1
|
Kavanagh D, Barratt J, Schubart A, Webb NJA, Meier M, Fakhouri F. Factor B as a therapeutic target for the treatment of complement-mediated diseases. Front Immunol 2025; 16:1537974. [PMID: 40028332 PMCID: PMC11868072 DOI: 10.3389/fimmu.2025.1537974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
The complement system, consisting of three initiating pathways-classical, lectin and alternative, is an important part of innate immunity. Dysregulation of the complement system is implicated in the pathogenesis of several autoimmune and inflammatory diseases. Therapeutic inhibition of the complement system has been recognized as a viable approach to drug development and has been successful with the approval of a small number of complement inhibitors for diseases such as paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, neuromyelitis optica, myasthenia gravis and geographic atrophy. More recently, therapies selectively targeting the alternative pathway (AP), which drives the amplification of the complement responses, are being evaluated for these complement-mediated diseases. Complement Factor B, a serine protease, is a unique component of the AP that is essential for the catalytic activity of AP C3 convertase and AP C5 convertase. Inhibition of Factor B blocks the activity of the alternative pathway and the amplification loop, and subsequent generation of the membrane attack complex downstream; however, it has no effect on the initial activation mediated by the classical and lectin complement pathways. Therefore, Factor B is an attractive target for diseases in which the AP is overactivated. In this review, we provide an overview of Factor B and its critical role in the AP, discuss the benefit-risk of Factor B inhibition as a targeted therapeutic strategy, and describe the various Factor B inhibitors that are approved and/or in clinical development.
Collapse
Affiliation(s)
- David Kavanagh
- National Renal Complement Therapeutics Centre, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, The John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Anna Schubart
- Department of Immunology, Novartis BioMedical Research, Basel, Switzerland
| | | | | | - Fadi Fakhouri
- Service of Nephrology and Hypertension, Centre Hospitalier Universitaire Vaudois, UNIL, Lausanne, Switzerland
| |
Collapse
|
2
|
Schubart A, Flohr S, Junt T, Eder J. Low-molecular weight inhibitors of the alternative complement pathway. Immunol Rev 2023; 313:339-357. [PMID: 36217774 PMCID: PMC10092480 DOI: 10.1111/imr.13143] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dysregulation of the alternative complement pathway predisposes individuals to a number of diseases. It can either be evoked by genetic alterations in or by stabilizing antibodies to important pathway components and typically leads to severe diseases such as paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, C3 glomerulopathy, and age-related macular degeneration. In addition, the alternative pathway may also be involved in many other diseases where its amplifying function for all complement pathways might play a role. To identify specific alternative pathway inhibitors that qualify as therapeutics for these diseases, drug discovery efforts have focused on the two central proteases of the pathway, factor B and factor D. Although drug discovery has been challenging for a number of reasons, potent and selective low-molecular weight (LMW) oral inhibitors have now been discovered for both proteases and several molecules are in clinical development for multiple complement-mediated diseases. While the clinical development of these inhibitors initially focuses on diseases with systemic and/or peripheral tissue complement activation, the availability of LMW inhibitors may also open up the prospect of inhibiting complement in the central nervous system where its activation may also play an important role in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Schubart
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefanie Flohr
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Tobias Junt
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jörg Eder
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
3
|
Rauch J, Eisermann P, Noack B, Mehlhoop U, Muntau B, Schäfer J, Tappe D. Typhus Group Rickettsiosis, Germany, 2010-2017 1. Emerg Infect Dis 2019; 24:1213-1220. [PMID: 29912688 PMCID: PMC6038764 DOI: 10.3201/eid2407.180093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Typhus group rickettsiosis is caused by the vectorborne bacteria Rickettsia typhi and R. prowazekii. R. typhi, which causes murine typhus, the less severe endemic form of typhus, is transmitted by fleas; R. prowazekii, which causes the severe epidemic form of typhus, is transmitted by body lice. To examine the immunology of human infection with typhus group rickettsiae, we retrospectively reviewed clinical signs and symptoms, laboratory changes, and travel destinations of 28 patients who had typhus group rickettsiosis diagnosed by the German Reference Center for Tropical Pathogens, Hamburg, Germany, during 2010-2017. Immunofluorescence assays of follow-up serum samples indicated simultaneous seroconversion of IgM, IgA, and IgG or concurrence in the first serum sample. Cytokine levels peaked during the second week of infection, coinciding with organ dysfunction and seroconversion. For 3 patients, R. typhi was detected by species-specific nested quantitative PCR. For all 28 patients, R. typhi was the most likely causative pathogen.
Collapse
|
4
|
Tappe D, Booken N, Böer-Auer A, Rauch J, Schmiedel S, Reich K. Histology and Serum Cytokine Responses in an Imported Rickettsia slovaca Infection, Germany. Am J Trop Med Hyg 2018; 98:248-251. [PMID: 29141745 DOI: 10.4269/ajtmh.17-0392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Rickettsia slovaca, a spotted fever group rickettsial pathogen, causes a syndrome consisting of scalp eschar and neck lymphadenopathy following tick bite. We analyzed the histologic skin reaction in the eschar, showing a prominent eosinophilic infiltration, as well as the presence of B lymphocytes and CD4- and CD8-positive T cells. Examination of the serum cytokine responses over time demonstrated an initial proinflammatory cytokine elevation followed by normalization.
Collapse
Affiliation(s)
- Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Jessica Rauch
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stefan Schmiedel
- Division of Infectious Diseases and Tropical Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | | |
Collapse
|
5
|
Quiroz-Castañeda RE, Cobaxin-Cárdenas M, Cuervo-Soto LI. Exploring the diversity, infectivity and metabolomic landscape of Rickettsial infections for developing novel therapeutic intervention strategies. Cytokine 2018; 112:63-74. [PMID: 30072088 DOI: 10.1016/j.cyto.2018.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
Rickettsioses are zoonotic infections caused by obligate intracellular bacteria of the genera Rickettsia that affect human health; sometimes humans being considered as accidental hosts. At a molecular level, the rickettsiae infection triggers molecular signaling leading to the secretion of proinflammatory cytokines. These cytokines direct the immune response to the host cell damage and pathogen removal. In this review, we present metabolic aspects of the host cell in the presence of rickettsiae and how this presence triggers an inflammatory response to cope with the pathogen. We also reviewed the secretion of cytokines that modulates host cell response at immune and metabolic levels.
Collapse
Affiliation(s)
- Rosa Estela Quiroz-Castañeda
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Carretera Federal Cuernavaca Cuautla 8534, Progreso, 62574 Jiutepec, Morelos, Mexico.
| | - Mayra Cobaxin-Cárdenas
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Carretera Federal Cuernavaca Cuautla 8534, Progreso, 62574 Jiutepec, Morelos, Mexico.
| | - Laura Inés Cuervo-Soto
- Facultad de Ciencias, Departamento de Biología, Universidad Antonio Nariño, Sede Circunvalar Carrera 3 Este, No. 47 A15, Bogotá, Colombia
| |
Collapse
|
6
|
Serum cytokine responses in Rickettsia felis infected febrile children, Ghana. Med Microbiol Immunol 2018; 207:243-248. [PMID: 29736763 PMCID: PMC6096778 DOI: 10.1007/s00430-018-0544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/24/2018] [Indexed: 11/13/2022]
Abstract
The intracellular pathogen Rickettsia felis causes flea-borne spotted fever and is increasingly recognized as an emerging cause of febrile illness in Africa, where co-infection with Plasmodium falciparum is common. Rickettsiae invade endothelial cells. Little is known, however, about the early immune responses to infection. In this study, we characterize for the first time the cytokine profile in the acute phase of illness caused by R. felis infection, as well as in plasmodial co-infection, using serum from 23 febrile children < 15 years of age and 20 age-matched healthy controls from Ghana. Levels of IL-8 (interleukin-8), IP-10 (interferon-γ-induced protein-10), MCP-1 (monocyte chemotactic protein-1), MIP-1α (macrophage inflammatory protein-1α) and VEGF (vascular endothelial growth factor) were significantly elevated in R. felis mono-infection; however, IL-8 and VEGF elevation was not observed in plasmodial co-infections. These results have important implications in understanding the early immune responses to R. felis and suggest a complex interplay in co-infections.
Collapse
|
7
|
Banajee KH, Verhoeve VI, Harris EK, Macaluso KR. Effect of Amblyomma maculatum (Acari: Ixodidae) Saliva on the Acute Cutaneous Immune Response to Rickettsia parkeri Infection in a Murine Model. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:1252-1260. [PMID: 27521760 PMCID: PMC5106825 DOI: 10.1093/jme/tjw125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/15/2016] [Indexed: 05/31/2023]
Abstract
Rickettsia parkeri Luckman (Rickettsiales: Rickettsiaceae) is a pathogenic spotted fever group Rickettsia transmitted by Amblyomma maculatum Koch (Acari: Ixodidae) in the United States. The acute innate immune response to this pathogen and the effect of tick feeding or salivary components on this response is largely unknown. We hypothesized that A. maculatum saliva enhances R. parkeri infection via downregulation of the acute cellular and cytokine immune response. C3H/HeN mice were intradermally inoculated with R. parkeri both with and without A. maculatum saliva. Flow cytometry and microscopic evaluation of inoculation site skin suspensions revealed that neutrophils and macrophages predominated at 6 and 24 h post R. parkeri inoculation, respectively. This cellular influx was significantly downregulated when A. maculatum saliva was inoculated along with R. parkeri Inflammatory cytokines (interferon γ and interleukins 6 and 10) were significantly elevated after R. parkeri inoculation. However, cytokine concentration and rickettsial load were not significantly modified by A. maculatum saliva during the acute phase of infection. These results revealed that tick saliva inhibits the cutaneous cellular influx during the acute phase of rickettsial infection. Further study is needed to determine the overall impact of this effect on the establishment of rickettsiosis in the host and development of disease.
Collapse
Affiliation(s)
- K H Banajee
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803 (; ; ; )
| | - V I Verhoeve
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803 (; ; ; )
| | - E K Harris
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803 (; ; ; )
| | - K R Macaluso
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803 (; ; ; )
| |
Collapse
|
8
|
Banajee KH, Embers ME, Langohr IM, Doyle LA, Hasenkampf NR, Macaluso KR. Amblyomma maculatum Feeding Augments Rickettsia parkeri Infection in a Rhesus Macaque Model: A Pilot Study. PLoS One 2015; 10:e0135175. [PMID: 26244337 PMCID: PMC4526656 DOI: 10.1371/journal.pone.0135175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/17/2015] [Indexed: 11/19/2022] Open
Abstract
Rickettsia parkeri is an emerging eschar-causing human pathogen in the spotted fever group of Rickettsia and is transmitted by the Gulf coast tick, Amblyomma maculatum. Tick saliva has been shown to alter both the cellular and humoral components of the innate and adaptive immune systems. However, the effect of this immunomodulation on Rickettsia transmission and pathology in an immunocompetent vertebrate host has not been fully examined. We hypothesize that, by modifying the host immune response, tick feeding enhances infection and pathology of pathogenic spotted fever group Rickettsia sp. In order to assess this interaction in vivo, a pilot study was conducted using five rhesus macaques that were divided into three groups. One group was intradermally inoculated with low passage R. parkeri (Portsmouth strain) alone (n = 2) and another group was inoculated during infestation by adult, R. parkeri-free A. maculatum (n = 2). The final macaque was infested with ticks alone (tick feeding control group). Blood, lymph node and skin biopsies were collected at several time points post-inoculation/infestation to assess pathology and quantify rickettsial DNA. As opposed to the tick-only animal, all Rickettsia-inoculated macaques developed inflammatory leukograms, elevated C-reactive protein concentrations, and elevated TH1 (interferon-γ, interleukin-15) and acute phase inflammatory cytokines (interleukin-6) post-inoculation, with greater neutrophilia and interleukin-6 concentrations in the tick plus R. parkeri group. While eschars formed at all R. parkeri inoculation sites, larger and slower healing eschars were observed in the tick feeding plus R. parkeri group. Furthermore, dissemination of R. parkeri to draining lymph nodes early in infection and increased persistence at the inoculation site were observed in the tick plus R. parkeri group. This study indicates that rhesus macaques can be used to model R. parkeri rickettsiosis, and suggests that immunomodulatory factors introduced during tick feeding may enhance the pathogenicity of spotted fever group Rickettsia.
Collapse
Affiliation(s)
- Kaikhushroo H. Banajee
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, 70803, United States of America
| | - Monica E. Embers
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, Louisiana, United States of America
| | - Ingeborg M. Langohr
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Lara A. Doyle
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Nicole R. Hasenkampf
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, Louisiana, United States of America
| | - Kevin R. Macaluso
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, 70803, United States of America
- * E-mail:
| |
Collapse
|
9
|
Sahni SK, Narra HP, Sahni A, Walker DH. Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol 2014; 8:1265-88. [PMID: 24059918 DOI: 10.2217/fmb.13.102] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human infections with arthropod-borne Rickettsia species remain a major global health issue, causing significant morbidity and mortality. Epidemic typhus due to Rickettsia prowazekii has an established reputation as the 'scourge of armies', and as a major determinant of significant 'historical turning points'. No suitable vaccines for human use are currently available to prevent rickettsial diseases. The unique lifestyle features of rickettsiae include obligate intracellular parasitism, intracytoplasmic niche within the host cell, predilection for infection of microvascular endothelium in mammalian hosts, association with arthropods and the tendency for genomic reduction. The fundamental research in the field of Rickettsiology has witnessed significant recent progress in the areas of pathogen adhesion/invasion and host immune responses, as well as the genomics, proteomics, metabolomics, phylogenetics, motility and molecular manipulation of important rickettsial pathogens. The focus of this review article is to capture a snapshot of the latest developments pertaining to the mechanisms of rickettsial pathogenesis and immunity.
Collapse
Affiliation(s)
- Sanjeev K Sahni
- Department of Pathology & Institute for Human Infections & Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
10
|
Astrup E, Lekva T, Davì G, Otterdal K, Santilli F, Oie E, Halvorsen B, Damås JK, Raoult D, Vitale G, Olano JP, Ueland T, Aukrust P. A complex interaction between Rickettsia conorii and Dickkopf-1--potential role in immune evasion mechanisms in endothelial cells. PLoS One 2012; 7:e43638. [PMID: 23028464 PMCID: PMC3445570 DOI: 10.1371/journal.pone.0043638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/24/2012] [Indexed: 01/08/2023] Open
Abstract
The pathophysiological hallmark of spotted fever group rickettsioses comprises vascular inflammation. Based on the emerging importance of the wingless (Wnt) pathways in inflammation and vascular biology, we hypothesized that Dickkopf-1 (DKK-1), as a major modulator of Wnt signaling, could be involved in the pathogenesis in rickettsial infections. Our major findings were: (i) While baseline concentration of DKK-1 in patients with R. conorii infection (n = 32) were not different from levels in controls (n = 24), DKK-1 rose significantly from presentation to first follow-up sample (median 7 days after baseline). (ii) In vitro experiments in human umbilical vein endothelial cells (HUVECs) showed that while heat-inactivated R. conorii enhanced the release of interleukin-6 (IL-6) and IL-8, it down-regulated the release of endothelial-derived DKK-1 in a time- and dose-dependent manner. (iii) Silencing of DKK-1 attenuated the release of IL-6, IL-8 and growth-related oncogene (GRO)α in R. conorii-exposed HUVECs, suggesting inflammatory effects of DKK-1. (iv) Silencing of DKK-1 attenuated the expression of tissue factor and enhanced the expression of thrombomodulin in R. conorii-exposed HUVECs suggesting pro-thrombotic effects of DKK-1. The capacity of R. conorii to down-regulate endothelial-derived DKK-1 and the ability of silencing DKK-1 to attenuate R. conorii-induced inflammation in endothelial cells could potentially reflect a novel mechanism by which R. conorii escapes the immune response at the site of infection.
Collapse
Affiliation(s)
- Elisabeth Astrup
- Institute of Clinical Medicine, Akershus University Hospital, Lørenskog, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
New insight into immunity and immunopathology of Rickettsial diseases. Clin Dev Immunol 2011; 2012:967852. [PMID: 21912565 PMCID: PMC3170826 DOI: 10.1155/2012/967852] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/17/2011] [Indexed: 02/01/2023]
Abstract
Human rickettsial diseases comprise a variety of clinical entities caused by microorganisms belonging to the genera Rickettsia, Orientia, Ehrlichia, and Anaplasma. These microorganisms are characterized by a strictly intracellular location which has, for long, impaired their detailed study. In this paper, the critical steps taken by these microorganisms to play their pathogenic roles are discussed in detail on the basis of recent advances in our understanding of molecular Rickettsia-host interactions, preferential target cells, virulence mechanisms, three-dimensional structures of bacteria effector proteins, upstream signalling pathways and signal transduction systems, and modulation of gene expression. The roles of innate and adaptive immune responses are discussed, and potential new targets for therapies to block host-pathogen interactions and pathogen virulence mechanisms are considered.
Collapse
|
12
|
Relevance of gamma interferon, tumor necrosis factor alpha, and interleukin-10 gene polymorphisms to susceptibility to Mediterranean spotted fever. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:811-5. [PMID: 19386798 DOI: 10.1128/cvi.00121-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The acute phase of Mediterranean spotted fever (MSF) is characterized by dramatic changes in cytokine production patterns, clearly indicating their role in the immunomodulation of the response against the microorganism, and the differences in cytokine production seem to influence the extent and severity of the disease. In this study, the single nucleotide polymorphisms (SNPs) of tumor necrosis factor alpha (TNF-alpha) -308G/A (rs1800629) and interleukin-10 (IL-10) -1087G/A (rs1800896), -824C/T (rs1800871), and -597C/A (rs1800872) and the gamma interferon (IFN-gamma) T/A SNP at position +874 (rs2430561) were typed in 80 Sicilian patients affected by MSF and in 288 control subjects matched for age, gender, and geographic origin. No significant differences in TNF-alpha -308G/A genotype frequencies were observed. The +874TT genotype, associated with an increased production of IFN-gamma, was found to be significantly less frequent in MSF patients than in the control group (odds ratio [OR], 0.18; 95% confidence interval [95% CI], 0.06 to 0.51; P corrected for the number of genotypes [Pc], 0.0021). In addition, when evaluating the IFN-gamma and IL-10 genotype interaction, a significant increase of +874AA/-597CA (OR, 5.31; 95% CI, 2.37 to 11.88; P(c), 0.0027) combined genotypes was observed. In conclusion, our data strongly suggest that finely genetically tuned cytokine production may play a crucial role in the regulation of the immune response against rickettsial infection, therefore influencing the disease outcomes, ranging from nonapparent or subclinical condition to overt or fatal disease.
Collapse
|
13
|
Abstract
Pathogenic Rickettsia species are Gram-negative, obligate intracellular bacteria responsible for the spotted fever and typhus groups of diseases around the world. It is now well established that a majority of sequelae associated with human rickettsioses are the outcome of the pathogen's affinity for endothelium lining the blood vessels, the consequences of which are vascular inflammation, insult to vascular integrity and compromised vascular permeability, collectively termed 'Rickettsial vasculitis'. Signaling mechanisms leading to transcriptional activation of target cells in response to Rickettsial adhesion and/or invasion, differential activation of host-cell signaling due to infection with spotted fever versus typhus subgroups of Rickettsiae, and their contributions to the host's immune responses and determination of cell fate are the major subtopics of this review. Also included is a succinct analysis of established in vivo models and their use for understanding Rickettsial interactions with host cells and pathogenesis of vasculotropic rickettsioses. Continued progress in these important but relatively under-explored areas of bacterial pathogenesis research should further highlight unique aspects of Rickettsial interactions with host cells, elucidate the biological basis of endothelial tropism and reveal novel chemotherapeutic and vaccination strategies for debilitating Rickettsial diseases.
Collapse
Affiliation(s)
- Sanjeev K Sahni
- Department of Microbiology & Immunology, P.O. Box 672, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA, Tel.: +1 585 275 0439; Fax: +1 585 473 9573; and, Department of Medicine, Hematology–Oncology Unit, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Elena Rydkina
- Department of Microbiology & Immunology, P.O. Box 672, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA, Tel.: +1 585 275 1043; Fax: +1 585 473 9573;
| |
Collapse
|
14
|
Damås JK, Davì G, Jensenius M, Santilli F, Otterdal K, Ueland T, Flo TH, Lien E, Espevik T, Frøland SS, Vitale G, Raoult D, Aukrust P. Relative chemokine and adhesion molecule expression in Mediterranean spotted fever and African tick bite fever. J Infect 2008; 58:68-75. [PMID: 19091423 DOI: 10.1016/j.jinf.2008.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 11/12/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Mediterranean spotted fever (MSF) caused by Rickettsia conorii (R. conorii) is a potential lethal disease while African tick bite fever (ATBF) caused by Rickettsia africae is a self-limiting flu-like illness. We hypothesized that different inflammatory potential in endothelial cells could contribute to the different clinical features in these rickettsioses. METHODS We analyzed the effect of heat-inactivated R. africae and R. conorii on the mRNA and protein levels of monocyte chemoattractant protein (MCP)-1, interleukin (IL)-8 and adhesion molecules in endothelial cells. Serum samples from patients with MSF (n=16) and ATBF (n=15) were collected before and after therapy. RESULTS R. conorii induced a marked increase in MCP-1, IL-8, and adhesion molecules in endothelial cells, involving toll-like receptor 4 activation. In contrast, R. africae induced MCP-1 expression, but only modest or no responses were seen on IL-8 and adhesion molecules. Comparable to the in vitro response, levels of IL-8 and adhesion molecules showed no or only a modest increase in ATBF patients while these inflammatory markers were markedly elevated during MSF. CONCLUSIONS Our findings suggest a superior inflammatory potential of R. conorii as compared to R. africae in endothelial cells, potentially related to the more severe inflammation in MSF comparing ATBF.
Collapse
Affiliation(s)
- Jan K Damås
- Research Institute for Internal Medicine, Rikshospitalet University Hospital, 0027 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Colomba C, Saporito L, Colletti P, Mazzola G, Rubino R, Pampinella D, Titone L. Atrial fibrillation in Mediterranean spotted fever. J Med Microbiol 2008; 57:1424-1426. [DOI: 10.1099/jmm.0.2008/002162-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mediterranean spotted fever (MSF) is a tick-borne acute febrile disease caused by Rickettsia conorii and characterized by fever, maculo-papular rash and a black eschar at the site of the tick bite (‘tache noir’). We describe the case of a 58-year-old man affected by MSF who developed atrial fibrillation. The patient presented himself to the hospital after 7 days of fever, malaise and severe headache. Cardiac auscultation revealed a chaotic heart rhythm and an electrocardiogram confirmed atrial fibrillation with a fast ventricular response. Diagnosis of MSF was made after the appearance of a maculo-papular skin rash, and treatment with oral doxycycline was started. An immunofluorescence antibody test confirmed R. conorii infection. The patient recovered after 7 days of treatment. Cardiac arrhythmia is a rare complication of MSF. Inflammation may play a role in the pathogenesis of atrial fibrillation. R. conorii is an intracellular bacterium which could trigger atrial fibrillation. Our patient was previously healthy and had no reported history of cardiac disease. This suggests that heart function should be monitored in MSF patients even in the absence of underlying risk factors.
Collapse
Affiliation(s)
- Claudia Colomba
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Malattie Infettive, Università di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Laura Saporito
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Malattie Infettive, Università di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Pietro Colletti
- Dipartimento di Patologie Emergenti, Clinica delle Malattie Infettive, Azienda Ospedaliera Universitaria Policlinico ‘Paolo Giaccone’, Via del Vespro 129, 90127 Palermo, Italy
| | - Giovanni Mazzola
- Dipartimento di Patologie Emergenti, Clinica delle Malattie Infettive, Azienda Ospedaliera Universitaria Policlinico ‘Paolo Giaccone’, Via del Vespro 129, 90127 Palermo, Italy
| | - Raffaella Rubino
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Malattie Infettive, Università di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Diego Pampinella
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Malattie Infettive, Università di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Lucina Titone
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Malattie Infettive, Università di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| |
Collapse
|
16
|
Rydkina E, Sahni A, Silverman DJ, Sahni SK. Comparative analysis of host-cell signalling mechanisms activated in response to infection with Rickettsia conorii and Rickettsia typhi. J Med Microbiol 2007; 56:896-906. [PMID: 17577053 DOI: 10.1099/jmm.0.47050-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Gram-negative intracellular bacteria Rickettsia conorii and Rickettsia typhi are the aetiological agents of Mediterranean spotted fever and endemic typhus, respectively, in humans. Infection of endothelial cells (ECs) lining vessel walls, and the resultant vascular inflammation and haemostatic alterations are salient pathogenetic features of both of these rickettsial diseases. An important consideration, however, is that dramatic differences in the intracellular motility and accumulation patterns for spotted fever versus typhus group rickettsiae have been documented, suggesting the possibility of unique and potentially different interactions with host cells. This study characterized and compared R. conorii- and R. typhi-mediated effects on cultured human ECs. The DNA-binding activity of nuclear transcription factor-kappaB (NF-kappaB) and the phosphorylation status of stress-activated p38 kinase were determined as indicators of NF-kappaB and p38 activation. R. conorii infection resulted in a biphasic activation of NF-kappaB, with an early increase in DNA-binding activity at 3 h, followed by a later peak at 24 h. The activated NF-kappaB species were composed mainly of RelA p65-p50 heterodimers and p50 homodimers. R. typhi infection of ECs resulted in only early activation of NF-kappaB at 3 h, composed primarily of p65-p50 heterodimers. Whilst R. conorii infection induced increased phosphorylation of p38 kinase (threefold mean induction) with the maximal response at 3 h, a considerably less-intense response peaking at about 6 h post-infection was found with R. typhi. Furthermore, mRNA expression of the chemokines interleukin (IL)-8 and monocyte chemoattractant protein-1 in ECs infected with either Rickettsia species was higher than the corresponding controls, but there were distinct differences in the secretion patterns for IL-8, suggesting the possibility of involvement of post-transcriptional control mechanisms or differences in the release from intracellular storage sites. Thus, the intensity and kinetics of host-cell responses triggered by spotted fever and typhus species exhibit distinct variations that could subsequently lead to differences in the extent of endothelial activation and inflammation and serve as important determinants of pathogenesis.
Collapse
Affiliation(s)
- Elena Rydkina
- Hematology-Oncology Unit, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Abha Sahni
- Hematology-Oncology Unit, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - David J Silverman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sanjeev K Sahni
- Hematology-Oncology Unit, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
17
|
Damås JK, Jensenius M, Ueland T, Otterdal K, Yndestad A, Frøland SS, Rolain JM, Myrvang B, Raoult D, Aukrust P. Increased Levels of Soluble CD40L in African Tick Bite Fever: Possible Involvement of TLRs in the Pathogenic Interaction betweenRickettsia africae, Endothelial Cells, and Platelets. THE JOURNAL OF IMMUNOLOGY 2006; 177:2699-706. [PMID: 16888032 DOI: 10.4049/jimmunol.177.4.2699] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The pathophysiological hallmark of spotted fever group rickettsioses comprises infection of endothelial cells with subsequent infiltration of inflammatory cells. Based on its ability to promote inflammation and endothelial cell activation, we investigated the role of CD40L in African tick bite fever (ATBF), caused by Rickettsia africae, using different experimental approaches. Several significant findings were revealed. 1) Patients with ATBF (n = 15) had increased serum levels of soluble CD40 ligand (sCD40L), which decreased during follow-up. 2) These enhanced sCD40L levels seem to reflect both direct and indirect (through endothelial cell activation involving CX3CL1-related mechanisms) effects of R. africae on platelets. 3) In combination with sCD40L, R. africae promoted a procoagulant state in endothelial cells by up-regulating tissue factor and down-regulating thrombomodulin expression. 4) Although the R. africae-mediated activation of platelets involved TLR2, the combined procoagulant effects of R. africae and sCD40L on endothelial cells involved TLR4. 5) Doxycycline counteracted the combined procoagulant effects of R. africae and sCD40L on endothelial cells. Our findings suggest an inflammatory interaction between platelets and endothelial cells in ATBF, involving TLR-related mechanisms. This interaction, which includes additive effects between sCD40L and R. africae, may contribute to endothelial inflammation and hypercoagulation in this disorder.
Collapse
Affiliation(s)
- Jan K Damås
- Research Institute for Internal Medicine, Rikshospitalet University Hospital, N-0027 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
D'Agostino P, Camemi AR, Caruso R, Arcoleo F, Cascio A, Dolce A, Sacco E, Cangemi G, di Rosa T, Moceo P, Cillari E. Matrix metalloproteinases production in malignant pleural effusions after talc pleurodesis. Clin Exp Immunol 2003; 134:138-42. [PMID: 12974766 PMCID: PMC1808842 DOI: 10.1046/j.1365-2249.2003.02262.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study we have evaluated the modifications of matrix metalloproteinases (MMPs) in malignant pleural fluids taken from patients suffering from lung cancer and treated with intrapleural talc instillation to induce pleurodesis. Furthermore, we have analysed the variations of some inflammatory mediators (C-reactive protein, alpha-1 antitrypsin) and of a protein (plasminogen) involved in MMP activation. In all patients the clinical improvement after talc pleurodesis was followed by a reduction in MMP-1, TIMP-1, C-reactive protein, alpha-1 antitrypsin and plasminogen activity. Furthermore, MMP-9 levels were variable; in fact, in some patients they were high at the beginning of treatment, in others they increased a few days after pleurodesis induction. These inhibitory effects of talc on MMP-1 and inflammatory mediators associated with the reduction of pleural effusion could constitute an effective means to evaluate the evolution of the treatment.
Collapse
Affiliation(s)
- P D'Agostino
- Azienda Ospedaliera-Universitaria Policlinico, University of Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Valbuena G, Feng HM, Walker DH. Mechanisms of immunity against rickettsiae. New perspectives and opportunities offered by unusual intracellular parasites. Microbes Infect 2002; 4:625-33. [PMID: 12048032 DOI: 10.1016/s1286-4579(02)01581-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Investigation of the biology, pathology and immunology of rickettsial diseases offers new insights useful not only for the field of rickettsiology, but more importantly for the understanding of general principles of host-intracellular parasite relationships and, in particular, the immune interaction between endothelial cells and immune cells in the context of infection.
Collapse
Affiliation(s)
- Gustavo Valbuena
- Department of Pathology and WHO Collaborating Center for Tropical Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston 77555-0609, USA
| | | | | |
Collapse
|