1
|
Fordjour E, Liu CL, Yang Y, Bai Z. Recent advances in lycopene and germacrene a biosynthesis and their role as antineoplastic drugs. World J Microbiol Biotechnol 2024; 40:254. [PMID: 38916754 DOI: 10.1007/s11274-024-04057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Sesquiterpenes and tetraterpenes are classes of plant-derived natural products with antineoplastic effects. While plant extraction of the sesquiterpene, germacrene A, and the tetraterpene, lycopene suffers supply chain deficits and poor yields, chemical synthesis has difficulties in separating stereoisomers. This review highlights cutting-edge developments in producing germacrene A and lycopene from microbial cell factories. We then summarize the antineoplastic properties of β-elemene (a thermal product from germacrene A), sesquiterpene lactones (metabolic products from germacrene A), and lycopene. We also elaborate on strategies to optimize microbial-based germacrene A and lycopene production.
Collapse
Affiliation(s)
- Eric Fordjour
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Chun-Li Liu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Khatib S, Sobeh M, Faraloni C, Bouissane L. Tanacetum species: Bridging empirical knowledge, phytochemistry, nutritional value, health benefits and clinical evidence. Front Pharmacol 2023; 14:1169629. [PMID: 37153781 PMCID: PMC10157496 DOI: 10.3389/fphar.2023.1169629] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction: The Tanacetum genus consists of 160 accepted flowering species thriving throughout temperate regions, mainly in the Mediterranean Basin, Northern America, and southwestern and eastern Asia. Tanacetum species bear a long-standing record of use in the folk medicine of indigenous tribes and communities worldwide, along with multitudinous applications in traditional cuisines, cosmeceuticals, and agricultural fields. Methods: Up-to-date data related to traditional uses, phytochemistry, biological activities, toxicity and clinical trials of the genus Tanacetum were systematically reviewed from several online scientific engines, including PubMed, Web of Science, Scopus, SciFinder, Wiley Online, Science Direct, and Cochrane library. Results and discussion: Over the past three decades, 241 metabolites have been isolated from nearly twenty species, including phenolic acids, flavonoids, coumarins, fatty acids and alkanes, aldehydes, volatile compounds, and naphthoquinones. Some unique metabolites have also been identified, such as the ceramides tanacetamide (A-D) from T. artemisioides, pyrethrins from T. cinerariifolium, and sesquiterpene lactones from several species. However, these secondary metabolites are still poorly studied despite in vitro clues highlighting their colossal pharmacological properties, especially as hypotensive, neuroprotective, anticancer, and antimicrobial agents. Scientific studies have validated some traditional claims of the plant, such as antidiabetic, anticancer, anthelmintic, insecticide, antioxidant, and hepatoprotective activities, as well as against festering wounds, skin ulcers, urinary tract infections, and sexually transmitted diseases. Other ethnomedicinal uses for arthritis, gout, rheumatism, anemia, and as a litholytic, antivenom and diaphoretic have not yet been supported and would constitute the subject of further research.
Collapse
Affiliation(s)
- Sohaib Khatib
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- *Correspondence: Latifa Bouissane, ; Mansour Sobeh,
| | - Cecilia Faraloni
- Institute of BioEconomy, IBE, National Research Council, Florence, Italy
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- *Correspondence: Latifa Bouissane, ; Mansour Sobeh,
| |
Collapse
|
3
|
Kashkooli AB, van Dijk ADJ, Bouwmeester H, van der Krol A. Individual lipid transfer proteins from Tanacetum parthenium show different specificity for extracellular accumulation of sesquiterpenes. PLANT MOLECULAR BIOLOGY 2023; 111:153-166. [PMID: 36255594 PMCID: PMC9849177 DOI: 10.1007/s11103-022-01316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
A highly specialized function for individual LTPs for different products from the same terpenoid biosynthesis pathway is described and the function of an LTP GPI anchor is studied. Sequiterpenes produced in glandular trichomes of the medicinal plant Tanacetum parthenium (feverfew) accumulate in the subcuticular extracellular space. Transport of these compounds over the plasma membrane is presumably by specialized membrane transporters, but it is still not clear how these hydrophobic compounds are subsequently transported over the hydrophilic cell wall. Here we identified eight so-called non-specific Lipid transfer proteins (nsLTPs) genes that are expressed in feverfew trichomes. A putative function of these eight nsLTPs in transport of the lipophilic sesquiterpene lactones produced in feverfew trichomes, was tested in an in-planta transport assay using transient expression in Nicotiana benthamiana. Of eight feverfew nsLTP candidate genes analyzed, two (TpLTP1 and TpLTP2) can specifically improve extracellular accumulation of the sesquiterpene costunolide, while one nsLTP (TpLTP3) shows high specificity towards export of parthenolide. The specificity of the nsLTPs was also tested in an assay that test for the exclusion capacity of the nsLTP for influx of extracellular substrates. In such assay, TpLTP3 was identified as most effective in blocking influx of both costunolide and parthenolide, when these substrates are infiltrated into the apoplast. The TpLTP3 is special in having a GPI-anchor domain, which is essential for the export activity of TpLTP3. However, addition of the TpLTP3 GPI-anchor domain to TpLTP1 resulted in loss of TpLTP1 export activity. These novel export and exclusion assays thus provide new means to test functionality of plant nsLTPs.
Collapse
Affiliation(s)
- Arman Beyraghdar Kashkooli
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| | - Aalt D J van Dijk
- Applied Bioinformatics, Bioscience, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Alexander van der Krol
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Egbujor MC, Buttari B, Profumo E, Telkoparan-Akillilar P, Saso L. An Overview of NRF2-Activating Compounds Bearing α,β-Unsaturated Moiety and Their Antioxidant Effects. Int J Mol Sci 2022; 23:8466. [PMID: 35955599 PMCID: PMC9369284 DOI: 10.3390/ijms23158466] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
The surge of scientific interest in the discovery of Nuclear Factor Erythroid 2 (NFE2)-Related Factor 2 (NRF2)-activating molecules underscores the importance of NRF2 as a therapeutic target especially for oxidative stress. The chemical reactivity and biological activities of several bioactive compounds have been linked to the presence of α,β-unsaturated structural systems. The α,β-unsaturated carbonyl, sulfonyl and sulfinyl functional groups are reportedly the major α,β-unsaturated moieties involved in the activation of the NRF2 signaling pathway. The carbonyl, sulfonyl and sulfinyl groups are generally electron-withdrawing groups, and the presence of the α,β-unsaturated structure qualifies them as suitable electrophiles for Michael addition reaction with nucleophilic thiols of cysteine residues within the proximal negative regulator of NRF2, Kelch-like ECH-associated protein 1 (KEAP1). The physicochemical property such as good lipophilicity of these moieties is also an advantage because it ensures solubility and membrane permeability required for the activation of the cytosolic NRF2/KEAP1 system. This review provides an overview of the reaction mechanism of α,β-unsaturated moiety-bearing compounds with the NRF2/KEAP1 complex, their pharmacological properties, structural activity-relationship and their effect on antioxidant and anti-inflammatory responses. As the first of its kind, this review article offers collective and comprehensive information on NRF2-activators containing α,β-unsaturated moiety with the aim of broadening their therapeutic prospects in a wide range of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Melford Chuka Egbujor
- Department of Chemical Sciences, Rhema University Nigeria, Aba 453115, Abia State, Nigeria
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | | | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
5
|
Erdenetsogt U, Nadmid S, Paetz C, Dahse HM, Voigt K, Gotov C, Boland W, Dagvadorj E. New Guaianolide Sesquiterpene Lactones and Other Constituents from Pyrethrum pulchrum. PLANTA MEDICA 2022; 88:380-388. [PMID: 34352920 DOI: 10.1055/a-1554-2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pyrethrum pulchrum is a rare Mongolian plant species that has been traditionally used as an ingredient in various remedies. Bioactivity-guided fractionation performed on the methanol extract of its aerial parts led to the isolation of 2 previously undescribed guaianolide-type sesquiterpene lactones, namely 1β,10β-epoxy-8α-hydroxyguaia-3,11(13)-dien-6,12-olide (1: ) and 1,8,10-trihydroxyguaia-3,11(13)-dien-6,12-olide (2: ), along with the isolation or chromatographic identification of 11 compounds, arglabin (3: ), 3β-hydroxycostunolide (4: ), isocostic acid (5: ), (E)-9-(2-thienyl)-6-nonen-8-yn-3-ol (6: ), (Z)-9-(2-thienyl)-6-nonen-8-yn-3-ol (7: ), N 1,N 5,N 10,N 14-tetra-p-coumaroyl spermine (8: ), chlorogenic acid (9: ), 3,5-di-O-caffeoylquinic acid (10: ), 3,5-di-O-caffeoylquinic acid methyl ester (11: ), 3,4-di-O-caffeoylquinic acid (12: ), and tryptophan (13: ). Their structures were assigned based on spectroscopic and spectrometric data. The antimicrobial, antiproliferative and cytotoxic activities of selected compounds were evaluated. The new compounds showed weak to moderate antimicrobial activity. Arglabin (3: ), the major sesquiterpene lactone found in the methanol extract of P. pulchrum, exhibited the highest activity against human cancer lines, while compound 1: also possesses significant antiproliferative activity against leukemia cells.
Collapse
Affiliation(s)
| | - Suvd Nadmid
- Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | | | - Hans-Martin Dahse
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), Jena, Germany
| | - Kerstin Voigt
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), Jena, Germany
| | - Choijamts Gotov
- Otoch Manramba University of Mongolia, Ulaanbaatar, Mongolia
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Enkhmaa Dagvadorj
- Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| |
Collapse
|
6
|
Tang JJ, Huang LF, Deng JL, Wang YM, Guo C, Peng XN, Liu Z, Gao JM. Cognitive enhancement and neuroprotective effects of OABL, a sesquiterpene lactone in 5xFAD Alzheimer's disease mice model. Redox Biol 2022; 50:102229. [PMID: 35026701 PMCID: PMC8760418 DOI: 10.1016/j.redox.2022.102229] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease in which oxidative stress and neuroinflammation were demonstrated to be associated with neuronal loss and cognitive deficits. However, there are still no specific treatments that can prevent the progression of AD. In this study, a screening of anti-inflammatory hits from 4207 natural compounds of two different molecular libraries indicated 1,6-O,O-diacetylbritannilactone (OABL), a 1,10-seco-eudesmane sesquiterpene lactone isolated from the herb Inula britannica L., exhibited strong anti-inflammatory activity in vitro as well as favorable BBB penetration property. OABL reduced LPS-induced neuroinflammation in BV-2 microglial cells as assessed by effects on the levels of inflammatory mediators including NO, PGE2, TNF-α, iNOS, and COX-2, as well as the translocation of NF-κB. Besides, OABL also exhibited pronounced neuroprotective effects against oxytosis and ferroptosis in the rat pheochromocytoma PC12 cell line. For in vivo research, OABL (20 mg/kg B.W., i.p.) for 21 d attenuated the impairments in cognitive function observed in 6-month-old 5xFAD mice, as assessed with the Morris water maze test. OABL restored neuronal damage and postsynaptic density protein 95 (PSD95) expression in the hippocampus. OABL also significantly reduced the accumulation of amyloid plaques, the Aβ expression, the phosphorylation of Tau protein, and the expression of BACE1 in AD mice brain. In addition, OABL attenuated the overactivation of microglia and astrocytes by suppressing the expressions of inflammatory cytokines, and increased glutathione (GSH) and reduced malondialdehyde (MDA) and super oxide dismutase (SOD) levels in the 5xFAD mice brain. In conclusion, these results highlight the beneficial effects of the natural product OABL as a novel treatment with potential application for drug discovery in AD due to its pharmacological profile.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Lan-Fang Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jia-Le Deng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yi-Meng Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Cong Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Xiao-Na Peng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
7
|
Borgo J, Laurella LC, Martini F, Catalán CAN, Sülsen VP. Stevia Genus: Phytochemistry and Biological Activities Update. Molecules 2021; 26:2733. [PMID: 34066562 PMCID: PMC8125113 DOI: 10.3390/molecules26092733] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
The Stevia genus (Asteraceae) comprises around 230 species, distributed from the southern United States to the South American Andean region. Stevia rebaudiana, a Paraguayan herb that produces an intensely sweet diterpene glycoside called stevioside, is the most relevant member of this genus. Apart from S. rebaudiana, many other species belonging to the Stevia genus are considered medicinal and have been popularly used to treat different ailments. The members from this genus produce sesquiterpene lactones, diterpenes, longipinanes, and flavonoids as the main types of phytochemicals. Many pharmacological activities have been described for Stevia extracts and isolated compounds, antioxidant, antiparasitic, antiviral, anti-inflammatory, and antiproliferative activities being the most frequently mentioned. This review aims to present an update of the Stevia genus covering ethnobotanical aspects and traditional uses, phytochemistry, and biological activities of the extracts and isolated compounds.
Collapse
Affiliation(s)
- Jimena Borgo
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Laura C. Laurella
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Florencia Martini
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Cesar A. N. Catalán
- Instituto de Química Orgánica, Facultad de Bioquímica Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471 (T4000INI), San Miguel de Tucumán T4000, Argentina;
| | - Valeria P. Sülsen
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
8
|
Antiamoebic effects of sesquiterpene lactones isolated from the zoanthid Palythoa aff. clavata. Bioorg Chem 2021; 108:104682. [PMID: 33556696 DOI: 10.1016/j.bioorg.2021.104682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
Opportunistic parasitic protozoa of genus Acanthamoeba are responsible to cause severe infections in humans such as Acanthamoeba Keratitis or Amoebic Granulomatous Encephalitis. Current treatments are usually toxic and inefficient and there is a need to access new therapeutic agents. The antiamoebic effects of nephthediol (1) and fourteen germacranolide and eudesmanolide sesquiterpene lactones (2-5, 7-12) isolated from the indigenous zoanthid Palythoa aff. clavata collected at the coast of Lanzarote, Canary Islands were studied against Acanthamoeba castellanii Neff, and the clinical strains A. polyphaga and A. griffini. 4-epi-arbusculin A (11) presented the lowest IC50 value (26,47 ± 1,69 µM) against A. castellanii Neff and low cytotoxicity against murine macrophages, followed by isobadgerin (2), which also showed to be active against A. castellanii Neff cysts. The studies on the mode of action of compounds 2 and 11 revealed these sesquiterpene lactones induce mechanisms of PDC on A. castellanii Neff.
Collapse
|
9
|
Hypolipidemic effect of Lactuca sativa seed extract, an adjunctive treatment, in patients with hyperlipidemia: a randomized double-blind placebo-controlled pilot trial. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Da Silva LAL, Sandjo LP, Fratoni E, Kinoshita Moon YJ, Dalmarco EM, Biavatti MW. A single-step isolation by centrifugal partition chromatography of the potential anti-inflammatory glaucolide B from Lepidaploa chamissonis. J Chromatogr A 2019; 1605:460362. [PMID: 31320134 DOI: 10.1016/j.chroma.2019.460362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Layzon Antonio Lemos Da Silva
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, Campus Universitário-Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Louis P Sandjo
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, Campus Universitário-Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Eduarda Fratoni
- Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Campus Universitário-Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Yeo Jim Kinoshita Moon
- Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Campus Universitário-Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Eduardo Monguilhott Dalmarco
- Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Campus Universitário-Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Maique Weber Biavatti
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, Campus Universitário-Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
11
|
Šadibolová M, Zárybnický T, Smutný T, Pávek P, Šubrt Z, Matoušková P, Skálová L, Boušová I. Sesquiterpenes Are Agonists of the Pregnane X Receptor but Do Not Induce the Expression of Phase I Drug-Metabolizing Enzymes in the Human Liver. Int J Mol Sci 2019; 20:ijms20184562. [PMID: 31540101 PMCID: PMC6769599 DOI: 10.3390/ijms20184562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
Sesquiterpenes, the main components of plant essential oils, are bioactive compounds with numerous health-beneficial activities. Sesquiterpenes can interact with concomitantly administered drugs due to the modulation of drug-metabolizing enzymes (DMEs). The aim of this study was to evaluate the modulatory effects of six sesquiterpenes (farnesol, cis-nerolidol, trans-nerolidol, α-humulene, β-caryophyllene, and caryophyllene oxide) on the expression of four phase I DMEs (cytochrome P450 3A4 and 2C, carbonyl reductase 1, and aldo-keto reductase 1C) at both the mRNA and protein levels. For this purpose, human precision-cut liver slices (PCLS) prepared from 10 patients and transfected HepG2 cells were used. Western blotting, quantitative real-time PCR and reporter gene assays were employed in the analyses. In the reporter gene assays, all sesquiterpenes significantly induced cytochrome P450 3A4 expression via pregnane X receptor interaction. However in PCLS, their effects on the expression of all the tested DMEs at the mRNA and protein levels were mild or none. High inter-individual variabilities in the basal levels as well as in modulatory efficacy of the tested sesquiterpenes were observed, indicating a high probability of marked differences in the effects of these compounds among the general population. Nevertheless, it seems unlikely that the studied sesquiterpenes would remarkably influence the bioavailability and efficacy of concomitantly administered drugs.
Collapse
Affiliation(s)
- Michaela Šadibolová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic (T.Z.); (P.M.); (L.S.)
| | - Tomáš Zárybnický
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic (T.Z.); (P.M.); (L.S.)
| | - Tomáš Smutný
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic; (T.S.); (P.P.)
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic; (T.S.); (P.P.)
| | - Zdeněk Šubrt
- Department of General Surgery, Third Faculty of Medicine and University Hospital Královské Vinohrady, Charles University, 100 34 Prague, Czech Republic;
- Department of Surgery, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic (T.Z.); (P.M.); (L.S.)
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic (T.Z.); (P.M.); (L.S.)
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic (T.Z.); (P.M.); (L.S.)
- Correspondence: ; Tel.: +420-495-067-406
| |
Collapse
|
12
|
Beyraghdar Kashkooli A, van der Krol AR, Rabe P, Dickschat JS, Bouwmeester H. Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production. Metab Eng 2019; 54:12-23. [PMID: 30822491 DOI: 10.1016/j.ymben.2019.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 01/06/2023]
Abstract
The therapeutic properties of complex terpenes often depend on the stereochemistry of their functional groups. However, stereospecific chemical synthesis of terpenes is challenging. To overcome this challenge, metabolic engineering can be employed using enzymes with suitable stereospecific catalytic activity. Here we used a combinatorial metabolic engineering approach to explore the stereospecific modification activity of the Artemisia annua artemisinic aldehyde ∆11(13) double bond reductase2 (AaDBR2) on products of the feverfew sesquiterpene biosynthesis pathway (GAS, GAO, COS and PTS). This allowed us to produce dihydrocostunolide and dihydroparthenolide. For dihydroparthenolide we demonstrate that the preferred order of biosynthesis of dihydroparthenolide is by reduction of the exocyclic methylene of parthenolide, rather than through C4-C5 epoxidation of dihydrocostunolide. Moreover, we demonstrate a promiscuous activity of feverfew CYP71CB1 on dihydrocostunolide and dihydroparthenolide for the production of 3β-hydroxy-dihydrocostunolide and 3β-hydroxy-dihydroparthenolide, respectively. Combined, these results offer new opportunities for engineering novel sesquiterpene lactones with potentially improved medicinal value.
Collapse
Affiliation(s)
- Arman Beyraghdar Kashkooli
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Alexander R van der Krol
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Patrick Rabe
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
13
|
Liu Q, Beyraghdar Kashkooli A, Manzano D, Pateraki I, Richard L, Kolkman P, Lucas MF, Guallar V, de Vos RCH, Franssen MCR, van der Krol A, Bouwmeester H. Kauniolide synthase is a P450 with unusual hydroxylation and cyclization-elimination activity. Nat Commun 2018; 9:4657. [PMID: 30405138 PMCID: PMC6220293 DOI: 10.1038/s41467-018-06565-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 07/31/2018] [Indexed: 01/06/2023] Open
Abstract
Guaianolides are an important class of sesquiterpene lactones with unique biological and pharmaceutical properties. They have been postulated to be derived from germacranolides, but for years no progress has been made in the elucidation of their biosynthesis that requires an unknown cyclization mechanism. Here we demonstrate the isolation and characterization of a cytochrome P450 from feverfew (Tanacetum parthenium), kauniolide synthase. Kauniolide synthase catalyses the formation of the guaianolide kauniolide from the germacranolide substrate costunolide. Unlike most cytochrome P450s, kauniolide synthase combines stereoselective hydroxylation of costunolide at the C3 position, with water elimination, cyclization and regioselective deprotonation. This unique mechanism of action is supported by in silico modelling and docking experiments. The full kauniolide biosynthesis pathway is reconstructed in the heterologous hosts Nicotiana benthamiana and yeast, paving the way for biotechnological production of guaianolide-type sesquiterpene lactones.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Arman Beyraghdar Kashkooli
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - David Manzano
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), 08193, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Campus Diagonal, Av. de Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Irini Pateraki
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Lea Richard
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Pim Kolkman
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Maria Fátima Lucas
- Barcelona Supercomputing Center (BSC), C/ Jordi Girona 29, 08034, Barcelona, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center (BSC), C/ Jordi Girona 29, 08034, Barcelona, Spain
- ICREA, Pg Lluís Companys 23, 08010, Barcelona, Spain
| | - Ric C H de Vos
- Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Maurice C R Franssen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Alexander van der Krol
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Plant Hormone Biology group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Shoaib M, Shah I, Ali N, Adhikari A, Tahir MN, Shah SWA, Ishtiaq S, Khan J, Khan S, Umer MN. Sesquiterpene lactone! a promising antioxidant, anticancer and moderate antinociceptive agent from Artemisia macrocephala jacquem. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:27. [PMID: 28061778 PMCID: PMC5219761 DOI: 10.1186/s12906-016-1517-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/14/2016] [Indexed: 01/13/2023]
Abstract
Background Sesquiterpene lactones (STLs) make a diverse and huge group of bio-active constituents that have been isolated from several plant families. However, the greatest numbers are present in Asteraceae family having more than 3000 different reported structures. Recently several researchers have reported that STLs have significant antioxidant and anticancer potentials. Methods To investigate the antioxidant, anticancer and antinociceptive potentials of STLs, gravity column chromatography technique was used for isolation from the biologically rich chloroform fraction of Artemisia macrocephala Jacquem. The antioxidant activity of the isolated STLs was determined by DPPH and ABTS free radical scavenging activity, anticancer activity was determined on 3 T3, HeLa and MCF-7 cells by MTT assay while the antinociceptive activity was determined through acetic acid induced writhings, tail immersion method and formalin induced nociception method. Results The results showed that the STLs of Artemisia macrocephala possesses promising antioxidant activity and also it decreased the viability of 3 T3, HeLa and MCF-7 cells and mild to moderate antinociceptive activity. Conclusion Sesquiterpenes lactones (STLs) are widely present in numerous genera of the family Asteraceae (compositae). They are described as the active constituents used in traditional medicine for the treatment of various diseases. The present study reveals the significant potentials of STL and may be used as an alternative for the management of cancer. Anyhow, the isolated compound is having no prominent antinociceptive potentials. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1517-y) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Al-Attas AAM, El-Shaer NS, Mohamed GA, Ibrahim SRM, Esmat A. Anti-inflammatory sesquiterpenes from Costus speciosus rhizomes. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:365-374. [PMID: 26593213 DOI: 10.1016/j.jep.2015.11.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 11/04/2015] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Costus speciosus (Koen ex. Retz.) Sm. (crepe ginger, family Costaceae) is an ornamental plant used in traditional medicine for the treatment of inflammation, rheumatism, bronchitis, fever, headache, asthma, flatulence, constipation, helminthiasis, leprosy, skin diseases, hiccough, anemia, as well as burning sensation on urination. AIM OF THE STUDY The present study is designed to isolate and identify the active compounds from C. speciosus rhizomes and measure their anti-inflammatory activities. MATERIALS AND METHODS The n-hexane-CHCl3 soluble fraction of the MeOH extract of C. speciosus rhizomes has been subjected to a repeated column chromatography, including normal silica gel and RP-18 column to give eight compounds. The structures of these compounds were established by UV, IR, 1D ((1)H and (13)C), and 2D ((1)H-(1)H COSY, NOESY, HSQC, and HMBC) NMR experiments and HRESIMS data. In addition, the anti-inflammatory activity of compounds 1-8 was evaluated by measuring the levels IL-6, IL-1β, TNF-α, COX-2, lipoxgenase-5, and PGE2 using enzyme-linked immunosorbent assay. RESULTS The n-hexane-CHCl3 soluble fraction afforded a new eudesmane acid, specioic acid (8), along with seven known compounds, 22,23-dihydrospinasterone (1), dehydrodihydrocostus lactone (mokko lactone) (2), dehydrocostus lactone (3), stigmasterol (4), arbusculin A (5), santamarine (douglanin) (6), and reynosin (7). Compounds 1, 4, and 5-7 were isolated for the first time C. speciosus. Compounds 1-4 displayed potent anti-inflammatory activity, while 7 and 8 showed moderate activity. Compounds 1-8 exhibited a concentration-related decrease in the levels of IL-1β, IL-6, TNF-α, PGE2, lipoxgenase-5, and COX-2. Compounds 5 and 6 did not significantly decrease levels of different cytokines, PGE2, lipoxgenase-5, and COX-2 from PHA treatment at 1 µM. However, all tested compounds significantly decreased cytokines, PGE2, lipoxgenase-5, and COX-2 levels at concentration 100 µM. It is noteworthy that compounds 1-4 had the highest activity, where it lowered levels of cytokines, PGE2, lipoxgenase-5, and COX-2 to the extent that was no statistical difference from the control group. Thus, they decreased proinflammatory cytokines (IL-1β, IL-6, and TNF-α) with decreased level of the target enzymes (COX-2 and lipoxgenase-5) and subsequent reduction of its inflammatory product (PGE2). CONCLUSION Good anti-inflammatory activities exhibited of the isolated compounds from C. speciosus corroborate the usefulness of this plant in the traditional treatment of inflammation and related symptoms.
Collapse
Affiliation(s)
- Ahmed A M Al-Attas
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nagwa S El-Shaer
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Sabrin R M Ibrahim
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah 30078, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Ahmed Esmat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo 11566, Egypt
| |
Collapse
|
16
|
Chesser AS, Ganeshan V, Yang J, Johnson GVW. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr Neurosci 2015. [PMID: 26207957 DOI: 10.1179/1476830515y.0000000038] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a neurodegenerative disorder characterized by intracellular accumulations of phosphorylated forms of the microtubule binding protein tau. This study aimed to explore a novel mechanism for enhancing the clearance of these pathological tau species using the green tea flavonoid epigallocatechin-3-gallate (EGCG). EGCG is a potent antioxidant and an activator of the Nrf2 transcriptional pathway. Nrf2 activators including EGCG have shown promise in mitigating amyloid pathology in vitro and in vivo. This study assessed whether EGCG could also alter tau clearance. METHODS Rat primary cortical neuron cultures were treated on day in vitro 8 with EGCG and analyzed for changes in gene and protein expression using luciferase assay, q-PCR, and western blotting. RESULTS EGCG treatment led to a significant decrease in the protein levels of three AD-relevant phospho-tau epitopes. Unexpectedly, EGCG does not appear to be facilitating this effect through the Nrf2 pathway or by increasing autophagy in general. However, EGCG did significantly increase mRNA expression of the key autophagy adaptor proteins NDP52 and p62. DISCUSSION In this study, we show that EGCG enhances the clearance of AD-relevant phosphorylated tau species in primary neurons. Interestingly, this result appears to be independent of both Nrf2 activation and enhanced autophagy - two previously reported mechanisms of phytochemical-induced tau clearance. EGCG did significantly increase expression of two autophagy adaptor proteins. Taken together, these results demonstrate that EGCG has the ability to increase the clearance of phosphorylated tau species in a highly specific manner, likely through increasing adaptor protein expression.
Collapse
|
17
|
Cynaropicrin attenuates UVB-induced oxidative stress via the AhR-Nrf2-Nqo1 pathway. Toxicol Lett 2015; 234:74-80. [PMID: 25680693 DOI: 10.1016/j.toxlet.2015.02.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/14/2015] [Accepted: 02/09/2015] [Indexed: 11/21/2022]
Abstract
UNLABELLED Due to its antioxidant and anti-inflammatory activities, artichoke (Cynara scolymus) has been used as folk medicine to treat various diseases. Cynaropicrin (Cyn), a sesquiterpene lactone, is the major bioactive phytochemical in the artichoke; however, its pharmacological mechanism remains unknown. Because some phytochemicals exert their antioxidant activity by activating aryl hydrocarbon receptor (AhR), leading to subsequent induction of the antioxidant pathway including nuclear factor E2-related factor 2 (Nrf2) and NAD(P)H quinone oxidoreductase 1 (Nqo1), we investigated whether Cyn also activates the AhR-Nrf2-Nqo1 pathway. Cyn indeed induced the activation (nuclear translocation) of AhR, leading to nuclear translocation of Nrf2 and dose-dependent upregulation of Nrf2 and Nqo1 mRNAs in human keratinocytes. The Cyn-induced AhR-Nrf2-Nqo1 activation was AhR- and Nrf2-dependent, as demonstrated by the observation that it was absent in keratinocytes transfected by siRNA against either AhR or Nrf2. In accordance with these findings, Cyn actively inhibited generation of reactive oxygen species from keratinocytes irradiated with ultraviolet B (UVB) in a Nrf2-dependent manner. Cyn also inhibited the production of proinflammatory cytokines such as interleukin 6 and tumor necrosis factor-α from UVB-treated keratinocytes. Our findings demonstrate that Cyn is a potent activator of the AhR-Nrf2-Nqo1 pathway, and could therefore be applied to prevention of UVB-induced photo aging.
Collapse
|
18
|
Assis L, Straliotto M, Engel D, Hort M, Dutra R, de Bem A. β-Caryophyllene protects the C6 glioma cells against glutamate-induced excitotoxicity through the Nrf2 pathway. Neuroscience 2014; 279:220-31. [DOI: 10.1016/j.neuroscience.2014.08.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
|
19
|
Liu Q, Manzano D, Tanić N, Pesic M, Bankovic J, Pateraki I, Ricard L, Ferrer A, de Vos R, van de Krol S, Bouwmeester H. Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway. Metab Eng 2014; 23:145-53. [PMID: 24704560 DOI: 10.1016/j.ymben.2014.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 03/04/2014] [Accepted: 03/25/2014] [Indexed: 01/08/2023]
Abstract
Parthenolide, the main bioactive compound of the medicinal plant feverfew (Tanacetum parthenium), is a promising anti-cancer drug. However, the biosynthetic pathway of parthenolide has not been elucidated yet. Here we report on the isolation and characterization of all the genes from feverfew that are required for the biosynthesis of parthenolide, using a combination of 454 sequencing of a feverfew glandular trichome cDNA library, co-expression analysis and metabolomics. When parthenolide biosynthesis was reconstituted by transient co-expression of all pathway genes in Nicotiana benthamiana, up to 1.4μgg(-1) parthenolide was produced, mostly present as cysteine and glutathione conjugates. These relatively polar conjugates were highly active against colon cancer cells, with only slightly lower activity than free parthenolide. In addition to these biosynthetic genes, another gene encoding a costunolide and parthenolide 3β-hydroxylase was identified opening up further options to improve the water solubility of parthenolide and therefore its potential as a drug.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - David Manzano
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, E-08193 Barcelona, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Nikola Tanić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Serbia
| | - Milica Pesic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Serbia
| | - Jasna Bankovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Serbia
| | - Irini Pateraki
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark
| | - Lea Ricard
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - Albert Ferrer
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, E-08193 Barcelona, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Ric de Vos
- Plant Research International, Wageningen, The Netherlands; Centre for BioSystems Genomics, Wageningen, The Netherlands; Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Sander van de Krol
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
20
|
Skalicka-Woźniak K, Garrard I. Counter-current chromatography for the separation of terpenoids: a comprehensive review with respect to the solvent systems employed. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2014; 13:547-572. [PMID: 24899873 PMCID: PMC4032468 DOI: 10.1007/s11101-014-9348-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/11/2014] [Indexed: 05/17/2023]
Abstract
Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications.
Collapse
Affiliation(s)
- Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Ian Garrard
- Advanced Bioprocessing Centre, Brunel Institute for Bioengineering, Brunel University, Uxbridge, UB8 3PH UK
| |
Collapse
|
21
|
Shen T, Chen XM, Harder B, Long M, Wang XN, Lou HX, Wondrak GT, Ren DM, Zhang DD. Plant extracts of the family Lauraceae: a potential resource for chemopreventive agents that activate the nuclear factor-erythroid 2-related factor 2/antioxidant response element pathway. PLANTA MEDICA 2014; 80:426-434. [PMID: 24585092 PMCID: PMC4393250 DOI: 10.1055/s-0034-1368197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cells and tissues counteract insults from exogenous or endogenous carcinogens through the expression of genes encoding antioxidants and phase II detoxifying enzymes regulated by antioxidant response element promoter regions. Nuclear factor-erythroid 2-related factor 2 plays a key role in regulating the antioxidant response elements-target gene expression. Hence, the Nrf2/ARE pathway represents a vital cellular defense mechanism against damage caused by oxidative stress and xenobiotics, and is recognized as a potential molecular target for discovering chemopreventive agents. Using a stable antioxidant response element luciferase reporter cell line derived from human breast cancer MDA-MB-231 cells combined with a 96-well high-throughput screening system, we have identified a series of plant extracts from the family Lauraceae that harbor Nrf2-inducing effects. These extracts, including Litsea garrettii (ZK-08), Cinnamomum chartophyllum (ZK-02), C. mollifolium (ZK-04), C. camphora var. linaloolifera (ZK-05), and C. burmannii (ZK-10), promoted nuclear translocation of Nrf2, enhanced protein expression of Nrf2 and its target genes, and augmented intracellular glutathione levels. Cytoprotective activity of these extracts against two electrophilic toxicants, sodium arsenite and H2O2, was investigated. Treatment of human bronchial epithelial cells with extracts of ZK-02, ZK-05, and ZK-10 significantly improved cell survival in response to sodium arsenite and H2O2, while ZK-08 showed a protective effect against only H2O2. Importantly, their protective effects against insults from both sodium arsenite and H2O2 were Nrf2-dependent. Therefore, our data provide evidence that the selected plants from the family Lauraceae are potential sources for chemopreventive agents targeting the Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Xue-Mei Chen
- Department of Obstetrics, Binzhou Central Hospital, Binzhou, P. R. China
| | - Bryan Harder
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Min Long
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
22
|
Tohme R, Aaraj LA, Ghaddar T, Gali-Muhtasib H, Saliba NA, Darwiche N. Differential growth inhibitory effects of highly oxygenated guaianolides isolated from the Middle Eastern indigenous plant Achillea falcata in HCT-116 colorectal cancer cells. Molecules 2013; 18:8275-88. [PMID: 23860275 PMCID: PMC6269692 DOI: 10.3390/molecules18078275] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/20/2013] [Accepted: 07/08/2013] [Indexed: 11/16/2022] Open
Abstract
Medicinal plants play a crucial role in traditional medicine and in the maintenance of human health worldwide. Sesquiterpene lactones represent an interesting group of plant-derived compounds that are currently being tested as lead drugs in cancer clinical trials. Achillea falcata is a medicinal plant indigenous to the Middle Eastern region and belongs to the Asteraceae family, which is known to be rich in sesquiterpene lactones. We subjected Achillea falcata extracts to bioassay-guided fractionation against the growth of HCT-116 colorectal cancer cells and identified four secotanapartholides, namely 3-β-methoxy-isosecotanapartholide (1), isosecotanapartholide (2), tanaphallin (3), and 8-hydroxy-3-methoxyisosecotanapartholide (4). Three highly oxygenated guaianolides were isolated for the first time from Achillea falcata, namely rupin A (5), chrysartemin B (6), and 1β, 2β-epoxy-3β,4α,10α-trihydroxyguaian-6α,12-olide (7). These sesquiterpene lactones showed no or minor cytotoxicity while exhibiting promising anticancer effects against HCT-116 cells. Further structure-activity relationship studies related the bioactivity of the tested compounds to their skeleton, their lipophilicity, and to the type of functional groups neighboring the main alkylating center of the molecule.
Collapse
Affiliation(s)
- Rita Tohme
- AUB Nature Conservation Center, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon; E-Mails: (R.T.); (L.A.A.); (T.G.); (H.G.-M.)
- Department of Biology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon
| | - Lamis Al Aaraj
- AUB Nature Conservation Center, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon; E-Mails: (R.T.); (L.A.A.); (T.G.); (H.G.-M.)
| | - Tarek Ghaddar
- AUB Nature Conservation Center, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon; E-Mails: (R.T.); (L.A.A.); (T.G.); (H.G.-M.)
- Department of Chemistry, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon
| | - Hala Gali-Muhtasib
- AUB Nature Conservation Center, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon; E-Mails: (R.T.); (L.A.A.); (T.G.); (H.G.-M.)
- Department of Biology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon
| | - Najat A. Saliba
- AUB Nature Conservation Center, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon; E-Mails: (R.T.); (L.A.A.); (T.G.); (H.G.-M.)
- Department of Chemistry, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon
- Authors to whom correspondence should be addressed; E-Mails: (N.D.); (N.A.S.); Tel.: +961-1-350000 (ext. 4870) (N.D.); Fax: +961-1-374374 (ext. 4913) (N.D.); Fax: +961-1-365217 (N.A.S.)
| | - Nadine Darwiche
- AUB Nature Conservation Center, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon; E-Mails: (R.T.); (L.A.A.); (T.G.); (H.G.-M.)
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon
- Authors to whom correspondence should be addressed; E-Mails: (N.D.); (N.A.S.); Tel.: +961-1-350000 (ext. 4870) (N.D.); Fax: +961-1-374374 (ext. 4913) (N.D.); Fax: +961-1-365217 (N.A.S.)
| |
Collapse
|