1
|
Bartman CM, Schiliro M, Nesbitt L, Lee KK, Prakash YS, Pabelick CM. Exogenous hydrogen sulfide attenuates hyperoxia effects on neonatal mouse airways. Am J Physiol Lung Cell Mol Physiol 2024; 326:L52-L64. [PMID: 37987780 PMCID: PMC11279744 DOI: 10.1152/ajplung.00196.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Supplemental O2 remains a necessary intervention for many premature infants (<34 wk gestation). Even moderate hyperoxia (<60% O2) poses a risk for subsequent airway disease, thereby predisposing premature infants to pediatric asthma involving chronic inflammation, airway hyperresponsiveness (AHR), airway remodeling, and airflow obstruction. Moderate hyperoxia promotes AHR via effects on airway smooth muscle (ASM), a cell type that also contributes to impaired bronchodilation and remodeling (proliferation, altered extracellular matrix). Understanding mechanisms by which O2 initiates long-term airway changes in prematurity is critical for therapeutic advancements for wheezing disorders and asthma in babies and children. Immature or dysfunctional antioxidant systems in the underdeveloped lungs of premature infants thereby heightens susceptibility to oxidative stress from O2. The novel gasotransmitter hydrogen sulfide (H2S) is involved in antioxidant defense and has vasodilatory effects with oxidative stress. We previously showed that exogenous H2S exhibits bronchodilatory effects in human developing airway in the context of hyperoxia exposure. Here, we proposed that exogenous H2S would attenuate effects of O2 on airway contractility, thickness, and remodeling in mice exposed to hyperoxia during the neonatal period. Using functional [flexiVent; precision-cut lung slices (PCLS)] and structural (histology; immunofluorescence) analyses, we show that H2S donors mitigate the effects of O2 on developing airway structure and function, with moderate O2 and H2S effects on developing mouse airways showing a sex difference. Our study demonstrates the potential applicability of low-dose H2S toward alleviating the detrimental effects of hyperoxia on the premature lung.NEW & NOTEWORTHY Chronic airway disease is a short- and long-term consequence of premature birth. Understanding effects of O2 exposure during the perinatal period is key to identify targetable mechanisms that initiate and sustain adverse airway changes. Our findings show a beneficial effect of exogenous H2S on developing mouse airway structure and function with notable sex differences. H2S donors alleviate effects of O2 on airway hyperreactivity, contractility, airway smooth muscle thickness, and extracellular matrix deposition.
Collapse
Affiliation(s)
- Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Marta Schiliro
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Anesthesiology and Critical Care Medicine, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Lisa Nesbitt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Kenge K Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
2
|
Abstract
Despite important advances in neonatal care, rates of bronchopulmonary dysplasia (BPD) have remained persistently high. Numerous drugs and ventilator strategies are used for the prevention and treatment of BPD. Some, such as exogenous surfactant, volume targeted ventilation, caffeine, and non-invasive respiratory support, are associated with modest but important reductions in rates of BPD and long-term respiratory morbidities. Many other therapies, such as corticosteroids, diuretics, nitric oxide, bronchodilators and anti-reflux medications, are widely used despite conflicting, limited or no evidence of efficacy and safety. This paper examines the range of therapies used for the prevention or treatment of BPD. They are classified into those supported by evidence of effectiveness, and those which are widely used despite limited evidence or unclear risk to benefit ratios. Finally, the paper explores emerging therapies and approaches which aim to prevent or reduce BPD and long-term respiratory morbidity.
Collapse
|
3
|
Pabelick CM, Thompson MA, Britt RD. Effects of Hyperoxia on the Developing Airway and Pulmonary Vasculature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:179-194. [PMID: 29047087 DOI: 10.1007/978-3-319-63245-2_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although it is necessary and part of standard practice, supplemental oxygen (40-90% O2) or hyperoxia is a significant contributing factor to development of bronchopulmonary dysplasia, persistent pulmonary hypertension, recurrent wheezing, and asthma in preterm infants. This chapter discusses hyperoxia and the role of redox signaling in the context of neonatal lung growth and disease. Here, we discuss how hyperoxia promotes dysfunction in the airway and the known redox-mediated mechanisms that are important for postnatal vascular and alveolar development. Whether in the airway or alveoli, redox pathways are important and greatly influence the neonatal lung.
Collapse
Affiliation(s)
- Christina M Pabelick
- Department of Anesthesiology, College of Medicine, Mayo Clinic, 4-184 W Jos SMH, 200 First St SW, Rochester, MN, 55905, USA. .,Departments Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, 4-184 W Jos SMH, 200 First St SW, Rochester, MN, 55905, USA.
| | - Michael A Thompson
- Department of Anesthesiology, College of Medicine, Mayo Clinic, 4-184 W Jos SMH, 200 First St SW, Rochester, MN, 55905, USA
| | - Rodney D Britt
- Departments Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, 4-184 W Jos SMH, 200 First St SW, Rochester, MN, 55905, USA
| |
Collapse
|
4
|
Askie LM, Davies LC, Schreiber MD, Hibbs AM, Ballard PL, Ballard RA. Race Effects of Inhaled Nitric Oxide in Preterm Infants: An Individual Participant Data Meta-Analysis. J Pediatr 2018; 193:34-39.e2. [PMID: 29241680 DOI: 10.1016/j.jpeds.2017.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/12/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To assess whether inhaled nitric oxide (iNO) improves survival without bronchopulmonary dysplasia (BPD) for preterm African American infants. STUDY DESIGN An individual participant data meta-analysis was conducted, including 3 randomized, placebo-controlled trials that enrolled infants born at <34 weeks of gestation receiving respiratory support, had at least 15% (or a minimum of 10 infants in each trial arm) of African American race, and used a starting iNO of >5 parts per million with the intention to treat for 7 days minimum. The primary outcome was a composite of death or BPD. Secondary outcomes included death before discharge, postnatal steroid use, gross pulmonary air leak, pulmonary hemorrhage, measures of respiratory support, and duration of hospital stay. RESULTS Compared with other races, African American infants had a significant reduction in the composite outcome of death or BPD with iNO treatment: 49% treated vs 63% controls (relative risk, 0.77; 95% CI, 0.65-0.91; P = .003; interaction P = .016). There were no differences between racial groups for death. There was also a significant difference between races (interaction P = .023) of iNO treatment for BPD in survivors, with the greatest effect in African American infants (P = .005). There was no difference between racial groups in the use of postnatal steroids, pulmonary air leak, pulmonary hemorrhage, or other measures of respiratory support. CONCLUSION iNO therapy should be considered for preterm African American infants at high risk for BPD. iNO to prevent BPD in African Americans may represent an example of a racially customized therapy for infants.
Collapse
Affiliation(s)
- Lisa M Askie
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Lucy C Davies
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, Australia
| | | | - Anna Maria Hibbs
- Department of Pediatrics, Case Western Reserve University, and Rainbow Babies and Children's Hospital, Cleveland, OH
| | | | | |
Collapse
|
5
|
Randomized Trial of Late Surfactant Treatment in Ventilated Preterm Infants Receiving Inhaled Nitric Oxide. J Pediatr 2016; 168:23-29.e4. [PMID: 26500107 PMCID: PMC4698022 DOI: 10.1016/j.jpeds.2015.09.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/12/2015] [Accepted: 09/09/2015] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To assess whether late surfactant treatment in extremely low gestational age (GA) newborn infants requiring ventilation at 7-14 days, who often have surfactant deficiency and dysfunction, safely improves survival without bronchopulmonary dysplasia (BPD). STUDY DESIGN Extremely low GA newborn infants (GA ≤28 0/7 weeks) who required mechanical ventilation at 7-14 days were enrolled in a randomized, masked controlled trial at 25 US centers. All infants received inhaled nitric oxide and either surfactant (calfactant/Infasurf) or sham instillation every 1-3 days to a maximum of 5 doses while intubated. The primary outcome was survival at 36 weeks postmenstrual age (PMA) without BPD, as evaluated by physiological oxygen/flow reduction. RESULTS A total of 511 infants were enrolled between January 2010 and September 2013. There were no differences between the treated and control groups in mean birth weight (701 ± 164 g), GA (25.2 ± 1.2 weeks), percentage born at GA <26 weeks (70.6%), race, sex, severity of lung disease at enrollment, or comorbidities of prematurity. Survival without BPD did not differ between the treated and control groups at 36 weeks PMA (31.3% vs 31.7%; relative benefit, 0.98; 95% CI, 0.75-1.28; P = .89) or 40 weeks PMA (58.7% vs 54.1%; relative benefit, 1.08; 95% CI, 0.92-1.27; P = .33). There were no between-group differences in serious adverse events, comorbidities of prematurity, or severity of lung disease to 36 weeks. CONCLUSION Late treatment with up to 5 doses of surfactant in ventilated premature infants receiving inhaled nitric oxide was well tolerated, but did not improve survival without BPD at 36 or 40 weeks. Pulmonary and neurodevelopmental assessments are ongoing. TRIAL REGISTRATION ClinicalTrials.gov: NCT01022580.
Collapse
|
6
|
Albertine KH. Utility of large-animal models of BPD: chronically ventilated preterm lambs. Am J Physiol Lung Cell Mol Physiol 2015; 308:L983-L1001. [PMID: 25770179 PMCID: PMC4437012 DOI: 10.1152/ajplung.00178.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 02/19/2015] [Indexed: 11/22/2022] Open
Abstract
This paper is focused on unique insights provided by the preterm lamb physiological model of bronchopulmonary dysplasia (BPD). Connections are also made to insights provided by the former preterm baboon model of BPD, as well as to rodent models of lung injury to the immature, postnatal lung. The preterm lamb and baboon models recapitulate the clinical setting of preterm birth and respiratory failure that require prolonged ventilation support for days or weeks with oxygen-rich gas. An advantage of the preterm lamb model is the large size of preterm lambs, which facilitates physiological studies for days or weeks during the evolution of neonatal chronic lung disease (CLD). To this advantage is linked an integrated array of morphological, biochemical, and molecular analyses that are identifying the role of individual genes in the pathogenesis of neonatal CLD. Results indicate that the mode of ventilation, invasive mechanical ventilation vs. less invasive high-frequency nasal ventilation, is related to outcomes. Our approach also includes pharmacological interventions that test causality of specific molecular players, such as vitamin A supplementation in the pathogenesis of neonatal CLD. The new insights that are being gained from our preterm lamb model may have important translational implications about the pathogenesis and treatment of BPD in preterm human infants.
Collapse
Affiliation(s)
- Kurt H Albertine
- Department of Pediatrics, University of Utah, School of Medicine, Salt Lake City, Utah; Department of Medicine, University of Utah, School of Medicine, Salt Lake City, Utah; and Department of Neurobiology and Anatomy, University of Utah, School of Medicine, Salt Lake City, Utah
| |
Collapse
|
7
|
Rubini A, Redaelli M, Parmagnani A. The effect of angiotensin-converting enzyme inhibition by captopril on respiratory mechanics in healthy rats. J Enzyme Inhib Med Chem 2012; 27:854-60. [PMID: 22591316 DOI: 10.3109/14756366.2011.622271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Angiotensin stimulates smooth-muscle contraction. Accordingly, angiotensin-converting enzyme (ACE) inhibition is expected to decrease airway resistance. OBJECTIVES To measure the effects of ACE inhibition on respiratory mechanics in healthy mammals. MATERIALS AND METHODS We measured respiratory mechanics before and after i.p. ACE inhibitor captopril (100 mg/kg) in normal anaesthetised rats. The end-inflation occlusion method allowed the measurements of respiratory system elastance and ohmic and viscoelastic pressure dissipations. Respiratory system hysteresis and the elastic and resistive work of breathing were calculated. RESULTS Captopril induced a reduction of the ohmic and the total respiratory system resistances, while respiratory system hysteresis and elastance did not change. Accordingly, a reduction of the resistive and of the total work of breathing was observed. CONCLUSIONS The captopril-induced reduction of airway resistance indicates that angiotensin modulates bronchomotor tone in basal conditions. ACE inhibition may positively affect respiratory system mechanics and work of breathing.
Collapse
Affiliation(s)
- Alessandro Rubini
- Department of Human Anatomy and Physiology, Section Physiology, University of Padova, Via Marzolo, Padova, Italy.
| | | | | |
Collapse
|
8
|
Askie LM, Ballard RA, Cutter GR, Dani C, Elbourne D, Field D, Hascoet JM, Hibbs AM, Kinsella JP, Mercier JC, Rich W, Schreiber MD, Wongsiridej P(S, Subhedar NV, Van Meurs KP, Voysey M, Barrington K, Ehrenkranz RA, Finer NN, on behalf of the Meta-analysis of Preterm Patients on Inhaled Nitric Oxide (MAPPiNO) Collaboration. Inhaled nitric oxide in preterm infants: an individual-patient data meta-analysis of randomized trials. Pediatrics 2011; 128:729-39. [PMID: 21930540 PMCID: PMC3387905 DOI: 10.1542/peds.2010-2725] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Inhaled nitric oxide (iNO) is an effective therapy for pulmonary hypertension and hypoxic respiratory failure in term infants. Fourteen randomized controlled trials (n = 3430 infants) have been conducted on preterm infants at risk for chronic lung disease (CLD). The study results seem contradictory. DESIGN/METHODS Individual-patient data meta-analysis included randomized controlled trials of preterm infants (<37 weeks' gestation). Outcomes were adjusted for trial differences and correlation between siblings. RESULTS Data from 3298 infants in 12 trials (96%) were analyzed. There was no statistically significant effect of iNO on death or CLD (59% vs 61%: relative risk [RR]: 0.96 [95% confidence interval (CI): 0.92-1.01]; P = .11) or severe neurologic events on imaging (25% vs 23%: RR: 1.12 [95% CI: 0.98-1.28]; P = .09). There were no statistically significant differences in iNO effect according to any of the patient-level characteristics tested. In trials that used a starting iNO dose of >5 vs ≤ 5 ppm there was evidence of improved outcome (interaction P = .02); however, these differences were not observed at other levels of exposure to iNO. This result was driven primarily by 1 trial, which also differed according to overall dose, duration, timing, and indication for treatment; a significant reduction in death or CLD (RR: 0.85 [95% CI: 0.74-0.98]) was found. CONCLUSIONS Routine use of iNO for treatment of respiratory failure in preterm infants cannot be recommended. The use of a higher starting dose might be associated with improved outcome, but because there were differences in the designs of these trials, it requires further examination.
Collapse
Affiliation(s)
- Lisa M. Askie
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Roberta A. Ballard
- Department of Pediatrics, University of California at San Francisco, School of Medicine, San Francisco, California
| | - Gary R. Cutter
- School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Carlo Dani
- Section of Neonatology, Department of Surgical and Medical Critical Care, Careggi University Hospital of Florence, Florence, Italy
| | - Diana Elbourne
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David Field
- Department of Health Science, University of Leicester, Leicester, United Kingdom
| | | | - Anna Maria Hibbs
- Department of Pediatrics, Case Western Reserve University and Rainbow Babies & Children's Hospital, Cleveland, Ohio
| | - John P. Kinsella
- Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado
| | - Jean-Christophe Mercier
- Department of Pediatric Emergency Medicine, Hôpital Robert Debré, Université Paris-7 Denis Diderot, Paris, France
| | - Wade Rich
- Division of Neonatology, University of California, San Diego, California
| | | | - Pimol (Srisuparp) Wongsiridej
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nim V. Subhedar
- Neonatal Unit, Liverpool Women's Hospital, Liverpool, United Kingdom
| | - Krisa P. Van Meurs
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Lucile Salter Packard Children's Hospital, Palo Alto, California
| | - Merryn Voysey
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Keith Barrington
- Division of Neonatology, Centre Hospitalier Universitaire Ste-Justine, Montreal, Quebec, Canada; and
| | - Richard A. Ehrenkranz
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - Neil N. Finer
- Division of Neonatology, University of California, San Diego, California
| | | |
Collapse
|
9
|
Abstract
The evidence for the benefits of inhaled nitric oxide (iNO) on gas exchange, cytokine-induced lung inflammation, and vascular dysfunction has been demonstrated by several animal and human studies. The use of iNO in extremely low birth weight neonates for the prevention of adverse outcomes like chronic lung disease and neurologic injury has been investigated, but the findings remain inconclusive. This review briefly outlines the biologic rationale for the use of iNO in preterm neonates and the results on the outcome measures of bronchopulmonary dysplasia and brain injury from the recent clinical trials. This article focuses on the potential toxicities, persistent controversies, and unanswered questions regarding the use of this treatment modality in this patient population at high risk for adverse outcomes.
Collapse
Affiliation(s)
- Nandini Arul
- Division of Neonatology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | | |
Collapse
|
10
|
Hibbs AM, Walsh MC, Martin RJ, Truog WE, Lorch SA, Alessandrini E, Cnaan A, Palermo L, Wadlinger SR, Coburn CE, Ballard PL, Ballard RA. One-year respiratory outcomes of preterm infants enrolled in the Nitric Oxide (to prevent) Chronic Lung Disease trial. J Pediatr 2008; 153:525-9. [PMID: 18534620 PMCID: PMC2745607 DOI: 10.1016/j.jpeds.2008.04.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 03/21/2008] [Accepted: 04/09/2008] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To identify whether inhaled nitric oxide treatment decreased indicators of long-term pulmonary morbidities after discharge from the neonatal intensive care unit. STUDY DESIGN The Nitric Oxide (to Prevent) Chronic Lung Disease trial enrolled preterm infants (<1250 g) between 7 to 21 days of age who were ventilated and at high risk for bronchopulmonary dysplasia. Follow-up occurred at 12 +/- 3 months of age adjusted for prematurity; long-term pulmonary morbidity and other outcomes were reported by parents during structured blinded interviews. RESULTS A total of 456 infants (85%) were seen at 1 year. Compared with control infants, infants randomized to inhaled nitric oxide received significantly less bronchodilators (odds ratio [OR] 0.53 [95% confidence interval 0.36-0.78]), inhaled steroids (OR 0.50 [0.32-0.77]), systemic steroids (OR 0.56 [0.32-0.97]), diuretics (OR 0.54 [0.34-0.85]), and supplemental oxygen (OR 0.65 [0.44-0.95]) after discharge from the neonatal intensive care unit. There were no significant differences between parental report of rehospitalizations (OR 0.83 [0.57-1.21]) or wheezing or whistling in the chest (OR 0.70 [0.48-1.03]). CONCLUSIONS Infants treated with inhaled nitric oxide received fewer outpatient respiratory medications than the control group. However, any decision to institute routine use of this dosing regimen should also take into account the results of the 24-month neurodevelopmental assessment.
Collapse
Affiliation(s)
- Anna Maria Hibbs
- Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH 44106-6010, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Trevisanuto D, Doglioni N, Micaglio M, Zanardo V. Feasibility of nitric oxide administration by neonatal helmet-CPAP: a bench study. Paediatr Anaesth 2007; 17:851-5. [PMID: 17683403 DOI: 10.1111/j.1460-9592.2007.02297.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Inhaled nitric oxide (NO) may have a role in the treatment of preterm infants with respiratory failure. We evaluated the feasibility of administering NO therapy by a new continuous positive airway pressure (CPAP) system (neonatal helmet-CPAP). METHODS While maintaining a constant total flow of 8, 10, and 12 l.min(-1), NO concentrations were progressively increased to 5, 10, 20, and 40 p.p.m. in the neonatal helmet-CPAP pressure chamber (5 cmH2O). NO, NO2, and O2 concentrations were measured in the pressure chamber and the immediate external environment. RESULTS In the chamber, NO2 levels remained low (<or=0.8 p.p.m.) at inhaled therapeutic NO concentrations (5, 10, 20, and 40 p.p.m.). The lower O2 concentrations were 95% at 40 p.p.m. NO levels. Leakage of NO and NO2 to the surrounding environment was negligible. CONCLUSIONS NO administration is safe and feasible using the neonatal helmet-CPAP system. This method allows the delivery of accurate NO levels and high O2 concentrations avoiding NO2 accumulation. Further experimental and clinical studies are needed.
Collapse
Affiliation(s)
- Daniele Trevisanuto
- Pediatric Department, Neonatal Intensive Care Unit, Medical School, University of Padova, Azienda Ospedaliera di Padova, Padova, Italy.
| | | | | | | |
Collapse
|
12
|
Ballard RA, Truog WE, Cnaan A, Martin RJ, Ballard PL, Merrill JD, Walsh MC, Durand DJ, Mayock DE, Eichenwald EC, Null DR, Hudak ML, Puri AR, Golombek SG, Courtney SE, Stewart DL, Welty SE, Phibbs RH, Hibbs AM, Luan X, Wadlinger SR, Asselin JM, Coburn CE. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N Engl J Med 2006; 355:343-53. [PMID: 16870913 DOI: 10.1056/nejmoa061088] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia in premature infants is associated with prolonged hospitalization, as well as abnormal pulmonary and neurodevelopmental outcome. In animal models, inhaled nitric oxide improves both gas exchange and lung structural development, but the use of this therapy in infants at risk for bronchopulmonary dysplasia is controversial. METHODS We conducted a randomized, stratified, double-blind, placebo-controlled trial of inhaled nitric oxide at 21 centers involving infants with a birth weight of 1250 g or less who required ventilatory support between 7 and 21 days of age. Treated infants received decreasing concentrations of nitric oxide, beginning at 20 ppm, for a minimum of 24 days. The primary outcome was survival without bronchopulmonary dysplasia at 36 weeks of postmenstrual age. RESULTS Among 294 infants receiving nitric oxide and 288 receiving placebo birth weight (766 g and 759 g, respectively), gestational age (26 weeks in both groups), and other characteristics were similar. The rate of survival without bronchopulmonary dysplasia at 36 weeks of postmenstrual age was 43.9 percent in the group receiving nitric oxide and 36.8 percent in the placebo group (P=0.042). The infants who received inhaled nitric oxide were discharged sooner (P=0.04) and received supplemental oxygen therapy for a shorter time (P=0.006). There were no short-term safety concerns. CONCLUSIONS Inhaled nitric oxide therapy improves the pulmonary outcome for premature infants who are at risk for bronchopulmonary dysplasia when it is started between 7 and 21 days of age and has no apparent short-term adverse effects. (ClinicalTrials.gov number, NCT00000548 [ClinicalTrials.gov] .).
Collapse
|
13
|
Kajekar R, Pieczarka EM, Smiley-Jewell SM, Schelegle ES, Fanucchi MV, Plopper CG. Early postnatal exposure to allergen and ozone leads to hyperinnervation of the pulmonary epithelium. Respir Physiol Neurobiol 2006; 155:55-63. [PMID: 16616710 DOI: 10.1016/j.resp.2006.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/01/2006] [Accepted: 03/02/2006] [Indexed: 11/21/2022]
Abstract
Airway injury in infant monkeys exposed to ozone and/or house dust mite allergen (HDMA) is associated with a loss of epithelial innervation. In this study, we evaluated for persistence/recovery of the altered epithelial innervation. Thirty-day-old rhesus monkeys were exposed to repeated episodes of HDMA and/or ozone from 1 to 6 months of age and subsequently allowed to recover for 6 months in the absence of further ozone exposure and/or minimal HDMA challenge (sufficient to maintain allergen sensitization). At 1 year of age, nerve density in intrapulmonary airways was immunohistochemically evaluated using antibodies directed against protein gene product 9.5. Hyperinnervation and irregular epithelial nerve distribution was observed in both HDMA- and ozone-exposed groups; most prominent alterations were observed in animals exposed to HDMA plus ozone. Therefore, while adaptive mechanisms exist that re-establish epithelial innervation following cessation or diminution of exposure to HDMA and/or ozone, the recovery is associated with persistent proliferative mechanisms that result in hyperinnervation of the airways.
Collapse
Affiliation(s)
- Radhika Kajekar
- Center for Comparative Respiratory Biology and Medicine, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Miller TL, Singhaus CJ, Sherman TI, Greenspan JS, Shaffer TH. Physiologic implications of helium as a carrier gas for inhaled nitric oxide in a neonatal model of Bethanecol-induced bronchoconstriction. Pediatr Crit Care Med 2006; 7:159-64. [PMID: 16531948 DOI: 10.1097/01.pcc.0000200942.23574.ca] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To compare heliox to nitrogen-oxygen (nitrox) as a carrier gas for inducible nitric oxide (iNO) in the presence of pharmacologically inhaled bronchoconstriction. We hypothesized that respiratory resistance and gas exchange would improve when iNO is delivered with heliox. DESIGN Interventional laboratory study. SETTING An academic medical research facility in the northeastern United States. SUBJECTS Sedated, ventilated newborn piglets. INTERVENTIONS Newborn piglets (n = 16; 2.3 +/- 0.1 kg) were placed on a flow-controlled ventilator and given intravenous Bethanecol (2 x 1 mg/kg followed by 1 mg/kg/hr) to induce bronchoconstriction. Piglets were randomized to heliox or nitrox (Fio2 = 0.3) and given 80 ppm iNO. MEASUREMENTS AND MAIN RESULTS Hemodynamics, blood chemistry, and pulmonary mechanics were recorded at 30-min intervals for 2 hrs. Bethanecol dosing increased inspiratory respiratory resistance (cm H2O/L/min; p < .01) and decreased respiratory compliance (mL/cm H2O/kg; p < .01). Following carrier gas assignment, hemodynamics and respiratory compliance were similar between groups and respiratory resistance decreased (p < .01) in the heliox group. Over 2 hrs with iNO therapy, Paco2 increased (p < .01) whereas blood pH decreased (p < .01) in the heliox group. Respiratory resistance trended downward, oxygenation index improved (p < .01), and blood methemoglobin levels trended higher for nitrox compared with heliox. CONCLUSIONS The INOvent was effective for controlling heliox delivery of iNO. Despite marked reduction in respiratory resistance with heliox gas ventilation in a neonatal model of pharmacologic bronchoconstriction, nitrox might perform better as a delivery vehicle for iNO.
Collapse
Affiliation(s)
- Thomas L Miller
- Nemours Research Lung Center, Nemours Children's Clinic-Wilmington of the Nemours Foundation, Alfred I. duPont Children's Hospital, Wilmington, DE, USA
| | | | | | | | | |
Collapse
|
15
|
Cotton RB, Sundell HW, Zeldin DC, Morrow JD, Roberts LJ, Hazinski TA, Law AB, Steele S. Inhaled nitric oxide attenuates hyperoxic lung injury in lambs. Pediatr Res 2006; 59:142-6. [PMID: 16327001 DOI: 10.1203/01.pdr.0000191815.60293.cc] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cytochrome P450 (CYP) inhibition with cimetidine reduces hyperoxic lung injury in young lambs. Nitric oxide (NO), also a CYP inhibitor, has been shown to either aggravate or protect against oxidant stress depending on experimental context. The objective of this study was to determine whether NO, like cimetidine, would protect young lambs against hyperoxic lung injury, and whether its effect was associated with CYP inhibition. Three groups of lambs were studied: 1) room air exposure, 2) >95% O2, and 3) >95% O2 plus inhaled NO. After 72 h, hyperoxia alone resulted in a significant increase in arterial P(CO2) and number of polymorphonuclear leukocytes in bronchoalveolar lavage (BAL), and a significant decrease in arterial/alveolar O2 tension (a/A). The addition of inhaled NO significantly decreased the hypercarbia and BAL polymorphonuclear cellular response associated with hyperoxia but had no beneficial effect on a/A ratio. There were no significant differences in F2-isoprostanes or isofurans (markers of lipid peroxidation) measured in BAL or lung tissue among study groups. No intergroup differences were detected in BAL epoxyeicosatrienoic acid levels (index of CYP activity). The results of this study indicate that hypercarbia and inflammation accompanying hyperoxic lung injury in young lambs can be attenuated by inhaled NO. However, this study provides no direct evidence that NO is inhibiting CYP-mediated oxidant lung injury.
Collapse
Affiliation(s)
- Robert B Cotton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Bland RD, Albertine KH, Carlton DP, MacRitchie AJ. Inhaled nitric oxide effects on lung structure and function in chronically ventilated preterm lambs. Am J Respir Crit Care Med 2005; 172:899-906. [PMID: 15976381 PMCID: PMC2718405 DOI: 10.1164/rccm.200503-384oc] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Inhaled nitric oxide (iNO) can reverse neonatal pulmonary hypertension and bronchoconstriction and reduce proliferation of cultured arterial and airway smooth muscle cells. OBJECTIVES To see if continuous iNO from birth might reduce pulmonary vascular and respiratory tract resistance (PVR, RE) and attenuate growth of arterial and airway smooth muscle in preterm lambs with chronic lung disease. METHODS Eight premature lambs received mechanical ventilation for 3 weeks, four with and four without iNO (5-15 ppm). Four term lambs, mechanically ventilated without iNO for 3 weeks, served as additional control animals. MEASUREMENTS PVR and RE were measured weekly. After 3 weeks, lung tissue was processed for quantitative image analysis of smooth muscle abundance around small arteries (SMart) and terminal bronchioles (SMtb). Radial alveolar counts were done to assess alveolar number. Endothelial NO synthase (eNOS) protein in arteries and airways was measured by immunoblot analysis. MAIN RESULTS At study's end, PVR was similar in iNO-treated and untreated preterm lambs; PVR was less in iNO-treated preterm lambs compared with term control animals. RE in iNO-treated lambs was less than 40% of RE measured in preterm control animals. SMart was similar in iNO-treated and both groups of control lambs; SMtb in lambs given iNO was significantly less (approximately 50%) than in preterm control animals. Radial alveolar counts of iNO-treated lambs were more than twice that of preterm control animals. eNOS was similar in arteries and airways of iNO-treated preterm lambs compared with control term lambs. CONCLUSIONS iNO preserves structure and function of airway smooth muscle and enhances alveolar development in preterm lambs with chronic lung disease.
Collapse
Affiliation(s)
- Richard D Bland
- Department of Pediatrics, Stanford University School of Medicine, CCSR Building, Room 1225, 269 Campus Drive, Stanford, CA 94305-5162, USA.
| | | | | | | |
Collapse
|
18
|
Kc P, Mayer CA, Haxhiu MA. Chemical profile of vagal preganglionic motor cells innervating the airways in ferrets: the absence of noncholinergic neurons. J Appl Physiol (1985) 2004; 97:1508-17. [PMID: 15358755 DOI: 10.1152/japplphysiol.00282.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In ferrets, we investigated the presence of choline acetyltransferase (ChAT), vasoactive intestinal peptide (VIP), and markers for nitric oxide synthase (NOS) in preganglionic parasympathetic neurons innervating extrathoracic trachea and intrapulmonary airways. Cholera toxin β-subunit, a retrograde axonal transganglionic tracer, was used to identify airway-related vagal preganglionic neurons. Double-labeling immunohistochemistry and confocal microscopy were employed to characterize the chemical nature of identified airway-related vagal preganglionic neurons at a single cell level. Physiological experiments were performed to determine whether activation of the VIP and ChAT coexpressing vagal preganglionic neurons plays a role in relaxation of precontracted airway smooth muscle tone after muscarinic receptor blockade. The results showed that 1) all identified vagal preganglionic neurons innervating extrathoracic and intrapulmonary airways are acetylcholine-producing cells, 2) cholinergic neurons innervating the airways coexpress ChAT and VIP but do not contain NOS, and 3) chemical stimulation of the rostral nucleus ambiguus had no significant effect on precontracted airway smooth muscle tone after muscarinic receptor blockade. These studies indicate that vagal preganglionic neurons are cholinergic in nature and coexpress VIP but do not contain NOS; their stimulation increases cholinergic outflow, without activation of inhibitory nonadrenergic, noncholinergic ganglionic neurons, stimulation of which induces airway smooth muscle relaxation. Furthermore, these studies do not support the possibility of direct inhibitory innervation of airway smooth muscle by vagal preganglionic fibers that contain VIP.
Collapse
Affiliation(s)
- Prabha Kc
- Dept. of Physiology and Biophysics, Howard Univ. College of Medicine, 520 W St. NW, Washington, DC 20059, USA
| | | | | |
Collapse
|
19
|
Richard CA, Rector DM, Macey PM, Ali N, Harper RM. Late-developing rostral ventrolateral medullary surface responses to cardiovascular challenges during sleep. Brain Res 2003; 985:65-77. [PMID: 12957369 DOI: 10.1016/s0006-8993(03)03159-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pressor and depressor manipulations are usually followed by compensatory autonomic, respiratory, somatomotor or arousal responses that limit the extent of blood pressure change. Of neural sites participating in blood pressure control, the rostral ventrolateral medullary surface (RVLMS) contributes significantly, and exhibits rapid-onset overall activity declines and increases to pressor and depressor challenges, respectively. In addition, longer-latency physiological responses develop that further compensate for the homeostatic challenge; some of these later influences are associated with arousal. Late-developing RVLMS activity changes accompanying physiologic responses that normalize a cardiovascular manipulation may provide insights into compensatory neural mechanisms during sleep following sustained or extreme blood pressure changes. We used intrinsic optical imaging procedures in seven unanesthetized adult cats to examine RVLMS and control site responses to pressor and depressor challenges during sleep that resulted in somatomotor, respiratory, heart rate or electroencephalographic indications of late-developing (post-baroreflex) compensatory responses. Although initial RVLMS responses differed in direction between pressor and depressor challenges, neural activity increased later in both manipulations, coincident with overt physiological manifestations indicative of compensatory responses, including arousal. Arousal occurred in 44% of blood pressure challenges. Comparable late-developing neural activity increases were not apparent in control sites. Latencies of late RVLMS responses during rapid eye movement sleep were significantly longer than in quiet sleep for pressor challenges. The pattern of the late RVLMS responses was not dependent on arousal, and suggests that the RVLMS participates in both the early baroreflex response and the late-developing compensatory actions.
Collapse
Affiliation(s)
- Christopher A Richard
- Department of Neurobiology, UCLA School of Medicine, 10833 LeConte Avenue, Los Angeles, CA 90095-1763, USA
| | | | | | | | | |
Collapse
|