1
|
Jiang N, Hu B, Cao S, Gao S, Cao Q, Chen J, Zhou Q, Guo R. Stable Low-Dose Oxygen Release Using H 2O 2/Perfluoropentane Phase-Change Nanoparticles with Low-Intensity Focused Ultrasound for Coronary Thrombolysis. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2765-2774. [PMID: 32646686 DOI: 10.1016/j.ultrasmedbio.2020.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
After the onset of myocardial infarction, extensive coronary thrombus and oxygen supply insufficiency lead to severe myocardial damage and heart failure. Recently, ultrasound-irradiated phase-change nanoparticles have been recognized for their cardiovascular thrombolysis potential. Therefore, we sought to establish a novel treatment method using hydrogen peroxide (H2O2)/perfluoropentane (PFP) phase-change nanoparticles with low-intensity focused ultrasound (LIFU) for the simulation of acute coronary thrombolysis and myocardial preservation. There were three groups in our study: Group A consisted of phosphate-buffered saline (PBS) as the blank control, group B consisted of SonoVue microbubbles and group C consisted of H2O2/PFP phase-change nanoparticles. The H2O2/PFP phase-change nanoparticles were prepared using a double-emulsification process. The in vitro experiments were conducted in an artificial circulatory system connected to an LIFU system and dissolved oxygen detector. Thrombolysis efficiency and oxygen release efficiency were compared among the groups. H2O2/PFP nanoparticles with 3% H2O2 (average size: 456.7 ± 31.2 nm, charge: -37.5 ± 5.22 mV) was the optimal selection in group C because of the stable loading capacity and stable low-dose oxygen release efficiency in the in vitro experiments. Thrombolytic weight loss and loss rates in group C (322.0 ± 40.8 mg, 54.8 ± 5.7%) were significantly higher than those in group A (36.2 ± 18.1 mg, 5.5 ± 2.5%) and group B (91.0 ± 11.9 mg, 14.3 ± 2.4%) (p < 0.01). The innovative method using H2O2/PFP phase-change nanoparticles with LIFU exhibited high thrombolytic efficiency and stable low-flow oxygen supply in the artificial circulatory system, providing a solid experimental foundation for the establishment of a novel treatment method for acute myocardial infarction.
Collapse
Affiliation(s)
- Nan Jiang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Hu
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Sheng Cao
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shunji Gao
- Department of Ultrasound Imaging, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qingqiong Cao
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinling Chen
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Zhou
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruiqiang Guo
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Salih M, Ali SM, Jena N, Ananthasubramaniam K. Review of ultrasound contrast agents in current clinical practice with special focus on DEFINITY ® in cardiac imaging. Future Cardiol 2020; 17:197-214. [PMID: 32897099 DOI: 10.2217/fca-2020-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Echocardiography is the most widely used noninvasive modality to evaluate the structure and function of the cardiac muscle in daily practice. However, up to 15-20% of echocardiograms are considered suboptimal. To enable accurate assessment of cardiac function and wall motion abnormality, the use of ultrasound microbubble contrast has shown substantial benefits in cases of salvaging nondiagnostic studies and enhancing the diagnostic accuracy in daily practice. DEFINITY® is a perflutren based, lipid shelled microbubble contrast agent, which is US FDA approved for left ventricular opacification. The basis of ultrasound microbubbles, its development, and the clinical role of DEFINITY (characteristics, indications and case examples, side effect profile and existing evidence) is the subject of discussion in this review.
Collapse
Affiliation(s)
- Mohammed Salih
- Department of Medicine, St Joseph Mercy Oakland Hospital, Pontiac, MI 48341, USA
| | - Syed Musadiq Ali
- Department Of Cardiology, Beth Israel Deaconess Hospital, Boston, MA 02215, USA
| | - Nihar Jena
- Department of Medicine, St Joseph Mercy Oakland Hospital, Pontiac, MI 48341, USA
| | | |
Collapse
|
3
|
Lattwein KR, Shekhar H, Kouijzer JJP, van Wamel WJB, Holland CK, Kooiman K. Sonobactericide: An Emerging Treatment Strategy for Bacterial Infections. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:193-215. [PMID: 31699550 PMCID: PMC9278652 DOI: 10.1016/j.ultrasmedbio.2019.09.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 05/04/2023]
Abstract
Ultrasound has been developed as both a diagnostic tool and a potent promoter of beneficial bio-effects for the treatment of chronic bacterial infections. Bacterial infections, especially those involving biofilm on implants, indwelling catheters and heart valves, affect millions of people each year, and many deaths occur as a consequence. Exposure of microbubbles or droplets to ultrasound can directly affect bacteria and enhance the efficacy of antibiotics or other therapeutics, which we have termed sonobactericide. This review summarizes investigations that have provided evidence for ultrasound-activated microbubble or droplet treatment of bacteria and biofilm. In particular, we review the types of bacteria and therapeutics used for treatment and the in vitro and pre-clinical experimental setups employed in sonobactericide research. Mechanisms for ultrasound enhancement of sonobactericide, with a special emphasis on acoustic cavitation and radiation force, are reviewed, and the potential for clinical translation is discussed.
Collapse
Affiliation(s)
- Kirby R Lattwein
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Himanshu Shekhar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joop J P Kouijzer
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem J B van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Petrassi FA, Davis JT, Beasley KM, Evero O, Elliott JE, Goodman RD, Futral JE, Subudhi A, Solano-Altamirano JM, Goldman S, Roach RC, Lovering AT. AltitudeOmics: effect of reduced barometric pressure on detection of intrapulmonary shunt, pulmonary gas exchange efficiency, and total pulmonary resistance. J Appl Physiol (1985) 2018; 124:1363-1376. [PMID: 29357511 PMCID: PMC6008081 DOI: 10.1152/japplphysiol.00474.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/06/2017] [Accepted: 12/10/2017] [Indexed: 11/22/2022] Open
Abstract
Blood flow through intrapulmonary arteriovenous anastomoses (QIPAVA) occurs in healthy humans at rest and during exercise when breathing hypoxic gas mixtures at sea level and may be a source of right-to-left shunt. However, at high altitudes, QIPAVA is reduced compared with sea level, as detected using transthoracic saline contrast echocardiography (TTSCE). It remains unknown whether the reduction in QIPAVA (i.e., lower bubble scores) at high altitude is due to a reduction in bubble stability resulting from the lower barometric pressure (PB) or represents an actual reduction in QIPAVA. To this end, QIPAVA, pulmonary artery systolic pressure (PASP), cardiac output (QT), and the alveolar-to-arterial oxygen difference (AaDO2) were assessed at rest and during exercise (70-190 W) in the field (5,260 m) and in the laboratory (1,668 m) during four conditions: normobaric normoxia (NN; [Formula: see text] = 121 mmHg, PB = 625 mmHg; n = 8), normobaric hypoxia (NH; [Formula: see text] = 76 mmHg, PB = 625 mmHg; n = 7), hypobaric normoxia (HN; [Formula: see text] = 121 mmHg, PB = 410 mmHg; n = 8), and hypobaric hypoxia (HH; [Formula: see text] = 75 mmHg, PB = 410 mmHg; n = 7). We hypothesized QIPAVA would be reduced during exercise in isooxic hypobaria compared with normobaria and that the AaDO2 would be reduced in isooxic hypobaria compared with normobaria. Bubble scores were greater in normobaric conditions, but the AaDO2 was similar in both isooxic hypobaria and normobaria. Total pulmonary resistance (PASP/QT) was elevated in HN and HH. Using mathematical modeling, we found no effect of hypobaria on bubble dissolution time within the pulmonary transit times under consideration (<5 s). Consequently, our data suggest an effect of hypobaria alone on pulmonary blood flow. NEW & NOTEWORTHY Blood flow through intrapulmonary arteriovenous anastomoses, detected by transthoracic saline contrast echocardiography, was reduced during exercise in acute hypobaria compared with normobaria, independent of oxygen tension, whereas pulmonary gas exchange efficiency was unaffected. Modeling the effect(s) of reduced air density on contrast bubble lifetime did not result in a significantly reduced contrast stability. Interestingly, total pulmonary resistance was increased by hypobaria, independent of oxygen tension, suggesting that pulmonary blood flow may be changed by hypobaria.
Collapse
Affiliation(s)
- Frank A Petrassi
- Department of Kinesiology, Recreation, and Sport, Indiana State University, Terre Haute, Indiana
| | - James T Davis
- Department of Kinesiology, Recreation, and Sport, Indiana State University, Terre Haute, Indiana
| | - Kara M Beasley
- Department of Kinesiology, Recreation, and Sport, Indiana State University, Terre Haute, Indiana
| | - Oghenero Evero
- Altitude Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus , Denver, Colorado
| | - Jonathan E Elliott
- Department of Kinesiology, Recreation, and Sport, Indiana State University, Terre Haute, Indiana
| | - Randall D Goodman
- Oregon Heart and Vascular Institute, Echocardiography, Springfield, Oregon
| | - Joel E Futral
- Oregon Heart and Vascular Institute, Echocardiography, Springfield, Oregon
| | - Andrew Subudhi
- Altitude Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus , Denver, Colorado
| | | | - Saul Goldman
- Department of Chemistry, University of Guelph , Guelph, Ontario , Canada
| | - Robert C Roach
- Altitude Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus , Denver, Colorado
| | - Andrew T Lovering
- Department of Kinesiology, Recreation, and Sport, Indiana State University, Terre Haute, Indiana
| |
Collapse
|
5
|
Izadifar Z, Babyn P, Chapman D. Ultrasound Cavitation/Microbubble Detection and Medical Applications. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0391-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Cheng R, Zhu X, Li Y, Bai X, Xue L, Wei L. Coronary Flow Reserve in Non-Infarcted Myocardium Predicts Long-Term Clinical Outcomes in Patients Undergoing Percutaneous Coronary Intervention. Yonsei Med J 2018; 59:252-257. [PMID: 29436193 PMCID: PMC5823827 DOI: 10.3349/ymj.2018.59.2.252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Coronary flow reserve (CFR) is recognized as an indicator of myocardial perfusion. The aim of this study was to assess the relationship between CFR in the non-infarcted myocardium and the incidence of major adverse cardiac events (MACEs). MATERIALS AND METHODS 100 consecutive patients with acute myocardial infarction (AMI) undergoing percutaneous coronary intervention (PCI) were enrolled in the present study, and divided into MACE and non-MACE groups according to the incidence of 12-month MACEs. Left ventricular function and CFR were analyzed using two-dimensional echocardiography and myocardial contrast echocardiography at one week after PCI. Cardiac troponin I levels were assayed to estimate peak concentrations thereof. RESULTS The MACE group was associated with lower CFR, compared to the non-MACE group (2.41 vs. 2.77, p<0.001). In the multivariable model, CFR in the non-infarcted myocardium was an independent predictor of 12-month MACE (hazard ratio: 0.093, 95% confidence interval: 0.020-0.426, p=0.002) after adjustment for baseline demographic and clinical characteristics. CONCLUSION CFR in the non-infarcted myocardium is a useful marker for predicting 12-month MACEs in patients with AMI undergoing primary PCI.
Collapse
Affiliation(s)
- Rongchao Cheng
- Department of Cardiology, the Forth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoming Zhu
- Department of Economic Management, Heilongjiang Nongken Vocational College, Harbin, China
| | - Yunling Li
- Department of Cardiology, the Forth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiuping Bai
- Department of Cardiology, the Forth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Xue
- Department of Cardiology, the Forth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Wei
- Department of Cardiology, the Forth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
7
|
Caschera L, Lazzara A, Piergallini L, Ricci D, Tuscano B, Vanzulli A. Contrast agents in diagnostic imaging: Present and future. Pharmacol Res 2016; 110:65-75. [PMID: 27168225 DOI: 10.1016/j.phrs.2016.04.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 04/21/2016] [Indexed: 11/16/2022]
Abstract
Specific contrast agents have been developed for x ray examinations (mainly CT), sonography and Magnetic Resonance Imaging. Most of them are extracellular agents which create different enhancement on basis of different vascularization or on basis of different interstitial network in tissues, but some can be targeted to a particular cell line (e.g. hepatocyte). Microbubbles can be used as carrier for therapeutic drugs which can be released in specific targets under sonographic guidance, decreasing systemic toxicity and increasing therapeutic effect. Radiologists have to choose a particular contrast agent knowing its physical and chemical properties and the possibility of adverse reactions and balancing them with the clinical benefits of a more accurate diagnosis. As for any drug, contrast agents can cause adverse events, which are more frequent with Iodine based CA, but also with Gd based CA and even with sonographic contrast agents hypersensitivity reaction can occur.
Collapse
Affiliation(s)
- Luca Caschera
- University of Milano, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy
| | - Angelo Lazzara
- University of Milano, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy
| | - Lorenzo Piergallini
- University of Milano, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy
| | - Domenico Ricci
- University of Milano, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy
| | - Bruno Tuscano
- University of Milano, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy
| | - Angelo Vanzulli
- Department of Biomedical and Clinical Sciences, University of Milano, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy.
| |
Collapse
|
8
|
Cosco D, Fattal E, Fresta M, Tsapis N. Perfluorocarbon-loaded micro and nanosystems for medical imaging: A state of the art. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2014.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Wang G, Zhuo Z, Xia H, Zhang Y, He Y, Tan W, Gao Y. Investigation into the impact of diagnostic ultrasound with microbubbles on the capillary permeability of rat hepatomas. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:628-637. [PMID: 23415284 DOI: 10.1016/j.ultrasmedbio.2012.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 10/19/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
Ultrasound-targeted microbubble destruction (UTMD) takes advantage of transiently increased capillary permeability to enhance the release of tumor-specific drugs from blood vessels into sonicated tumor tissues. However, the application of focused ultrasound is limited because of the lack of an appropriate image-monitoring system. In this study, hepatoma-bearing Sprague-Dawley rats were insonicated with low-frequency diagnostic ultrasound and injected with Evans Blue (EB) dye and microbubbles through their tail veins to test changes in capillary permeability. We studied how the mechanical index, sonication duration and the injected microbubble (MB) concentration affect the hepatoma vascular permeability by quantitatively evaluating the EB delivery efficiency. Confocal laser scanning microscopy was used to observe the deposition of red fluorescence-dyed EB in tumor tissues. In addition, P-selectin, a type of biochemical marker that reflects vascular endothelial cell activation, was identified using an immunoblotting analysis. The experimental results reveal that EB delivery efficiency in tumor tissues was greater in groups with the diagnostic ultrasound-mediated UTMD (8.40 ± 0.71 %ID/g) than in groups without UTMD (1.73 ± 0.19 %ID/g) and EB delivery efficiency could be affected by MI, sonication duration and MB dose. The immunoblotting analysis indicates that diagnostic ultrasound-induced UTMD results in the vascular endothelial cell activation to increase capillary permeability, justifying the high quantity of EB deposited in tumor tissues.
Collapse
Affiliation(s)
- Gong Wang
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Martin KH, Dayton PA. Current status and prospects for microbubbles in ultrasound theranostics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:329-45. [PMID: 23504911 DOI: 10.1002/wnan.1219] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Encapsulated microbubbles have been developed over the past two decades to provide improvements both in imaging as well as new therapeutic applications. Microbubble contrast agents are used currently for clinical imaging where increased sensitivity to blood flow is required, such as echocardiography. These compressible spheres oscillate in an acoustic field, producing nonlinear responses which can be uniquely distinguished from surrounding tissue, resulting in substantial enhancements in imaging signal-to-noise ratio. Furthermore, with sufficient acoustic energy the oscillation of microbubbles can mediate localized biological effects in tissue including the enhancement of membrane permeability or increased thermal energy deposition. Structurally, microbubbles are comprised of two principal components--an encapsulating shell and an inner gas core. This configuration enables microbubbles to be loaded with drugs or genes for additional therapeutic effect. Application of sufficient ultrasound energy can release this payload, resulting in site-specific delivery. Extensive preclinical studies illustrate that combining microbubbles and ultrasound can result in enhanced drug delivery or gene expression at spatially selective sites. Thus, microbbubles can be used for imaging, for therapy, or for both simultaneously. In this sense, microbubbles combined with acoustics may be one of the most universal theranostic tools.
Collapse
Affiliation(s)
- K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | | |
Collapse
|
11
|
Molecular properties of lysozyme-microbubbles: towards the protein and nucleic acid delivery. Amino Acids 2011; 43:885-96. [PMID: 22094542 DOI: 10.1007/s00726-011-1148-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 11/03/2011] [Indexed: 12/30/2022]
Abstract
Microbubbles (MBs) have specific acoustic properties that make them useful as contrast agents in ultrasound imaging. The use of the MBs in clinical practice led to the development of more sensitive imaging techniques both in cardiology and radiology. Protein-MBs are typically obtained by dispersing a gas phase in the protein solution and the protein deposited/cross-linked on the gas-liquid interface stabilizes the gas core. Innovative applications of protein-MBs prompt the investigation on the properties of MBs obtained using different proteins that are able to confer them specific properties and functionality. Recently, we have synthesized stable air-filled lysozyme-MBs (LysMBs) using high-intensity ultrasound-induced emulsification of a partly reduced lysozyme in aqueous solutions. The stability of LysMBs suspension allows for post-synthetic modification of MBs surface. In the present work, the protein folded state and the biodegradability property of LysMBs were investigated by limited proteolysis. Moreover, LysMBs were coated and functionalized with a number of biomacromolecules (proteins, polysaccharides, nucleic acids). Remarkably, LysMBs show a high DNA-binding ability and protective effects of the nucleic acids from nucleases and, further, the ability to transform the bacteria cells. These results highlight on the possibility of using LysMBs for delivery of proteins and nucleic acids in prophylactic and therapeutic applications.
Collapse
|
12
|
Wang Y, Hu B, Diao X, Zhang J. Antitumor effect of microbubbles enhanced by low frequency ultrasound cavitation on prostate carcinoma xenografts in nude mice. Exp Ther Med 2011; 3:187-191. [PMID: 22969866 DOI: 10.3892/etm.2011.377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/21/2011] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to investigate the antitumor effect induced by low frequency (20 kHz) ultrasound (US) radiation combined with intravenous injection of microbubbles (Mbs) on prostate carcinoma Du145 xenografts in nude mice. Du145 prostate tumors were percutaneously implanted in 40 nude mice, which were randomly divided into 4 groups (n=10 each): US+Mbs, US, Mbs and control groups. The mice in the US+Mbs group were treated with 20 kHz, 200 mW/cm(2) US radiation and with 0.2 ml Mbs injected intravenously. Mice in the US and Mbs groups were only treated with US radiation and injection of Mbs, respectively. Tumors were measured with sonography, and the ratio of antitumor growth was calculated. The mice were sacrificed 14 days after treatment. Specimens of the tumor tissues were observed pathologically using light microscopy and transmission electron microscopy. Microvessel density and the average optical density of vascular endothelial growth factor were compared among groups by immunohistochemistry. The average gross tumor volume of the US+Mbs group was significantly reduced compared with the other groups following treatment (P<0.05). The ratio of the antitumor growth in the US+Mbs group was significantly greater than that of the US and Mbs group (P<0.05). Histological examination showed signs of tumor cell injury in the US+Mbs group. Examination by electron microscopy revealed vessel injury in the endothelium in the tumors treated with US+Mbs. Microvessel density and the average optical density of vascular endothelial growth factor in the US+Mbs group were significantly less than that of other groups (P<0.05). In conclusion, low frequency US of 20 kHz radiation combined with Mbs may be used to inhibit the growth of human prostate carcinoma xenografts in nude mice, and the effect is likely realized through microvessel destruction caused by cavitation.
Collapse
Affiliation(s)
- Yu Wang
- Department of Ultrasound in Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | | | | | | |
Collapse
|
13
|
Park JI, Jagadeesan D, Williams R, Oakden W, Chung S, Stanisz GJ, Kumacheva E. Microbubbles loaded with nanoparticles: a route to multiple imaging modalities. ACS NANO 2010; 4:6579-86. [PMID: 20968309 DOI: 10.1021/nn102248g] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report a single-step approach to producing small and stable bubbles functionalized with nanoparticles. The strategy includes the following events occurring in sequence: (i) a microfluidic generation of bubbles from a mixture of CO(2) and a minute amount of gases with low solubility in water, in an aqueous solution of a protein, a polysaccharide, and anionic nanoparticles; (ii) rapid dissolution of CO(2) leading to the shrinkage of bubbles and an increase in acidity of the medium in the vicinity of the bubbles; and (iii) co-deposition of the biopolymers and nanoparticles at the bubble-liquid interface. The proposed approach yielded microbubbles with a narrow size distribution, long-term stability, and multiple functions originating from the attachment of metal oxide, metal, or semiconductor nanoparticles onto the bubble surface. We show the potential applications of these bubbles in ultrasound and magnetic resonance imaging.
Collapse
Affiliation(s)
- Jai Il Park
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON, M5S3H6 Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Cardiovascular cavitation. Med Eng Phys 2009; 31:742-51. [DOI: 10.1016/j.medengphy.2009.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/12/2009] [Accepted: 03/15/2009] [Indexed: 12/22/2022]
|
15
|
Geis NA, Mayer CR, Kroll RD, Hardt SE, Katus HA, Bekeredjian R. Spatial distribution of ultrasound targeted microbubble destruction increases cardiac transgene expression but not capillary permeability. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1119-1126. [PMID: 19427103 DOI: 10.1016/j.ultrasmedbio.2009.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 12/31/2008] [Accepted: 01/26/2009] [Indexed: 05/27/2023]
Abstract
Ultrasound targeted microbubble destruction (UTMD) has evolved as a promising tool for organ specific gene and drug delivery. Using DNA-loaded microbubbles, cardiac transfection has been shown to be feasible. However, two-dimensional properties of the ultrasound beam limit cardiac transgene expression to the focal zone, thus, reducing its potential therapeutic effect. The aim of this study was to test if spatial distribution of ultrasound targeted microbubble destruction in the heart could lead to augmented transgene expression or increased capillary permeability. Lipid microbubbles containing plasmids with a luciferase transgene were used to target rat hearts. The diagnostic ultrasound probe was fixed in a mid-short axis view with a gel stand-off between the chest and probe. Ultrasound (1.3 MHz) with a mechanical index of 1.6 was intermittently applied to rats during microbubble infusion. Rats were randomized to either stay in that position or move horizontally in a cranio-caudal direction (3 mm sweep) relative to the ultrasound probe during UTMD. After 4 days, organs were harvested and analyzed for reporter gene expression. Another group of rats received Evans Blue, followed by UTMD with unloaded microbubbles. Again, rats were randomized into a static or moving group. Hearts were harvested to evaluate extravasation of Evans Blue. Moving rats in a cranio-caudal direction significantly increased transgene expression by 19-fold in the anterior heart, by sixfold in the posterior heart and by 32-fold in the apex. Interestingly, Evans Blue extravasation was not augmented in the moving group. Spatial distribution of UTMD may increase transgene expression due to sonication of larger areas in the heart. In contrast, capillary permeability does not increase, indicating less capillary damage.
Collapse
Affiliation(s)
- Nicolas A Geis
- Internal Medicine III, University of Heidelberg, Heidelberg 69120, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Ultrasound triggered image-guided drug delivery. Eur J Radiol 2009; 70:242-53. [PMID: 19272727 DOI: 10.1016/j.ejrad.2009.01.051] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 12/27/2022]
Abstract
The integration of therapeutic interventions with diagnostic imaging has been recognized as one of the next technological developments that will have a major impact on medical treatments. Important advances in this field are based on a combination of progress in guiding and monitoring ultrasound energy, novel drug classes becoming available, the development of smart delivery vehicles, and more in depth understanding of the mechanisms of the cellular and molecular basis of diseases. Recent research demonstrates that both pressure sensitive and temperature sensitive delivery systems hold promise for local treatment. The use of ultrasound for the delivery of drugs has been demonstrated in particular the field of cardiology and oncology for a variety of therapeutics ranging from small drug molecules to biologics and nucleic acids.
Collapse
|
17
|
Sonoporation of the minicircle-VEGF(165) for wound healing of diabetic mice. Pharm Res 2008; 26:794-801. [PMID: 18998201 DOI: 10.1007/s11095-008-9778-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 10/29/2008] [Indexed: 01/13/2023]
Abstract
PURPOSE The purpose of this study is to examine the efficiency of sonoporation with minicircle DNA for the skin wound healing in diabetic mice. METHODS Minicircle DNA containing the human VEGF(165) was constructed and tested in vitro. Diabetes was induced in 2-week old male C57BL/6J mice via streptozotocin (STZ) injection. 6 mm circular skin wounds were made on the mice back. After the subcutaneous injection of the minicircle DNA at the edge of the wound, the mice were exposed to the ultrasound irradiation for the sonoporation. Wound areas were analyzed until the day 12. Blood perfusion and angiogenesis were evaluated using a laser Doppler imaging and CD31 immunostaining, respectively. Re-epithelialization was assessed by histochemical analysis using hematoxylin and eosin staining. RESULTS Accelerated wound closure was observed in the mice receiving sonoporation of minicircle-VEGF(165), which corresponds to the markedly increased skin blood perfusion and CD31 expression. Histological analysis revealed that the minicircle treated wound tissues showed fully restored normal architectures as compared with the non-treated diabetic controls with the markedly edematous and chaotic morphologies. CONCLUSIONS Ultrasound mediated gene therapy with the minicircle-VEGF(165) is effective for the healing of the skin wound of the diabetic mice.
Collapse
|
18
|
Kukizaki M, Baba Y. Effect of surfactant type on microbubble formation behavior using Shirasu porous glass (SPG) membranes. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2008.05.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Morello AP, Burrill R, Mathiowitz E. Preparation and characterization of poly(methyl methacrylate) - iron (III) oxide microparticles using a modified solvent evaporation method. J Microencapsul 2008; 24:476-91. [PMID: 17578736 DOI: 10.1080/02652040701352513] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
At present, there is widespread interest in developing new, biocompatible microparticles made from polymers such as poly(methyl methacrylate) (PMMA) that could have applications ranging from diagnostic imaging to drug delivery. In these experiments, there were two primary objectives: (1) to stabilize a suspension of iron (III) oxide (alpha-Fe(2)O(3); mean diameter = 100 nm) nanoparticles in a solution of PMMA by using an emulsifier and different mixtures of two miscible solvents; and (2) to fabricate PMMA-alpha-Fe(2)O(3) microparticles by using an oil-in-water (o/w) solvent evaporation method. By accomplishing the first objective, it was hypothesized that the encapsulation efficiency of alpha-Fe(2)O(3) within PMMA microparticles would improve and induce the clustering of alpha-Fe(2)O(3) along the circumferential edges of the microparticles. Of the seven emulsifiers tested, Tween 80 was selected primarily for its hydrophilicity and its ability to produce a stable alpha-Fe(2)O(3) dispersion. As a result, 22 batches of microspheres (11 with Tween 80 and 11 without) were made and the solvent (dichloromethane) to co-solvent (ethyl acetate) ratios were varied. Particles made with solvent mixtures of >50% ethyl acetate (<50% dichloromethane) were more likely to be hollow and had larger mean volumetric particle diameters (>5 microns) than particles made with mixtures containing >50% dichloromethane. Particles made with Tween 80 were larger, more porous, and had alpha-Fe(2)O(3) aligned along the circumferential edges of the particles. The use of solvent mixtures did not improve the encapsulation efficiency of alpha-Fe(2)O(3) but the use of ethyl acetate helped to induce the clustering of alpha-Fe(2)O(3) along the peripheries of the microparticles.
Collapse
Affiliation(s)
- A Peter Morello
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
20
|
Sharma PK, Rakhorst G, Engels E, van der Mei HC, Busscher HJ, Ploeg RJ. Microbubble-enriched lavage fluid for treatment of experimental peritonitis. Br J Surg 2007; 95:522-9. [DOI: 10.1002/bjs.5991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Background
Relaparotomies and closed postoperative peritoneal lavage (CPPL) are performed to treat persistent peritonitis. This experimental animal study compared open abdominal lavage with CPPL, and evaluated the potential of microbubble-enriched lavage fluids to improve the efficiency of CPPL and reduce clinical morbidity, mortality and cost.
Methods
Fluorescent polystyrene spheres were injected intraperitoneally into 22 male Wistar rats to simulate localized peritonitis. After 18 h the rats received open abdominal lavage and CPPL, with and without microbubbles. Microbubbles were obtained by adding ultrasound contrast agents to continuous ambulatory peritoneal dialysis fluid.
Results
Open abdominal lavage was 3·5 times more effective in particle removal than CPPL, owing to better fluid dynamics. The introduction of air–liquid interfaces in the form of microbubbles made CPPL up to 2·4 times more effective than lavage without bubbles. Best detachment results were obtained when microbubbles with a flexible surfactant shell and longer blood elimination half-life were used.
Conclusion
Open abdominal and CPPL lavage techniques are not efficient beyond a certain duration and volume as they do not cause bacterial detachment from the peritoneal membrane. Using surface tension forces from microbubbles significantly enhanced polystyrene particle detachment. These findings may have great consequences for the treatment of patients with peritonitis.
Collapse
Affiliation(s)
- P K Sharma
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - G Rakhorst
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - E Engels
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - H C van der Mei
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - H J Busscher
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - R J Ploeg
- Department of Surgery, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Bekeredjian R, Kroll RD, Fein E, Tinkov S, Coester C, Winter G, Katus HA, Kulaksiz H. Ultrasound targeted microbubble destruction increases capillary permeability in hepatomas. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:1592-8. [PMID: 17618040 DOI: 10.1016/j.ultrasmedbio.2007.05.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/20/2007] [Accepted: 05/03/2007] [Indexed: 05/16/2023]
Abstract
Ultrasound-targeted microbubble destruction (UTMD) has evolved as a promising tool for organ-specific gene and drug delivery. Taking advantage of high local concentrations of therapeutic substances and transiently increased capillary permeability, UTMD could be used for the treatment of ultrasound accessible tumors. The aim of this study was to evaluate if UTMD can locally increase capillary permeability in a hepatoma model of the rat. Furthermore, we evaluated whether UTMD can transfect DNA into such tumors. Subcutaneous Morris hepatomas were induced in both hind limbs of ACI rats by cell injection. A total of 18 rats were divided into three groups. Only one tumor per rat was treated by ultrasound. The first group received injection of Evans blue, followed by UTMD. The second group received a phosphate-buffered saline solution infusion and ultrasound to the target tumor after Evans blue injection. The third group received UTMD first, followed by Evans blue injection. Tumors and control organs were harvested, and Evans blue extravasation was quantified. Another 12 rats received DNA-loaded microbubbles by UTMD to one tumor, encoding for luciferase. Evans blue injection followed by UTMD showed about fivefold higher Evans blue amount in the target tumors compared with the control tumors. In contrast, no significant difference in Evans blue content was detected between target and control tumors when ultrasound was applied without microbubbles or when UTMD was performed before Evans blue injection. Plasmid transfection was not successful. In conclusion, ultrasound targeted microbubble destruction is able to transiently increase capillary permeability in hepatomas. Using naked DNA, this technique does not seem to be feasible for noninvasive transfection of hepatomas.
Collapse
Affiliation(s)
- Raffi Bekeredjian
- Internal Medicine III, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bekeredjian R, Kuecherer HF, Kroll RD, Katus HA, Hardt SE. Ultrasound-targeted microbubble destruction augments protein delivery into testes. Urology 2007; 69:386-9. [PMID: 17320694 DOI: 10.1016/j.urology.2006.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 09/15/2006] [Accepted: 12/08/2006] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Gas-filled microbubbles have become an important tool as ultrasound contrast agents. In recent years, ultrasound-targeted microbubble destruction (UTMD) has evolved into a new tool for organ-specific gene and drug delivery. Although many studies have been performed in well-perfused target organs such as the heart or kidney, no study has yet investigated the feasibility of UTMD for delivery of bioactive substances in the testis. Thus, the aim of this study was to determine whether UTMD is a feasible and safe technique to deliver a reporter protein to the testes. METHODS Different groups of rats received 2 microg of luciferase protein at varying protocols. One group received luciferase-loaded microbubbles infused intravenously while ultrasound was applied to the right testis. Another group received luciferase without microbubbles but with ultrasound applied to the right testis. Protein uptake was quantified by luciferase assay. Also, to rule out UTMD-induced damage, the testes were analyzed histologically. RESULTS The testes that received ultrasound and luciferase-loaded microbubbles showed about twofold greater luciferase activity compared with testes without ultrasound or without microbubbles. No hemorrhage or microscopic damage was detected. CONCLUSIONS The results of our study have shown that UTMD is a safe and feasible technique to augment delivery of bioactive substances to the testes.
Collapse
Affiliation(s)
- Raffi Bekeredjian
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
23
|
Lim YJ, Yamaguchi H, Mishima M, Ichikawa M, Iwata A, Hayashi T, Nakata T, Ishikura F, Beppu S. Coronary Tree Assessed With Contrast Harmonic Imaging. J Echocardiogr 2007. [DOI: 10.2303/jecho.5.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
|
25
|
van Wamel A, Kooiman K, Harteveld M, Emmer M, ten Cate FJ, Versluis M, de Jong N. Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release 2006; 112:149-55. [PMID: 16556469 DOI: 10.1016/j.jconrel.2006.02.007] [Citation(s) in RCA: 410] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 02/03/2006] [Accepted: 02/07/2006] [Indexed: 11/29/2022]
Abstract
Ultrasound contrast microbubbles have the ability to enhance endothelial cell permeability and thus may be used as a new way to deliver drugs. It facilitates the transfer of extracellular molecules into cells activated through ultrasound driven microbubbles. The present study is designed to correlate the relationship between microbubble induced cell deformation and enhanced cell membrane permeability. Propidium iodide (PI) was used as a membrane integrity probe. Using high-speed imaging of vibrating microbubbles against endothelial cells and imaging transport of PI into these cells showed a direct correlation between cell deformation and resulting cell membrane permeability. The membrane permeabilization lasted for a short period without affecting endothelial cells viability. We identified that microbubbles are crucial to enhance transient cell membrane permeability. Thus, permeability of individual cells is increased. The roles of ultrasound contrast microbubbles as the trigger for improved drug efficacy are discussed.
Collapse
Affiliation(s)
- Annemieke van Wamel
- Department of Experimental Echocardiography, Thoraxcentre, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
Krasovitski B, Kimmel E. Stability of an encapsulated bubble shell. ULTRASONICS 2006; 44:216-20. [PMID: 16388834 DOI: 10.1016/j.ultras.2005.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/10/2005] [Accepted: 11/21/2005] [Indexed: 05/06/2023]
Abstract
The stability of an encapsulated bubble filled with gas is studied where gas is allowed to diffuse out of the bubble. A mechanistic model that takes into account shell stiffness and surface tension is considered. A critical shell radius for loss of mechanical stability is derived based on a technique adapted for small radius, where surface tension effects become substantial. A new parameter is defined that determines the relative importance of surface tension forces and shell stiffness for shell stability. The developed technique allows to predict, for a given bubble population and gas saturation level of the surrounding liquid, a range of bubble sizes which may collapse in time. Surface tension effects are dominant in determining the critical radius but have a negligible effect on the minimal radius for collapse. The influence of the surface tension on the stability of the shell is illustrated for Optison, a typical ultrasound contrast agent.
Collapse
Affiliation(s)
- Boris Krasovitski
- The Department of Biomedical Engineering, Technion, Haifa 32000, Israel.
| | | |
Collapse
|
27
|
Chappell JC, Price RJ. Targeted Therapeutic Applications of Acoustically Active Microspheres in the Microcirculation. Microcirculation 2006; 13:57-70. [PMID: 16393947 DOI: 10.1080/10739680500383381] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The targeted delivery of intravascular drugs and genes across the endothelial barrier with only minimal side effects remains a significant obstacle in establishing effective therapies for many pathological conditions. Recent investigations have shown that contrast agent microbubbles, which are typically used for image enhancement in diagnostic ultrasound, may also be promising tools in emergent, ultrasound-based therapies. Explorations of the bioeffects generated by ultrasound-microbubble interactions indicate that these phenomena may be exploited for clinical utility such as in the targeted revascularization of flow-deficient tissues. Moreover, development of this treatment modality may also include using ultrasound-microbubble interactions to deliver therapeutic material to tissues, and reporter genes and therapeutic agents have been successfully transferred from the microcirculation to tissue in various animal models of normal and pathological function. This article reviews the recent studies aimed at using interactions between ultrasound and contrast agent microbubbles in the microcirculation for therapeutic purposes. Furthermore, the authors present investigations involving microspheres that are of a different design compared to current microbubble contrast agents, yet are acoustically active and demonstrate potential as tools for targeted delivery. Future directions necessary to address current challenges and advance these techniques to clinical practicality are also discussed.
Collapse
Affiliation(s)
- John C Chappell
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
28
|
Straub JA, Chickering DE, Church CC, Shah B, Hanlon T, Bernstein H. Porous PLGA microparticles: AI-700, an intravenously administered ultrasound contrast agent for use in echocardiography. J Control Release 2005; 108:21-32. [PMID: 16126299 DOI: 10.1016/j.jconrel.2005.07.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/19/2005] [Accepted: 07/27/2005] [Indexed: 11/29/2022]
Abstract
The production and characterization of AI-700, an intravenously administered ultrasound contrast agent under investigation for myocardial perfusion echocardiography, are described. The product consists of small, porous microparticles filled with decafluorobutane gas, and formulated as a dry powder. Small scale spray drying studies demonstrated that porous PLGA microparticles could be produced with varying porosity using ammonium bicarbonate as a volatile pore-forming agent. The porous microparticles of AI-700 were created aseptically by spray drying a water-in-oil emulsion containing poly-d,l-lactide-co-glycolide, 1,2-diarachidoyl-sn-glycero-3-phosphocholine, and ammonium bicarbonate using a two-chamber spray dryer. The porous microparticles were further formulated into a dry powder drug product (AI-700) containing decafluorobutane gas and excipients. The dry powder was reconstituted with sterile water prior to evaluation. Microscopy demonstrated that the microparticles were sphere-shaped and internally porous. The microparticles were appropriately sized for intravenous administration, having an average diameter of 2.3 mum. Zeta-potential analysis demonstrated that the microparticles would be expected to be stable post-reconstitution. The microparticles retained encapsulated gas post-reconstitution, had high acoustic potency that was stable over time and were physically stable upon exposure to high-power ultrasound, as used clinically. AI-700 has the characteristics desirable for an intravenously administered ultrasound contrast agent for myocardial perfusion echocardiography.
Collapse
Affiliation(s)
- Julie A Straub
- Acusphere, Inc., 500 Arsenal Street, Watertown, MA 02472, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Tsunoda S, Mazda O, Oda Y, Iida Y, Akabame S, Kishida T, Shin-Ya M, Asada H, Gojo S, Imanishi J, Matsubara H, Yoshikawa T. Sonoporation using microbubble BR14 promotes pDNA/siRNA transduction to murine heart. Biochem Biophys Res Commun 2005; 336:118-27. [PMID: 16125678 DOI: 10.1016/j.bbrc.2005.08.052] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 08/05/2005] [Indexed: 12/23/2022]
Abstract
Naked plasmid DNA (pDNA) and short interfering RNA (siRNA) duplexes were transduced into adult murine heart by means of sonoporation using the third-generation microbubble, BR14. Plasmid DNAs carrying luciferase, beta-galactosidase (beta-gal), or enhanced green fluorescent protein (EGFP) reporter genes were mixed with BR14 and injected percutaneously into the left ventricular (LV) cavity of C57BL/6 mice while exposed to transthoracic ultrasound at 1MHz for 60s. Sonoporation at an output intensity of 2.0W/cm(2) and a 50% pulse duty ratio resulted in the highest luciferase expression in the heart. Histological examinations revealed significant expression of the beta-gal and EGFP reporters in the subendocardial myocardium of LV. Intraventricular co-injection of siRNA-GFP and BR14 with concomitant ultrasonic exposure resulted in substantial reduction in EGFP expression in the coronary artery in EGFP transgenic mice. The present method may be applicable to gain-of-function and loss-of-function genetic engineering in vivo of adult murine heart.
Collapse
Affiliation(s)
- Sei Tsunoda
- Department of Molecular Cardiology and Vascular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bekeredjian R, Chen S, Grayburn PA, Shohet RV. Augmentation of cardiac protein delivery using ultrasound targeted microbubble destruction. ULTRASOUND IN MEDICINE & BIOLOGY 2005; 31:687-91. [PMID: 15866418 DOI: 10.1016/j.ultrasmedbio.2004.08.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 07/28/2004] [Accepted: 08/05/2004] [Indexed: 05/02/2023]
Abstract
Gas-filled microbubbles have become an important tool as ultrasonic contrast agents. We have previously shown that ultrasound-targeted microbubble destruction (UTMD) can direct plasmids to the heart. The aim of this study was to evaluate UTMD for protein delivery. Six different groups of rats received 1 microg of luciferase protein with varying protocols: (1) luciferase-loaded microbubbles and ultrasound; (2) luciferase only; (3) luciferase and ultrasound; (4) luciferase-loaded microbubbles; (5) unloaded microbubbles incubated with luciferase and ultrasound; (6) unloaded microbubbles with ultrasound followed by luciferase. Relative luminescence units per mg protein per s were determined in hearts and control organs. The rats that received ultrasound and luciferase-loaded bubbles showed a six-fold higher cardiac luciferase uptake compared with control groups that did not include bubbles. None of the other groups significantly augmented cardiac luciferase activity. We conclude that ultrasound-targeted microbubble destruction can substantially and noninvasively augment organ-specific delivery of proteins.
Collapse
Affiliation(s)
- Raffi Bekeredjian
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, NB 11.200, Dallas, TX 75390-8573, USA
| | | | | | | |
Collapse
|
31
|
Bekeredjian R, Grayburn PA, Shohet RV. Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol 2005; 45:329-35. [PMID: 15680708 DOI: 10.1016/j.jacc.2004.08.067] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 08/16/2004] [Accepted: 08/17/2004] [Indexed: 11/19/2022]
Abstract
The clinical utility of ultrasound contrast agents has been established in diagnostic echocardiography. Recently, the use of such agents has been promoted for transport and delivery of various bioactive substances, thus providing a technique for non-invasive gene therapy and organ-specific drug delivery. In this review, we give a critical update of published studies using ultrasound contrast agents for therapeutic use. We discuss the potential applications and limitations of this technique and suggest future applications in cardiovascular medicine.
Collapse
Affiliation(s)
- Raffi Bekeredjian
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
32
|
Park SW, Lee SY, Park SJ, Lee SC, Gwon HC, Kim DK. Quantitative assessment of infarct size in vivo by myocardial contrast echocardiography in a murine acute myocardial infarction model. Int J Cardiol 2004; 97:393-8. [PMID: 15561324 DOI: 10.1016/j.ijcard.2003.10.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 08/15/2003] [Accepted: 10/12/2003] [Indexed: 11/30/2022]
Abstract
BACKGROUND In vivo measurement of the infarct size in a small animal model is still challenging. The purpose of this study was to evaluate the feasibility of quantitative assessment of infarct size by myocardial contrast echocardiography (MCE) in the acute myocardial infarction (AMI) model of the rat. METHODS In 32 Sprague-Dawley rats with AMI, we measured total myocardial area (TMA) and infarct area (IA) of the rats by MCE study (MCE method). They were compared with those of postmortem heart measured by planimetry after histochemical staining with triphenyl tetrazolium chloride solution (TTC method). Simple TTC staining was done in 13 rats (Group 1). To reduce the postmortem change, continuous aortic and left ventricular (LV) pressure was loaded during TTC staining in 19 rats (Group 2). RESULTS The TMA, IA, and IA/TMA ratio measured by the MCE method were 38.4+/-3.4 mm2, 18.3+/-0.8 mm2, and 0.37+/-0.02 in Group 1, and 43.7+/-1.8 mm2, 15.8+/-1.1 mm2, and 0.37+/-0.02 Group 2, respectively. Those measured by the TTC method were 66.1+/-2.2 mm2, 29.3+/-1.1 mm2, and 0.44+/-0.01 in Group 1, and 65.9+/-2.5 mm2, 26.5+/-1.7 mm2, and 0.40+/-0.02 in Group 2, and 65.9+/-2.5 mm2, 26.5+/-1.7 mm2, and 0.44+/-0.02 in Group 2, respectively. Compared with the TTC method, the MCE method underestimated the TMA and IA in both groups (p<0.001). There was no difference in TMA and IA between the two groups in both methods. IA/TMA ratio showed significant correlation between the two methods in both groups (r=0.85, p<0.001). CONCLUSION The IA/TMA ratio measured by the MCE method may be useful for in vivo estimation of the myocardial infarct size in the AMI model of the rat.
Collapse
Affiliation(s)
- Seung Woo Park
- Samsung Medical Center, Department of Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, No. 50 Ilwon-Dong, 135710, Kangnam, Seoul, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
33
|
Krasovitski B, Kimmel E, Sapunar M, Adam D. Ultrasound attenuation by encapsulated microbubbles: time and pressure effects. ULTRASOUND IN MEDICINE & BIOLOGY 2004; 30:793-802. [PMID: 15219959 DOI: 10.1016/j.ultrasmedbio.2004.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 03/08/2004] [Accepted: 03/18/2004] [Indexed: 05/24/2023]
Abstract
Ultrasound (US) contrast agents (UCA) consist of artificial encapsulated microbubbles filled with low-diffusivity gas. This study evaluated, both experimentally and theoretically, the behavior of a cloud of encapsulated microbubbles while the surrounding pressure was modified within the physiological range. The theoretical analysis included calculation of US attenuation caused by a bubble cloud. The radius and gas content of each bubble were determined from a solution of a diffusion problem. Shell permeability and rigidity were taken into account. Both experiments and theory demonstrated that, for fixed ambient pressures, higher pressures result in increased rate of attenuation decay. Pulsatile ambient pressure induces pulsations of attenuation of the same frequency. In general, theoretical predictions are in good agreement with experimental data.
Collapse
|
34
|
Postema M, Bouakaz A, de Jong N. Noninvasive microbubble-based pressure measurements: a simulation study. ULTRASONICS 2004; 42:759-762. [PMID: 15047379 DOI: 10.1016/j.ultras.2003.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper describes a noninvasive method to measure local hydrostatic pressures in fluid filled cavities. The method is based on the disappearance time of a gas bubble, as the disappearance time is related to the hydrostatic pressure. When a bubble shrinks, its response to ultrasound changes. From this response, the disappearance time, and with it the hydrostatic pressure, can be determined. We investigated the applicability of the gases Ar, C(3)F(8), Kr, N(2), Ne, and SF(6), based on their diffusive properties. For pressure measurements with a limited duration, e.g. 150 ms, Kr and Ar bubbles are most suitable, since they are most sensitive to pressure change. If there is also a limitation to bubble size, e.g. a maximum diameter of 6 microm, SF(6) is most suitable. We present improvements of a method that correlates the duration of the decay of the fundamental ultrasound response to the hydrostatic overpressure. We propose to correlate the duration until subharmonic occurrence in combination with its decay, to hydrostatic overpressure, since the subharmonic decays more rapidly than the fundamental response. For a dissolving Ar gas bubble with an initial diameter of 14 microm, the overpressure can be determined 4 times as precise from the decay of the subharmonic response as from the decay of the fundamental response. Overpressures as small as 11 mmHg may be discriminated with this method.
Collapse
Affiliation(s)
- Michiel Postema
- Erasmus MC--University Medical Center, Thoraxcentre, Department of Experimental Echocardiography, Dr. Molewaterplein 50, Rm. Ee-2302, 3000 DR, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
35
|
Takeuchi H, Ohmori K, Kondo I, Shinomiya K, Oshita A, Takagi Y, Yoshida J, Mizushige K, Kohno M. Interaction with Leukocytes: Phospholipid-stabilized versus Albumin-Shell Microbubbles. Radiology 2004; 230:735-42. [PMID: 14739305 DOI: 10.1148/radiol.2303020897] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To confirm that BR14 microbubbles (MBs) can be phagocytosed by activated leukocytes, to determine their stability after phagocytosis, and to evaluate how such characteristics influence the fate of neutrophils containing MBs after insonation. MATERIALS AND METHODS BR14 and human albumin MBs (2 x 10(7)/mL) were incubated with activated human neutrophils (2 x 10(6)/mL) to allow phagocytosis. Deflation rate of the phagocytosed MBs after pulsed insonation (one burst per second for 5 seconds) at 1.8 MHz with peak negative pressure of -540 kPa or -1,340 kPa, lactate dehydrogenase (LDH) leakage, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling stain-positive cell count after insonation were compared between the two agents. RESULTS At -540 kPa, phagocytosed MBs remained nearly unchanged for both agents after insonation. At -1,340 kPa, although human albumin MBs were disrupted on the first or second burst, BR14 MBs remained undisrupted. After -540-kPa insonation, a similar number of apoptotic cells appeared in neutrophils containing human albumin and BR14 MBs. At -540 kPa, LDH leakage was limited in human albumin MBs and BR14 MBs. At -1,340 kPa, LDH leakage was significantly increased in human albumin MBs and BR14 MBs (P <.01, both vs -540 kPa). Apoptotic cells were significantly decreased in human albumin MBs and BR14 MBs (P <.01, both vs -540 kPa). LDH leakage was lower and apoptotic cell count was greater in BR14 MB-containing neutrophils than in human albumin MB-containing neutrophils (both P <.01). CONCLUSION Compared with human albumin MBs, BR14 MBs were more stable after phagocytosis with insonation. This stability is associated with less disruption and greater induction of apoptosis in leukocytes after relatively high-pressure insonation in the range for diagnostic use.
Collapse
Affiliation(s)
- Hiroto Takeuchi
- Second Department of Internal Medicine, Kagawa University School of Medicine, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Myocardial contrast echocardiography (MCE) is an emerging technique in which microbubble contrast agents are visualized in the coronary microvasculature. MCE is an ideal modality for the noninvasive evaluation of acute coronary syndromes because it provides portable, simultaneous assessment of regional wall motion and myocardial perfusion. Recent advances in microbubble contrast agents and ultrasound imaging technology have allowed new clinical applications of MCE in acute coronary syndromes. Studies suggest a promising role for MCE in the evaluation of chest pain, the diagnosis and prognosis in acute myocardial infarction, the assessment of the success of reperfusion, and the differentiation of myocardial stunning from myocardial necrosis. Potential future applications of MCE in acute coronary syndromes include the detection of inflammation and ultrasound induced thrombolysis. The following serves as a review of the current status of myocardial contrast echocardiography in acute coronary syndromes.
Collapse
Affiliation(s)
- R Parker Ward
- Department of Medicine, The University of Chicago, Illinois, 60637, USA.
| | | |
Collapse
|
37
|
Price RJ, Kaul S. Contrast ultrasound targeted drug and gene delivery: an update on a new therapeutic modality. J Cardiovasc Pharmacol Ther 2002; 7:171-80. [PMID: 12232566 DOI: 10.1177/107424840200700307] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effective delivery of intravascular drugs and genes to regions of pathology is dependent on a number of factors that are often difficult to control. Foremost is the site-specific delivery of the payload to the region of pathology and the subsequent transport of the payload across the endothelial barrier. Ultrasound contrast agent microbubbles, which are typically used for image enhancement, are capable of amplifying both the targeting and transport of drugs and genes to tissue. Microbubble targeting can be achieved by the intrinsic binding properties of the microbubble shells or through the attachment of site-specific ligands. Once microbubbles have been targeted to the region of interest, microvessel walls can be permeabilized by destroying the microbubbles with low-frequency, high-power ultrasound. A second level of targeting specificity can be achieved by carefully controlling the ultrasound field and limiting microbubble destruction to the region of interest. When microbubbles are destroyed, drugs or genes that are housed within them or bound to their shells can be released to the blood stream and then delivered to tissue by convective forces through the permeabilized microvessels. An alternative strategy is to increase payload volume by coinjecting drug- or gene-bearing vehicles, such as liposomes, with the microbubbles. In this manifestation, microbubbles are used for creating sites of microvessel permeabilization that facilitate drug or gene vehicle transport. Recent work in the emerging field of contrast ultrasound-based therapeutics, with particular emphasis on the delivery of drugs and genes to tissue through microvascular networks is reviewed.
Collapse
Affiliation(s)
- Richard J Price
- Department of Biomedical Engineering, University of Virginia, Health Sciences Center, Charlottesville, VA 22908, USA
| | | |
Collapse
|