1
|
Liu C, Long Q, Yang H, Yang H, Tang Y, Liu B, Zhou Z, Yuan J. Sacubitril/Valsartan inhibits M1 type macrophages polarization in acute myocarditis by targeting C-type natriuretic peptide. Biomed Pharmacother 2024; 174:116535. [PMID: 38581923 DOI: 10.1016/j.biopha.2024.116535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024] Open
Abstract
Studies have shown that Sacubitril/valsartan (Sac/Val) can reduce myocardial inflammation in myocarditis mice, in addition to its the recommended treatment of heart failure. However, the underlying mechanisms of Sac/Val in myocarditis remain unclear. C-type natriuretic peptide (CNP), one of the targeting natriuretic peptides of Sac/Val, was recently reported to exert cardio-protective and anti-inflammatory effects in cardiovascular systems. Here, we focused on circulating levels of CNP in patients with acute myocarditis (AMC) and whether Sac/Val modulates inflammation by targeting CNP in experimental autoimmune myocarditis (EAM) mice as well as LPS-induced RAW 264.7 cells and bone marrow derived macrophages (BMDMs) models. Circulating CNP levels were higher in AMC patients compared to healthy controls, and these levels positively correlated with the elevated inflammatory cytokines IL-6 and monocyte count. In EAM mice, Sac/Val alleviated myocardial inflammation while augmenting circulating CNP levels rather than BNP and ANP, accompanied by reduction in intracardial M1 macrophage infiltration and expression of inflammatory cytokines IL-1β, TNF-α, and IL-6. Furthermore, Sac/Val inhibited CNP degradation and directly blunted M1 macrophage polarization in LPS-induced RAW 264.7 cells and BMDMs. Mechanistically, the effects might be mediated by the NPR-C/cAMP/JNK/c-Jun signaling pathway apart from NPR-B/cGMP/NF-κB pathway. In conclusion, Sac/Val exerts a protective effect in myocarditis by increasing CNP concentration and inhibiting M1 macrophages polarization.
Collapse
Affiliation(s)
- Changhu Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Long
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Han Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongmin Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yaohan Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingjun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jing Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Krylatov AV, Tsibulnikov SY, Mukhomedzyanov AV, Boshchenko AA, Goldberg VE, Jaggi AS, Erben RG, Maslov LN. The Role of Natriuretic Peptides in the Regulation of Cardiac Tolerance to Ischemia/Reperfusion and Postinfarction Heart Remodeling. J Cardiovasc Pharmacol Ther 2020; 26:131-148. [PMID: 32840121 DOI: 10.1177/1074248420952243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the past 10 years, mortality from acute myocardial infarction has not decreased despite the widespread introduction of percutaneous coronary intervention. The reason for this situation is the absence in clinical practice of drugs capable of preventing reperfusion injury of the heart with high efficiency. In this regard, noteworthy natriuretic peptides (NPs) which have the infarct-limiting effect, prevent reperfusion cardiac injury, prevent adverse post-infarction remodeling of the heart. Atrial natriuretic peptide does not have the infarct-reducing effect in rats with alloxan-induced diabetes mellitus. NPs have the anti-apoptotic and anti-inflammatory effects. There is indirect evidence that NPs inhibit pyroptosis and autophagy. Published data indicate that NPs inhibit reactive oxygen species production in cardiomyocytes, aorta, heart, kidney and the endothelial cells. NPs can suppress aldosterone, angiotensin II, endothelin-1 synthesize and secretion. NPs inhibit the effects aldosterone, angiotensin II on the post-receptor level through intracellular signaling events. NPs activate guanylyl cyclase, protein kinase G and protein kinase A, and reduce phosphodiesterase 3 activity. NO-synthase and soluble guanylyl cyclase are involved in the cardioprotective effect of NPs. The cardioprotective effect of natriuretic peptides is mediated via activation of kinases (AMPK, PKC, PI3 K, ERK1/2, p70s6 k, Akt) and inhibition of glycogen synthase kinase 3β. The cardioprotective effect of NPs is mediated via sarcolemmal KATP channel and mitochondrial KATP channel opening. The cardioprotective effect of brain natriuretic peptide is mediated via MPT pore closing. The anti-fibrotic effect of NPs may be mediated through inhibition TGF-β1 expression. Natriuretic peptides can inhibit NF-κB activity and activate GATA. Hemeoxygenase-1 and peroxisome proliferator-activated receptor γ may be involved in the infarct-reducing effect of NPs. NPs exhibit the infarct-limiting effect in patients with acute myocardial infarction. NPs prevent post-infarction remodeling of the heart. To finally resolve the question of the feasibility of using NPs in AMI, a multicenter, randomized, blind, placebo-controlled study is needed to assess the effect of NPs on the mortality of patients after AMI.
Collapse
Affiliation(s)
- Andrey V Krylatov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Sergey Y Tsibulnikov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | | | - Alla A Boshchenko
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Victor E Goldberg
- Cancer Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Amteshwar S Jaggi
- 429174Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Reinhold G Erben
- Department of Biomedical Research, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Leonid N Maslov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| |
Collapse
|
3
|
Human Atrial Natriuretic Peptide in Cold Storage of Donation After Circulatory Death Rat Livers: An Old but New Agent for Protecting Vascular Endothelia? Transplantation 2019; 103:512-521. [PMID: 30461725 DOI: 10.1097/tp.0000000000002552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Current critical shortage of donor organs has increased the use of donation after circulatory death (DCD) livers for transplantation, despite higher risk for primary nonfunction or ischemic cholangiopathy. Human atrial natriuretic peptide (hANP) is a cardiovascular hormone that possesses protective action to vascular endothelia. We aimed to clarify the therapeutic potential of hANP in cold storage of DCD livers. METHODS Male Wistar rats were exposed to 30-minute warm ischemia in situ. Livers were then retrieved and cold-preserved for 6 hours with or without hANP supplementation. Functional and morphological integrity of the livers was evaluated by oxygenated ex vivo reperfusion at 37°C. RESULTS hANP supplementation resulted in significant reduction of portal venous pressure (12.2 ± 0.5 versus 22.5 ± 3.5 mm Hg, P < 0.001). As underlying mechanisms, hANP supplementation significantly increased tissue adenosine concentration (P = 0.008), resulting in significant upregulation of endothelial nitric oxide synthase and significant downregulation of endothelin-1 (P = 0.01 and P = 0.004 vs. the controls, respectively). Consequently, hANP significantly decreased transaminase release (P < 0.001) and increased bile production (96.2 ± 18.2 versus 36.2 ± 15.2 μL/g-liver/h, P < 0.001). Morphologically, hepatocytes and sinusoidal endothelia were both better maintained by hANP (P = 0.021). Electron microscopy also revealed that sinusoidal ultrastructures and microvilli formation in bile canaliculi were both better preserved by hANP supplementation. Silver staining also demonstrated that hANP significantly preserved reticulin fibers in Disse space (P = 0.017), representing significant protection of sinusoidal frameworks/architectures. CONCLUSIONS Supplementation of hANP during cold storage significantly attenuated cold ischemia/warm reperfusion injury of DCD livers.
Collapse
|
4
|
Al-Attar R, Storey KB. Effects of anoxic exposure on the nuclear factor of activated T cell (NFAT) transcription factors in the stress-tolerant wood frog. Cell Biochem Funct 2018; 36:420-430. [PMID: 30411386 DOI: 10.1002/cbf.3362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/15/2018] [Accepted: 10/03/2018] [Indexed: 11/08/2022]
Abstract
The wood frog, Lithobates sylvaticus (also known as Rana sylvatica), is used for studying natural freeze tolerance. These animals convert 65% to 70% of their total body water into extracellular ice and survive freezing for weeks in winter. Freezing interrupts oxygen delivery to organs; thus, wood frogs limit their ATP usage by depressing their metabolism and redirecting the available energy only to prosurvival processes. Here, we studied the nuclear factor of activated T cell (NFAT) transcription factor family in response to 24-hour anoxia, and 4-hour aerobic recovery in liver and skeletal muscle. Protein expression levels of NFATc1-c4, calcineurin A and glycogen synthase kinase 3β (NFAT regulators), osteopontin, and atrial natriuretic peptide (ANP) (targets of NFATc3 and NFATc4, respectively) were measured by immunoblotting, and the DNA-binding activities of NFATc1-c4 were measured by DNA-protein interaction ELISAs. Results show that NFATc4, calcineurin, and ANP protein expression as well as NFATc4 DNA binding increased during anoxia in liver where calcineurin and ANP protein levels and NFATc4 DNA binding remaining high after aerobic recovery. Anoxia caused a significant increase in NFATc3 protein expression but not DNA-binding activity in muscle. Our results show that anoxia can increase NFATc4 transcriptional activity in liver, leading to the increase in expression of cytoprotective genes in the wood frog. Understanding the molecular mechanisms involved in mediating survival under anoxia/reoxygenation conditions in a naturally stress-tolerant model, such as the wood frog, provides insightful information on the prosurvival regulatory mechanisms involved in combating stress. This information will also further our understanding of metabolic rate depression and answer the question of how frogs tolerate prolonged periods of oxygen deprivation and resume to full function upon recovery without facing any detrimental side effects as other animals would.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, Canada
| | - Kenneth B Storey
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, Canada
| |
Collapse
|
5
|
Natriuretic peptide receptor guanylyl cyclase-A pathway counteracts glomerular injury evoked by aldosterone through p38 mitogen-activated protein kinase inhibition. Sci Rep 2017; 7:46624. [PMID: 28429785 PMCID: PMC5399490 DOI: 10.1038/srep46624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Guanylyl cyclase-A (GC-A) signaling, a natriuretic peptide receptor, exerts renoprotective effects by stimulating natriuresis and reducing blood pressure. Previously we demonstrated massive albuminuria with hypertension in uninephrectomized, aldosterone-infused, and high salt-fed (ALDO) systemic GC-A KO mice with enhanced phosphorylation of p38 mitogen-activated protein kinase (MAPK) in podocytes. In the present study, we examined the interaction between p38 MAPK and GC-A signaling. The administration of FR167653, p38 MAPK inhibitor, reduced systolic blood pressure (SBP), urinary albumin excretion, segmental sclerosis, podocyte injury, and apoptosis. To further investigate the local action of natriuretic peptide and p38 MAPK in podocytes, we generated podocyte-specific (pod) GC-A conditional KO (cKO) mice. ALDO pod GC-A cKO mice demonstrated increased urinary albumin excretion with marked mesangial expansion, podocyte injury and apoptosis, but without blood pressure elevation. FR167653 also suppressed urinary albumin excretion without reducing SBP. Finally, we revealed that atrial natriuretic peptide increased phosphorylation of MAPK phosphatase-1 (MKP-1) concomitant with inhibited phosphorylation of p38 MAPK in response to MAPK kinase 3 activation, thereby resulting in decreased mRNA expression of the apoptosis-related gene, Bax, and Bax/Bcl2 ratio in cultured podocytes. These results indicate that natriuretic peptide exerts a renoprotective effect via inhibiting phosphorylation of p38 MAPK in podocytes.
Collapse
|
6
|
De Vito P. Atrial natriuretic peptide: an old hormone or a new cytokine? Peptides 2014; 58:108-16. [PMID: 24973596 DOI: 10.1016/j.peptides.2014.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
Atrial natriuretic peptide (ANP) a cardiovascular hormone mainly secreted by heart atria in response to stretching forces induces potent diuretic, natriuretic and vasorelaxant effects and plays a major role in the homeostasis of blood pressure as well as of water and salt balance. The hormone can also act as autocrine/paracrine factor and modulate several immune functions as well as cytoprotective effects. ANP contributes to innate immunity being able to: (i) stimulate the host defense against extracellular microbes by phagocytosis and Reactive Oxygen Species (ROS) release; (ii) inhibit the synthesis and release of proinflammatory markers such as TNF-α, IL-1, MCP-1, nitric oxide (NO), cyclooxygenase-2 (COX-2); (iii) inhibit the expression of adhesion molecules such as ICAM-1 and E-selectin. ANP can also affect the adaptive immunity being able to: (i) reduce the number of CD4(+) CD8(+) lymphocytes as well as to increase the CD4(-) CD8(-) cells; (ii) stimulate the differentiation of naïve CD4(+) cells toward the Th2 and/or Th17 phenotype. The hormone shows protective effects during: (i) ventricular hypertrophy and myocardial injury; (ii) atherosclerosis and hypertension by the induction of antiproliferative effects; (iii) oxidative stress counteracting the dangerous effects of ROS; (iv) growth of tumors cells by the induction of apoptosis or necrosis. Since not much is known about of the role of ANP locally produced and released by non-cardiac cells, this review outlines the contribution of ANP in different aspect of innate as well as adaptive immunity also with respect to the excessive cell growth in physiological and/or pathological conditions.
Collapse
Affiliation(s)
- Paolo De Vito
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
7
|
Miguel D, Prieto B, Álvarez FV. Biological variation and prognosis usefulness of new biomarkers in liver transplantation. Clin Chem Lab Med 2013; 51:1241-1249. [PMID: 23241604 DOI: 10.1515/cclm-2012-0713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/22/2012] [Indexed: 01/03/2025]
Abstract
BACKGROUND An observational retrospective study has been conducted, including 52 patients (37 male and 15 female), ranging from 22 to 65 years old, who underwent an orthotopic liver transplantation (OLT) at the Hospital Universitario Central de Asturias (HUCA) between 2007 and 2010. METHODS The main objective was to evaluate the post-OLT critical complication prognosis usefulness of the precursors of three new biomarkers: mid-regional proadrenomedullin (MR-proADM), carboxy-terminal-proendothelin-1 (CT-ProET-1) and mid-regional proatrial natriuretic peptide (MR-ProANP). As all of them are blood pressure mediators, stress-associated physiological phenomena are expected to affect their expression and secretion, mainly those related to blood circulation. Therefore, as a second goal, the biological variability of the biomarkers has been studied in a set of OLT patients without complications during the first postoperative week. The knowledge of the reference change value of the new biomarkers will be interesting for their correct interpretation in future investigations. The prognostic value of the new biomarkers was also compared to that of procalcitonin (PCT). RESULTS It has been shown that the basal concentration of the biomarkers is higher in patients that undergo OLT than in the normal population, correlating with the severity of the pathology. The intra-individual biological variation of these biomarkers is similar to other biochemical parameters, the reference change value for OLT patients being 90% for CT-proET-1, 112% for MR-proADM and 127% for MR-proANP. CONCLUSIONS Multivariate analysis showed that MR-proADM was the best biomarker for the prognosis of severe complications.
Collapse
Affiliation(s)
- Diego Miguel
- Clinical Biochemistry Laboratory , AGC Laboratory of Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | |
Collapse
|
8
|
Abstract
Ischemia/reperfusion (I/R) injury still represents an important cause of morbidity following hepatic surgery and limits the use of marginal livers in hepatic transplantation. Transient blood flow interruption followed by reperfusion protects tissues against damage induced by subsequent I/R. This process known as ischemic preconditioning (IP) depends upon intrinsic cytoprotective systems whose activation can inhibit the progression of irreversible tissue damage. Compared to other organs, liver IP has additional features as it reduces inflammation and promotes hepatic regeneration. Our present understanding of the molecular mechanisms involved in liver IP is still largely incomplete. Experimental studies have shown that the protective effects of liver IP are triggered by the release of adenosine and nitric oxide and the subsequent activation of signal networks involving protein kinases such as phosphatidylinositol 3-kinase, protein kinase C δ/ε and p38 MAP kinase, and transcription factors such as signal transducer and activator of transcription 3, nuclear factor-κB and hypoxia-inducible factor 1. This article offers an overview of the molecular events underlying the preconditioning effects in the liver and points to the possibility of developing pharmacological approaches aimed at activating the intrinsic protective systems in patients undergoing liver surgery.
Collapse
|
9
|
Skowrońska M, Zielińska M, Albrecht J. Stimulation of natriuretic peptide receptor C attenuates accumulation of reactive oxygen species and nitric oxide synthesis in ammonia-treated astrocytes. J Neurochem 2010; 115:1068-76. [PMID: 20854429 DOI: 10.1111/j.1471-4159.2010.07008.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Oxidative and nitrosative stress contribute to ammonia-induced astrocytic dysfunction in hepatic encephalopathy. Treatment of cultured astrocytes with 5 mmol/L ammonium chloride ('ammonia') increased the production of reactive oxygen species (ROS), including the toxic NADPH oxidase reaction product, •O(2)(-). Atrial natriuretic peptide (ANP), natriuretic peptide C and a selective natriuretic peptide receptor (NPR)-C ligand, cANP((4-23),) each decreased the total ROS content both in control cells and cells treated with ammonia. However, attenuation of •O(2)(-) accumulation by ANP and cANP((4-23),) was observed in ammonia-treated cells only and the effect of cANP((4-23)) was decreased when the NADPH oxidase-regulatory protein G(iα-2) was blocked with a specific anti-G(iα-2) antibody. Although in contrast to ANP, cANP((4-23)) did not elevate the cGMP content in control astrocytes, it decreased cAMP content and reduced the expression of G(iα-2), the NADPH oxidase-regulatory protein. The results show the presence of functional NPR-C in astrocytes, activation of which (i) attenuates basal ROS production, and (ii) prevents excessive accumulation of the toxic ROS species, •O(2)(-) by ammonia. Ammonia, ANP and cANP((4-23)) added separately, each stimulated formation of NO(x) (nitrates + nitrites) which was associated with up-regulation of the activity [cANP((4-23))] or/and expression (ammonia) of the endothelial isoform of nitric oxide synthase. However, the ammonia-induced increase of NO(x) was not augmented by co-addition of ANP, and was reduced to the control level by co-addition of cANP((4-23)) , indicating that activation of NPR-C may also reduce nitrosative stress. Future hepatic encephalopathy therapy might include the use of cANP((4-23)) or other NPR-C agonists to control oxidative/nitrosative stress induced by ammonia.
Collapse
Affiliation(s)
- Marta Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
10
|
De Vito P, Incerpi S, Pedersen JZ, Luly P. Atrial natriuretic peptide and oxidative stress. Peptides 2010; 31:1412-9. [PMID: 20385186 DOI: 10.1016/j.peptides.2010.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 04/01/2010] [Accepted: 04/01/2010] [Indexed: 02/07/2023]
Abstract
Atrial natriuretic peptide (ANP) is a hormone, produced mainly by cardiomyocytes, with a major role in cardiovascular homeostatic mechanisms such as natriuresis and vasodilation, which serve to regulate blood pressure. However, ANP also acts as an autocrine/paracrine factor on other targets such as kidney, lung, thymus, liver and the immune system. ANP participates in the regulation of cell growth and proliferation, and evidence is accumulating that these effects are associated with the generation of reactive oxygen species (ROS). In vascular cells and cardiomyocytes ANP stimulates the antioxidant defense, but in other systems such as hepatoblastoma and macrophages ANP may produce either antioxidant or prooxidant effects, depending on experimental conditions and cell context. At present very little is known on the relationship between ANP and ROS production in the normal homeostatic processes or during the development of cardiovascular diseases and cancer. Our current knowledge of the role of ANP in signaling pathways leading to the generation of intracellular messengers such as diacylglycerol (DAG), and guanosine 3'-5'-cyclic monophosphate has been examined in order to clarify the mechanisms by which the hormone may counteract or contribute to the potentially dangerous effects of free radicals.
Collapse
Affiliation(s)
- Paolo De Vito
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | | | | | | |
Collapse
|
11
|
Kuhn M. Function and dysfunction of mammalian membrane guanylyl cyclase receptors: lessons from genetic mouse models and implications for human diseases. Handb Exp Pharmacol 2009:47-69. [PMID: 19089325 DOI: 10.1007/978-3-540-68964-5_4] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Besides soluble guanylyl cyclase (GC), the receptor for NO, there are seven plasma membrane forms of guanylyl cyclase (GC) receptors, enzymes that synthesize the second-messenger cyclic GMP (cGMP). All membrane GCs (GC-A to GC-G) share a basic topology, which consists of an extracellular ligand binding domain, a short transmembrane region, and an intracellular domain that contains the catalytic (GC) region. Although the presence of the extracellular domain suggests that all these enzymes function as receptors, specific ligands have been identified for only four of them (GC-A through GC-D). GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure and volume homeostasis and also local antihypertrophic and antifibrotic actions in the heart. GC-B, the specific receptor for C-type natriuretic peptide, has a critical role in endochondral ossification. GC-C mediates the effects of guanylin and uroguanylin on intestinal electrolyte and water transport and epithelial cell growth and differentiation. GC-E and GC-F are colocalized within the same photoreceptor cells of the retina and have an important role in phototransduction. Finally, GC-D and GC-G appear to be pseudogenes in the human. In rodents, GC-D is exclusively expressed in the olfactory neuroepithelium, with chemosensory functions. GC-G is the last member of the membrane GC form to be identified. No other mammalian transmembrane GCs are predicted on the basis of gene sequence repositories. In contrast to the other orphan receptor GCs, GC-G has a broad tissue distribution in rodents, including the lung, intestine, kidney, skeletal muscle, and sperm, raising the possibility that there is another yet to be discovered family of cGMP-generating ligands. This chapter reviews the structure and functions of membrane GCs, with special focus on the insights gained to date from genetically modified mice and the role of alterations of these ligand/receptor systems in human diseases.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institut für Physiologie, Universität Würzburg, Röntgenring 9, Würzburg, 97070, Germany.
| |
Collapse
|
12
|
NPRA-mediated suppression of AngII-induced ROS production contribute to the antiproliferative effects of B-type natriuretic peptide in VSMC. Mol Cell Biochem 2008; 324:165-72. [PMID: 19104909 DOI: 10.1007/s11010-008-9995-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 12/11/2008] [Indexed: 12/31/2022]
Abstract
Excessive proliferation of vascular smooth cells (VSMCs) plays a critical role in the pathogenesis of diverse vascular disorders, and inhibition of VSMCs proliferation has been proved to be beneficial to these diseases. In this study, we investigated the antiproliferative effect of B-type natriuretic peptide (BNP), a natriuretic peptide with potent antioxidant capacity, on rat aortic VSMCs, and the possible mechanisms involved. The results indicate that BNP potently inhibited AngiotensinII (AngII)-induced VSMCs proliferation, as evaluated by [(3)H]-thymidine incorporation assay. Consistently, BNP significantly decreased AngII-induced intracellular reactive oxygen species (ROS) and NAD(P)H oxidase activity. 8-Br-cGMP, a cGMP analog, mimicked these effects. To confirm its mechanism, siRNA of natriuretic peptide receptor-A(NRPA) strategy technology was used to block cGMP production in VSMCs, and siNPRA attenuated the inhibitory effects of BNP in VSMCs. Taken together, these results indicate that BNP was capable of inhibiting VSMCs proliferation by NPRA/cGMP pathway, which might be associated with the suppression of ROS production. These results might be related, at least partly, to the anti-oxidant property of BNP.
Collapse
|
13
|
Continuos intravenous infusion of atrial natriuretic peptide (ANP) prevented liver fibrosis in rat. Biochem Biophys Res Commun 2008; 378:354-9. [PMID: 18996092 DOI: 10.1016/j.bbrc.2008.10.154] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 10/27/2008] [Indexed: 12/12/2022]
Abstract
The atrial natriuretic peptide (ANP) are used as the acute heart failure treatment in clinical and reported the suppression of fibrosis in the heart, lung recently. The aim of this study was to analyze the suppressive effect of liver fibrosis about ANP. In vitro, rat hepatic stellate cell line (HSC-T6) were treated with ANP. In vivo, Wister rats were injected with dimethylnitrosamine (DMN) twice a week via intra-peritoneal for 4 weeks. ANP group was given by continuance intravenous dosage system used 24h infusion pump for 3 weeks after 1 week of DMN administration. In vitro, ANP suppressed alpha-SMA expression and was inhibited the growth of HSC, and reduced the expression of type 1 procollagen, TIMP-1, -2 expression. In vivo, The ANP group showed lower serum AST, ALT, HA level. Liver fibrosis was suppressed by ANP. ANP also decreased gene expression of type 1 procollagen, TIMP-1, -2 and alpha-SMA, TGF-beta1 expression. Our results showed that continuous ANP infusion has the specific capacity of inhibiting HSC activation and protecting hepatocytes and the useful capacity to suppress the liver fibrosis.
Collapse
|
14
|
Alchera E, Tacchini L, Imarisio C, Dal Ponte C, De Ponti C, Gammella E, Cairo G, Albano E, Carini R. Adenosine-dependent activation of hypoxia-inducible factor-1 induces late preconditioning in liver cells. Hepatology 2008; 48:230-9. [PMID: 18506850 DOI: 10.1002/hep.22249] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED The cellular mechanisms by which ischemic preconditioning increases liver tolerance to ischemia/reperfusion injury are still poorly understood. This study investigated the role of the hypoxia-inducible factor-1 (HIF-1) in the protection associated with the late phase of liver preconditioning. Late preconditioning was induced in primary cultured rat hepatocytes by a transient (10 minute) hypoxic stress or by 15 minutes incubation with the adenosine A(2A) receptors agonist CGS21680 24 hours before exposure to 90 minutes of hypoxia in a serum-free medium. Late preconditioning induced the nuclear translocation of HIF-1 and the expression of carbonic anhydrase IX (CAIX), a HIF-1-regulated transmembrane enzyme that catalyzes bicarbonate production. Such effects were associated with prevention of hepatocyte killing by hypoxia and the amelioration of intracellular acidosis and Na+ accumulation. The inhibition of PKC-mediated and PI3-kinase-mediated signals with, respectively, chelerythrine and wortmannin abolished HIF-1 activation and blocked both CAIX expression and the protective action of late preconditioning. CAIX expression was also prevented by interfering with the transcriptional activity of HIF-1 using a dominant negative HIF-1beta subunit. The inhibition of CAIX with acetazolamide or the block of bicarbonate influx with disodium-4-acetamido-4'-isothiocyanato-stilben-2,2'-disulfonate also reverted the protective effects of late preconditioning on intracellular acidosis and Na+ accumulation. CONCLUSION The stimulation of adenosine A(2A) receptors induced late preconditioning in liver cells through the activation of HIF-1. HIF-1-induced expression of CAIX increases hepatocyte tolerance to ischemia by maintaining intracellular Na+ homeostasis. These observations along with the importance of HIF-1 in regulating cell survival indicates HIF-1 activation as a possible key event in liver protection by late preconditioning.
Collapse
Affiliation(s)
- Elisa Alchera
- Dipartimento di Scienze Mediche, Università "A. Avogadro", Novara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Green AK, Stratton RC, Squires PE, Simpson AWM. Atrial natriuretic peptide attenuates elevations in Ca2+ and protects hepatocytes by stimulating net plasma membrane Ca2+ efflux. J Biol Chem 2007; 282:34542-54. [PMID: 17893148 DOI: 10.1074/jbc.m707115200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Elevations in intracellular Ca(2+) concentration and calpain activity are common early events in cellular injury, including that of hepatocytes. Atrial natriuretic peptide is a circulating hormone that has been shown to be hepatoprotective. The aim of this study was to examine the effects of atrial natriuretic peptide on potentially harmful elevations in cytosolic free Ca(2+) and calpain activity induced by extracellular ATP in rat hepatocytes. We show that atrial natriuretic peptide, through protein kinase G, attenuated both the amplitude and duration of ATP-induced cytosolic Ca(2+) rises in single hepatocytes. Atrial natriuretic peptide also prevented stimulation of calpain activity by ATP, taurolithocholate, or Ca(2+) mobilization by thapsigargin and ionomycin. We therefore investigated the cellular Ca(2+) handling mechanisms through which ANP attenuates this sustained elevation in cytosolic Ca(2+). We show that atrial natriuretic peptide does not modulate the release from or re-uptake of Ca(2+) into intracellular stores but, through protein kinase G, both stimulates plasma membrane Ca(2+) efflux from and inhibits ATP-stimulated Ca(2+) influx into hepatocytes. These findings suggest that stimulation of net plasma membrane Ca(2+) efflux (to which both Ca(2+) efflux stimulation and Ca(2+) influx inhibition contribute) is the key process through which atrial natriuretic peptide attenuates elevations in cytosolic Ca(2+) and calpain activity. Moreover we propose that plasma membrane Ca(2+) efflux is a valuable, previously undiscovered, mechanism through which atrial natriuretic peptide protects rat hepatocytes, and perhaps other cell types, against Ca(2+)-dependent injury.
Collapse
Affiliation(s)
- Anne K Green
- Department of Biological Sciences, The University of Warwick, Gibbet Hill Road, Coventry, UK.
| | | | | | | |
Collapse
|
16
|
Lee NH. Physiogenomic strategies and resources to associate genes with rat models of heart, lung and blood disorders. Exp Physiol 2007; 92:992-1002. [PMID: 17591683 DOI: 10.1113/expphysiol.2006.036350] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As is the case for many human disorders, cardiovascular disease is a complex ailment exhibiting a multifactorial mode of transmission. Rat models have been developed to aid in the analysis of this complex genetic and phenotypic disorder. The purpose of this brief review is to describe current gene expression profiling strategies that have been implemented to search for candidate causative genes of disease phenotypes in animal models. Strategies include integrating gene expression information with linkage analysis, expression profiling chromosome-substituted and/or congenic rat strains, correlating gene expression with physiological data across a panel of rodent strains, and linking expression quantitative trait loci to physiological quantitative trait loci. A primary goal of these strategies is to narrow and prioritize the search for causal genes of physiological interest. Also discussed are ways to harness two recent publicly available resources that have been created to investigate the role of genes and environment on cardiovascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Norman H Lee
- Department of Pharmacology and Physiology, The George Washington University Medical Center, 2300 Eye Street NW, Washington, DC 20037, USA.
| |
Collapse
|
17
|
Kobayashi K, Oshima K, Muraoka M, Akao T, Totsuka O, Shimizu H, Sato H, Tanaka K, Konno K, Matsumoto K, Takeyoshi I. Effect of atrial natriuretic peptide on ischemia-reperfusion injury in a porcine total hepatic vascular exclusion model. World J Gastroenterol 2007; 13:3487-92. [PMID: 17659696 PMCID: PMC4146785 DOI: 10.3748/wjg.v13.i25.3487] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of ANP on warm I/R injury in a porcine THVE model.
METHODS: Miniature pigs (mini-pigs) weighing 16-24 kg were observed for 120 min after reperfusion following 120 min of THVE. The animals were divided into two groups. ANP (0.1 μg/kg per min) was administered to the ANP group (n = 7), and vehicle was administered to the control group (n = 7). Either vehicle or ANP was intravenously administered from 30 min before the THVE to the end of the experiment. Arterial blood was collected to measure AST, LDH, and TNF-α. Hepatic tissue blood flow (HTBF) was also measured. Liver specimens were harvested for p38 MAPK analysis and histological study. Those results were compared between the two groups.
RESULTS: The AST and LDH levels were lower in the ANP group than in the control group; the AST levels were significantly different between the two groups (60 min: 568.7 ± 113.3 vs 321.6 ± 60.1, P = 0.038 < 0.05, 120 min: 673.6 ± 148.2 vs 281.1 ± 44.8, P = 0.004 < 0.01). No significant difference was observed in the TNF-α levels between the two groups. HTBF was higher in the ANP group, but the difference was not significant. A significantly higher level of phosphorylated p38 MAPK was observed in the ANP group compared to the control group (0 min: 2.92 ± 1.1 vs 6.38 ± 1.1, P = 0.011 < 0.05). Histological tissue damage was milder in the ANP group than in the control group.
CONCLUSION: Our results show that ANP has a protective role in I/R injury with p38 MAPK activation in a porcine THVE model.
Collapse
Affiliation(s)
- Katsumi Kobayashi
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Carini R, Alchera E, Baldanzi G, Piranda D, Splendore R, Grazia De Cesaris M, Caraceni P, Graziani A, Albano E. Role of p38 map kinase in glycine-induced hepatocyte resistance to hypoxic injury. J Hepatol 2007; 46:692-9. [PMID: 17188389 DOI: 10.1016/j.jhep.2006.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 10/06/2006] [Accepted: 10/31/2006] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Glycine hepatoprotection is well known. However, the mechanisms involved are still poorly characterized. METHODS Glycine protection was investigated in isolated rat hepatocytes pretreated with 2 mmol/L glycine 15 min before incubation under hypoxic conditions. RESULTS Glycine significantly reduced Na+ overload and hepatocyte death caused by hypoxia. Glycine protection required the activation of a signal pathway involving Src, Pyk2 and p38 MAP kinases. Glycine treatment also induced a 11% increase of hepatocyte volume and transient ATP release. The prevention of cell swelling by hepatocyte incubation in a hypertonic medium as well as the degradation of extracellular ATP with apyrase or the block P2 purinergic receptors with suramin reverted glycine-induced cytoprotection and inhibited Src, Pyk2 and p38 MAPK activation. Glycine down-modulated Na+/H+ exchanger (NHE) activity, without affecting the development of intracellular acidosis during hypoxia. Such an effect was reverted by inhibiting p38 MAPK that also abolished glycine protection against Na+ overload caused by hypoxia. CONCLUSIONS Glycine-induced ATP release in response to a moderate hepatocyte swelling led to the autocrine stimulation of P2 receptors and to the activation of Src, Pyk2 and p38 MAPK that increased hepatocyte resistance to hypoxia by preventing Na+ influx through NHE.
Collapse
Affiliation(s)
- Rita Carini
- Department of Medical Sciences, University A. Avogadro, Novara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kalisch F, Wurm A, Iandiev I, Uckermann O, Dilsiz N, Reichenbach A, Wiedemann P, Bringmann A. Atrial natriuretic peptide inhibits osmotical glial cell swelling in the ischemic rat retina: Dependence on glutamatergic-purinergic signaling. Exp Eye Res 2006; 83:962-71. [PMID: 16787644 DOI: 10.1016/j.exer.2006.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 04/05/2006] [Accepted: 05/08/2006] [Indexed: 11/21/2022]
Abstract
Atrial natriuretic peptide (ANP) is a regulator of the water and electrolyte content in the brain which also mediates cell volume homeostasis. Here, we determined whether the expression of ANP in the retina of the rat undergoes changes during ischemia-reperfusion, and whether ANP affects the osmotic swelling of Müller glial cells in postischemic retinas under hypotonic conditions. Transient retinal ischemia was induced by elevation of the intraocular pressure above systolic blood pressure for 1h. At 1 and 3 days after reperfusion, there was an increased content of ANP protein in the retina, as determined by Western blotting. The increase of the retinal ANP content was markedly reduced when triamcinolone acetonide (10 mM in 2 microl vehicle) was intravitreally injected before ischemia. ANP inhibited the osmotic swelling of Müller cell somata in retinal slices. The effect of ANP was mediated by activation of NP receptors expressed by retinal neurons which evoked a release of glutamate. The stimulation of metabotropic glutamate receptors expressed by Müller cells evoked an autocrine purinergic signaling mechanism that resulted in the opening of K(+) and Cl(-) channels; the ion efflux counteracted the osmotic swelling of Müller cells. It is concluded that the expression of ANP is transiently upregulated in the postischemic retina of the rat. The increased expression of ANP may represent a part of the retinal response to transient ischemia and may inhibit cytotoxic glial cell swelling.
Collapse
Affiliation(s)
- Folke Kalisch
- Paul Flechsig Institute of Brain Research, University of Leipzig Medical Faculty, 04109 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Carini R, Alchera E, De Cesaris MG, Splendore R, Piranda D, Baldanzi G, Albano E. Purinergic P2Y2 receptors promote hepatocyte resistance to hypoxia. J Hepatol 2006; 45:236-45. [PMID: 16644060 DOI: 10.1016/j.jhep.2006.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 02/10/2006] [Accepted: 02/21/2006] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS ATP stimulation of purinergic P2 receptors (P2YR and P2XR) regulates several hepatic functions. Here we report the involvement of ATP-mediated signals in enhancing hepatocyte tolerance to lethal stress. METHODS The protection given by purinergic agonists was investigated in rat hepatocytes exposed to hypoxia. RESULTS ATP released after hypotonic stress (200 mOsm/L) as well as P2YR agonists prevented hepatocyte killing by hypoxia with efficiency ranking UTP > ATPgammaS > ADPbetaS, whereas the P2XR agonist, methylene-adenosine-5'-triphosphate, was ineffective. Adenosine-5'-O-3-thiotriphosphate (ATPgammaS; 100 micromol/L) also prevented Na+ -overload in hypoxic cells by inhibiting the Na+/H+ exchanger, without interfering with hypoxic acidosis. ATPgammaS activated Src and promoted a Src-dependent stimulation of both ERK1/2 and p38MAPK. Blocking p38MAPK with SB203580 reverted the protection given by ATPgammaS on both cell viability and Na+ accumulation, whereas ERK1/2 inhibition with PD98058 was ineffective. An increased phosphorylation of ERK1/2 was also evident in untreated hypoxic hepatocytes. PD98058 ameliorated Na+ accumulation and cell death caused by hypoxia. Hepatocyte pre-treatment with ATPgammaS reverted ERK1/2 activation in hypoxic cells. SB203580 blocked the effects of ATPgammaS on both ERK1/2 and Na+/H+ exchanger. CONCLUSIONS The activation of p38MAPK by P2Y2R increases hepatocyte resistance to hypoxia by down-modulating ERK1/2-mediated signals that promote Na+ influx through the Na+/H+ exchanger.
Collapse
Affiliation(s)
- Rita Carini
- Department of Medical Sciences, University A. Avogadro of East Piedmont, Novara, Italy.
| | | | | | | | | | | | | |
Collapse
|
21
|
Grutzner U, Keller M, Bach M, Kiemer AK, Meissner H, Bilzer M, Zahler S, Gerbes AL, Vollmar AM. PI 3-kinase pathway is responsible for antiapoptotic effects of atrial natriuretic peptide in rat liver transplantation. World J Gastroenterol 2006; 12:1049-55. [PMID: 16534845 PMCID: PMC4087896 DOI: 10.3748/wjg.v12.i7.1049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the in vivo effect of atrial natriuretic peptide (ANP) and its signaling pathway during orthotopic rat liver transplantation.
METHODS: Rats were infused with NaCl, ANP (5 µg/kg), wortmannin (WM, 16 µg/kg), or a combination of both for 20 min. Livers were stored in UW solution (4 °C) for 24 h, transplanted and reperfused. Apoptosis was examined by caspase-3 activity and TUNEL staining. Phosphorylation of Akt and Bad was visualized by Western blotting and phospho-Akt-localization by confocal microscopy.
RESULTS: ANP-pretreatment decreased caspase-3 activity and TUNEL-positive cells after cold ischemia, indicating antiapoptotic effects of ANP in vivo. The antiapoptotic signaling of ANP was most likely caused by phosphorylation of Akt and Bad, since pretreatment with PI 3-kinase inhibitor WM abrogated the ANP-induced reduction of caspase-3 activity. Interestingly, analysis of liver tissue by confocal microscopy showed translocation of phosphorylated Akt to the plasma membrane of hepatocytes evoked by ANP.
CONCLUSION: ANP activates the PI-3-kinase pathway in the liver in vivo leading to phosphorylation of Bad, an event triggering antiapoptotic signaling cascade in ischemic liver.
Collapse
Affiliation(s)
- Uwe Grutzner
- Institute for Surgical Research, Klinikum Grosshadern, University of Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Baldini PM, De Vito P, D'aquilio F, Vismara D, Zalfa F, Bagni C, Fiaccavento R, Di Nardo P. Role of atrial natriuretic peptide in the suppression of lysophosphatydic acid-induced rat aortic smooth muscle (RASM) cell growth. Mol Cell Biochem 2005; 272:19-28. [PMID: 16010968 DOI: 10.1007/s11010-005-4779-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lysophosphatidic acid (LPA) is a lipid mediator with multiple biological functions. In the present study we investigated the possible role of atrial natriuretic peptide (ANP), a hormone affecting cardiovascular homeostasis and inducing antimitogenic effects in different cell types, on LPA-induced cell growth and reactive oxygen species (ROS) production in rat aortic smooth muscle (RASM) cells. Both LPA effects on cell growth and levels of ROS were totally abrogated by physiological concentrations of ANP, without modifying the overexpression of LPA-receptors. These effects were also affected by cell pretreatment with wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K). Moreover, the LPA-induced activation of Akt, a downstream target of PI3K, was completely inhibited by physiological concentrations of ANP, which were also able to inhibit p42/p44 phosphorylation. Taken together, our data suggest that PI3K may represent an important step in the LPA signal transduction pathway responsible for ROS generation and DNA synthesis in RASM cells. At same time, the enzyme could also represent an essential target for the antiproliferative effects of ANP.
Collapse
MESH Headings
- Androstadienes/pharmacology
- Animals
- Aorta/cytology
- Atrial Natriuretic Factor/pharmacology
- Atrial Natriuretic Factor/physiology
- Cells, Cultured
- DNA Replication/drug effects
- Enzyme Activation
- Lysophospholipids/antagonists & inhibitors
- Lysophospholipids/pharmacology
- Male
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/agonists
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Rats
- Rats, Wistar
- Reactive Oxygen Species/metabolism
- Receptors, Lysophosphatidic Acid/genetics
- Receptors, Lysophosphatidic Acid/metabolism
- Signal Transduction
- Wortmannin
Collapse
Affiliation(s)
- P M Baldini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Anand-Srivastava MB. Natriuretic peptide receptor-C signaling and regulation. Peptides 2005; 26:1044-59. [PMID: 15911072 DOI: 10.1016/j.peptides.2004.09.023] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 09/22/2004] [Indexed: 12/21/2022]
Abstract
The natriuretic peptides (NP) are a family of three polypeptide hormones termed atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). ANP regulates a variety of physiological parameters by interacting with its receptors present on the plasma membrane. These are of three subtypes NPR-A, NPR-B, and NPR-C. NPR-A and NPR-B are guanylyl cyclase receptors, whereas NPR-C is non-guanylyl cyclase receptor and is coupled to adenylyl cyclase inhibition or phospholipase C activation through inhibitory guanine nucleotide regulatory protein (Gi). ANP, BNP, CNP, as well as C-ANP(4-23), a ring deleted peptide that specifically interacts with NPR-C receptor inhibit adenylyl cyclase activity through Gi protein. Unlike other G-protein-coupled receptors, NPR-C receptors have a single transmembrane domain and a short cytoplasmic domain of 37 amino acids, which has a structural specificity like those of other single transmembrane domain receptors. A 37 amino acid cytoplasmic peptide is sufficient to inhibit adenylyl cyclase activity with an apparent Ki similar to that of ANP(99-126) or C-ANP(4-23). In addition, C-ANP(4-23) also stimulates phosphatidyl inositol (PI) turnover in vascular smooth muscle cells (VSMC) which is attenuated by dbcAMP and cAMP-stimulatory agonists, suggesting that NPR-C receptor-mediated inhibition of adenylyl cyclase and resultant decreased levels of cAMP may be responsible for NPR-C-mediated stimulation of PI turnover. Furthermore, the activation of NPR-C receptor by C-ANP(4-23) and CNP inhibits the mitogen-activated protein kinase activity stimulated by endothelin-3, platelet-derived growth factor, phorbol-12 myristate 13-acetate, suggesting that NPR-C receptor might also be coupled to other signal transduction system or that there may be an interaction of the NPR-C receptor and some other signaling pathways. In this review article, NPR-C receptor coupling to different signaling pathways and their regulation will be discussed.
Collapse
Affiliation(s)
- Madhu B Anand-Srivastava
- Department of Physiology and Groupe de Recherché, Sur le Système Nerveux Autonome (GRSNA), Faculty of Medicine, University of Montreal, C.P. 6128, Succ. Centre-ville, Montreal, Que., Canada H3C 3J7.
| |
Collapse
|
24
|
Baldini PM, De Vito P, Vismara D, Bagni C, Zalfa F, Minieri M, Di Nardo P. Atrial Natriuretic Peptide Effects on Intracellular pH Changes and ROS Production in HEPG2 Cells: Role of p38 MAPK and Phospholipase D. Cell Physiol Biochem 2005; 15:77-88. [PMID: 15665518 DOI: 10.1159/000083640] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2004] [Indexed: 11/19/2022] Open
Abstract
AIMS The present study was performed to evaluate Atrial Natriuretic Peptide (ANP) effects on intracellular pH, phospholipase D and ROS production and the possible relationship among them in HepG2 cells. Cancer extracellular microenvironment is more acidic than normal tissues and the activation of NHE-1, the only system able to regulate pHi homeostasis in this condition, can represent an important event in cell proliferation and malignant transformation. METHODS The ANP effects on pHi were evaluated by fluorescence spectrometry. The effects on p38 MAPK and ROS production were evaluated by immunoblots and analysis of DCF-DA fluorescence, respectively. RT-PCR analysis and Western blotting were used to determine the ANP effect on mRNA NHE-1 expression and protein levels. PLD-catalyzed conversion of phosphatidylcholine to phosphatydilethanol (PetOH), in the presence of ethanol, was monitored by thin layer chromatography. RESULTS A significant pHi decrease was observed in ANP-treated HepG2 cells and this effect was paralleled by the enhancement of PLD activity and ROS production. The ANP effect on pHi was coupled to an increased p38 MAPK phosphorylation and a down-regulation of mRNA NHE-1 expression and protein levels. Moreover, the relationship between PLD and ROS production was demonstrated by calphostin-c, a potent inhibitor of PLD. At the same time, all assessed ANP-effects were mediated by NPR-C receptors. CONCLUSION Our results indicate that ANP recruits a signal pathway associated with p38 MAPK, NHE-1 and PLD responsible for ROS production, suggesting a possible role for ANP as novel modulator of ROS generation in HepG2 cells.
Collapse
|
25
|
Anderson SE, Kirkland DM, Beyschau A, Cala PM. Acute effects of 17β-estradiol on myocardial pH, Na+, and Ca2+ and ischemia-reperfusion injury. Am J Physiol Cell Physiol 2005; 288:C57-64. [DOI: 10.1152/ajpcell.00414.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence suggests that 1) ischemia-reperfusion injury is due largely to cytosolic Ca2+ accumulation resulting from functional coupling of Na+/Ca2+ exchange (NCE) with stimulated Na+/H+ exchange (NHE1) and 2) 17β-estradiol (E2) stimulates release of NO, which inhibits NHE1. Thus we tested the hypothesis that acute E2 limits myocardial Na+ and therefore Ca2+ accumulation, thereby limiting ischemia-reperfusion injury. NMR was used to measure cytosolic pH (pHi), Na+ (Na[Formula: see text]), and calcium concentration ([Ca2+]i) in Krebs-Henseleit (KH)-perfused hearts from ovariectomized rats (OVX). Left ventricular developed pressure (LVDP) and lactate dehydrogenase (LDH) release were also measured. Control ischemia-reperfusion was 20 min of baseline perfusion, 40 min of global ischemia, and 40 min of reperfusion. The E2 protocol was identical, except that 1 nM E2 was included in the perfusate before ischemia and during reperfusion. E2 significantly limited the changes in pHi, Na[Formula: see text] and [Ca2+]i during ischemia ( P < 0.05). In control OVX vs. OVX+E2, pHi fell from 6.93 ± 0.03 to 5.98 ± 0.04 vs. 6.96 ± 0.04 to 6.68 ± 0.07; Na[Formula: see text] rose from 25 ± 6 to 109 ± 14 meq/kg dry wt vs. 25 ± 1 to 76 ± 3; [Ca2+]i changed from 365 ± 69 to 1,248 ± 180 nM vs. 293 ± 66 to 202 ± 64 nM. E2 also improved recovery of LVDP and diminished release of LDH during reperfusion. Effects of E2 were diminished by 1 μM Nω-nitro-l-arginine methyl ester. Thus the data are consistent with the hypothesis. However, E2 limitation of increases in [Ca2+]i is greater than can be accounted for by the thermodynamic effect of reduced Na[Formula: see text] accumulation on NCE.
Collapse
|
26
|
Carini R, Grazia De Cesaris M, Splendore R, Baldanzi G, Nitti MP, Alchera E, Filigheddu N, Domenicotti C, Pronzato MA, Graziani A, Albano E. Role of phosphatidylinositol 3-kinase in the development of hepatocyte preconditioning. Gastroenterology 2004; 127:914-23. [PMID: 15362046 DOI: 10.1053/j.gastro.2004.06.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Ischemic preconditioning has been proved effective in reducing ischemia/reperfusion injury during liver surgery. However, the mechanisms involved are still poorly understood. Here, we have investigated the role of phosphatidylinositol 3-kinase (PI3K) in the signal pathway leading to hepatic preconditioning. METHODS PI3K activation was evaluated in isolated rat hepatocytes preconditioned by 10-minute hypoxia followed by 10-minute reoxygenation. RESULTS Hypoxic preconditioning stimulated phosphatidylinositol-3,4,5-triphosphate production and the phosphorylation of PKB/Akt, a downstream target of PI3K. Conversely, PI3K inhibition by wortmannin or LY294002 abolished hepatocyte tolerance against hypoxic damage induced by preconditioning. PI3K activation in preconditioned hepatocytes required the stimulation of adenosine A 2A receptors and was mimicked by adenosine A 2A receptors agonist CGS21680. In the cells treated with CGS21680, PI3K activation was prevented either by inhibiting adenylate cyclase and PKA with, respectively, 2,5-dideoxyadenosine and H89 or by blocking Galphai-protein and Src tyrosine kinase with, respectively, pertussis toxin and PP2. H89 also abolished the phosphorylation of adenosine A 2A receptors. However, the direct PKA activation by forskolin failed to stimulate PI3K. This suggested that PKA-phosphorylated adenosine A 2A receptors may activate PI3K by coupling it with Galphai-protein through Src. We also observed that, by impairing PI3K-mediated activation of phospholypase Cgamma (PLCgamma), wortmannin and LY294002 blocked the downstream transduction of preconditioning signals via protein kinase C (PKC) delta/ isozymes. CONCLUSIONS PI3K is activated following hepatocyte hypoxic preconditioning by the combined stimulation of adenosine A 2A receptors, PKA, Galphai protein, and Src. By regulating PKC-/delta-dependent signals, PI3K can play a key role in the development of hepatic tolerance to hypoxia/reperfusion.
Collapse
Affiliation(s)
- Rita Carini
- Dip. Scienze Mediche, Università "A. Avogadro" del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kulhanek-Heinze S, Gerbes AL, Gerwig T, Vollmar AM, Kiemer AK. Protein kinase A dependent signalling mediates anti-apoptotic effects of the atrial natriuretic peptide in ischemic livers. J Hepatol 2004; 41:414-20. [PMID: 15336444 DOI: 10.1016/j.jhep.2004.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 05/17/2004] [Accepted: 05/27/2004] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIMS Preconditioning of livers with atrial natriuretic peptide (ANP) attenuates ischemia-reperfusion injury (IRI) via the particulate guanylate cyclase. Recently, we have shown that ANP affects the p38 MAPK signalling cascade in the liver. Thus, aim of the present study was to elucidate the role of cGMP- and p38 MAPK-dependent signalling pathways in ANP-mediated anti-apoptotic effects. METHODS Rat livers were perfused with KH-buffer with or without ANP, 8-Br-cGMP (+/-kinase inhibitors) and kept in UW solution (4 degrees C, 24h). Caspase-3-like activity was measured by a fluorometric assay. Expression of cGMP-dependent protein kinases (PKG) in liver tissue was determined by RT-PCR, BAD phosphorylation by Western blot, and cAMP-dependent protein kinase (protein kinase A, PKA) activity by in vitro phosphorylation. RESULTS Compared to control organs, ANP-preconditioning reduced post-ischemic caspase-3-like activity. Neither perfusion with a p38 MAPK inhibitor nor with a PKG inhibitor abolished the ANP-mediated anti-apoptotic action. The two PKG isoforms were demonstrated not to be expressed in the liver. In contrast, liver perfusion with a selective PKA inhibitor abrogated the anti-apoptotic effect of ANP. Phosphorylation of pro-apoptotic BAD by ANP-activated PKA might inhibit liver cell apoptosis. CONCLUSIONS ANP mediates its anti-apoptotic action during ischemic injury via a crosstalk with the PKA pathway.
Collapse
Affiliation(s)
- Stefanie Kulhanek-Heinze
- Department of Pharmacy, Center of Drug Research, University of Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
28
|
Kiemer AK, Förnges AC, Pantopoulos K, Bilzer M, Andriopoulos B, Gerwig T, Kenngott S, Gerbes AL, Vollmar AM. ANP-induced decrease of iron regulatory protein activity is independent of HO-1 induction. Am J Physiol Gastrointest Liver Physiol 2004; 287:G518-26. [PMID: 15087280 DOI: 10.1152/ajpgi.00514.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Atrial natriuretic peptide (ANP)-preconditioned livers are protected from ischemia-reperfusion injury. ANP-treated organs show increased expression of heme oxygenase (HO)-1. Because HO-1 liberates bound iron, the aim of our study was to determine whether ANP affects iron regulatory protein (IRP) activity and, thus, the levels of ferritin. Rat livers were perfused with Krebs-Henseleit buffer [+/-ANP, 8-bromo-cGMP (8-Br-cGMP), and tin protoporphyrin, 20 min], stored in University of Wisconsin solution (4 degrees C, 24 h), and reperfused (120 min). IRP activity was assessed by gel-shift assays, and ferritin, IRP phosphorylation, and PKC localization were assessed by Western blot. Control livers displayed decreased IRP activity at the end of ischemia but no change in ferritin content during ischemia and reperfusion. ANP-pretreated livers showed reduced IRP activity, an effect mimicked by 8-Br-cGMP. Ferritin levels were increased in ANP-pretreated organs. Simultaneous perfusion of livers with ANP and tin protoporphyrin did not reduce ANP-induced action, arguing against a role for HO-1 in changes in IRP activity. ANP and 8-Br-cGMP decreased membrane localization of PKC-alpha and PKC-epsilon, but this modulation of PKC seems unrelated to inhibition of IRP binding. This work shows the cGMP-mediated attenuation of IRP binding activity by ANP, which results in increased hepatic ferritin levels. This change in IRPs is independent of ANP-induced HO-1 and reduced PKC activation.
Collapse
Affiliation(s)
- Alexandra K Kiemer
- Department of Pharmacy, Center of Drug Research, University of Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kim JS, Ohshima S, Pediaditakis P, Lemasters JJ. Nitric oxide protects rat hepatocytes against reperfusion injury mediated by the mitochondrial permeability transition. Hepatology 2004; 39:1533-43. [PMID: 15185294 DOI: 10.1002/hep.20197] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We investigated the effects of nitric oxide (NO) on hepatocellular killing after simulated ischemia/reperfusion and characterized signaling factors triggering cytoprotection by NO. Cultured rat hepatocytes were incubated in anoxic Krebs-Ringer-HEPES buffer at pH 6.2 for 4 hours and reoxygenated at pH 7.4 for 2 hours. During reoxygenation, some hepatocytes were exposed to combinations of NO donors (S-nitroso-N-acetylpenicillamine [SNAP] and others), a cGMP analogue (8-bromoguanosine-3,5-cGMP [8-Br-cGMP]), and a cGMP-dependent protein kinase inhibitor (KT5823). Cell viability was determined by way of propidium iodide fluorometry. Inner membrane permeabilization and mitochondrial depolarization were monitored by confocal microscopy. SNAP, but not oxidized SNAP, increased cGMP during reperfusion and decreased cell killing. Other NO donors and 8-Br-cGMP also prevented cell killing. Both guanylyl cyclase and cGMP-dependent kinase inhibition blocked the cytoprotection of NO. However, 5-hydroxydecanoate and diazoxide- mitochondrial K(ATP) channel modulators-did not affect NO-dependent cytoprotection or reperfusion injury. During reoxygenation, confocal microscopy showed mitochondrial repolarization, followed by depolarization, inner membrane permeabilization, and cell death. In the presence of either SNAP or 8-Br-cGMP, mitochondrial repolarization was sustained after reperfusion preventing inner membrane permeabilization and cell death. In isolated rat liver mitochondria, a cGMP analogue in the presence of a cytosolic extract and adenosine triphosphate blocked the Ca(2+)-induced mitochondrial permeability transition (MPT), an effect that was reversed by KT5823. In conclusion, NO prevents MPT-dependent necrotic killing of ischemic hepatocytes after reperfusion through a guanylyl cyclase and cGMP-dependent kinase signaling pathway, events that may represent the target of NO cytoprotection in preconditioning.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
30
|
Weber NC, Blumenthal SB, Hartung T, Vollmar AM, Kiemer AK. ANP inhibits TNF-alpha-induced endothelial MCP-1 expression--involvement of p38 MAPK and MKP-1. J Leukoc Biol 2003; 74:932-41. [PMID: 12960255 DOI: 10.1189/jlb.0603254] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Atrial natriuretic peptide (ANP) has been shown to reduce tumor necrosis factor-alpha (TNF-alpha)-induced activation of endothelial cells via inhibition of p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-kappaB pathways. The aim of this study was to determine whether ANP is able to inhibit TNF-alpha-induced expression of monocyte chemoattractant protein-1 (MCP-1) in endothelial cells and to elucidate the mechanisms involved. Pretreatment of human umbilical vein endothelial cells (HUVEC) with ANP significantly reduced TNF-alpha-induced expression of MCP-1 protein and mRNA. The effects of ANP were shown to be mediated via the guanylyl-cyclase (GC)-coupled A receptor. Activation of the other GC-coupled receptor (natriuretic peptide receptor-B) by the C-type natriuretic peptide as well as activation of soluble GC with S-nitroso-L-glutathione (GSNO) exerted similar effects as ANP, supporting a role for cyclic guanosine monophosphate (cGMP) in the signal transduction. Antisense experiments showed a requirement of MAPK phosphatase-1 (MKP-1) induction and therefore, inhibition of p38 MAPK in the ANP-mediated inhibition of TNF-alpha-induced expression of MCP-1. To investigate a potential interplay between TNF-alpha-induced activation of p38 MAPK and NF-kappaB, the p38 MAPK inhibitor SB203580 and a dominant-negative p38 MAPK mutant were used. The results indicated that the blockade of p38 MAPK activity leads to an increased activation of NF-kappaB and therefore, suggest a counter-regulatory action of p38 MAPK and NF-kappaB. As antisense experiments revealed a pivotal role for MKP-1 induction and therefore, p38 MAPK inhibition in ANP-mediated attenuation of MCP-1 expression, this action seems to be rather independent of NF-kappaB inhibition.
Collapse
Affiliation(s)
- Nina C Weber
- Department of Pharmacy, University of Munich, Germany
| | | | | | | | | |
Collapse
|
31
|
Abstract
Ischemia/reperfusion is the main cause of hepatic damage consequent to temporary clamping of the hepatoduodenal ligament during liver surgery as well as graft failure after liver transplantation. In recent years, a number of animal studies have shown that pre-exposure of the liver to transient ischemia, hyperthermia, or mild oxidative stress increases the tolerance to reperfusion injury, a phenomenon known as hepatic preconditioning. The development of hepatic preconditioning can be differentiated into 2 phases. An immediate phase (early preconditioning) occurs within minutes and involves the direct modulation of energy supplies, pH regulation, Na(+) and Ca(2+) homeostasis, and caspase activation. The subsequent phase (late preconditioning) begins 12-24 hours after the stimulus and requires the synthesis of multiple stress-response proteins, including heat shock proteins HSP70, HSP27, and HSP32/heme oxygenase 1. Hepatic preconditioning is not limited to parenchymal cells but ameliorates sinusoidal perfusion, prevents postischemic neutrophil infiltration, and decreases the production of proinflammatory cytokines by Kupffer cells. This latter effect is important in improving systemic disorders associated with hepatic ischemia/reperfusion. The signals triggering hepatic preconditioning have been partially characterized, showing that adenosine, nitric oxide, and reactive oxygen species can activate multiple protein kinase cascades involving, among others, protein kinase C and p38 mitogen-activated protein kinase. These observations, along with preliminary studies in humans, give a rationale to perform clinical trials aimed at verifying the possible application of hepatic preconditioning in preventing ischemia/reperfusion injury during liver surgery.
Collapse
Affiliation(s)
- Rita Carini
- Department of Medical Sciences, A. Avogdro University of East Piedmont, Via Solaroli 17, 28100 Novara, Italy
| | | |
Collapse
|
32
|
Kuhn M. Structure, Regulation, and Function of Mammalian Membrane Guanylyl Cyclase Receptors, With a Focus on Guanylyl Cyclase-A. Circ Res 2003; 93:700-9. [PMID: 14563709 DOI: 10.1161/01.res.0000094745.28948.4d] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Besides soluble guanylyl cyclase (GC), the receptor for NO, there are at least seven plasma membrane enzymes that synthesize the second-messenger cGMP. All membrane GCs (GC-A through GC-G) share a basic topology, which consists of an extracellular ligand binding domain, a short transmembrane region, and an intracellular domain that contains the catalytic (GC) region. Although the presence of the extracellular domain suggests that all these enzymes function as receptors, specific ligands have been identified for only three of them (GC-A through GC-C). GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure and volume homeostasis and also local antihypertrophic actions in the heart. GC-B is a specific receptor for C-type natriuretic peptide, having more of a paracrine function in vascular regeneration and endochondral ossification. GC-C mediates the effects of guanylin and uroguanylin on intestinal electrolyte and water transport and on epithelial cell growth and differentiation. GC-E and GC-F are colocalized within the same photoreceptor cells of the retina and have an important role in phototransduction. Finally, the functions of GC-D (located in the olfactory neuroepithelium) and GC-G (expressed in highest amounts in lung, intestine, and skeletal muscle) are completely unknown. This review discusses the structure and functions of membrane GCs, with special emphasis on the physiological endocrine and cardiac functions of GC-A, the regulation of hormone-dependent GC-A activity, and the relevance of alterations of the atrial natriuretic peptide/GC-A system to cardiovascular diseases.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Pharmacology and Toxicology, Universitätsklinikum Münster, Domagkstrasse 12, D-48149 Münster, Germany.
| |
Collapse
|
33
|
Guo HS, Cai ZX, Zheng HF, Li XL, Cui YF, Wang ZY, Xu WX, Lee SJ, Kim YC. Role of calcium-activated potassium currents in CNP-induced relaxation of gastric antral circular smooth muscle in guinea pigs. World J Gastroenterol 2003; 9:2054-9. [PMID: 12970905 PMCID: PMC4656673 DOI: 10.3748/wjg.v9.i9.2054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate ion channel mechanism in CNP-induced relaxation of gastric circular smooth muscle in guinea pigs.
METHODS: Spontaneous contraction of gastric smooth muscle was recorded by a four-channel physiograph. The whole cell patch-clamp technique was used to record calcium-activated potassium currents and membrane potential in the gastric myocytes isolated by collagenase.
RESULTS: C-type natriuretic peptide (CNP) markedly inhibited the spontaneous contraction in a dose-dependent manner in gastric circular smooth muscle in guinea pigs. Ly83583, an inhibitor of guanylate cyclase, weakened CNP-induced inhibition on spontaneous contraction but Zaparinast, an inhibitor of cGMP sensitive phosphoesterase, potentiated CNP-induced inhibition in gastric circular smooth muscles. The inhibitory effects of CNP on spontaneous contraction were blocked by tetrathylammonium (TEA), a nonselective potassium channel blocker. C N P hyperpolarized membrane potential from -60.0 mV ± 2.0 mV to -68.3 mV ± 3.0 mV in a single gastric myocyte. CNP increased calcium-activated potassium currents (IK(ca)) in a dose-dependent manner in gastric circular myocytes. CNP also increased the spontaneously transient outward currents (STOCs). Ly83583 partly blocked CNP-induced increase of calcium-activated potassium currents, but Zaparinast potented the effect.
CONCLUSION: CNP inhibits spontaneous contraction, and potassium channel may be involved in the process in gastric circular smooth muscle of guinea pigs. CNP-induced increase of IK(ca) is mediated by a cGMP dependent pathway.
Collapse
Affiliation(s)
- Hui-Shu Guo
- Department of Physiology, College of Medicine, Yanbian University, Yanji 133000, Jilin Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|