1
|
Walls AB, Andersen JV, Waagepetersen HS, Bak LK. Fueling Brain Inhibition: Integrating GABAergic Neurotransmission and Energy Metabolism. Neurochem Res 2025; 50:136. [PMID: 40189668 DOI: 10.1007/s11064-025-04384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Despite decades of research in brain energy metabolism and to what extent different cell types utilize distinct substrates for their energy metabolism, this topic remains a vibrant area of neuroscience research. In this review, we focus on the substrates utilized by the inhibitory GABAergic neurons, which has been less explored than glutamatergic neurons. First, we discuss how GABAergic neurons may utilize both glucose, lactate, or ketone bodies under different functional conditions, and provide some preliminary data suggesting that unlike glutamatergic neurons, GABAergic neurons work well when substrate supply is restricted to lactate. We end by discussing the role of GABAergic neuron energy metabolism in pathologies where failure of inhibitory function play a central role, namely epilepsy, hepatic encephalopathy, and Alzheimer's disease.
Collapse
Affiliation(s)
- Anne B Walls
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Capital Region Hospital Pharmacy, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Lasse K Bak
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
- Translational Research Center (TRACE), Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
2
|
Andersen JV. The Glutamate/GABA-Glutamine Cycle: Insights, Updates, and Advances. J Neurochem 2025; 169:e70029. [PMID: 40066661 PMCID: PMC11894596 DOI: 10.1111/jnc.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Synaptic homeostasis of the principal neurotransmitters glutamate and GABA is tightly regulated by an intricate metabolic coupling between neurons and astrocytes known as the glutamate/GABA-glutamine cycle. In this cycle, astrocytes take up glutamate and GABA from the synapse and convert these neurotransmitters into glutamine. Astrocytic glutamine is subsequently transferred to neurons, serving as the principal precursor for neuronal glutamate and GABA synthesis. The glutamate/GABA-glutamine cycle integrates multiple cellular processes, including neurotransmitter release, uptake, synthesis, and metabolism. All of these processes are deeply interdependent and closely coupled to cellular energy metabolism. Astrocytes display highly active mitochondrial oxidative metabolism and several unique metabolic features, including glycogen storage and pyruvate carboxylation, which are essential to sustain continuous glutamine release. However, new roles of oligodendrocytes and microglia in neurotransmitter recycling are emerging. Malfunction of the glutamate/GABA-glutamine cycle can lead to severe synaptic disruptions and may be implicated in several brain diseases. Here, I review central aspects and recent advances of the glutamate/GABA-glutamine cycle to highlight how the cycle is functionally connected to critical brain functions and metabolism. First, an overview of glutamate, GABA, and glutamine transport is provided in relation to neurotransmitter recycling. Then, central metabolic aspects of the glutamate/GABA-glutamine cycle are reviewed, with a special emphasis on the critical metabolic roles of glial cells. Finally, I discuss how aberrant neurotransmitter recycling is linked to neurodegeneration and disease, focusing on astrocyte metabolic dysfunction and brain lipid homeostasis as emerging pathological mechanisms. Instead of viewing the glutamate/GABA-glutamine cycle as individual biochemical processes, a more holistic and integrative approach is needed to advance our understanding of how neurotransmitter recycling modulates brain function in both health and disease.
Collapse
Affiliation(s)
- Jens V. Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Zielińska M, Popek M, Albrecht J. Neuroglia in hepatic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:191-212. [PMID: 40148045 DOI: 10.1016/b978-0-443-19102-2.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia contribute to the pathophysiology of hepatic encephalopathy (HE) either beneficially or detrimentally. Pathogenesis of HE is linked to damage triggered by blood-derived toxins, with ammonia being the main causative factor. Neuroglial cells, especially astrocytes and microglia, respond to HE-associated systemic and central signals and undergo complex and variable changes in their metabolism, morphology, and function, which include ion and water dyshomeostasis in conjunction with neurotransmission imbalance and neuroinflammation. HE-induced alterations of astrocytes are defined as astrocytopathy, with aberrant astrocytes resulting in either gain or loss of functions. In the chronic HE, the presence of Alzheimer type II cells is a histologic hallmark, with asthenic astrocytes emerging as a newcomer. In acute HE, rapid swelling of astrocytes is a primary cause of cerebral edema and mortality. This chapter reviews the dominant role of astrocytes in the pathogenesis of HE resulting from acute and chronic liver failure, mainly in experimental models. The focus is on the loss of homeostatic function bearing upon the functioning of the glymphatic system, aberrant neurotransmission as a consequence of astrocyte-neuron miscommunication, and the concordant neuroinflammatory response of astrocytes and microglia. The chapter concludes with a delineation of concepts for future research.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | - Mariusz Popek
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Prasad SK, Acharjee A, Singh VV, Trigun SK, Acharjee P. Modulation of brain energy metabolism in hepatic encephalopathy: impact of glucose metabolic dysfunction. Metab Brain Dis 2024; 39:1649-1665. [PMID: 39120853 DOI: 10.1007/s11011-024-01407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Cerebral function is linked to a high level of metabolic activity and relies on glucose as its primary energy source. Glucose aids in the maintenance of physiological brain activities; as a result, a disruption in metabolism has a significant impact on brain function, launching a chain of events that leads to neuronal death. This metabolic insufficiency has been observed in a variety of brain diseases and neuroexcitotoxicity disorders, including hepatic encephalopathy. It is a significant neurological complication that develops in people with liver disease, ranging from asymptomatic abnormalities to coma. Hyperammonemia is the main neurotoxic villain in the development of hepatic encephalopathy and induces a wide range of complications in the brain. The neurotoxic effects of ammonia on brain function are thought to be mediated by impaired glucose metabolism. Accordingly, in this review, we provide an understanding of deranged brain energy metabolism, emphasizing the role of glucose metabolic dysfunction in the pathogenesis of hepatic encephalopathy. We also highlighted the differential metabolic profiles of brain cells and the status of metabolic cooperation between them. The major metabolic pathways that have been explored are glycolysis, glycogen metabolism, lactate metabolism, the pentose phosphate pathway, and the Krebs cycle. Furthermore, the lack of efficacy in current hepatic encephalopathy treatment methods highlights the need to investigate potential therapeutic targets for hepatic encephalopathy, with regulating deficient bioenergetics being a viable alternative in this case. This review also demonstrates the importance of the development of glucose metabolism-focused disease diagnostics and treatments, which are now being pursued for many ailments.
Collapse
Affiliation(s)
- Shambhu Kumar Prasad
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Arup Acharjee
- Department of Zoology, University of Allahabad, Prayagraj, 211002, India.
| | - Vishal Vikram Singh
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surendra Kumar Trigun
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Papia Acharjee
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Sørensen M, Andersen JV, Bjerring PN, Vilstrup H. Hepatic encephalopathy as a result of ammonia-induced increase in GABAergic tone with secondary reduced brain energy metabolism. Metab Brain Dis 2024; 40:19. [PMID: 39560844 PMCID: PMC11576828 DOI: 10.1007/s11011-024-01473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome caused by liver insufficiency and/or portosystemic shunting. HE is mostly episodic and as such reversible. Hyperammonemia clearly plays a key role in the pathophysiology, but the precise detrimental events in the brain leading to HE remain equivocal. Several pathogenic models have been proposed, but few have been linked to clinical studies and observations. Decreased oxygen metabolism is observed in both type A and C HE and in this review, we advocate that this reflects an actual reduced oxygen demand and not a primary cause of HE. As driving force, we propose that the hyperammonemia via astrocytic glutamine synthetase causes an increased γ-aminobutyric acid (GABA) mediated neuro-inhibition which subsequently leads to an overall decreased energy demand of the brain, something that can be enhanced by concomitant neuroinflammation. This also explains the reversibility of the condition.
Collapse
Affiliation(s)
- Michael Sørensen
- Department of Internal Medicine, Viborg Regional Hospital, Viborg, Denmark.
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark.
| | - Jens Velde Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nissen Bjerring
- Department of Intestinal Failure and Liver Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Shurubor YI, Krasnikov AB, Isakova EP, Deryabina YI, Yudin VS, Keskinov AA, Krasnikov BF. Energy Metabolites and Indicative Significance of α-Ketoglutarate and α-Ketoglutaramate in Assessing the Progression of Chronic Hepatoencephalopathy. Biomolecules 2024; 14:217. [PMID: 38397454 PMCID: PMC10887089 DOI: 10.3390/biom14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In the example of a rat model with chronic hepatoencephalopathy (HE), changes in the organ morphology of rats affect the balance of metabolites of the tricarboxylic acid (TCA) cycle and metabolites of the glutamine-glutamate (Gln-Glu) cycle, namely α-ketoglutarate (αKG) and α-ketoglutaramate (αKGM), as well as the enzymes associated with them, ω-amidase (ωA) and glutamine transaminase (GTK). This model of rats was obtained as a result of 2-22 weeks of consumption by animals of hepatotoxin thioacetamide (TAA) added to drinking water at a concentration of 0.4 g/L. The control (n = 26) and TAA-induced (n = 55) groups of rats consisted of 11 cohorts each. The control cohorts consisted of 2-4 rats, and the TAA-induced cohorts consisted of 4-7 individuals. Every two weeks, samples of blood plasma, liver, kidney, and brain tissues were taken from the next cohort of rats (a total of 320 samples). By the end of the experiment, irreversible morphological changes were observed in the organs of rats: the weight of the animals was reduced up to ~45%, the weight of the kidneys up to 5%, the brain up to ~20%, and the weight of the liver increased up to ~20%. The analysis revealed: (i) a decrease in the activity of ωA and GTK in the tissues of the brain, kidneys, and liver of rats with chronic HE (by ~3, 40, and 65% and ~10, 60, and 70%, respectively); and (ii) the appearance of a significant imbalance in the content of metabolites of the Gln-Glu cycle, αKG, and αKGM. It is indicative that a ~1.5-12-fold increase in the level of αKG in the blood plasma and tissues of the organs of rats with chronic HE was accompanied by a synchronous, ~1.2-2.5-fold decrease in the level of αKGM. The data obtained indicate an essential involvement of the Gln-Glu cycle in the regulation of energy metabolism in rats under conditions of chronic HE. Attention is focused on the significance of the αKG/αKGM ratio, which can act as a potential marker for diagnosing the degree of HE development.
Collapse
Affiliation(s)
- Yevgeniya I. Shurubor
- Centre for Strategic Planning of FMBA of Russia, Pogodinskaya St., Bld. 10, 119121 Moscow, Russia; (Y.I.S.); (V.S.Y.); (A.A.K.)
| | | | - Elena P. Isakova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.P.I.); (Y.I.D.)
| | - Yulia I. Deryabina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.P.I.); (Y.I.D.)
| | - Vladimir S. Yudin
- Centre for Strategic Planning of FMBA of Russia, Pogodinskaya St., Bld. 10, 119121 Moscow, Russia; (Y.I.S.); (V.S.Y.); (A.A.K.)
| | - Anton A. Keskinov
- Centre for Strategic Planning of FMBA of Russia, Pogodinskaya St., Bld. 10, 119121 Moscow, Russia; (Y.I.S.); (V.S.Y.); (A.A.K.)
| | - Boris F. Krasnikov
- Centre for Strategic Planning of FMBA of Russia, Pogodinskaya St., Bld. 10, 119121 Moscow, Russia; (Y.I.S.); (V.S.Y.); (A.A.K.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, N.I. Pirogov Russian National Research Medical University, 1 Ostrovitianova Str., 117997 Moscow, Russia
| |
Collapse
|
7
|
Baba C, Yukimasa S, Yasuno R, Ichiyanagi H, Ninagawa J, Kasuya S, Kasahara M, Horikawa R, Nagasaka Y, Suzuki Y. Anesthesia management protocol for liver transplantation as treatment for ornithine transcarbamylase deficiency. Paediatr Anaesth 2023; 33:620-630. [PMID: 37401903 DOI: 10.1111/pan.14691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Ornithine transcarbamylase deficiency is an X-linked genetic disorder that induces accumulation of ammonia in the liver and is the most common urea cycle disorder. The clinical manifestation of ornithine transcarbamylase deficiency is hyperammonemia that causes irreversible neurological damage. Liver transplantation is a curative therapy for ornithine transcarbamylase deficiency. The aim of this study is to suggest, from our previous experience, an anesthesia management protocol of liver transplantation for ornithine transcarbamylase deficiency, particularly focused on liver transplantation for cases with uncontrolled hyperammonemia. METHOD We retrospectively reviewed our anesthesia-related experience in all cases of liver transplantation for ornithine transcarbamylase deficiency in our center. RESULTS Twenty-nine liver transplantation cases for ornithine transcarbamylase deficiency were found between November 2005 and March 2021 in our center. Of these, 25 cases were stable through the perioperative period. However, 2 cases with carrier donor graft had hyperammonemia after liver transplantation. Another two cases had uncontrolled hyperammonemia before liver transplantation, even with continuous hemodialysis. They underwent life-saving liver transplantation. Their metabolic status stabilized after the anhepatic phase. CONCLUSION Liver transplantation for cases with uncontrolled hyperammonemia can be performed with proper management. Second, liver transplantation with carrier donors should be avoided because of the risk of postoperative recurrence.
Collapse
Affiliation(s)
- Chiaki Baba
- Division of Anesthesia, Department of Critical Care and Anesthesia, National Center for Child Health and Development, Tokyo, Japan
| | - Sho Yukimasa
- Division of Anesthesia, Department of Critical Care and Anesthesia, National Center for Child Health and Development, Tokyo, Japan
| | - Risa Yasuno
- Department of Anesthesiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroki Ichiyanagi
- Division of Anesthesia, Department of Critical Care and Anesthesia, National Center for Child Health and Development, Tokyo, Japan
| | - Jun Ninagawa
- Division of Anesthesia, Department of Critical Care and Anesthesia, National Center for Child Health and Development, Tokyo, Japan
| | - Shugo Kasuya
- Division of Anesthesia, Department of Critical Care and Anesthesia, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Center for Organ Transplantation, National Center for Child Health and Development, Tokyo, Japan
| | - Reiko Horikawa
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Yasuko Nagasaka
- Department of Anesthesiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuyuki Suzuki
- Division of Anesthesia, Department of Critical Care and Anesthesia, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
8
|
Zhu R, Liu L, Zhang G, Dong J, Ren Z, Li Z. The pathogenesis of gut microbiota in hepatic encephalopathy by the gut-liver-brain axis. Biosci Rep 2023; 43:BSR20222524. [PMID: 37279097 PMCID: PMC10272964 DOI: 10.1042/bsr20222524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neurological disease occurring in patients with hepatic insufficiency and/or portal-systemic blood shunting based on cirrhosis. The pathogenesis is not completely clear till now, but it is believed that hyperammonemia is the core of HE. Hyperammonemia caused by increased sources of ammonia and decreased metabolism further causes mental problems through the gut-liver-brain axis. The vagal pathway also plays a bidirectional role in the axis. Intestinal microorganisms play an important role in the pathogenesis of HE through the gut-liver-brain axis. With the progression of cirrhosis to HE, intestinal microbial composition changes gradually. It shows the decrease of potential beneficial taxa and the overgrowth of potential pathogenic taxa. Changes in gut microbiota may lead to a variety of effects, such as reduced production of short-chain fatty acids (SCFAs), reduced production of bile acids, increased intestinal barrier permeability, and bacterial translocation. The treatment aim of HE is to decrease intestinal ammonia production and intestinal absorption of ammonia. Prebiotics, probiotics, antibiotics, and fecal microbiota transplantation (FMT) can be used to manipulate the gut microbiome to improve hyperammonemia and endotoxemia. Especially the application of FMT, it has become a new treated approach to target microbial composition and function. Therefore, restoring intestinal microbial homeostasis can improve the cognitive impairment of HE, which is a potential treatment method.
Collapse
Affiliation(s)
- Ruirui Zhu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Liwen Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Guizhen Zhang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Jianxia Dong
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Zhiqin Li
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
9
|
Sun T, Feng M, Manyande A, Xiang H, Xiong J, He Z. Regulation of mild cognitive impairment associated with liver disease by humoral factors derived from the gastrointestinal tract and MRI research progress: a literature review. Front Neurosci 2023; 17:1206417. [PMID: 37397455 PMCID: PMC10312011 DOI: 10.3389/fnins.2023.1206417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Patients with liver disease are prone to various cognitive impairments. It is undeniable that cognitive impairment is often regulated by both the nervous system and the immune system. In this review our research focused on the regulation of mild cognitive impairment associated with liver disease by humoral factors derived from the gastrointestinal tract, and revealed that its mechanisms may be involved with hyperammonemia, neuroinflammation, brain energy and neurotransmitter metabolic disorders, and liver-derived factors. In addition, we share the emerging research progress in magnetic resonance imaging techniques of the brain during mild cognitive impairment associated with liver disease, in order to provide ideas for the prevention and treatment of mild cognitive impairment in liver disease.
Collapse
Affiliation(s)
- Tianning Sun
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Hongbing Xiang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Xiong
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhigang He
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Cellular Pathogenesis of Hepatic Encephalopathy: An Update. Biomolecules 2023; 13:biom13020396. [PMID: 36830765 PMCID: PMC9953810 DOI: 10.3390/biom13020396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome derived from metabolic disorders due to various liver failures. Clinically, HE is characterized by hyperammonemia, EEG abnormalities, and different degrees of disturbance in sensory, motor, and cognitive functions. The molecular mechanism of HE has not been fully elucidated, although it is generally accepted that HE occurs under the influence of miscellaneous factors, especially the synergistic effect of toxin accumulation and severe metabolism disturbance. This review summarizes the recently discovered cellular mechanisms involved in the pathogenesis of HE. Among the existing hypotheses, ammonia poisoning and the subsequent oxidative/nitrosative stress remain the mainstream theories, and reducing blood ammonia is thus the main strategy for the treatment of HE. Other pathological mechanisms mainly include manganese toxicity, autophagy inhibition, mitochondrial damage, inflammation, and senescence, proposing new avenues for future therapeutic interventions.
Collapse
|
11
|
Shurubor YI, Rogozhin AE, Isakova EP, Deryabina YI, Krasnikov BF. Tricarboxylic Acid Metabolite Imbalance in Rats with Acute Thioacetamide-Induced Hepatic Encephalopathy Indicates Incomplete Recovery. Int J Mol Sci 2023; 24:ijms24021384. [PMID: 36674898 PMCID: PMC9861856 DOI: 10.3390/ijms24021384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Exposure to the toxin thioacetamide (TAA) causes acute hepatic encephalopathy (HE), changes in the functioning of systemic organs, and an imbalance in a number of energy metabolites. The deferred effects after acute HE development are poorly understood. The study considers the balance of the tricarboxylic acid (TCA) cycle metabolites in the blood plasma, liver, kidneys, and brain tissues of rats in the post-rehabilitation period. The samples of the control (n = 3) and TAA-induced groups of rats (n = 13) were collected six days after the administration of a single intraperitoneal TAA injection at doses of 200, 400, and 600 mg/kg. Despite the complete physiological recovery of rats by this date, a residual imbalance of metabolites in all the vital organs was noted. The results obtained showed a trend of stabilizing processes in the main organs of the animals and permit the use of these data both for prognostic purposes and the choice of potential therapeutic agents.
Collapse
Affiliation(s)
- Yevgeniya I. Shurubor
- Centre for Strategic Planning and Management of Medical and Biological Health Risks, Federal Medical Biological Agency of The Russian Federation, Moscow 119121, Russia
| | - Alexander E. Rogozhin
- Valiev Institute of Physics and Technology of the Russian Academy of Sciences, Moscow 117218, Russia
| | - Elena P. Isakova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Yulia I. Deryabina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Boris F. Krasnikov
- Centre for Strategic Planning and Management of Medical and Biological Health Risks, Federal Medical Biological Agency of The Russian Federation, Moscow 119121, Russia
- Correspondence: ; Tel.: +7-(985)-095-5445
| |
Collapse
|
12
|
Sun T, Du H, Li Z, Xiong J, Liu Y, Li Y, Zhang W, Liang F, He J, Liu X, Xiang H. Decoding the contributions of gut microbiota and cerebral metabolism in acute liver injury mice with and without cognitive dysfunction. CNS Neurosci Ther 2022. [PMID: 36585803 DOI: 10.1111/cns.14069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 01/01/2023] Open
Abstract
AIMS Patients with acute liver injury (ALI) can develop cognitive dysfunction (CD). The study investigated the role of gut microbiota and cerebral metabolism in ALI mice with and without CD. METHODS Male C57BL/6 mice that received thioacetamide were classified into ALI mice with (susceptible) or without (unsusceptible) CD-like phenotypes by hierarchical cluster analysis of behavior. The role of gut microbiota was investigated by 16S ribosomal RNA gene sequencing and feces microbiota transplantation (FMT). 1 H-[13 C] NMR and electrophysiology were used to detect the changes in cerebral neurotransmitter metabolic and synaptic transition in neurons or astrocytes. RESULTS Apromixlay 55% (11/20) of mice developed CD and FMT from the susceptible group transmitted CD to gut microbiota-depleted mice. Alloprevotella was enriched in the susceptible group. GABA production was decreased in the frontal cortex, while hippocampal glutamine was increased in the susceptible group. Altered Escherichia. Shigella and Alloprevotella were correlated with behaviors and cerebral metabolic kinetics and identified as good predictors of ALI-induced CD. The frequencies of both miniature inhibitory and excitatory postsynaptic currents in hippocampal CA1 and prefrontal cortex were decreased in the susceptible group. CONCLUSION Altered transmitter metabolism and synaptic transmission in the hippocampus and prefrontal cortex and gut microbiota disturbance may lead to ALI-induced CD.
Collapse
Affiliation(s)
- Tianning Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongying Du
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhen Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiong
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanbo Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujuan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencui Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangyuan Liang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingang He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongbing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Ribas GS, Lopes FF, Deon M, Vargas CR. Hyperammonemia in Inherited Metabolic Diseases. Cell Mol Neurobiol 2022; 42:2593-2610. [PMID: 34665389 PMCID: PMC11421644 DOI: 10.1007/s10571-021-01156-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Ammonia is a neurotoxic compound which is detoxified through liver enzymes from urea cycle. Several inherited or acquired conditions can elevate ammonia concentrations in blood, causing severe damage to the central nervous system due to the toxic effects exerted by ammonia on the astrocytes. Therefore, hyperammonemic patients present potentially life-threatening neuropsychiatric symptoms, whose severity is related with the hyperammonemia magnitude and duration, as well as the brain maturation stage. Inherited metabolic diseases caused by enzymatic defects that compromise directly or indirectly the urea cycle activity are the main cause of hyperammonemia in the neonatal period. These diseases are mainly represented by the congenital defects of urea cycle, classical organic acidurias, and the defects of mitochondrial fatty acids oxidation, with hyperammonemia being more severe and frequent in the first two groups mentioned. An effective and rapid treatment of hyperammonemia is crucial to prevent irreversible neurological damage and it depends on the understanding of the pathophysiology of the diseases, as well as of the available therapeutic approaches. In this review, the mechanisms underlying the hyperammonemia and neurological dysfunction in urea cycle disorders, organic acidurias, and fatty acids oxidation defects, as well as the therapeutic strategies for the ammonia control will be discussed.
Collapse
Affiliation(s)
- Graziela Schmitt Ribas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
| | - Franciele Fátima Lopes
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Marion Deon
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Carmen Regla Vargas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
14
|
Sørensen M, Walls AB, Dam G, Bak LK, Andersen JV, Ott P, Vilstrup H, Schousboe A. Low cerebral energy metabolism in hepatic encephalopathy reflects low neuronal energy demand. Role of ammonia-induced increased GABAergic tone. Anal Biochem 2022; 654:114766. [PMID: 35654134 DOI: 10.1016/j.ab.2022.114766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/01/2022]
Abstract
Hepatic encephalopathy (HE) is a frequent and devastating but generally reversible neuropsychiatric complication secondary to chronic and acute liver failure. During HE, brain energy metabolism is markedly reduced and it remains unclear whether this is due to external or internal energy supply limitations, or secondary to depressed neuronal cellular functions - and if so, which mechanisms that are in play. The extent of deteriorated cerebral function correlates to blood ammonia levels but the metabolic link to ammonia is not clear. Early studies suggested that high levels of ammonia inhibited key tricarboxylic acid (TCA) cycle enzymes thus limiting mitochondrial energy production and oxygen consumption; however, later studies by us and others showed that this is not the case in vivo. Here, based on a series of translational studies from our group, we advocate the view that the low cerebral energy metabolism of HE is likely to be caused by neuronal metabolic depression due to an elevated GABAergic tone rather than by restricted energy availability. The increased GABAergic tone seems to be secondary to synthesis of large amounts of glutamine in astrocytes for detoxification of ammonia with the glutamine acting as a precursor for elevated neuronal synthesis of vesicular GABA.
Collapse
Affiliation(s)
- Michael Sørensen
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Denmark; Department of Internal Medicine, Viborg Regional Hospital, Denmark.
| | - Anne Byriel Walls
- Department of Drug Design & Pharmacology, University of Copenhagen, Denmark
| | - Gitte Dam
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Denmark
| | - Lasse Kristoffer Bak
- Department of Drug Design & Pharmacology, University of Copenhagen, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | - Peter Ott
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Denmark
| | - Arne Schousboe
- Department of Drug Design & Pharmacology, University of Copenhagen, Denmark
| |
Collapse
|
15
|
Zimmermann M, Reichert AS. Rapid metabolic and bioenergetic adaptations of astrocytes under hyperammonemia - a novel perspective on hepatic encephalopathy. Biol Chem 2021; 402:1103-1113. [PMID: 34331848 DOI: 10.1515/hsz-2021-0172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/18/2021] [Indexed: 12/17/2022]
Abstract
Hepatic encephalopathy (HE) is a well-studied, neurological syndrome caused by liver dysfunctions. Ammonia, the major toxin during HE pathogenesis, impairs many cellular processes within astrocytes. Yet, the molecular mechanisms causing HE are not fully understood. Here we will recapitulate possible underlying mechanisms with a clear focus on studies revealing a link between altered energy metabolism and HE in cellular models and in vivo. The role of the mitochondrial glutamate dehydrogenase and its role in metabolic rewiring of the TCA cycle will be discussed. We propose an updated model of ammonia-induced toxicity that may also be exploited for therapeutic strategies in the future.
Collapse
Affiliation(s)
- Marcel Zimmermann
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Wu Y, Lu C, Pan N, Zhang M, An Y, Xu M, Zhang L, Guo Y, Tan L. Serum lactate dehydrogenase activities as systems biomarkers for 48 types of human diseases. Sci Rep 2021; 11:12997. [PMID: 34155288 PMCID: PMC8217520 DOI: 10.1038/s41598-021-92430-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
Most human diseases are systems diseases, and systems biomarkers are better fitted for diagnostic, prognostic, and treatment monitoring purposes. To search for systems biomarker candidates, lactate dehydrogenase (LDH), a housekeeping protein expressed in all living cells, was investigated. To this end, we analyzed the serum LDH activities from 172,933 patients with 48 clinically defined diseases and 9528 healthy individuals. Based on the median values, we found that 46 out of 48 diseases, leading by acute myocardial infarction, had significantly increased (p < 0.001), whereas gout and cerebral ischemia had significantly decreased (p < 0.001) serum LDH activities compared to the healthy control. Remarkably, hepatic encephalopathy and lung fibrosis had the highest AUCs (0.89, 0.80), sensitivities (0.73, 0.56), and specificities (0.90, 0.91) among 48 human diseases. Statistical analysis revealed that over-downregulation of serum LDH activities was associated with blood-related cancers and diseases. LDH activities were potential systems biomarker candidates (AUCs > 0.8) for hepatic encephalopathy and lung fibrosis.
Collapse
Affiliation(s)
- Yuling Wu
- Systems Biology and Medicine Center for Complex Diseases, Center for Clinical Research, Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Caixia Lu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Nana Pan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Meng Zhang
- Systems Biology and Medicine Center for Complex Diseases, Center for Clinical Research, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Mengyuan Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Center for Clinical Research, Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Yachong Guo
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China. .,Institute Theory of Polymers, Leibniz-Institut Für Polymerforschung Dresden, 01069, Dresden, Germany.
| | - Lijuan Tan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
17
|
Voss CM, Arildsen L, Nissen JD, Waagepetersen HS, Schousboe A, Maechler P, Ott P, Vilstrup H, Walls AB. Glutamate Dehydrogenase Is Important for Ammonia Fixation and Amino Acid Homeostasis in Brain During Hyperammonemia. Front Neurosci 2021; 15:646291. [PMID: 34220417 PMCID: PMC8244593 DOI: 10.3389/fnins.2021.646291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/19/2021] [Indexed: 01/06/2023] Open
Abstract
Impaired liver function may lead to hyperammonemia and risk for hepatic encephalopathy. In brain, detoxification of ammonia is mediated mainly by glutamine synthetase (GS) in astrocytes. This requires a continuous de novo synthesis of glutamate, likely involving the action of both pyruvate carboxylase (PC) and glutamate dehydrogenase (GDH). An increased PC activity upon ammonia exposure and the importance of PC activity for glutamine synthesis has previously been demonstrated while the importance of GDH for generation of glutamate as precursor for glutamine synthesis has received little attention. We therefore investigated the functional importance of GDH for brain metabolism during hyperammonemia. To this end, brain slices were acutely isolated from transgenic CNS-specific GDH null or litter mate control mice and incubated in aCSF containing [U-13C]glucose in the absence or presence of 1 or 5 mM ammonia. In another set of experiments, brain slices were incubated in aCSF containing 1 or 5 mM 15N-labeled NH4Cl and 5 mM unlabeled glucose. Tissue extracts were analyzed for isotopic labeling in metabolites and for total amounts of amino acids. As a novel finding, we reveal a central importance of GDH function for cerebral ammonia fixation and as a prerequisite for de novo synthesis of glutamate and glutamine during hyperammonemia. Moreover, we demonstrated an important role of the concerted action of GDH and alanine aminotransferase in hyperammonemia; the products alanine and α-ketoglutarate serve as an ammonia sink and as a substrate for ammonia fixation via GDH, respectively. The role of this mechanism in human hyperammonemic states remains to be studied.
Collapse
Affiliation(s)
- Caroline M Voss
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lene Arildsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob D Nissen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Medical Centre, Geneva, Switzerland
| | - Peter Ott
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Jiménez-Torres C, El-Kehdy H, Hernández-Kelly LC, Sokal E, Ortega A, Najimi M. Acute Liver Toxicity Modifies Protein Expression of Glutamate Transporters in Liver and Cerebellar Tissue. Front Neurosci 2021; 14:613225. [PMID: 33488353 PMCID: PMC7815688 DOI: 10.3389/fnins.2020.613225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
Glutamate is the main excitatory amino acid acting at the level of pre and postsynaptic neurons, as well as in glial cells. It is involved in the coordinated modulation of energy metabolism, glutamine synthesis, and ammonia detoxification. The relationship between the functional status of liver and brain has been known for many years. The most widely recognized aspect of this relation is the brain dysfunction caused by acute liver injury that manifests a wide spectrum of neurologic and psychiatric abnormalities. Inflammation, circulating neurotoxins, and impaired neurotransmission have been reported in this pathophysiology. In the present contribution, we report the effect of a hepatotoxic compound like CCl4 on the expression of key proteins involved in glutamate uptake and metabolism as glutamate transporters and glutamine synthetase in mice liver, brain, and cerebellum. Our findings highlight a differential expression pattern of glutamate transporters in cerebellum. A significant Purkinje cells loss, in parallel to an up-regulation of glutamine synthetase, and astrogliosis in the brain have also been noticed. In the intoxicated liver, glutamate transporter 1 expression is up-regulated, in contrast to glutamine synthetase which is reduced in a time-dependent manner. Taken together our results demonstrate that the exposure to an acute CCl4 insult, leads to the disruption of glutamate transporters expression in the liver-brain axis and therefore a severe alteration in glutamate-mediated neurotransmission might be present in the central nervous system.
Collapse
Affiliation(s)
- Catya Jiménez-Torres
- Laboratorio de Neurotoxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Departamento de Toxicología, Mexico City, Mexico
| | - Hoda El-Kehdy
- Laboratory of Pediatric Hepatology and Cell Therapy, UCLouvain, Institut de Recherche Expérimentale et Clinique (IREC), Brussels, Belgium
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Departamento de Toxicología, Mexico City, Mexico
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, UCLouvain, Institut de Recherche Expérimentale et Clinique (IREC), Brussels, Belgium
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Departamento de Toxicología, Mexico City, Mexico
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, UCLouvain, Institut de Recherche Expérimentale et Clinique (IREC), Brussels, Belgium
| |
Collapse
|
19
|
Zhang Y, Li H, Song L, Xue J, Wang X, Song S, Wang S. Polysaccharide from Ganoderma lucidum ameliorates cognitive impairment by regulating the inflammation of the brain-liver axis in rats. Food Funct 2021; 12:6900-6914. [PMID: 34338268 DOI: 10.1039/d1fo00355k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ganoderma lucidum (G. lucidum) polysaccharide-1 (GLP-1) is one of the polysaccharides isolated from the fruiting bodies of G. lucidum. Inflammation in the brain-liver axis plays a vital role in the progress of cognitive impairment. In this study, the beneficial effect of GLP-1 on d-galactose (d-gal) rats was carried out by regulating the inflammation of the brain-liver axis. A Morris water maze test was used to assess the cognitive ability of d-gal rats. ELISA and/or western blot analysis were used to detect the blood ammonia and inflammatory cytokines levels in the brain-liver axis. Metabolomic analysis was used to evaluate the changes of small molecule metabolomics between the brain and liver. As a result, GLP-1 could obviously ameliorate the cognitive impairment of d-gal rats. The mechanism was related to the decreasing levels of TNF-α, IL-6, phospho-p38MAPK, phospho-p53, and phospho-JNK1 + JNK2 + JNK3, the increasing levels of IL-10 and TGF-β1, and the regulation of the metabolic disorders of the brain-liver axis. Our study suggests that G. lucidum could be exploited as an effective food or health care product to prevent and delay cognitive impairment and improve the quality of life.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Shurubor YI, Cooper AJL, Krasnikov AB, Isakova EP, Deryabina YI, Beal MF, Krasnikov BF. Changes of Coenzyme A and Acetyl-Coenzyme A Concentrations in Rats after a Single-Dose Intraperitoneal Injection of Hepatotoxic Thioacetamide Are Not Consistent with Rapid Recovery. Int J Mol Sci 2020; 21:E8918. [PMID: 33255464 PMCID: PMC7727790 DOI: 10.3390/ijms21238918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Small biomolecules, such as coenzyme A (CoA) and acetyl coenzyme A (acetyl-CoA), play vital roles in the regulation of cellular energy metabolism. In this paper, we evaluated the delayed effect of the potent hepatotoxin thioacetamide (TAA) on the concentrations of CoA and acetyl-CoA in plasma and in different rat tissues. Administration of TAA negatively affects liver function and leads to the development of hepatic encephalopathy (HE). In our experiments, rats were administered a single intraperitoneal injection of TAA at doses of 200, 400, or 600 mg/kg. Plasma, liver, kidney, and brain samples were collected six days after the TAA administration, a period that has been suggested to allow for restoration of liver function. The concentrations of CoA and acetyl-CoA in the group of rats exposed to different doses of TAA were compared to those observed in healthy rats. The results obtained indicate that even a single administration of TAA to rats is sufficient to alter the physiological balance of CoA and acetyl-CoA in the plasma and tissues of rats for an extended period of time. The initial concentrations of CoA and acetyl-CoA were not restored even after the completion of the liver regeneration process.
Collapse
Affiliation(s)
- Yevgeniya I. Shurubor
- Center for Strategic Planning and Management of Medical and Biological Health Risks, Federal Medical-Biological Agency of The Russian Federation, 119121 Moscow, Russia;
| | - Arthur J. L. Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | - Elena P. Isakova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.P.I.); (Y.I.D.)
| | - Yulia I. Deryabina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.P.I.); (Y.I.D.)
| | - M. Flint Beal
- Department of Neurology, The Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Boris F. Krasnikov
- Center for Strategic Planning and Management of Medical and Biological Health Risks, Federal Medical-Biological Agency of The Russian Federation, 119121 Moscow, Russia;
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
21
|
Drews L, Zimmermann M, Westhoff P, Brilhaus D, Poss RE, Bergmann L, Wiek C, Brenneisen P, Piekorz RP, Mettler-Altmann T, Weber APM, Reichert AS. Ammonia inhibits energy metabolism in astrocytes in a rapid and glutamate dehydrogenase 2-dependent manner. Dis Model Mech 2020; 13:dmm047134. [PMID: 32917661 PMCID: PMC7657470 DOI: 10.1242/dmm.047134] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/02/2020] [Indexed: 01/02/2023] Open
Abstract
Astrocyte dysfunction is a primary factor in hepatic encephalopathy (HE) impairing neuronal activity under hyperammonemia. In particular, the early events causing ammonia-induced toxicity to astrocytes are not well understood. Using established cellular HE models, we show that mitochondria rapidly undergo fragmentation in a reversible manner upon hyperammonemia. Further, in our analyses, within a timescale of minutes, mitochondrial respiration and glycolysis were hampered, which occurred in a pH-independent manner. Using metabolomics, an accumulation of glucose and numerous amino acids, including branched chain amino acids, was observed. Metabolomic tracking of 15N-labeled ammonia showed rapid incorporation of 15N into glutamate and glutamate-derived amino acids. Downregulating human GLUD2 [encoding mitochondrial glutamate dehydrogenase 2 (GDH2)], inhibiting GDH2 activity by SIRT4 overexpression, and supplementing cells with glutamate or glutamine alleviated ammonia-induced inhibition of mitochondrial respiration. Metabolomic tracking of 13C-glutamine showed that hyperammonemia can inhibit anaplerosis of tricarboxylic acid (TCA) cycle intermediates. Contrary to its classical anaplerotic role, we show that, under hyperammonemia, GDH2 catalyzes the removal of ammonia by reductive amination of α-ketoglutarate, which efficiently and rapidly inhibits the TCA cycle. Overall, we propose a critical GDH2-dependent mechanism in HE models that helps to remove ammonia, but also impairs energy metabolism in mitochondria rapidly.
Collapse
Affiliation(s)
- Leonie Drews
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marcel Zimmermann
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Philipp Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dominik Brilhaus
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Rebecca E Poss
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Laura Bergmann
- Institute for Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery (ENT), Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Peter Brenneisen
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Roland P Piekorz
- Institute for Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Pathania A, Rawat A, Dahiya SS, Dhanda S, Barnwal RP, Baishya B, Sandhir R. 1H NMR-Based Metabolic Signatures in the Liver and Brain in a Rat Model of Hepatic Encephalopathy. J Proteome Res 2020; 19:3668-3679. [PMID: 32660248 DOI: 10.1021/acs.jproteome.0c00165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hepatic encephalopathy (HE) is a debilitating neuropsychiatric complication associated with acute and chronic liver failure. It is characterized by diverse symptoms with variable severity that includes cognitive and motor deficits. The aim of the study is to assess metabolic alterations in the brain and liver using nuclear magnetic resonance (NMR) spectroscopy and subsequent multivariate analyses to characterize metabolic signatures associated with HE. HE was developed by bile duct ligation (BDL) that resulted in hepatic dysfunctions and cirrhosis as shown by liver function tests. Metabolic profiles from control and BDL rats indicated increased levels of lactate, branched-chain amino acids (BCAAs), glutamate, and choline in the liver, whereas levels of glucose, phenylalanine, and pyridoxine were decreased. In brain, the levels of lactate, acetate, succinate, citrate, and malate were increased, while glucose, creatine, isoleucine, leucine, and proline levels were decreased. Furthermore, neurotransmitters such as glutamate and GABA were increased, whereas choline and myo-inositol were decreased. The alterations in neurotransmitter levels resulted in cognitive and motor defects in BDL rats. A significant correlation was found among alterations in NAA/choline, choline/creatine, and NAA/creatine with behavioral deficits. Thus, the data suggests impairment in metabolic pathways such as the tricarboxylic acid (TCA) cycle, glycolysis, and ketogenesis in the liver and brain of animals with HE. The study highlights that metabolic signatures could be potential markers to monitor HE progression and to assess therapeutic interventions.
Collapse
Affiliation(s)
- Anjana Pathania
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Sector-25, Chandigarh 160014, India
| | - Atul Rawat
- Department of Surgery, IU Health Comprehensive Wound Centre, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States.,Centre for Biomedical Magnetic Resonance (CBMR), SGPGIMS Campus, Lucknow, Uttar Pradesh 226014, India
| | - Sitender Singh Dahiya
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Sector-25, Chandigarh 160014, India
| | - Saurabh Dhanda
- Department of Biochemistry, Dr. Rajendra Prasad Government Medical College, Kangra at Tanda, Himachal Pradesh 176001, India
| | | | - Bikash Baishya
- Centre for Biomedical Magnetic Resonance (CBMR), SGPGIMS Campus, Lucknow, Uttar Pradesh 226014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Sector-25, Chandigarh 160014, India
| |
Collapse
|
23
|
Posset R, Garbade SF, Gleich F, Gropman AL, de Lonlay P, Hoffmann GF, Garcia-Cazorla A, Nagamani SCS, Baumgartner MR, Schulze A, Dobbelaere D, Yudkoff M, Kölker S, Zielonka M. Long-term effects of medical management on growth and weight in individuals with urea cycle disorders. Sci Rep 2020; 10:11948. [PMID: 32686765 PMCID: PMC7371674 DOI: 10.1038/s41598-020-67496-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Low protein diet and sodium or glycerol phenylbutyrate, two pillars of recommended long-term therapy of individuals with urea cycle disorders (UCDs), involve the risk of iatrogenic growth failure. Limited evidence-based studies hamper our knowledge on the long-term effects of the proposed medical management in individuals with UCDs. We studied the impact of medical management on growth and weight development in 307 individuals longitudinally followed by the Urea Cycle Disorders Consortium (UCDC) and the European registry and network for Intoxication type Metabolic Diseases (E-IMD). Intrauterine growth of all investigated UCDs and postnatal linear growth of asymptomatic individuals remained unaffected. Symptomatic individuals were at risk of progressive growth retardation independent from the underlying disease and the degree of natural protein restriction. Growth impairment was determined by disease severity and associated with reduced or borderline plasma branched-chain amino acid (BCAA) concentrations. Liver transplantation appeared to have a beneficial effect on growth. Weight development remained unaffected both in asymptomatic and symptomatic individuals. Progressive growth impairment depends on disease severity and plasma BCAA concentrations, but cannot be predicted by the amount of natural protein intake alone. Future clinical trials are necessary to evaluate whether supplementation with BCAAs might improve growth in UCDs.
Collapse
Affiliation(s)
- Roland Posset
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Sven F Garbade
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Florian Gleich
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | | | - Pascale de Lonlay
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Service de Maladies Metaboliques (MaMEA), filière G2M, Université Paris-Descartes, Paris, France
| | - Georg F Hoffmann
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Angeles Garcia-Cazorla
- Hospital San Joan de Deu, Institut Pediàtric de Recerca. Servicio de Neurologia and CIBERER, ISCIII, Barcelona, Spain
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Matthias R Baumgartner
- University Children's Hospital Zurich and Children's Research Center, Zurich, Switzerland
| | - Andreas Schulze
- University of Toronto and the Hospital for Sick Children, Toronto, ON, Canada
| | - Dries Dobbelaere
- Centre de Référence Maladies Héréditaires du Métabolisme de L'Enfant Et de L'Adulte, Jeanne de Flandre Hospital, CHRU Lille, and Faculty of Medicine, University Lille 2, Lille, France
| | - Marc Yudkoff
- School of Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan Kölker
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Matthias Zielonka
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
- Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany.
| |
Collapse
|
24
|
Probst J, Kölker S, Okun JG, Kumar A, Gursky E, Posset R, Hoffmann GF, Peravali R, Zielonka M. Chronic hyperammonemia causes a hypoglutamatergic and hyperGABAergic metabolic state associated with neurobehavioral abnormalities in zebrafish larvae. Exp Neurol 2020; 331:113330. [PMID: 32339612 DOI: 10.1016/j.expneurol.2020.113330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/29/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic hyperammonemia is a common condition affecting individuals with inherited urea cycle disorders resulting in progressive cognitive impairment and behavioral abnormalities. Altered neurotransmission has been proposed as major source of neuronal dysfunction during chronic hyperammonemia, but the molecular pathomechanism has remained incompletely understood. Here we show that chronic exposure to ammonium acetate induces locomotor dysfunction and abnormal feeding behavior in zebrafish larvae, indicative for an impairment of higher brain functions. Biochemically, chronically elevated ammonium concentrations cause enhanced activity of glutamate decarboxylase isoforms GAD1 and GAD2 with increased formation of GABA and concomitant depletion of glutamate, ultimately leading to a dysfunctional hypoglutamatergic and hyperGABAergic metabolic state. Moreover, elevated GABA concentrations are accompanied by increased expression of GABAA receptor subunits alpha-1, gamma-2 and delta, supporting the notion of an increased GABA tone in chronic hyperammonemia. Propionate oxidation as major anaplerotic reaction sufficiently compensates for the transamination-dependent withdrawal of 2-oxoglutarate, thereby preventing bioenergetic dysfunction under chronic hyperammonemic conditions. Thus, our study extends the hypothesis of alterations in the glutamatergic and GABAergic system being an important pathophysiological factor causing neurobehavioral impairment in chronic hyperammonemia. Given that zebrafish larvae have already been successfully used for high-throughput identification of novel compounds to treat inherited neurological diseases, the reported zebrafish model should be considered an important tool for systematic drug screening targeting altered glutamatergic and GABAergic metabolism under chronic hyperammonemic conditions in the future.
Collapse
Affiliation(s)
- Joris Probst
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen G Okun
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Amrish Kumar
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Eduard Gursky
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Roland Posset
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ravindra Peravali
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Matthias Zielonka
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany.
| |
Collapse
|
25
|
Guazzelli PA, Cittolin-Santos GF, Meira-Martins LA, Grings M, Nonose Y, Lazzarotto GS, Nogara D, da Silva JS, Fontella FU, Wajner M, Leipnitz G, Souza DO, de Assis AM. Acute Liver Failure Induces Glial Reactivity, Oxidative Stress and Impairs Brain Energy Metabolism in Rats. Front Mol Neurosci 2020; 12:327. [PMID: 31998076 PMCID: PMC6968792 DOI: 10.3389/fnmol.2019.00327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023] Open
Abstract
Acute liver failure (ALF) implies a severe and rapid liver dysfunction that leads to impaired liver metabolism and hepatic encephalopathy (HE). Recent studies have suggested that several brain alterations such as astrocytic dysfunction and energy metabolism impairment may synergistically interact, playing a role in the development of HE. The purpose of the present study is to investigate early alterations in redox status, energy metabolism and astrocytic reactivity of rats submitted to ALF. Adult male Wistar rats were submitted either to subtotal hepatectomy (92% of liver mass) or sham operation to induce ALF. Twenty-four hours after the surgery, animals with ALF presented higher plasmatic levels of ammonia, lactate, ALT and AST and lower levels of glucose than the animals in the sham group. Animals with ALF presented several astrocytic morphological alterations indicating astrocytic reactivity. The ALF group also presented higher mitochondrial oxygen consumption, higher enzymatic activity and higher ATP levels in the brain (frontoparietal cortex). Moreover, ALF induced an increase in glutamate oxidation concomitant with a decrease in glucose and lactate oxidation. The increase in brain energy metabolism caused by astrocytic reactivity resulted in augmented levels of reactive oxygen species (ROS) and Poly [ADP-ribose] polymerase 1 (PARP1) and a decreased activity of the enzymes superoxide dismutase and glutathione peroxidase (GSH-Px). These findings suggest that in the early stages of ALF the brain presents a hypermetabolic state, oxidative stress and astrocytic reactivity, which could be in part sustained by an increase in mitochondrial oxidation of glutamate.
Collapse
Affiliation(s)
- Pedro Arend Guazzelli
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Giordano Fabricio Cittolin-Santos
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Leo Anderson Meira-Martins
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Mateus Grings
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Yasmine Nonose
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Gabriel S Lazzarotto
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Daniela Nogara
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Jussemara S da Silva
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Fernanda U Fontella
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Moacir Wajner
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Guilhian Leipnitz
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Diogo O Souza
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Adriano Martimbianco de Assis
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Post-graduate Program in Health and Behavior, Health Sciences Centre, Universidade Católica de Pelotas-UCPel, Pelotas, Brazil
| |
Collapse
|
26
|
Jaeger V, DeMorrow S, McMillin M. The Direct Contribution of Astrocytes and Microglia to the Pathogenesis of Hepatic Encephalopathy. J Clin Transl Hepatol 2019; 7:352-361. [PMID: 31915605 PMCID: PMC6943208 DOI: 10.14218/jcth.2019.00025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatic encephalopathy is a neurological complication resulting from loss of hepatic function and is associated with poor clinical outcomes. During acute liver failure over 20% of mortality can be associated with the development of hepatic encephalopathy. In patients with liver cirrhosis, 1-year survival for those that develop overt hepatic encephalopathy is under 50%. The pathogenesis of hepatic encephalopathy is complicated due to the multiple disruptions in homeostasis that occur following a reduction in liver function. Of these, elevations of ammonia and neuroinflammation have been shown to play a significant contributing role to the development of hepatic encephalopathy. Disruption of the urea cycle following liver dysfunction leads to elevations of circulating ammonia, which enter the brain and disrupt the functioning of astrocytes. This results in dysregulation of metabolic pathways in astrocytes, oxidative stress and cerebral edema. Besides ammonia, circulating chemokines and cytokines are increased following liver injury, leading to activation of microglia and a subsequent neuroinflammatory response. The combination of astrocyte dysfunction and microglia activation are significant contributing factors to the pathogenesis of hepatic encephalopathy.
Collapse
Affiliation(s)
- Victoria Jaeger
- Baylor Scott & White Health, Department of Internal Medicine, Temple, TX, USA
| | - Sharon DeMorrow
- Texas A&M University Health Science Center, Department of Medical Physiology, Temple, TX, USA
- Central Texas Veterans Health Care System, Temple, TX, USA
- University of Texas at Austin, Dell Medical School, Department of Internal Medicine, Austin, TX, USA
- University of Texas at Austin, College of Pharmacy, Austin, TX, USA
| | - Matthew McMillin
- Texas A&M University Health Science Center, Department of Medical Physiology, Temple, TX, USA
- Central Texas Veterans Health Care System, Temple, TX, USA
- University of Texas at Austin, Dell Medical School, Department of Internal Medicine, Austin, TX, USA
- Correspondence to: Matthew McMillin, University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, TX 78701, USA. Tel: +1-512-495-5037, Fax: +1-512-495-5839, E-mail:
| |
Collapse
|
27
|
Heidari R. Brain mitochondria as potential therapeutic targets for managing hepatic encephalopathy. Life Sci 2019; 218:65-80. [PMID: 30578865 DOI: 10.1016/j.lfs.2018.12.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/08/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023]
Abstract
Hepatic encephalopathy (HE) is a critical clinical complication. There is a consensus that ammonia plays a pivotal role in the pathogenesis of HE. Ammonia is a neurotoxin which induces a wide range of functional disturbances in the central nervous system (CNS). On the other hand, HE is associated with the increased free radical formation, tissue inflammation, disturbed neurotransmission, astrocytes swelling, brain edema, and brain herniation. In view of the severe CNS complications ensued HE, potential therapeutic points of intervention need to be vigorously investigated. A role for CNS mitochondrial damage and energy crisis has been considered in HE. It has been found that ammonia induces mitochondrial impairment as a result of a multifaceted interaction of different signaling molecules. Hence, ammonia-induced mitochondrial injury and compromised brain energy metabolism might play a vital role in the pathogenesis of ammonia neurotoxicity. This review focuses on the concept that mitochondrial dysfunction and cellular energy crisis indeed plays a critical role in the pathogenesis of hyperammonemia-induced brain injury. Further, it will highlight the potential therapeutic value of mitochondrial protecting agents and energy providers in the management of HE. The data collected in this review might provide clues to new therapeutic interventions aimed at minimizing HE-associated complications.
Collapse
Affiliation(s)
- Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
28
|
Zielonka M, Probst J, Carl M, Hoffmann GF, Kölker S, Okun JG. Bioenergetic dysfunction in a zebrafish model of acute hyperammonemic decompensation. Exp Neurol 2019; 314:91-99. [PMID: 30653968 DOI: 10.1016/j.expneurol.2019.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/18/2018] [Accepted: 01/12/2019] [Indexed: 12/30/2022]
Abstract
Acute hyperammonemic encephalopathy is a life-threatening manifestation of individuals with urea cycle disorders, which is associated with high mortality rates and severe neurological sequelae in survivors. Cerebral bioenergetic failure has been proposed as one of the key mechanisms underlying hyperammonemia-induced brain damage, but data supporting this hypothesis remain inconclusive and partially contradictory. Using a previously established zebrafish model of acute hyperammonemic decompensation, we unraveled that acute hyperammonemia leads to a transamination-dependent withdrawal of 2-oxoglutarate (alpha-ketoglutarate) from the tricarboxylic acid (TCA) cycle with consecutive TCA cycle dysfunction, ultimately causing impaired oxidative phosphorylation with ATP shortage, decreased ATP/ADP-ratio and elevated lactate concentrations. Thus, our study supports and extends the hypothesis that cerebral bioenergetic dysfunction is an important pathophysiological hallmark of hyperammonemia-induced neurotoxicity.
Collapse
Affiliation(s)
- Matthias Zielonka
- Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany.
| | - Joris Probst
- Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Carl
- Center for Integrative Biology (CIBIO), Laboratory of Translational Neurogenetics, University of Trento, Trento, Italy
| | - Georg Friedrich Hoffmann
- Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Günther Okun
- Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
29
|
Jenne A, Soong R, Bermel W, Sharma N, Masi A, Tabatabaei Anaraki M, Simpson A. Focusing on “the important” through targeted NMR experiments: an example of selective13C–12C bond detection in complex mixtures. Faraday Discuss 2019; 218:372-394. [DOI: 10.1039/c8fd00213d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here, a targeted NMR experiment is introduced which selectively detects the formation of13C–12C bonds in mixtures.
Collapse
Affiliation(s)
- Amy Jenne
- Environmental NMR Centre
- University of Toronto
- Toronto
- Canada
| | - Ronald Soong
- Environmental NMR Centre
- University of Toronto
- Toronto
- Canada
| | | | - Nisha Sharma
- Department of Agronomy, Food, Natural Resources, Animals and the Environment
- University of Padova
- Padova
- Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and the Environment
- University of Padova
- Padova
- Italy
| | | | - Andre Simpson
- Environmental NMR Centre
- University of Toronto
- Toronto
- Canada
| |
Collapse
|
30
|
Zhou Q, Zheng H, Chen J, Li C, Du Y, Xia H, Gao H. Metabolic fate of glucose in the brain of APP/PS1 transgenic mice at 10 months of age: a 13C NMR metabolomic study. Metab Brain Dis 2018; 33:1661-1668. [PMID: 29946959 DOI: 10.1007/s11011-018-0274-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/19/2018] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) has been associated with the disturbance of brain glucose metabolism. The present study investigates brain glucose metabolism using 13C NMR metabolomics in combination with intravenous [1-13C]-glucose infusion in APP/PS1 transgenic mouse model of amyloid pathology at 10 months of age. We found that brain glucose was significantly accumulated in APP/PS1 mice relative to wild-type (WT) mice. Reductions in 13C fluxes into the specific carbon sites of tricarboxylic acid (TCA) intermediate (succinate) as well as neurotransmitters (glutamate, glutamine, γ-aminobutyric acid and aspartate) from [1-13C]-glucose were also detected in the brain of APP/PS1 mice. In addition, our results reveal that the 13C-enrichments of the C3 of alanine were significantly lower and the C3 of lactate have a tendency to be lower in the brain of APP/PS1 mice than WT mice. Taken together, the development of amyloid pathology could cause a reduction in glucose utilization and further result in decreases in energy and neurotransmitter metabolism as well as the lactate-alanine shuttle in the brain.
Collapse
Affiliation(s)
- Qi Zhou
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jiuxia Chen
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yao Du
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huanhuan Xia
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
31
|
Zielonka M, Breuer M, Okun JG, Carl M, Hoffmann GF, Kölker S. Pharmacologic rescue of hyperammonemia-induced toxicity in zebrafish by inhibition of ornithine aminotransferase. PLoS One 2018; 13:e0203707. [PMID: 30199544 PMCID: PMC6130883 DOI: 10.1371/journal.pone.0203707] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022] Open
Abstract
Hyperammonemia is the common biochemical hallmark of urea cycle disorders, activating neurotoxic pathways. If untreated, affected individuals have a high risk of irreversible brain damage and mortality. Here we show that acute hyperammonemia strongly enhances transamination-dependent formation of osmolytic glutamine and excitatory glutamate, thereby inducing neurotoxicity and death in ammoniotelic zebrafish larvae via synergistically acting overactivation of NMDA receptors and bioenergetic impairment induced by depletion of 2-oxoglutarate. Intriguingly, specific and irreversible inhibition of ornithine aminotransferase (OAT) by 5-fluoromethylornithine rescues zebrafish from lethal concentrations of ammonium acetate and corrects hyperammonemia-induced biochemical alterations. Thus, OAT inhibition is a promising and effective therapeutic approach for preventing neurotoxicity and mortality in acute hyperammonemia.
Collapse
Affiliation(s)
- Matthias Zielonka
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
- Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany
- * E-mail:
| | - Maximilian Breuer
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Jürgen Günther Okun
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Matthias Carl
- Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Mannheim, Germany
- University of Trento, Center for Integrative Biology (CIBIO), Laboratory of Translational Neurogenetics, Trento, Italy
| | - Georg Friedrich Hoffmann
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Stefan Kölker
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| |
Collapse
|
32
|
Bjerring PN, Gluud LL, Larsen FS. Cerebral Blood Flow and Metabolism in Hepatic Encephalopathy-A Meta-Analysis. J Clin Exp Hepatol 2018; 8:286-293. [PMID: 30302046 PMCID: PMC6175738 DOI: 10.1016/j.jceh.2018.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatic Encephalopathy (HE) is associated with abnormalities in brain metabolism of glucose, oxygen and amino acids. In patients with acute liver failure, cortical lactate to pyruvate ratio is increased, which is indicative of a compromised cerebral oxidative metabolism. In this meta-analysis we have reviewed the published data on cerebral blood flow and metabolic rates from clinical studies of patients with HE. We found that hepatic encephalopathy was associated with reduced cerebral metabolic rate of oxygen, glucose, and blood flow. One exemption was in HE type B (shunt/by-pass) were a tendency towards increased cerebral blood flow was seen. We speculate that HE is associated with a disturbed metabolism-cytopathic hypoxia-and that type specific differences of brain metabolism is due to differences in pathogenesis of HE.
Collapse
Key Words
- ALF, Acute Liver Failure
- CBF, Cerebral Blood Flow
- CMR, Cerebral Metabolic Rate
- HE, Hepatic Encephalopathy
- ICH, Intracranial Hypertension
- MHE, Minimal Hepatic Encephalopathy
- MRI, Magnetic Resonance Imaging
- OHE, Overt Hepatic Encephalopathy
- PCS, Portocaval Shunt
- cerebral blood flow
- cerebral metabolism
- hepatic encephalopathy
- liver failure
- pcMRI, Phase-Contrast MRI
Collapse
Affiliation(s)
- Peter N. Bjerring
- Department of Hepatology, Rigshospitalet, Copenhagen, Denmark
- The Gastro Unit, Medical Division, Hvidovre Hospital, Hvidovre, Denmark
- Address for correspondence: Peter N. Bjerring, Department of Hepatology, Rigshospitalet, Copenhagen, Denmark.
| | - Lise L. Gluud
- The Gastro Unit, Medical Division, Hvidovre Hospital, Hvidovre, Denmark
| | - Fin S. Larsen
- Department of Hepatology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
33
|
Obara-Michlewska M, Ding F, Popek M, Verkhratsky A, Nedergaard M, Zielinska M, Albrecht J. Interstitial ion homeostasis and acid-base balance are maintained in oedematous brain of mice with acute toxic liver failure. Neurochem Int 2018; 118:286-291. [PMID: 29772253 DOI: 10.1016/j.neuint.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 01/25/2023]
Abstract
Acute toxic liver failure (ATLF) rapidly leads to brain oedema and neurological decline. We evaluated the ability of ATLF-affected brain to control the ionic composition and acid-base balance of the interstitial fluid. ATLF was induced in 10-12 weeks old male C57Bl mice by single intraperitoneal (i.p.) injection of 100 μg/g azoxymethane (AOM). Analyses were carried out in cerebral cortex of precomatous mice 20-24 h after AOM administration. Brain fluid status was evaluated by measuring apparent diffusion coefficient [ADC] using NMR spectroscopy, Evans Blue extravasation, and accumulation of an intracisternally-injected fluorescent tracer. Extracellular pH ([pH]e) and ([K+]e) were measured in situ with ion-sensitive microelectrodes. Cerebral cortical microdialysates were subjected to photometric analysis of extracellular potassium ([K+]e), sodium ([Na+]e) and luminometric assay of extracellular lactate ([Lac]e). Potassium transport in cerebral cortical slices was measured ex vivo as 86Rb uptake. Cerebral cortex of AOM-treated mice presented decreased ADC supporting the view that ATLF-induced brain oedema is primarily cytotoxic in nature. In addition, increased Evans blue extravasation indicated blood brain barrier leakage, and increased fluorescent tracer accumulation suggested impaired interstitial fluid passage. However, [K+]e, [Na+]e, [Lac]e, [pH]e and potassium transport in brain of AOM-treated mice was not different from control mice. We conclude that in spite of cytotoxic oedema and deregulated interstitial fluid passage, brain of mice with ATLF retains the ability to maintain interstitial ion homeostasis and acid-base balance. Tentatively, uncompromised brain ion homeostasis and acid-base balance may contribute to the relatively frequent brain function recovery and spontaneous survival rate in human patients with ATLF.
Collapse
Affiliation(s)
- Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland.
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester, NY, USA
| | - Mariusz Popek
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland
| | - Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, NY, USA
| | - Magdalena Zielinska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland.
| |
Collapse
|
34
|
Rutkowsky JM, Lee LL, Puchowicz M, Golub MS, Befroy DE, Wilson DW, Anderson S, Cline G, Bini J, Borkowski K, Knotts TA, Rutledge JC. Reduced cognitive function, increased blood-brain-barrier transport and inflammatory responses, and altered brain metabolites in LDLr -/-and C57BL/6 mice fed a western diet. PLoS One 2018; 13:e0191909. [PMID: 29444171 PMCID: PMC5812615 DOI: 10.1371/journal.pone.0191909] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
Recent work suggests that diet affects brain metabolism thereby impacting cognitive function. Our objective was to determine if a western diet altered brain metabolism, increased blood-brain barrier (BBB) transport and inflammation, and induced cognitive impairment in C57BL/6 (WT) mice and low-density lipoprotein receptor null (LDLr -/-) mice, a model of hyperlipidemia and cognitive decline. We show that a western diet and LDLr -/- moderately influence cognitive processes as assessed by Y-maze and radial arm water maze. Also, western diet significantly increased BBB transport, as well as microvessel factor VIII in LDLr -/- and microglia IBA1 staining in WT, both indicators of activation and neuroinflammation. Interestingly, LDLr -/- mice had a significant increase in 18F- fluorodeoxyglucose uptake irrespective of diet and brain 1H-magnetic resonance spectroscopy showed increased lactate and lipid moieties. Metabolic assessments of whole mouse brain by GC/MS and LC/MS/MS showed that a western diet altered brain TCA cycle and β-oxidation intermediates, levels of amino acids, and complex lipid levels and elevated proinflammatory lipid mediators. Our study reveals that the western diet has multiple impacts on brain metabolism, physiology, and altered cognitive function that likely manifest via multiple cellular pathways.
Collapse
Affiliation(s)
- Jennifer M. Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
- * E-mail:
| | - Linda L. Lee
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California, United States of America
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mari S. Golub
- Department of Environmental Toxicology, University of California, Davis, California, United States of America
| | - Douglas E. Befroy
- Magnetic Resonance Research Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Dennis W. Wilson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Steven Anderson
- Department of Physiology and Membrane Biology, University of California, Davis, California, United States of America
| | - Gary Cline
- Department of Endocrinology, Yale University, New Haven, Connecticut, United States of America
| | - Jason Bini
- Yale PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut, United States of America
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California, Davis, California, United States of America
| | - Trina A. Knotts
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - John C. Rutledge
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | | |
Collapse
|
35
|
Dasarathy S. Myostatin and beyond in cirrhosis: all roads lead to sarcopenia. J Cachexia Sarcopenia Muscle 2017; 8:864-869. [PMID: 29168629 PMCID: PMC5700432 DOI: 10.1002/jcsm.12262] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Srinivasan Dasarathy
- Professor of Medicine, Cleveland Clinic Lerner College of Medicine; Director, Liver Metabolism Research; Staff, Departments of Gastroenterology, Hepatology and Pathobiology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
36
|
Abstract
Hepatic encephalopathy describes the array of neurological alterations that occur during acute liver failure or chronic liver injury. While key players in the pathogenesis of hepatic encephalopathy, such as increases in brain ammonia, alterations in neurosteroid levels, and neuroinflammation, have been identified, there is still a paucity in our knowledge of the precise pathogenic mechanism. This review gives a brief overview of our understanding of the pathogenesis of hepatic encephalopathy and then summarizes the significant recent advances made in clinical and basic research contributing to our understanding, diagnosis, and possible treatment of hepatic encephalopathy. A literature search using the PubMed database was conducted in May 2017 using "hepatic encephalopathy" as a keyword, and selected manuscripts were limited to those research articles published since May 2014. While the authors acknowledge that many significant advances have been made in the understanding of hepatic encephalopathy prior to May 2014, we have limited the scope of this review to the previous three years only.
Collapse
Affiliation(s)
- Victoria Liere
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, TX, USA
| | | | - Sharon DeMorrow
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, TX, USA
- Central Texas Veterans Healthcare System, Temple, TX, USA
| |
Collapse
|
37
|
Lanz B, Rackayova V, Braissant O, Cudalbu C. MRS studies of neuroenergetics and glutamate/glutamine exchange in rats: Extensions to hyperammonemic models. Anal Biochem 2017; 529:245-269. [DOI: 10.1016/j.ab.2016.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/16/2016] [Accepted: 11/30/2016] [Indexed: 01/27/2023]
|
38
|
Silva VR, Secolin R, Vemuganti R, Lopes-Cendes I, Hazell AS. Acute liver failure is associated with altered cerebral expression profiles of long non-coding RNAs. Neurosci Lett 2017. [PMID: 28648459 DOI: 10.1016/j.neulet.2017.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatic encephalopathy (HE) represents a serious complication of acute liver failure (ALF) in which cerebral edema leading to brainstem herniation as a result of increased intracranial hypertension is a major consequence. Long non-coding RNAs (lncRNAs) play a significant role in coordinating gene expression, with recent studies indicating an influence in the pathogenesis of several diseases. To investigate their involvement in the cerebral pathophysiology of ALF, we profiled the expression of lncRNAs in the frontal cortex of mice at coma stage following treatment with the hepatotoxin azoxymethane. Of the 35,923 lncRNAs profiled using microarrays, 868 transcripts were found to be differentially expressed in the ALF-treated group compared to the sham control group. Of these, 382 lncRNAs were upregulated and 486 lncRNAs downregulated. Pathway analysis revealed these lncRNAs target a number of biological and molecular pathways that include cytokine-cytokine receptor interaction, the mitogen activated protein kinase signaling pathway, the insulin signaling pathway, and the nuclear factor-κB signaling pathway. False discovery rate adjustment identified 9 upregulated lncRNAs, 2 of which are associated with neuroepithelial transforming gene 1 (NET1) and the monocarboxylate transporter 2 (Slc16a7), potential contributors to astrocyte cytoskeletal disruption/swelling and lactate production, respectively. Our findings suggest an important role for lncRNAs in the brain in ALF in relation to inflammation, neuropathology, and in terms of the functional basis of HE. Further work on these non-coding RNAs may lead to new therapeutic approaches for the treatment and management of cerebral dysfunction resulting from this potentially life-threatening disorder.
Collapse
Affiliation(s)
- Vinícius R Silva
- Programa de Postgrado en Fisiopatología Médica, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Rodrigo Secolin
- Programa de Postgrado en Fisiopatología Médica, University of Campinas-UNICAMP, Campinas, SP, Brazil; Department of Medical Genetics, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Iscia Lopes-Cendes
- Programa de Postgrado en Fisiopatología Médica, University of Campinas-UNICAMP, Campinas, SP, Brazil; Department of Medical Genetics, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Alan S Hazell
- Programa de Postgrado en Fisiopatología Médica, University of Campinas-UNICAMP, Campinas, SP, Brazil; Department of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
39
|
Witt AM, Larsen FS, Bjerring PN. Accumulation of lactate in the rat brain during hyperammonaemia is not associated with impaired mitochondrial respiratory capacity. Metab Brain Dis 2017; 32:461-470. [PMID: 27928693 DOI: 10.1007/s11011-016-9934-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 11/29/2016] [Indexed: 01/27/2023]
Abstract
In acute liver failure (ALF) cerebral oedema and high intracranial pressure (ICP) are potentially deadly complications. Astrocytes cultured in ammonia have shown mitochondrial dysfunction and in rat models of liver failure, de novo lactate production in the brain has been observed and has led to a hypothesis of compromised brain metabolism during ALF. In contrast, normal lactate levels are found in cerebral microdialysate of ALF patients and the oxygen: glucose ratio of cerebral metabolic rates remains normal. To investigate this inconsistency we studied the mitochondrial function in brain tissue with respirometry in animal models of hyperammonaemia. Wistar rats with systemic inflammation induced by lipopolysaccharide or liver insufficiency induced by 90% hepatectomy were given ammonium or sodium acetate for 120 min. A cerebral cortex homogenate was studied with respirometry and substrates of the citric acid cycle, uncouplers and inhibitors of the mitochondrial complexes were successively added to investigate the mitochondrial function in detail. In a separate dose-response experiment cortex from healthy rats was incubated for 120 min in ammonium acetate in concentrations up to 80 mM prior to respirometry. Hyperammonaemia was associated with elevated ICP and increased tissue lactate concentration. No difference between groups was found in total respiratory capacity or the function of individual mitochondrial complexes. Ammonium in concentrations of 40 and 80 mM reduced the respiratory capacity in vitro. In conclusion, acute hyperammonaemia leads to elevated ICP and cerebral lactate accumulation. We found no indications of impaired oxidative metabolism in vivo but only in vitro at extreme concentrations of ammonium.
Collapse
Affiliation(s)
- Anne Møller Witt
- Department of Hepatology, Rigshospitalet, DK-2100, Copenhagen, Denmark
| | - Fin Stolze Larsen
- Department of Hepatology, Rigshospitalet, DK-2100, Copenhagen, Denmark
| | | |
Collapse
|
40
|
Palenzuela L, Oria M, Romero-Giménez J, Garcia-Lezana T, Chavarria L, Cordoba J. Gene expression profiling of brain cortex microvessels may support brain vasodilation in acute liver failure rat models. Metab Brain Dis 2016; 31:1405-1417. [PMID: 27406245 DOI: 10.1007/s11011-016-9863-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/19/2016] [Indexed: 12/13/2022]
Abstract
Development of brain edema in acute liver failure can increase intracranial pressure, which is a severe complication of the disease. However, brain edema is neither entirely cytotoxic nor vasogenic and the specific action of the brain microvasculature is still unknown. We aimed to analyze gene expression of brain cortex microvessels in two rat models of acute liver failure. In order to identify global gene expression changes we performed a broad transcriptomic approach in isolated brain cortex microvessels from portacaval shunted rats after hepatic artery ligation (HAL), hepatectomy (HEP), or sham by array hybridization and confirmed changes in selected genes by RT-PCR. We found 157 and 270 up-regulated genes and 143 and 149 down-regulated genes in HAL and HEP rats respectively. Western blot and immunohistochemical assays were performed in cortex and ELISA assays to quantify prostaglandin E metabolites were performed in blood of the sagittal superior sinus. We Identified clusters of differentially expressed genes involving inflammatory response, transporters-channels, and homeostasis. Up-regulated genes at the transcriptional level were associated with vasodilation (prostaglandin-E synthetase, prostaglandin-E receptor, adrenomedullin, bradykinin receptor, adenosine transporter), oxidative stress (hemoxygenase, superoxide dismutase), energy metabolism (lactate transporter) and inflammation (haptoglobin). The only down-regulated tight junction protein was occludin but slightly. Prostaglandins levels were increased in cerebral blood with progression of liver failure. In conclusion, in acute liver failure, up-regulation of several genes at the level of microvessels might suggest an involvement of energy metabolism accompanied by cerebral vasodilation in the cerebral edema at early stages.
Collapse
Affiliation(s)
- Lluis Palenzuela
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Oria
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Center for Fetal, Cellular and Mollecular Therapy, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA.
| | - Jordi Romero-Giménez
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa Garcia-Lezana
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laia Chavarria
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Cordoba
- Servei de Medicina Interna-Hepatologia, Valld'Hebron Institut de Recerca (VH-IR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Milewski K, Oria M. What we know: the inflammatory basis of hepatic encephalopathy. Metab Brain Dis 2016; 31:1239-1247. [PMID: 26497651 DOI: 10.1007/s11011-015-9740-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/24/2015] [Indexed: 02/07/2023]
Abstract
Central Nervous System (CNS) degeneration appearing in patients with cirrhosis is responsible for cognitive and persistent motor impairments that lead to an important impact on life quality. Brain injury affects certain areas of the CNS that might affect two types of cells: neurons and astrocytes. The process leading to brain injury could be induced by portosystemic shunting accompanied by hyperammonemia and by the activation of peripheral inflammation, manifested as episodic encephalopathy. Hyperammonemia combined with a decrease on the BCA/AAA ratio induces alterations of energetic metabolism and the formation of free radicals in the CNS. This process would be stimulated by the activation of peripheral inflammatory mediators that could act on receptors of the blood brain barrier such as TLR4, activating inflammatory responses in the CNS. As a result, a persistent activation of microglia and an irreversible neuronal and astrocytic injury would be induced. A new knowledge of the mechanisms leading to brain injury in cirrhosis would develop protective strategies to correct changes of nitrogen metabolism and inflammation.
Collapse
Affiliation(s)
- K Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - M Oria
- Translational Research in Fetal Surgery for Congenital Malformations, Center for Fetal, Cellular and Molecular Therapy, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11020, S 8.400 AT, Cincinnati, OH, 45229-3039, USA.
- Liver Failure Group, UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, UK.
| |
Collapse
|
42
|
Wright G, Swain M, Annane D, Saliba F, Samuel D, Arroyo V, DeMorrow S, Witt A. Neuroinflammation in liver disease: sessional talks from ISHEN. Metab Brain Dis 2016; 31:1339-1354. [PMID: 27726053 DOI: 10.1007/s11011-016-9918-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
At the recent ISHEN ('International Symposium of Hepatic Encephalopathy & Nitrogen Metabolism') conference in London, a whole session was dedicated to our increasing awareness of the importance of inflammation in the brain - termed 'neuroinflammation', in the development of Hepatic Encephalopathy (HE) - the neurological manifestations of advanced liver disease. In this review our ISHEN speakers further discuss the content of their sessional presentations and more broadly we discuss our understanding of the role of neuroinflammation in HE pathogenesis.
Collapse
Affiliation(s)
- Gavin Wright
- Gastroenterology Department, Basildon & Thurrock University Hospitals, Basildon, UK.
- Hepatology and Hepatobiliary Medicine, The Royal Free Hospital, Pond Street, London, NW3 2QG, UK.
- University College London, Gower Street, London, WC1E 6BT, UK.
| | - Mark Swain
- Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Canada
| | - Djillali Annane
- INSERM CIC IT 805, CHU Paris IdF Ouest - Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, 92380, Garches, France
| | - Faouzi Saliba
- Centre Hépato-Biliaire, Hôpital Paul Brousse, 12, avenue Paul vaillant Couturier, 94800, Villejuif, France
| | - Didier Samuel
- GHU Paris-Sud - Hôpital Paul Brousse, 12 avenue Paul Vaillant-Couturier, 94804, Villejuif Cedex, France
| | - Vicente Arroyo
- Liver Unit, Instiute of Digestive and Metabolic Diseases, Hopsital Clinic, University of Barcelona, Barcelona, Spain
| | - Sharon DeMorrow
- Department of Internal Medicine, Central Texas Veterans Healthcare System, VA Bld 205, 1901 South 1st Street, Temple, TX, 76504, USA
| | - Anne Witt
- Departement of Hepatology, Rigshospitalet, Blegdamsvej 9, 2100 København Ø, Copenhagen, Denmark
| |
Collapse
|
43
|
Multifactorial Effects on Different Types of Brain Cells Contribute to Ammonia Toxicity. Neurochem Res 2016; 42:721-736. [PMID: 27286679 DOI: 10.1007/s11064-016-1966-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
Abstract
Effects of ammonia on astrocytes play a major role in hepatic encephalopathy, acute liver failure and other diseases caused by increased arterial ammonia concentrations (e.g., inborn errors of metabolism, drug or mushroom poisoning). There is a direct correlation between arterial ammonia concentration, brain ammonia level and disease severity. However, the pathophysiology of hyperammonemic diseases is disputed. One long recognized factor is that increased brain ammonia triggers its own detoxification by glutamine formation from glutamate. This is an astrocytic process due to the selective expression of the glutamine synthetase in astrocytes. A possible deleterious effect of the resulting increase in glutamine concentration has repeatedly been discussed and is supported by improvement of some pathologic effects by GS inhibition. However, this procedure also inhibits a large part of astrocytic energy metabolism and may prevent astrocytes from responding to pathogenic factors. A decrease of the already low glutamate concentration in astrocytes due to increased synthesis of glutamine inhibits the malate-aspartate shuttle and energy metabolism. A more recently described pathogenic factor is the resemblance between NH4+ and K+ in their effects on the Na+,K+-ATPase and the Na+,K+, 2 Cl- and water transporter NKCC1. Stimulation of the Na+,K+-ATPase driven NKCC1 in both astrocytes and endothelial cells is essential for the development of brain edema. Na+,K+-ATPase stimulation also activates production of endogenous ouabains. This leads to oxidative and nitrosative damage and sensitizes NKCC1. Administration of ouabain antagonists may accordingly have therapeutic potential in hyperammonemic diseases.
Collapse
|
44
|
Rathi S, Dhiman RK. Hepatobiliary Quiz (Answers)-14 (2015). J Clin Exp Hepatol 2015; 5:175-8. [PMID: 26155047 PMCID: PMC4491639 DOI: 10.1016/j.jceh.2015.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Radha K. Dhiman
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
45
|
Abstract
The presence of hepatic encephalopathy (HE) within 4 weeks is part of the criteria for defining acute-on-chronic liver failure (ACLF). The pathophysiology of HE is complex, and hyperammonemia and cerebral hemodynamic dysfunction appear to be central in the pathogenesis of encephalopathy. Recent data also suggest that inflammatory mediators may have a significant role in modulating the cerebral effect of ammonia. Multiple prospective and retrospective studies have shown that hepatic encephalopathy in ACLF patients is associated with higher mortality, especially in those with grade III-IV encephalopathy, similar to that of acute liver failure (ALF). Although significant cerebral edema detected by CT in ACLF patients appeared to be less common, specialized MRI imaging was able to detect cerebral edema even in low grade HE. Ammonia-focused therapy constitutes the basis of current therapy, as in the treatment of ALF. Emerging treatment strategies focusing on modulating the gut-liver-circulation-brain axis are discussed.
Collapse
Affiliation(s)
- Guan-Huei Lee
- Department of Medicine, National University Health System, 1E, Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
46
|
Bernal W, Lee WM, Wendon J, Larsen FS, Williams R. Acute liver failure: A curable disease by 2024? J Hepatol 2015; 62:S112-20. [PMID: 25920080 DOI: 10.1016/j.jhep.2014.12.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 12/12/2022]
Abstract
Over the last three decades acute liver failure (ALF) has been transformed from a rare and poorly understood condition with a near universally fatal outcome, to one with a well characterized phenotype and disease course. Complex critical care protocols are now applied and emergency liver transplantation (ELT) is an established treatment option. These improvements in care are such that the majority of patients may now be expected to survive (Fig. 1). Key features of the condition have changed dramatically over time, with a remarkable fall in the incidence of cerebral edema and intracranial hypertension, a much feared complication. In this review, we summarize the current understanding of key aspects of the classification, pathophysiology and management of ALF, and discuss the foreseeable challenges that will need to be addressed for further improvements to be achieved.
Collapse
Affiliation(s)
- William Bernal
- Liver Intensive Therapy Unit, Institute of Liver Studies, Kings College Hospital, Denmark Hill, London SE5 9RS, United Kingdom.
| | - William M Lee
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8887, USA
| | - Julia Wendon
- Liver Intensive Therapy Unit, Institute of Liver Studies, Kings College Hospital, Denmark Hill, London SE5 9RS, United Kingdom
| | | | - Roger Williams
- Institute of Hepatology London, Foundation for Liver Research, 69-75 Chenies Mews, London WC1 6HX, United Kingdom
| |
Collapse
|
47
|
Butterworth RF. Pathogenesis of hepatic encephalopathy and brain edema in acute liver failure. J Clin Exp Hepatol 2015; 5:S96-S103. [PMID: 26041966 PMCID: PMC4442857 DOI: 10.1016/j.jceh.2014.02.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/07/2014] [Indexed: 12/12/2022] Open
Abstract
Neuropathologic investigations in acute liver failure (ALF) reveal significant alterations to neuroglia consisting of swelling of astrocytes leading to cytotoxic brain edema and intracranial hypertension as well as activation of microglia indicative of a central neuroinflammatory response. Increased arterial ammonia concentrations in patients with ALF are predictors of patients at risk for the development of brain herniation. Molecular and spectroscopic techniques in ALF reveal alterations in expression of an array of genes coding for neuroglial proteins involved in cell volume regulation and mitochondrial function as well as in the transport of neurotransmitter amino acids and in the synthesis of pro-inflammatory cytokines. Liver-brain pro-inflammatory signaling mechanisms involving transduction of systemically-derived cytokines, ammonia neurotoxicity and exposure to increased brain lactate have been proposed. Mild hypothermia and N-Acetyl cysteine have both hepato-protective and neuro-protective properties in ALF. Potentially effective anti-inflammatory agents aimed at control of encephalopathy and brain edema in ALF include etanercept and the antibiotic minocycline, a potent inhibitor of microglial activation. Translation of these potentially-interesting findings to the clinic is anxiously awaited.
Collapse
Key Words
- ALF, acute liver failure
- ATP, adenosine triphosphate
- BBB, blood-brain barrier
- CCL2, chemokine ligand-2
- CMRO2, cerebral metabolic rate for oxygen
- CNS, central nervous system
- EEG, electroencephalography
- GABA, gamma-aminobutyric acid
- GFAP, glial fibrillary acidic protein
- IgG, immunoglobulin
- MRS, magnetic resonance spectroscopy
- NAC, N-Acetyl cysteine
- NMDA, N-methyl-d-aspartate
- SIRS, systemic inflammatory response syndrome
- SNATs, several neutral amino acid transport systems
- TLP, translocator protein
- TNFα, tumor necrosis factor alpha
- acute liver failure
- hepatic encephalopathy
- intracranial hypertension
- microglial activation
- neuroinflammation
Collapse
Affiliation(s)
- Roger F. Butterworth
- Neuroscience Research Unit, Hopital St-Luc (CHUM) and Department of Medicine, University of Montreal, Montreal, QC H2W 3J4, Canada,Address for correspondence: Roger F. Butterworth, Neuroscience Research Unit, Hospital St-Luc (CHUM) and Department of Medicine, University of Montreal, 1058 St Denis, Montreal, QC H2W 3J4, Canada. Tel.: +1 902 929 2470.
| |
Collapse
|
48
|
Aldridge DR, Tranah EJ, Shawcross DL. Pathogenesis of hepatic encephalopathy: role of ammonia and systemic inflammation. J Clin Exp Hepatol 2015; 5:S7-S20. [PMID: 26041962 PMCID: PMC4442852 DOI: 10.1016/j.jceh.2014.06.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/05/2014] [Indexed: 12/12/2022] Open
Abstract
The syndrome we refer to as Hepatic Encephalopathy (HE) was first characterized by a team of Nobel Prize winning physiologists led by Pavlov and Nencki at the Imperial Institute of Experimental Medicine in Russia in the 1890's. This focused upon the key observation that performing a portocaval shunt, which bypassed nitrogen-rich blood away from the liver, induced elevated blood and brain ammonia concentrations in association with profound neurobehavioral changes. There exists however a spectrum of metabolic encephalopathies attributable to a variety (or even absence) of liver hepatocellular dysfunctions and it is this spectrum rather than a single disease entity that has come to be defined as HE. Differences in the underlying pathophysiology, treatment responses and outcomes can therefore be highly variable between acute and chronic HE. The term also fails to articulate quite how systemic the syndrome of HE can be and how it can be influenced by the gastrointestinal, renal, nervous, or immune systems without any change in background liver function. The pathogenesis of HE therefore encapsulates a complex network of interdependent organ systems which as yet remain poorly characterized. There is nonetheless a growing recognition that there is a complex but influential synergistic relationship between ammonia, inflammation (sterile and non-sterile) and oxidative stress in the pathogenesis HE which develops in an environment of functional immunoparesis in patients with liver dysfunction. Therapeutic strategies are thus moving further away from the traditional specialty of hepatology and more towards novel immune and inflammatory targets which will be discussed in this review.
Collapse
Key Words
- ATP, adenosine triphosphate
- AoCLF, acute-on-chronic liver failure
- BBB, blood–brain barrier
- CBF, cerebral blood flow
- CNS, central nervous system
- GS, glutamine synthetase
- HE, hepatic encephalopathy
- ICH, intracranial hypertension
- MHE, minimal hepatic encephalopathy
- MPT, mitochondrial permeability transition
- PAG, phosphate-activated glutaminase
- PTP, permeability transition pore
- TLR, toll-like receptor
- ammonia
- hepatic encephalopathy
- iNOS, inducible nitric oxide synthase
- infection
- inflammation
- systemic inflammatory response syndrome
Collapse
Affiliation(s)
| | | | - Debbie L. Shawcross
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, King's College Hospital, Denmark Hill, London SE5 9RS, United Kingdom
| |
Collapse
|
49
|
Chavarria L, Romero-Giménez J, Monteagudo E, Lope-Piedrafita S, Cordoba J. Real-time assessment of ¹³C metabolism reveals an early lactate increase in the brain of rats with acute liver failure. NMR IN BIOMEDICINE 2015; 28:17-23. [PMID: 25303736 DOI: 10.1002/nbm.3226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 06/04/2023]
Abstract
Intracranial hypertension is a severe complication of acute liver failure (ALF) secondary to brain edema. The pathogenesis of cerebral edema in ALF is not clear, but seems to be related to energy metabolism in which lactate may have an important role. The aim of this study was to follow the synthesis of brain lactate using a novel in vivo metabolic technology in a rat model of ALF. Time-resolved (13) C MRS of hyperpolarized (13) C1 -pyruvate was used to quantitatively follow the in vivo conversion of pyruvate to its substrates in a model of devascularized ALF in rats. Rats with ALF showed a significant increase in the lactate to pyruvate ratio from 36% to 69% during the progression of liver disease relative to rats with portocaval anastomosis. Rats with ALF also showed a significant increase in the alanine to pyruvate ratio from 72% to 95%. These increases were detectable at very early stages (6 h) when animals had no evident disease signs in their behavior (without loss of righting or corneal reflexes). This study shows the dynamic consequences of cerebral in vivo (13) C metabolism at real time in rats with ALF. The early detection of the de novo synthesis of lactate suggests that brain lactate is involved in the physiopathology of ALF. Hyperpolarization is a potential non-invasive technique to follow the in vivo metabolism, and both the development and optimization of (13) C-labeled substrates can clarify the mechanism involved in ALF.
Collapse
Affiliation(s)
- Laia Chavarria
- Liver Unit, Hospital Vall Hebron, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | | | | | | |
Collapse
|
50
|
Chavarria L, Cordoba J. Magnetic resonance of the brain in chronic and acute liver failure. Metab Brain Dis 2014; 29:937-44. [PMID: 24254992 DOI: 10.1007/s11011-013-9452-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022]
Abstract
Brain alterations such as hepatic encephalopathy or brain edema are usually associated with liver failure. The mechanisms that lead to the generation of edema seem to be different depending on the course of liver failure (acute, chronic or acute-on-chronic liver failure). Several neuroimaging methods allow a non-invasive assessment of brain alterations in liver failure. Magnetic resonance has gained more interest due to the ability of giving information about cerebral metabolism using spectroscopy, water distribution by diffusion methods or neuronal connectivity by means of resting state magnetic resonance. These techniques have been applied to experimental models and patients with liver failure to elucidate cerebral pathways involved in the pathogenesis of hepatic encephalopathy. In the future, the development of new magnetic resonance implementations will generate handy tools for the study of the brain and get better understanding of the mechanisms that take place in liver failure. This could be useful for the early diagnosis, as well as for the design of new treatments for cerebral complications of liver failure.
Collapse
|