around birth. CONCLUSIONS In AFP/betaGal mice, betaGal is a fetal liver self-antigen. Interestingly, the basal tolerance to betaGal displayed by these animals is increased during liver re-expression of the self-antigen in adulthood. Adenoviral immunisation allows complete elimination of betaGal-expressing hepatocytes in spite of this increased peripheral tolerance. These results highlight the importance of tolerance against self-antigens and validate the AFP/betaGal mice as a good background to test immunotherapy strategies in hepatocarcinogenesis models.
Collapse
Affiliation(s)
- Jeannette Cany
- INSERM CIC04, Biothérapies Hépatiques, CHU Hotel Dieu, Nantes F-44000, France
| | | | | | | | | | | |
Collapse
|
36
|
Michel C, Desdouets C, Slaoui M, Isaacs KR, Roberts RA, Boitier E. Diethylnitrosamine initiation does not alter clofibric acid-induced hepatocarcinogenesis in the rat. Toxicol Sci 2007; 99:58-69. [PMID: 17602206 DOI: 10.1093/toxsci/kfm168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clofibric acid (CLO) is a nongenotoxic hepatocarcinogen in rodents that causes altered hepatocellular foci and/or neoplasms. Initiation by DNA-damaging agents such as diethylnitrosamine (DEN) accelerates focus and tumor appearance and could therefore significantly contribute to shortening of the regulatory 2-year rodent carcinogenicity bioassays. However, it is crucial to evaluate the histological and molecular impact of initiation with DEN on hepatocarcinogenesis promoted by CLO. Male F344 rats were given a single nonnecrogenic injection of DEN (0 or 30 mg/kg) followed by Control diet or CLO (5000 ppm) in diet for up to 20 months. Histopathology and gene expression profiling were performed in liver tumors and surrounding nontumoral liver tissues. The molecular signature of DEN was characterized and its histopathological and immunohistopathological effects on focus and tumor types were also determined. Although foci and tumors appeared earlier in the DEN+CLO-treated group compared to the group treated with CLO alone, DEN had little impact on gene expression in nontumoral tissues since the gene expression profiles were highly similar between Control and DEN-treated rats, and DEN+CLO- and CLO-treated rats. Finally, tumors obtained from DEN+CLO and CLO-treated groups displayed highly correlated gene expression profiles (r>0.83, independently of the time-point). The pathways involved in tumor development revealed by Gene Ontology functional analysis are similar when driven either by spontaneous initiation or by a chemically induced initiation step. Our work described here may contribute to the design optimization of shorter preclinical tests for the evaluation of the nongenotoxic hepatocarcinogenic potential of drugs under development.
Collapse
Affiliation(s)
- Cecile Michel
- Department of Drug Safety Evaluation, sanofi aventis R&D, Centre de Recherche de Vitry/Alfortville-Evry, 94403 Vitry sur Seine, France
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Numerous studies point to the fact that liver tumors are derived from single cells (monoclonal), but the important question is, which cell? Stem cell biology and cancer are inextricably linked. In continually renewing tissues such as the intestinal mucosa and epidermis, in which a steady flux of cells occurs from the stem cell zone to the terminally differentiated cells that are imminently to be lost, it is widely accepted that cancer is a disease of stem cells, as these are the only cells that persist in the tissue for a sufficient length of time to acquire the requisite number of genetic changes for neoplastic development. In the liver the identity of the founder cells for the two major primary tumors, hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC), is more problematic. The reason for this is that no such obvious unidirectional flux occurs in the liver, though it is held that the centrilobular hepatocytes may be more differentiated (polyploid) and closer to cell senescence than those cells closest to the portal areas. Moreover the existence of bipotential hepatic progenitor cells (HPCs), along with hepatocytes endowed with longevity and long-term repopulating potential suggests there may be more than one type of carcinogen target cell. Irrespective of which target cell is involved, cell proliferation at the time of carcinogen exposure is pivotal for "fixation" of the genotoxic injury into a heritable form. Taking this view, any proliferative cell in the liver can be susceptible to neoplastic transformation. Thus, hepatocytes are implicated in many instances of HCC, direct injury to the biliary epithelium implicates cholangiocytes in some cases of CC, whereas HPC/oval cell activation accompanies very many instances of liver damage irrespective of etiology, making such cells very likely carcinogen targets. Of course, we must qualify this assertion by stating that many carcinogens are both cytotoxic and cytostatic, and that HPC proliferation may be merely a bystander effect of this toxicity. An indepth discussion of causes of cancer in the liver are beyond the scope of this review, but infectious agents (e.g., hepatitis B and C viruses) play a major role, not just in transactivating or otherwise disrupting cellular proto-oncogenes (hepatitis B virus [HBV]), but in also causing chronic inflammation (hepatitis C virus [HCV] and HBV). Sustained epithelial proliferation in a milieu rich in inflammatory cells, growth factors, and DNA-damaging agents (reactive oxygen and nitrogen species produced to fight infection), will lead to permanent genetic changes in proliferating cells. The upregulation of the transcription factor nuclear factor kappaB (NF-kappaB) in transformed hepatocytes, through the paracrine action of tumor necrosis factor-alpha from neighboring endothelia and inflammatory cells, may be critical for tumor progression given the mitogenic and anti-apoptotic properties of proteins encoded by many of NF-kappaB's target genes.
Collapse
|
38
|
Alison MR. Liver stem cells: implications for hepatocarcinogenesis. STEM CELL REVIEWS 2007. [PMID: 17142862 DOI: 10.1385/scr: 1: 3: 253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Numerous studies point to the fact that liver tumors are derived from single cells (monoclonal), but the important question is, which cell? Stem cell biology and cancer are inextricably linked. In continually renewing tissues such as the intestinal mucosa and epidermis, in which a steady flux of cells occurs from the stem cell zone to the terminally differentiated cells that are imminently to be lost, it is widely accepted that cancer is a disease of stem cells, as these are the only cells that persist in the tissue for a sufficient length of time to acquire the requisite number of genetic changes for neoplastic development. In the liver the identity of the founder cells for the two major primary tumors, hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC), is more problematic. The reason for this is that no such obvious unidirectional flux occurs in the liver, though it is held that the centrilobular hepatocytes may be more differentiated (polyploid) and closer to cell senescence than those cells closest to the portal areas. Moreover the existence of bipotential hepatic progenitor cells (HPCs), along with hepatocytes endowed with longevity and long-term repopulating potential suggests there may be more than one type of carcinogen target cell. Irrespective of which target cell is involved, cell proliferation at the time of carcinogen exposure is pivotal for "fixation" of the genotoxic injury into a heritable form. Taking this view, any proliferative cell in the liver can be susceptible to neoplastic transformation. Thus, hepatocytes are implicated in many instances of HCC, direct injury to the biliary epithelium implicates cholangiocytes in some cases of CC, whereas HPC/oval cell activation accompanies very many instances of liver damage irrespective of etiology, making such cells very likely carcinogen targets. Of course, we must qualify this assertion by stating that many carcinogens are both cytotoxic and cytostatic, and that HPC proliferation may be merely a bystander effect of this toxicity. An indepth discussion of causes of cancer in the liver are beyond the scope of this review, but infectious agents (e.g., hepatitis B and C viruses) play a major role, not just in transactivating or otherwise disrupting cellular proto-oncogenes (hepatitis B virus [HBV]), but in also causing chronic inflammation (hepatitis C virus [HCV] and HBV). Sustained epithelial proliferation in a milieu rich in inflammatory cells, growth factors, and DNA-damaging agents (reactive oxygen and nitrogen species produced to fight infection), will lead to permanent genetic changes in proliferating cells. The upregulation of the transcription factor nuclear factor kappaB (NF-kappaB) in transformed hepatocytes, through the paracrine action of tumor necrosis factor-alpha from neighboring endothelia and inflammatory cells, may be critical for tumor progression given the mitogenic and anti-apoptotic properties of proteins encoded by many of NF-kappaB's target genes.
Collapse
|
39
|
Homeostatic response under carcinogen withdrawal, heme oxygenase 1 expression and cell cycle association. BMC Cancer 2006; 6:286. [PMID: 17169158 PMCID: PMC1769509 DOI: 10.1186/1471-2407-6-286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 12/14/2006] [Indexed: 11/10/2022] Open
Abstract
Background Chronic injury deregulates cellular homeostasis and induces a number of alterations leading to disruption of cellular processes such as cell cycle checkpoints and apoptosis, driving to carcinogenesis. The stress protein heme oxygenase-1 (HO-1) catalyzes heme degradation producing biliverdin, iron and CO. Induction of HO-1 has been suggested to be essential for a controlled cell growth. The aim of this work was to analyze the in vivo homeostatic response (HR) triggered by the withdrawal of a potent carcinogen, p-dimethylaminoazobenzene (DAB), after preneoplastic lesions were observed. We analyzed HO-1 cellular localization and the expression of HO-1, Bcl-2 and cell cycle related proteins under these conditions comparing them to hepatocellular carcinoma (HC). Methods The intoxication protocol was designed based on previous studies demonstrating that preneoplastic lesions were evident after 89 days of chemical carcinogen administration. Male CF1 mice (n = 18) were used. HR group received DAB (0.5 % w/w) in the diet for 78 days followed by 11 days of carcinogen deprivation. The HC group received the carcinogen and control animals the standard diet during 89 days. The expression of cell cycle related proteins, of Bcl-2 and of HO-1 were analyzed by western blot. The cellular localization and expression of HO-1 were detected by immnunohistochemistry. Results Increased expression of cyclin E/CDK2 was observed in HR, thus implicating cyclin E/CDK2 in the liver regenerative process. p21cip1/waf1 and Bcl-2 induction in HC was restituted to basal levels in HR. A similar response profile was found for HO-1 expression levels, showing a lower oxidative status in the carcinogen-deprived liver. The immunohistochemical studies revealed the presence of macrophages surrounding foci of necrosis and nodular lesions in HR indicative of an inflammatory response. Furthermore, regenerative cells displayed changes in type, size and intensity of HO-1 immunostaining. Conclusion These results demonstrate that the regenerative capacity of the liver is still observed in the pre-neoplastic tissue after carcinogen withdrawal suggesting that reversible mechanism/s to compensate necrosis and to restitute homeostasis are involved.
Collapse
|
40
|
Zheng JF, Liang LJ, Wu CX, Chen JS, Zhang ZS. Transplantation of fetal liver epithelial progenitor cells ameliorates experimental liver fibrosis in mice. World J Gastroenterol 2006; 12:7292-8. [PMID: 17143943 PMCID: PMC4087485 DOI: 10.3748/wjg.v12.i45.7292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of transplanted fetal liver epithelial progenitor (FLEP) cells on liver fibrosis in mice.
METHODS: FLEP cells were isolated from embryonal day (ED) 14 BALB/c mice and transplanted into female syngenic BALB/c mice (n = 60). After partial hepatectomy (PH), diethylnitrosamine (DEN) was administered to induce liver fibrosis. Controls received FLEP cells and non-supplemented drinking water, the model group received DEN-spiked water, and the experimental group received FLEP cells and DEN. Mice were killed after 1, 2, and 3 mo, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), hyaluronic acid (HA), and laminin (LN) in serum, and hydroxyproline (Hyp) content in liver were assessed. Alpha-smooth muscle actin (α-SMA) of liver was tested by immunohistochemistry. Transplanted male mice FLEP cells were identified by immunocytochemistry for sry (sex determination region for Y chromosome) protein.
RESULTS: Serum ALT, AST, HA, and LN were markedly reduced by transplanted FLEP cells. Liver Hyp content and α-SMA staining in mice receiving FLEP cells were lower than that of the model group, which was consistent with altered liver pathology. Transplanted cells proliferated and differentiated into hepatocytes and bile duct epithelial cells with 30%-50% repopulation in the liver fibrosis induced by DEN after 3 mo.
CONCLUSION: Transplanted FLEP cells proliferate and differentiate into hepatocytes and bile duct epithelial cells with high repopulation capacity in the fiberized liver induced by DEN, which restores liver function and reduces liver fibrosis.
Collapse
Affiliation(s)
- Jin-Fang Zheng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | | | | | | | | |
Collapse
|
41
|
Kuhlmann WD, Peschke P. Hepatic progenitor cells, stem cells, and AFP expression in models of liver injury. Int J Exp Pathol 2006; 87:343-59. [PMID: 16965562 PMCID: PMC2517380 DOI: 10.1111/j.1365-2613.2006.00485.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Adult hepatocytes and liver-cell progenitors play a role in restoring liver tissue after injury. For the study of progenitor cells in liver repair, experimental models included (a) surgical removal of liver tissue by partial hepatectomy; (b) acute injury by carbontetrachloride; (c) acute injury by d-galactosamine (GalN) and N-nitrosomorpholine (NNM); and (d) chemical hepatocarcinogenesis by feeding NNM in low and high doses. Serological and immunohistological detection of alpha-fetoprotein gene expression served to follow pathways of cellular differentiation. Stem cells were not required in models of surgical removal of parenchyma and in carbon tetrachloride intoxication of adult hepatocytes. In contrast, regeneration of liver occurred through biliary epithelial cells in injuries induced by GalN and NNM. These biliary epithelial cells, collectively called oval cells, are most probably derived from the canals of Hering. Proliferating bile duct cells reached a level of differentiation with reactivation of foetal genes and significant alpha-1-fetoprotein (AFP) synthesis signalling a certain degree of retrodifferentiation with potential stemness. Due to the same embryonic origin of bile ducts and hepatocytes, biliary epithelium and its proliferating progeny (oval cells) have a defined role in liver regeneration as a transit and amplification compartment. In their early proliferation stage, oval cells were heavily engaged in DNA synthesis ([3H]thymidine labelling). Pulse-chase experiments during experimental hepatocarcinogenesis exhibited their development into hepatocytes with high risk for transformation and leading to foci of altered hepatocytes. Hepatocellular carcinomas may arise either from proliferating/differentiating oval cells or from adult hepatocytes; both cell types have stem-like properties. AFP-positive and AFP-negative carcinomas occurred in the same liver. They may represent random clonal origin. The heterogeneity of phenotypic marker (AFP) correlated with a process of retrodifferentiation.
Collapse
Affiliation(s)
- Wolf D Kuhlmann
- Division of Radiooncology, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | |
Collapse
|
42
|
Abstract
In recent years, the results of several studies suggest that human liver tumors can be derived from hepatic progenitor cells rather than from mature cell types. The available data indeed strongly suggest that most combined hepatocellular-cholangiocarcinomas arise from hepatic progenitor cells that retained their potential to differentiate into the hepatocytic and biliary lineages. Hepatic progenitor cells could also be the basis for some hepatocellular carcinomas and hepatocellular adenomas, although it is very difficult to determine the origin of an individual hepatocellular carcinoma. There is currently not enough data to make statements regarding a hepatic progenitor cell origin of cholangiocarcinoma. The presence of hepatic progenitor cell markers and the presence and extent of the cholangiocellular component are factors that are related to the prognosis of hepatocellular carcinomas and combined hepatocellular-cholangiocarcinomas, respectively.
Collapse
Affiliation(s)
- Louis Libbrecht
- Laboratory of Morphology and Molecular Pathology, Minderbroedersstraat 12, Leuven 3000, Belgium.
| |
Collapse
|
43
|
Li X, Zhou X, Guan Y, Wang YXJ, Scutt D, Gong QY. N-nitrosodiethylamine-induced pig liver hepatocellular carcinoma model: radiological and histopathological studies. Cardiovasc Intervent Radiol 2006; 29:420-8. [PMID: 16502159 DOI: 10.1007/s00270-005-0099-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Experimental research involving animal models plays a critical role in the development and improvement of minimally invasive therapies for hepatocellular carcinoma (HCC). As a large animal, the pig is commonly used for surgery and interventional radiology research. In this study, liver multicentric HCC with cirrhosis was induced in six China Taihu pigs by intraperitoneal injection of 10 mg/kg of N-nitrosodiethylamine once a week for 3 months, followed by a period of 10-12 months without N-nitrosodiethylamine treatment. All pigs were in generally good health until the end of the study. The tumor nodules appeared hyperattenuating in the arterial phase of a dynamic computed tomography (CT) scan. Digital subtraction angiography (DSA) and CT angiography demonstrated that the tumors derived their blood supply mainly from the hepatic artery system. Lipiodol-CT showed Lipiodol retention in tumor areas. The histology and electron microscopic ultrastructure of the chemically induced liver HCC in this study resembled human HCC with a cirrhosis background. An immunohistochemistry study confirmed that the tumors were of hepatocyte origin. All highly, moderately, and poorly differentiated HCC tumors were identified in this study. Cholangiocarcinoma was not seen in any of the animals. Due to its comparable size to human anatomy, the pig liver HCC model would give a better scope for interventional and surgical manipulations than small animal models.
Collapse
Affiliation(s)
- Xiao Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The question of whether hepatocellular carcinoma (HCC) arises from the differentiation block of stem cells or dedifferentiation of mature cells remains controversial. Recently, researchers suggested that HCC may originate from the transdifferentiation of bone marrow cells. Interestingly, there are four levels of cells in the hepatic stem cell lineage: bone marrow cells, hepato-pancreas stem cells, oval cells and hepatocytes. Hematopoietic stem cells and the liver are known to have a close relationship in early development. Bone marrow stem cells could differentiate into oval cells, which could differentiate into hepatocytes and duct cells. The development of pancreatic and liver buds in embryogenesis suggests the existence of a common progenitor cell to both the pancreas and liver. Cellular events during hepatocarcinogenesis illustrate that HCC may arise from cells at various stages of differentiation in the hepatic stem cell lineage.
Collapse
Affiliation(s)
- Xiong-Zhi Wu
- Cancer Hospital of Tianjin, Tianjin Medical University, Tianjin, China.
| | | |
Collapse
|
45
|
Pichard V, Bellodi-Privato M, Gournay J, Ferry N. Mixed hematopoietic molecular chimerism results in permanent transgene expression from retrovirally transduced hepatocytes in mice. J Gene Med 2006; 8:425-32. [PMID: 16389647 DOI: 10.1002/jgm.863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Cytotoxic immune elimination of transduced hepatocytes may limit gene therapy for inherited liver diseases. Using beta-galactosidase as a marker gene, we studied whether creation of mixed beta-galactosidase molecular hematopoietic chimerism could induce tolerance to beta-galactosidase-transduced hepatocytes. METHODS Molecular hematopoietic chimerism was established in irradiated recipient mice by transplantation of either a mixture of wild-type and beta-galactosidase-transgenic bone marrow or autologous bone marrow stem cells that were transduced with beta-galactosidase lentiviral vectors. After transplantation, mice were hepatectomized and injected with beta-galactosidase recombinant retroviruses to transduce regenerating hepatocytes. We monitored the presence of beta-galactosidase-expressing hepatocytes as well as the appearance of anti-beta-galactosidase antibodies during the time. RESULTS In control animals, anti-beta-galactosidase antibodies and cytotoxic T-lymphocyte (CTL) response developed as early as 3 weeks after gene transfer. Transduced hepatocytes disappeared concomitantly. In bone marrow transplanted mice, tolerance could be observed in a significant proportion of animals. Tolerance resulted in permanent liver transgene expression and was absent unless a chimerism above 1% was achieved, demonstrating a threshold effect. CONCLUSIONS Creation of a molecular hematopoietic chimerism can result in transgene tolerance and evade immune rejection of retrovirally transduced hepatocytes. This strategy may be useful for hepatic inherited diseases in which the transgene product behaves as a non-self protein.
Collapse
Affiliation(s)
- Virginie Pichard
- Biothérapies Hépatiques, CIC-INSERM 04, IMAD, CHU Hôtel-Dieu, 44093 Nantes cedex 01, France
| | | | | | | |
Collapse
|
46
|
Alison MR, Lovell MJ. Liver cancer: the role of stem cells. Cell Prolif 2005; 38:407-21. [PMID: 16300653 PMCID: PMC6496116 DOI: 10.1111/j.1365-2184.2005.00354.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 07/28/2005] [Indexed: 01/12/2023] Open
Abstract
Studies of aggregation chimaeras and X-linked polymorphisms strongly suggest that liver tumours are derived from single cells (monoclonal), but the important question is, which cell? Stem cell biology and cancer are inextricably linked. In continually renewing tissues such as the gut mucosa and epidermis, where a steady flux of cells occurs from the stem cell zone to the terminally differentiated cells that are imminently to be lost, it is widely accepted that cancer is a disease of stem cells, since these are the only cells that persist in the tissue for a sufficient length of time to acquire the requisite number of genetic changes for neoplastic development. In the liver the identity of the founder cells for the two major primary tumours, hepatocellular carcinoma and cholangiocarcinoma, is more problematic. The reason for this is that no such obvious unidirectional flux occurs in the liver, although it is held that the centrilobular hepatocytes may be more differentiated (polyploid) and closer to cell senescence than those cells closest to the portal areas. Moreover, the existence of bipotential hepatic progenitor cells, along with hepatocytes endowed with longevity and long-term repopulating potential suggests there may be more than one type of carcinogen target cell. Cell proliferation at the time of carcinogen exposure is pivotal for 'fixing' any genotoxic injury into a heritable form, thus any proliferative cell in the liver can be susceptible to neoplastic transformation. Hepatocytes are implicated in many instances of hepatocellular carcinoma, direct injury to the biliary epithelium implicates cholangiocytes in some cases of cholangiocarcinoma, while hepatic progenitor cell/oval cell activation accompanies many instances of liver damage irrespective of aetiology, making such cells very likely carcinogen targets. Of course, we must qualify this assertion by stating that many carcinogens are both cytotoxic and cytostatic, and that hepatic progenitor cell proliferation may be merely a bystander effect of this toxicity. An in-depth discussion of causes of cancer in the liver is beyond the scope of this review, but infectious agents (e.g. hepatitis B and C viruses) play a major role, not just in transactivating or otherwise disrupting cellular proto-oncogenes (hepatitis B virus), but also in causing chronic inflammation (hepatitis C and B viruses). Sustained epithelial proliferation in a milieu rich in inflammatory cells, growth factors and DNA-damaging agents (reactive oxygen and nitrogen species--produced to fight infection), will lead to permanent genetic changes in proliferating cells. Up-regulation of the transcription factor NF-kappaB in transformed hepatocytes, through the paracrine action of TNF-alpha from neighbouring endothelia and inflammatory cells, may be critical for tumour progression given the mitogenic and antiapoptotic properties of proteins encoded by many of NF-kappaB's target genes.
Collapse
Affiliation(s)
- M R Alison
- Cancer Research UK and Queen Mary University of London, London, UK.
| | | |
Collapse
|
47
|
Tan EH, Hooi SC, Laban M, Wong E, Ponniah S, Wee A, Wang ND. CCAAT/Enhancer Binding Protein α Knock-in Mice Exhibit Early Liver Glycogen Storage and Reduced Susceptibility to Hepatocellular Carcinoma. Cancer Res 2005; 65:10330-7. [PMID: 16288022 DOI: 10.1158/0008-5472.can-04-4486] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The CCAAT/enhancer binding protein alpha (C/EBPalpha) is vital for establishing normal hepatic energy homeostasis and moderating hepatocellular growth. CEBPA loss-of-function mutations identified in acute myeloid leukemia patients support a tumor suppressor role for C/EBPalpha. Recent work showed reductions of C/EBPalpha levels in human hepatocellular carcinoma with the reductions correlating to tumor size and progression. We investigated the potential of reactivating c/ebpalpha expression during hepatic carcinogenesis to prevent tumor cell growth. We have developed a c/ebpalpha knock-in mouse in which a single-copy c/ebpalpha is regulated by one allele of the alpha-fetoprotein (AFP) gene promoter. The knock-in mice are physically indistinguishable from wild-type (WT) controls. However, knock-in animals were found to deposit fetal hepatic glycogen earlier than WT animals. Quantitative real-time PCR confirmed early c/ebpalpha expression and early glycogen synthase gene activation in knock-in fetuses. We then used diethylnitrosamine to induce hepatocellular carcinoma in our animals. Diethylnitrosamine produced half the number of hepatocellular nodules in knock-in mice as in WT mice. Immunohistochemistry showed reduced C/EBPalpha content in WT nodules whereas knock-in nodules stained strongly for C/EBPalpha. The p21 protein was examined because it mediates a C/EBPalpha growth arrest pathway. Nuclear p21 was absent in WT nodules whereas cytoplasmic p21 was abundant; knock-in nodules were positive for nuclear p21. Interestingly, only C/EBPalpha-positive nodules were positive for nuclear p21, suggesting that C/EBPalpha may be required to direct p21 to the cell nucleus to inhibit growth. Our data establish that controlled C/EBPalpha production can inhibit liver tumor growth in vivo.
Collapse
Affiliation(s)
- Ee Hong Tan
- Department of Physiology, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
48
|
Cada DJ, Levien T, Baker DE. Entecavir. Hosp Pharm 2005. [DOI: 10.1177/001857870504000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Each month, subscribers to The Formulary Monograph Service receive five to six well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to your Pharmacy and Therapeutics Committee. Subscribers also receive monthly one-page summary monographs on the agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation (DUE) is also provided each month. With a subscription, the monographs are sent to you in print and CD ROM forms and are available online. Monographs can be customized to meet the needs of your facility. Subscribers to the The Formulary Monograph Service also receive access to a pharmacy bulletin board, The Formulary Information Exchange (The F.I.X.). All topics pertinent to clinical and hospital pharmacy are discussed on The F.I.X. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. If you would like information about The Formulary Monograph Service or The F.I.X., call The Formulary at 800-322-4349. The September 2005 monograph topics are tigecycline, insulin detemir injection, tipranavir, isosorbide dinitrate/hydralazine hydrochloride, and muraglitazar. The DUE is on paricalcitol tigecycline.
Collapse
Affiliation(s)
| | - Terri Levien
- Drug Information Pharmacist, Drug Information Center, Washington State University Spokane
| | - Danial E. Baker
- Drug Information Center and College of Pharmacy, Washington State University Spokane, PO Box 1495, Spokane, WA 99210-1495
| |
Collapse
|
49
|
Abstract
While hepatocytes can be considered conceptually as unipotent stem cells, the presence of true stem or progenitor cells within adult livers has been largely debated. It is now accepted that the atypical ductular reaction observed in livers with sub-massive hepatitis represents the proliferation of hepatic progenitor cells similar to rat oval cells and able to differentiate towards the biliary and the hepatocytic lineage through intermediate progeny. In the normal liver, the identification of progenitor cells with a panel of markers including c-kit, CD34, Ov6, CK7, CK19, chromogranine A, CD56 remains difficult because these cells are very few and most of the markers are not specific. These progenitor cells could be located either within the canals of Hering or in periductular situation or both. Mechanisms leading to the activation and the proliferation of hepatic progenitor cells are still largely unknown: they involve growth factors as the stem cell factor, ligand of c-kit, cytokines, chemokines as SDF1 a and vagal or sympathetic innervatioñ. Other potential stem cells for liver could be hematopoietic stem cells from bone marrow. First publications have showed that hematopoietic stem cells were able to differentiate into hepatocytes and cholangiocytes and to yield high level engraftment of injured livers. However it appears now that this phenomenon is minimal or even absent in physiological and usual pathological conditions. It does occur in extreme experimental conditions either by true transdifferentiation or cell fusion. The shared property of stem cells and tumor cells to proliferate endlessly, rises the question of the potential role of progenitor cells in liver carcinogenesis. In a number of animal models of hepatocarcinogenesis, tumors originate from oval cells. The identification of progenitor cells close to murine oval cells in the human liver raises the hypothesis of a potential role of these cells in the development of human liver tumors. Liver progenitor cells have been identified morphologically and phenotypically in dysplastic foci of cirrhotic livers and hepatocellular adenomas. More generally speaking, typical hepatocellular carcinomas and cholangiocarcinomas are at the two ends of a spectrum which includes transitional-type tumors intermediate between hepatocellular carcinoma and cholangiocarcinoma and combined hepato-cellular cholangiocarcinoma; these intermediate and combined types can be more easily explained as deriving from progenitor cells. Despite the difficulties, the doubts and the potential dangers, new experimental modalities to obtain efficient repopulation of the liver from bone marrow stem cells are currently under study: exogenous administration of cytokines and chemokines involved in cell homing and differentiation or development of selective pressure strategies. Other cell types as intra-hepatic progenitor cells, bone marrow multipotent adult progenitor cells (MAPCs) or fetal hepatocytes could be alternative sources for liver cell therapy. Thus, progressing knowledge about stem cells in adult liver would allow to better understand mechanisms of hepatic homeostasia and regeneration and would open the way to cell-based therapy for liver diseases.
Collapse
Affiliation(s)
- Catherine Guettier
- Service d'Anatomie Pathologique, Hôpital Paul Brousse, AP-HP, 12 avenue Paul Vaillant-Couturier, 94800 Villejuif EA 3541.
| |
Collapse
|
50
|
Ah receptor- and TCDD-mediated liver tumor promotion: clonal selection and expansion of cells evading growth arrest and apoptosis. Biochem Pharmacol 2005; 69:1403-8. [PMID: 15857604 DOI: 10.1016/j.bcp.2005.02.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 02/03/2005] [Indexed: 10/25/2022]
Abstract
The Ah receptor (AhR) has been characterized as a ligand-activated transcription factor which belongs to the bHLH/PAS (basic helix-loop-helix/Per-Arnt-Sim) family of chemosensors. Transgenic mouse models revealed adaptive and developmental functions of the AhR in the absence of exogenous ligands. Use of persistent agonists such as dioxins including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds demonstrated that the AhR mediates a plethora of species- and tissue-dependent toxicities, including chloracne, wasting, teratogenicity, immunotoxicity, liver tumor promotion and carcinogenicity. However, molecular mechanisms underlying most aspects of these toxic responses as well as biological functions of the AhR are currently unknown. Previous studies of liver tumor promotion in the two-stage hepatocarcinogenesis model indicated that TCDD mediates clonal expansion of 'initiated' preneoplastic hepatocytes, identified as enzyme-altered foci (EAF) by inhibiting apoptosis and bypassing AhR-mediated growth arrest. In contrast, the Ah receptor has been shown in cell models to stimulate growth arrest and apoptosis. Possible underlying mechanisms of these AhR responses are discussed, including enhanced metabolism of retinoic acid which attenuates TGFbeta-mediated apoptosis and interaction of the Ah receptor with the hypophosphorylated retinoblastoma tumor suppressor protein. The discrepancy between in vivo findings in EAF and AhR functions may be solved by hypothesizing that sustained activation of the Ah receptor generates a strong selective pressure in liver treated with genotoxic carcinogens leading to selection and expansion of clones evading growth arrest and apoptosis. Models are discussed which may facilitate verification of this hypothesis.
Collapse
|