1
|
Mamillapalli R, Slutzky R, Mangla A, Gawde N, Taylor HS. Effect of endometriosis-linked microRNAs on hepatic gene expression. F&S SCIENCE 2025:S2666-335X(25)00015-1. [PMID: 39971156 DOI: 10.1016/j.xfss.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVE To determine if microRNAs that are altered in the circulation of women with endometriosis affect metabolic gene expression in hepatic cells. DESIGN In vitro study. SUBJECTS Deidentified tissue from women with endometriosis. INTERVENTION MicroRNAs were used to induce or suppress target genes in hepatic cells. MAIN OUTCOME MEASURES Effect of the microRNAs that are aberrantly expressed in endometriosis on hepatic cell gene expression using quantitative polymerase chain reaction. RESULTS Prior microarray studies on the serum of women with endometriosis showed differential expression of microRNAs miR-Let-7b, miR-125b-5p, miR-150-5p, and miR-3613-5p. Bioinformatic analyses revealed that these microRNAs have predicted binding sites in multiple genes involved in liver metabolism. Transfection of these miRs in HepG2 cells followed by real-time quantitative polymerase chain reaction showed that miR-Let-7b mimic increased the expression of Igfbp1 by 8-fold and reduced the expression of Mrc1 by 3.2-fold, whereas its inhibitor reduced Igfbp1 by 2.8-fold and increased Mrc1 by 5.2-fold. MiR-3613-5p mimic reduced the expression of Cyp2r1 by 2.2-fold and Mrc1 by 4-fold. MiR-125b-5p mimic increased the expression of Fabp4 by 4.1-fold, whereas miR-150-5p mimic increased the expression of Mrc1 by 1.8-fold and Cyp2r1 by 2.5-fold. Inhibitors of both miR-125b-5p and miR-150-5p did not show any effect on any of the genes. CONCLUSION Circulating microRNAs, known to be aberrant in endometriosis-regulated hepatic gene expression, likely contribute to the metabolic defects seen in this disease. Treatment with miR-Let-7b and miR-3613-5p, which are downregulated in endometriosis, reversed the effect of endometriosis on the expression of IGFBP1, MRC1, and CYP2r1 genes. Therefore, miR-Let-7b and miR-3613-5p may be novel candidate therapies for endometriosis, potentially correcting the metabolic changes seen in patients with endometriosis.
Collapse
Affiliation(s)
- Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut.
| | - Rebecca Slutzky
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Anjali Mangla
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Nimisha Gawde
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
2
|
Ham J, Song J, Song G, Lim W. Autophagy regulation and redox perturbation by transcrocetin suppress the growth of endometriosis. Biomed Pharmacother 2024; 173:116284. [PMID: 38394847 DOI: 10.1016/j.biopha.2024.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Until non-hormonal therapeutic targets for endometriosis are suggested, we focused on mitochondrial function and autophagy regulation in the disease. Transcrocetin is a carotenoid and retinoic acid with high antioxidant potency and antiproliferative effects in several diseases. In this study, we demonstrated the therapeutic mechanisms of transcrocetin in endometriosis using the End1/E6E7 and VK2/E6E7 cell lines. Transcrocetin suppressed the viability and proliferation of these cell lines and did not affect the proliferation of normal uterine stromal cells. p21 Waf1/Cip1 as a cell cycle regulator and target of p53, were increased by transcrocetin and caused the G1 arrest via inhibition of cyclin-dependent kinase activity, which might further cause cell death. Furthermore, we confirmed endoplasmic reticulum stress and calcium ion dysregulation in the cytosol and mitochondrial matrix, disrupting the mitochondrial membrane potential. Mitochondrial bioenergetics were suppressed by transcrocetin, and oxidative phosphorylation-related gene expression was downregulated. Moreover, the proliferation of End1/E6E7 and VK2/E6E7 cells was regulated by transcrocetin-induced oxidative stress. Finally, we verified the impairment of autophagic flux following pre-treatment with chloroquine. Therefore, transcrocetin may be a potent therapeutic alternative for endometriosis.
Collapse
Affiliation(s)
- Jiyeon Ham
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Yu J, Berga SL, Zou E, Schrepf AD, Clauw DJ, As-Sanie S, Taylor RN. Neurotrophins and Their Receptors, Novel Therapeutic Targets for Pelvic Pain in Endometriosis, Are Coordinately Regulated by IL-1β via the JNK Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1046-1058. [PMID: 37164275 PMCID: PMC10433690 DOI: 10.1016/j.ajpath.2023.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Pelvic pain in women with endometriosis is attributed to neuroinflammation and afferent nociceptor nerves in ectopic and eutopic endometrium. The hypothesis that uterine nociception is activated by IL-1β, a prominent cytokine in endometriosis, was tested herein. Immunofluorescence histochemistry confirmed the presence of neurons in human endometrial tissue. Expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and their receptors in endometrial tissue and cells was validated by immunohistochemistry and Western blotting. Isolated endometrial stromal cells (ESCs) were subjected to dose-response and time-course experiments with IL-1β and kinase inhibitors to characterize in vitro biomarkers. Neural biomarkers were co-localized in endometrial nerve fibers. NGF, BDNF, and their receptors tropomyosin receptor kinase (Trk) A, TrkB, and p75 neurotrophin receptor were all expressed in primary ESCs. IL-1β stimulated higher TrkA/B expression in ESCs derived from endometriosis cases (2.8- ± 0.2-fold) than cells from controls (1.5- ± 0.3-fold, t-test, P < 0.01), effects that were mediated via the c-Jun N-terminal kinase (JNK) pathway. BDNF concentrations trended higher in peritoneal fluid of endometriosis cases but were not statistically different from controls (P = 0.16). The results support the hypothesis that NGF and BDNF and their corresponding receptors orchestrate innervation of the endometrium, which is augmented by IL-1β. We postulate that JNK inhibitors, such as SP600125, have the potential to reduce neuroinflammation in women with endometriosis.
Collapse
Affiliation(s)
- Jie Yu
- Departments of Obstetrics and Gynecology and Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York; Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sarah L Berga
- Departments of Obstetrics and Gynecology and Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Eric Zou
- Departments of Obstetrics and Gynecology and Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Andrew D Schrepf
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Daniel J Clauw
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Sawsan As-Sanie
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Robert N Taylor
- Departments of Obstetrics and Gynecology and Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York; Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
4
|
Endometrial cytokines in patients with and without endometriosis evaluated for infertility. Fertil Steril 2022; 117:629-640. [DOI: 10.1016/j.fertnstert.2021.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022]
|
5
|
Yu J, Berga SL, Meng Q, Xia M, Kohout TA, van Duin M, Taylor RN. Cabergoline Stimulates Human Endometrial Stromal Cell Decidualization and Reverses Effects of Interleukin-1β In Vitro. J Clin Endocrinol Metab 2021; 106:3591-3604. [PMID: 34260712 PMCID: PMC8864758 DOI: 10.1210/clinem/dgab511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Human embryonic implantation is regulated by neuroendocrine hormones, ovarian steroids, growth factors, and cytokines. Sympathetic innervation of the uterus also may play a role. OBJECTIVE We tested the hypothesis that cabergoline (Cb), an agonist of type 2 dopamine receptors (DRD2), could influence endometrial decidualization in vitro. METHODS Immunohistochemistry confirmed the presence of catecholaminergic neurons in human uterine tissue. DRD2 mRNA and protein expression in endometrial tissue and cells were validated by quantitative RT-PCR, cDNA microarrays, RNA sequencing, and Western blotting. Isolated human endometrial stromal cells (ESC) were subjected to dose-response and time-course experiments in the absence or presence of decidualizing hormones (10 nM estradiol, 100 nM progesterone, and 0.5 mM dibutyryl cAMP). In some cases, interleukin (IL)-1β (0.1 nM) was used as an inflammatory stimulus. Well-characterized in vitro biomarkers were quantified. RESULTS DRD2 were maximally expressed in vivo in the mid-secretory phase of the cycle and upregulated in ESC in response to decidualizing hormones, as were classical (eg, prolactin) and emerging (eg, VEGF and connexin 43) differentiation biomarkers. Cabergoline treatment more than doubled decidual biomarker expression, whereas risperidone, a dopamine receptor antagonist, inhibited ESC differentiation by >50%. Cabergoline induced characteristic decidual morphology changes and blocked detrimental effects of IL-1β on decidual cytology. CONCLUSION Our results support the hypothesis that dopaminergic neurons modulate decidualization in situ. We postulate that dopamine agonists, like Cb, could be developed as therapeutic agents to enhance implantation in couples with inflammation-associated infertility.
Collapse
Affiliation(s)
- Jie Yu
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Departments of Obstetrics and Gynecology, Buffalo, NY, USA
| | - Sarah L Berga
- Departments of Obstetrics and Gynecology, Buffalo, NY, USA
| | - Qingying Meng
- Ferring Research Institute, Inc., San Diego, CA, USA
| | - Mingjing Xia
- Emory Integrated Genomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Departments of Obstetrics and Gynecology, Buffalo, NY, USA
- Departments of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Correspondence: Robert N. Taylor, MD, PhD, Department of Obstetrics and Gynecology, Clinical Translational Research Center, 875 Ellicott Street, Room 6088, University at Buffalo School of Medicine, Buffalo, NY 14203, USA.
| |
Collapse
|
6
|
Yu J, Huang W, Liu T, Defnet AE, Zalesak-Kravec S, Farese AM, MacVittie TJ, Kane MA. Effect of Radiation on the Essential Nutrient Homeostasis and Signaling of Retinoids in a Non-human Primate Model with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:406-418. [PMID: 34546221 PMCID: PMC8549574 DOI: 10.1097/hp.0000000000001477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
ABSTRACT High-dose radiation exposure results in hematopoietic (H) and gastrointestinal (GI) acute radiation syndromes (ARS) followed by delayed effects of acute radiation exposure (DEARE), which include damage to lung, heart, and GI. Whereas DEARE includes inflammation and fibrosis in multiple tissues, the molecular mechanisms contributing to inflammation and to the development of fibrosis remain incompletely understood. Reports that radiation dysregulates retinoids and proteins within the retinoid pathway indicate that radiation disrupts essential nutrient homeostasis. An active metabolite of vitamin A, retinoic acid (RA), is a master regulator of cell proliferation, differentiation, and apoptosis roles in inflammatory signaling and the development of fibrosis. As facets of inflammation and fibrosis are regulated by RA, we surveyed radiation-induced changes in retinoids as well as proteins related to and targets of the retinoid pathway in the non-human primate after high dose radiation with minimal bone marrow sparing (12 Gy PBI/BM2.5). Retinoic acid was decreased in plasma as well as in lung, heart, and jejunum over time, indicating a global disruption of RA homeostasis after IR. A number of proteins associated with fibrosis and with RA were significantly altered after radiation. Together these data indicate that a local deficiency of endogenous RA presents a permissive environment for fibrotic transformation.
Collapse
Affiliation(s)
- Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Amy E. Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Stephanie Zalesak-Kravec
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical, Sciences, Baltimore, MD
| |
Collapse
|
7
|
Lu H, Hu H, Yang Y, Li S. The inhibition of reactive oxygen species (ROS) by antioxidants inhibits the release of an autophagy marker in ectopic endometrial cells. Taiwan J Obstet Gynecol 2020; 59:256-261. [PMID: 32127147 DOI: 10.1016/j.tjog.2020.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the role of oxidative stress and reactive oxygen species (ROS) in the pathogenesis of endometriosis (EMs) and to investigate the role of antioxidant therapy on autophagy and the outcome of EMs. MATERIALS AND METHODS Experimental rats were given an peritoneal perfusion of N-acetyl-l-cysteine (NAC, 200 mg/kg) or catalase (CAT, 2000 U/mL). Immunofluorescence was then used to detect microtubule-associated protein light chain 3 (LC3). Western blotting was used to determine the levels of Beclin-1 protein while enzyme-linked immunosorbent assays (ELISAs) were used to measure ROS levels after treatment. RESULTS Fluorescent in situ hybridization showed that NAC and CAT influenced the levels of LC3, an autophagy marker; there were significantly lower levels of LC3 fluorescence in the EMs group (surgical group) of rats compared with controls (p < 0.05). Western blot analysis revealed a downregulation of Beclin-1 protein in both the NAC and CAT groups (p < 0.05) while ELISA revealed significantly lower levels of ROS in the NAC and CAT groups (p < 0.05). CONCLUSION The antioxidants NAC and CAT significantly reduced levels of the autophagy marker LC3 and caused levels of Beclin-1 to significantly decrease. Consequently, antioxidant therapy shows potential for the future treatment of EMs.
Collapse
Affiliation(s)
- Huixia Lu
- Department of Gynecology, College of Clinical Medical, Dali University, Dali, 671000, China
| | - Hong Hu
- Department of Gynecology, College of Clinical Medical, Dali University, Dali, 671000, China
| | - Yi Yang
- Department of Anesthesiology, College of Clinical Medical, Dali University, Dali, 671000, China
| | - Shaobo Li
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali, 671000, China.
| |
Collapse
|
8
|
Yu J, Berga SL, Zou W, Rajakumar A, Man M, Sidell N, Taylor RN. Human Endometrial Stromal Cell Differentiation is Stimulated by PPARβ/δ Activation: New Targets for Infertility? J Clin Endocrinol Metab 2020; 105:dgaa413. [PMID: 32594141 PMCID: PMC7373326 DOI: 10.1210/clinem/dgaa413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Implantation is a reproductive bottleneck in women, regulated by fluctuations in ovarian steroid hormone concentrations. However, other nuclear receptor ligands are modifiers of endometrial differentiation leading to successful pregnancy. In the present study we analyzed the effects of peroxisome-proliferator-activated receptor β/δ (PPARβ/δ) activation on established cellular biomarkers of human endometrial differentiation (decidualization). OBJECTIVE The objective of this work is to test the effects of PPARβ/δ ligation on human endometrial cell differentiation. DESIGN Isolated primary human endometrial stromal cells (ESCs) were treated with synthetic (GW0742) or natural (all trans-retinoic acid, RA) ligands of PPARβ/δ, and also with receptor antagonists (GSK0660, PT-S58, and ST247) in the absence or presence of decidualizing hormones (10 nM estradiol, 100 nM progesterone, and 0.5 mM dibutyryl cAMP [3',5'-cyclic adenosine 5'-monophosphate]). In some cases interleukin (IL)-1β was used as an inflammatory stimulus. Time course and dose-response relationships were evaluated to determine effects on panels of well characterized in vitro biomarkers of decidualization. RESULTS PPARβ/δ, along with estrogen receptor α (ERα) and PR-A and PR-B, were expressed in human endometrial tissue and isolated ESCs. GW0742 treatment enhanced hormone-mediated ESC decidualization in vitro as manifested by upregulation of prolactin, insulin-like growth factor-binding protein 1, IL-11, and vascular endothelial growth factor (VEGF) secretion and also increased expression of ERα, PR-A and PR-B, and connexin 43 (Cx43). RA treatment also increased VEGF, ERα, PR-A, and PR-B and an active, nonphosphorylated isoform of Cx43. IL-1β and PPARβ/δ antagonists inhibited biomarkers of endometrial differentiation. CONCLUSION Ligands that activate PPARβ/δ augment the in vitro expression of biomarkers of ESC decidualization. By contrast, PPARβ/δ antagonists impaired decidualization markers. Drugs activating these receptors may have therapeutic benefits for embryonic implantation.
Collapse
Affiliation(s)
- Jie Yu
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sarah L Berga
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Wei Zou
- Department of Bioengineering, Hebei University of Science and Technology, Hebei, China
| | - Augustine Rajakumar
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mingfei Man
- Department of Biology, University of North Carolina, Charlotte, North Carolina, USA
| | - Neil Sidell
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Nayyar A, Saleem MI, Yilmaz M, DeFranco M, Klein G, Elmaliki KM, Kowalsky E, Chatterjee PK, Xue X, Viswanathan R, Shih AJ, Gregersen PK, Metz CN. Menstrual Effluent Provides a Novel Diagnostic Window on the Pathogenesis of Endometriosis. FRONTIERS IN REPRODUCTIVE HEALTH 2020; 2:3. [PMID: 36304708 PMCID: PMC9580670 DOI: 10.3389/frph.2020.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/10/2020] [Indexed: 01/17/2023] Open
Abstract
Endometriosis is a chronic inflammatory disorder characterized by the presence of endometrial-like tissue growing outside of the uterus. Although the cause is unknown, retrograde menstruation leads to deposition of endometrial cells into the peritoneal cavity. Lack of disease recognition and long diagnostic delays (6–10 years) lead to substantial personal, social and financial burdens, as well as delayed treatment. A non-invasive diagnostic for endometriosis is a major unmet clinical need. Here, we assessed whether differences in menstrual effluent-derived stromal fibroblast cells (ME-SFCs) from women with and without endometriosis provide the basis for a non-invasive diagnostic for endometriosis. In addition, we investigated whether treatment of control ME-SFCs with inflammatory cytokines (TNF and IL-1β) could induce an endometriosis-like phenotype. ME-SFCs from laparoscopically diagnosed endometriosis patients exhibit reduced decidualization capacity, measured by IGFBP1 production after exposure to cAMP. A receiver operating characteristic (ROC) curve developed using decidualization data from controls and endometriosis subjects yielded an area under the curve of 0.92. In addition, a significant reduction in ALDH1A1 gene expression and increased podoplanin surface expression were also observed in endometriosis ME-SFCs when compared to control ME-SFCs. These endometriosis-like phenotypes can be reproduced in control ME-SFCs by exposure to inflammatory cytokines (TNF and IL-1β) and are associated with increased cell migration. These results are consistent with the hypothesis that chronic intrauterine inflammation influences the development of endometriosis lesions following retrograde menstruation. In conclusion, the analysis of ME-SFCs can provide an accurate, rapid, and non-invasive diagnostic for endometriosis and insight into disease pathogenesis.
Collapse
Affiliation(s)
- Ashima Nayyar
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Matthew I. Saleem
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Mine Yilmaz
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Margaret DeFranco
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Gila Klein
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kristine Mae Elmaliki
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Elena Kowalsky
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Prodyot K. Chatterjee
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Xiangying Xue
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Radhika Viswanathan
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Andrew J. Shih
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Peter K. Gregersen
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- *Correspondence: Peter K. Gregersen
| | - Christine N. Metz
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Christine N. Metz
| |
Collapse
|
10
|
Rajakumar A, Kane MA, Yu J, Taylor RN, Sidell N. Aberrant retinoic acid production in the decidua: Implications for pre-eclampsia. J Obstet Gynaecol Res 2020; 46:1007-1016. [PMID: 32343034 DOI: 10.1111/jog.14262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/03/2020] [Indexed: 01/05/2023]
Abstract
Fine-tuning of the endometrium during the evanescent 'window of implantation' relies upon an array of diverse and redundant signaling molecules, particularly the ovarian steroids E2 and P4, but also growth factors, eicosanoids, and vitamins including the vitamin A compounds (retinoids). Pregnancy complications such as preeclampsia (PE) can result from aberrations in the production or function of these molecules that arise during this critical period of decidual development. Such aberrations may be reflected by incomplete decidualization, reduced spiral artery modification, and/or loss of immune tolerance to the developing fetus. Our understanding of the role of the active retinoid metabolite all-trans retinoic acid (RA) in maintaining immune balance in certain tissues, along with data describing its role in decidualization, present a compelling argument that aberrant RA signaling in the decidua can play a significant role in the etiology of PE. Recent findings that decidualization and expression of the anti-angiogenic gene product, 'soluble fms-like tyrosine kinase-1' (sFLT1) are negatively correlated and that sFLT1 expression is directly inhibited by RA, provide additional evidence of the critical role of this retinoid in regulating early vascular development in the decidua. This review provides insight into the production and function of RA in the decidua and how modifications in its metabolism and signaling might lead to certain pregnancy disorders such as PE.
Collapse
Affiliation(s)
- Augustine Rajakumar
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Jie Yu
- Department of Obstetrics & Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Robert N Taylor
- Department of Obstetrics & Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Neil Sidell
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Jin P, Chen X, Yu G, Li Z, Zhang Q, Zhang JV. The Clinical and Experimental Research on the Treatment of Endometriosis with Thiostrepton. Anticancer Agents Med Chem 2019; 19:323-329. [PMID: 29308746 DOI: 10.2174/1871520618666180108100211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND/OBJECTIVE Forkhead Box M1 (FOXM1) is frequently activated in tumors. We studied the expression and the possible mechanism of FOXM1 and evaluated the effects of thiostrepton in an endometriotic rat model. METHODS AND MATERIAL This was a randomized study in a rat model of endometriosis. Fifty female Wistar rats were surgically induced with endometriosis. After 4 weeks of observation, twenty and thirty rats were randomly allocated to an ovariectomized (OVX) group and a treatment group, respectively. The OVX group was ovariectomized and randomly divided into an OVX-estrogen group and a control (OVX -oil) group. All rats were allowed a resting period of 3 days prior to any operation. The rats in the estrogen group were given estradiol (20 µg/kg, 0.1 ml /d), while the control group was treated with an equivalent amount of sesame oil. Every group was injected with subcutaneous injection for 7 days. The treatment group was randomly divided into three groups to receive the following: TST at 150 mg/kg, ip.; TST at 250 mg/kg, ip.; or sterile normal saline, ip. The groups received these dosages every 2 days for 2 weeks. Lesion growth, histological examination, and protein expression were subsequently analyzed using caliper measurement, histology, immunostaining, and Western blot after each rat received an injection in its own group. RESULTS Our results showed that FOXM1 is enriched in nucleus of an ectopic endometrium when compared with a eutopic uterus. Furthermore, we found that an ERK/FOXM1/matrix metalloproteinase-9 (MMP9) signaling pathway might result in the establishment and development of endometriosis. Finally, a thiostrepton concentration dependently reduced the expression of FOXM1, MMP9 and Bcl-2 in endometriotic lesions of the treated rats. Statistical significance was accepted for a value of P < 0.05. CONCLUSION We postulate that thiostrepton could inhibit the endometriotic lesions, at least in part, by decreasing the FOXM1 expression and exerting a pro-apoptotic effect. We reported for the first time that FOXM1 expresses in experimental endometriosis rat and thiostrepton may also be suitable for the administration of endometriosis by inhibiting the growth of endometriotic implants. More studies are needed to further evaluate thiostrepton's effect.
Collapse
Affiliation(s)
- Ping Jin
- Shenzhen Maternity & Child Healthcare Hospital Affiliated to Southern Medical University, Shenzhen 518028, China
| | - Xiaofei Chen
- Shenzhen Maternity & Child Healthcare Hospital Affiliated to Southern Medical University, Shenzhen 518028, China
| | - Guiyuan Yu
- Shenzhen Maternity & Child Healthcare Hospital Affiliated to Southern Medical University, Shenzhen 518028, China
| | - Ziyang Li
- Shenzhen Maternity & Child Healthcare Hospital Affiliated to Southern Medical University, Shenzhen 518028, China
| | - Qingqing Zhang
- Laboratory for Reproductive Health, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jian V Zhang
- Laboratory for Reproductive Health, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| |
Collapse
|
12
|
Raman spectroscopy as a non-invasive diagnostic technique for endometriosis. Sci Rep 2019; 9:19795. [PMID: 31875014 PMCID: PMC6930314 DOI: 10.1038/s41598-019-56308-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 12/10/2019] [Indexed: 11/08/2022] Open
Abstract
Endometriosis is a condition in which the endometrium, the layer of tissue that usually covers the inside of the uterus, grows outside the uterus. One of its severe effects is sub-fertility. The exact reason for endometriosis is still unknown and under investigation. Tracking the symptoms is not sufficient for diagnosing the disease. A successful diagnosis can only be made using laparoscopy. During the disease, the amount of some molecules (i.e., proteins, antigens) changes in the blood. Raman spectroscopy provides information about biochemicals without using dyes or external labels. In this study, Raman spectroscopy is used as a non-invasive diagnostic method for endometriosis. The Raman spectra of 94 serum samples acquired from 49 patients and 45 healthy individuals were compared for this study. Principal Component Analysis (PCA), k- Nearest Neighbors (kNN), and Support Vector Machines (SVM) were used in the analysis. According to the results (using 80 measurements for training and 14 measurements for the test set), it was found that kNN-weighted gave the best classification model with sensitivity and specificity values of 80.5% and 89.7%, respectively. Testing the model with unseen data yielded a sensitivity value of 100% and a specificity value of 100%. To the best of our knowledge, this is the first study in which Raman spectroscopy was used in combination with PCA and classification algorithms as a non-invasive method applied on blood sera for the diagnosis of endometriosis.
Collapse
|
13
|
Lin K, Ma J, Peng Y, Sun M, Xu K, Wu R, Lin J. Autocrine Production of Interleukin-34 Promotes the Development of Endometriosis through CSF1R/JAK3/STAT6 signaling. Sci Rep 2019; 9:16781. [PMID: 31727934 PMCID: PMC6856158 DOI: 10.1038/s41598-019-52741-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
Abstract
Interleukin (IL)-34 plays a critical role in cell proliferation, differentiation, apoptosis, angiogenesis, inflammation and immunoregulation. Numerous diseases can be attributed to the dysregulation of IL-34 signaling. This study was performed to investigate the function of IL-34 in the pathogenesis of endometriosis. Firstly, by enzyme linked immunoabsorbent assay, we found that IL-34, VEGF, MMP-2 and MMP-9 were increased in the sera of patients with endometriosis. Secondly, exposure to IL-34 promoted the proliferation, migration and invasion of eutopic endometrial stromal cells (ESCs). Additionally, stimulation with IL-34 up-regulated colony-stimulating factor 1 receptor (CSF1R), p-JAK3, p-STAT6, VEGF, MMP-2 and MMP-9 in these eutopic ESCs. Treatment with AS1517499, an inhibitor of STAT6, remarkably abrogated the alterations induced by IL-34. A Chromatin immunoprecipitation (ChIP) assay demonstrated binding of STAT6 to the IL-34 promoter, further implicating STAT6 in IL-34 signaling. Notably, reverse results were obtained in ectopic ESCs with the application of an IL-34 neutralizing antibody. In vivo, AS1517499 suppressed the maintenance of endometriosis lesions in rats. In summary, autocrine production of IL-34, mediated by STAT6, promoted the development of endometriosis in vitro and in vivo through the CSF1R/JAK3/STAT6 pathway. Our research reveals the function of IL-34 in endometriosis, which may provide insight into novel therapeutic strategies for endometriosis.
Collapse
Affiliation(s)
- Kaiqing Lin
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Junyan Ma
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, 310006, Hangzhou, People's Republic of China
| | - Yaomin Peng
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, 310006, Hangzhou, People's Republic of China
| | - Meina Sun
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Kaihong Xu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Ruijin Wu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Jun Lin
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
14
|
Ran N, Pang Z, Guan X, Wang G, Liu J, Li P, Zheng J, Wang F. Therapeutic Effect and Mechanism Study of Rhodiola wallichiana var. cholaensis Injection to Acute Blood Stasis Using Metabolomics Based on UPLC-Q/TOF-MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:1514845. [PMID: 31781258 PMCID: PMC6874959 DOI: 10.1155/2019/1514845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/15/2019] [Accepted: 10/08/2019] [Indexed: 01/13/2023]
Abstract
In traditional Chinese medicine theory, blood stasis syndrome (BSS), characterized by blood flow retardation and blood stagnation, is one of the main pathologic mechanisms and clinical syndromes of cardiovascular diseases (CVDs). Rhodiola wallichiana var. cholaensis injection (RWCI) is made from dry roots and stems of RWC via the processes of decoction, alcohol precipitation, filtration, and dilution. Studies indicated the extracts of RWC could alleviate CVDs; however, the mechanism had not been illustrated. In the present study, the acute blood stasis rat model was established to investigate the pathogenesis of BSS and the therapeutic mechanism of RWCI against BSS. Hemorheological parameters (whole blood viscosity and plasma viscosity) and inflammatory factors (TNF-α and IL-6) were used to evaluate the success of the BSS rat model and RWCI efficacy. 14 and 33 differential metabolites were identified from plasma and urine samples using the metabolomics approach based on ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The results of multivariate analysis displayed that there were significant separations among model, control, and treatment groups, but the high-dose RWCI treatment group was closer to the control group. 9 perturbed metabolic pathways were related to BSS's development and RWCI intervention. 5 metabolic pathways (arachidonic acid metabolism, linoleic acid metabolism, alpha-linolenic acid metabolism, retinol metabolism, and steroid hormone biosynthesis) showed apparent correlations. These differential metabolites and perturbed metabolic pathways might provide a novel view to understand the pathogenesis of BSS and the pharmacological mechanism of RWCI.
Collapse
Affiliation(s)
- Nan Ran
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhiqiang Pang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xuewa Guan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jinping Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jingtong Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
15
|
Kulaksiz D, Kart C, Guven S, Akbulut K, Cobanoglu U, Deger O. Comparison of the effect of isotretionin and alitretionin on endometriotic implants and serum vascular endothelial growth factor level: an experimental study. Gynecol Endocrinol 2019; 35:301-304. [PMID: 30600729 DOI: 10.1080/09513590.2018.1526275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE To compare the effects of alitretionin and isotretionin on endometrial peritoneal implants and serum vascular endothelial growth factor (VEGF) levels. STUDY DESIGN Forty-eight female Sprague Dawley rats were used. Initially surgical rat endometriosis model was done. The endometrial implant volume was measured and rats were randomly divided into four groups. Group 1: Control group (rats did not get any drug but having endometriotic implants), group 2: rats receiving po isotretionin 10 mg/kg per day for 10 d, group 3: rats receiving po isotretionin 20 mg/kg per day for 10 d and group 4: rats receiving po alitretionin 80 mg/kg per day for 10 d. After 1-week medication, rats were sacrificed and size, histopathology of endometriotic implant and levels of VEGF were evaluated. RESULTS Volumes of peritoneal endometrial implants were significantly decreased in Group 2 and Group 3 compared with initial values. However, there were no significant changes in histopathological scores and serum VEGF levels in all groups. CONCLUSIONS This study finding may suggest the possible medical treatment modality of isotretionin on endometriosis. However, alitretionin (potent retinoid) does not have potent regressive effect on endometriotic implants as in isotretionin.
Collapse
Affiliation(s)
- Deniz Kulaksiz
- a Department of Obstetric and Gynecology , Karadeniz Teknik Universitesi, School of Medicine , Trabzon , Turkey
| | - Cavit Kart
- a Department of Obstetric and Gynecology , Karadeniz Teknik Universitesi, School of Medicine , Trabzon , Turkey
| | - Suleyman Guven
- a Department of Obstetric and Gynecology , Karadeniz Teknik Universitesi, School of Medicine , Trabzon , Turkey
| | - Kubra Akbulut
- b Department of Biochemistry, Karadeniz Teknik Universitesi, School of Medicine , Trabzon , Turkey
| | - Umit Cobanoglu
- c Department of Pathology , School of Medicine, Karadeniz Technical University , Trabzon , Turkey
| | - Orhan Deger
- b Department of Biochemistry, Karadeniz Teknik Universitesi, School of Medicine , Trabzon , Turkey
| |
Collapse
|
16
|
Yu J, Francisco AMC, Patel BG, Cline JM, Zou E, Berga SL, Taylor RN. IL-1β Stimulates Brain-Derived Neurotrophic Factor Production in Eutopic Endometriosis Stromal Cell Cultures: A Model for Cytokine Regulation of Neuroangiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2281-2292. [PMID: 30031725 DOI: 10.1016/j.ajpath.2018.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/15/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022]
Abstract
Endometriosis implants are comprised of glandular and stromal elements, macrophages, nerves, and blood vessels and are commonly accompanied by pelvic pain. We propose that activated macrophages are recruited to and infiltrate nascent lesions, where they secrete proinflammatory cytokines, promoting the production of chemokines, neurotrophins, and angiogenic growth factors that sustain an inflammatory microenvironment. Immunohistochemical evaluation of endometriosis lesions reveals in situ colocalization of concentrated macrophages, brain-derived neurotrophic factor (BDNF), and nerve fibers. These observations were coupled with biochemical analyses of primary eutopic endometriosis stromal cell (EESC) cultures, which allowed defining potential pathways leading to the neuroangiogenic phenotype of these lesions. Our findings indicate that IL-1β potently (EC50 = 7 ± 2 ng/mL) stimulates production of EESC BDNF at the mRNA and protein levels in an IL-1 receptor-dependent fashion. Selective kinase inhibitors demonstrate that this IL-1β effect is mediated by c-Jun N-terminal kinase (JNK), NF-κB, and mechanistic target of rapamycin signal transduction pathways. IL-1β regulation of regulated on activation normal T cell expressed and secreted (RANTES), a prominent EESC chemokine, also relies on JNK and NF-κB. An important clinical implication of the study is that interference with BDNF and RANTES production, by selectively targeting the JNK and NF-κB cascades, may offer a tractable therapeutic strategy to mitigate the pain and inflammation associated with endometriosis.
Collapse
Affiliation(s)
- Jie Yu
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Antônio M C Francisco
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Health Sciences School, University of Vale do Sapucaí, Pouso Alegre, Brazil
| | - Bansari G Patel
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - J Mark Cline
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; Molecular Medicine and Translational Sciences Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Eric Zou
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sarah L Berga
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Molecular Medicine and Translational Sciences Program, Wake Forest School of Medicine, Winston-Salem, North Carolina; Clinical and Translational Science Institute, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
17
|
Zou Y, Zhou JY, Wang F, Zhang ZY, Liu FY, Luo Y, Tan J, Zeng X, Wan XD, Huang OP. Analysis of CARD10 and CARD11 somatic mutations in patients with ovarian endometriosis. Oncol Lett 2018; 16:491-496. [PMID: 29928437 DOI: 10.3892/ol.2018.8659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
Endometriosis is a complex and heterogeneous pre-malignant inflammatory disease harboring multiple gene mutations. Previous studies have suggested that caspase recruitment domain family member (CARD)10 and CARD11 mutations may exist in endometriosis. In the present study, a collection of endometriotic lesions and paired peripheral blood from 101 patients with ovarian endometriosis were obtained, and the entire coding sequences of the CARD10 and CARD11 genes were sequenced. Evolutionary conservation analysis and online prediction programs were applied to analyze the disease-causing potential of the identified mutations. A total of 4 novel somatic mutations were identified in 4 out of the 101 (4.0%) samples: 2 in-frame deletions in CARD10 (c.785_790delAGGAGA, p.K272_E273delKE; c.785_802delAGGAGAAGGAGAAGGAGA, p.K272_V277delKEPDNV) and 2 heterozygous missense mutations in CARD11 (c.49G>T, p.D17Y; c.160G>C, p.E54Q). The sample with CARD10 p.K272_E273delKE deletion was obtained from a 47-year-old patient who was also diagnosed with uterine leiomyoma, while the CARD10 p.K272_V277delKEPDNV-mutated sample was from a 43-year-old patient exhibiting a decreased blood eosinophil granulocyte ratio (0.3%) and an elevated serum creatine kinase level (314 U/l). The patient with the CARD11 p.D17Y mutation was 38 years old and exhibited an increased level of cancer antigen 125 (45.4 U/ml), while the patient with the CARD11 p.E54Q mutation was 46 years old and exhibited no other gynecological conditions. Evolutionary conservation analysis and online prediction programs suggested that these mutations may be disease-causing. In summary, 4 novel somatic mutations in the CARD10 and CARD11 genes were identified from amongst 101 cases of ovarian endometriosis for the first time, these mutations may serve active roles in the development of ovarian endometriosis.
Collapse
Affiliation(s)
- Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Jiang-Yan Zhou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Feng Wang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Zi-Yu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Fa-Ying Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Luo
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Tan
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Reproductive Medicine Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Xin Zeng
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Xi-Di Wan
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Ou-Ping Huang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
18
|
Bourlev V, Moberg C, Ilyasova N, Davey E, Kunovac Kallak T, Olovsson M. Vasoactive intestinal peptide is upregulated in women with endometriosis and chronic pelvic pain. Am J Reprod Immunol 2018; 80:e12857. [PMID: 29675846 DOI: 10.1111/aji.12857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
PROBLEM Chronic pelvic pain (CPP) causes compromised the quality of life in women with endometriosis and is often attributed to local inflammation and ingrowth of nerve fibers. In this pilot study, we aimed to investigate whether the inflammation-related vasoactive intestinal peptide (VIP) and interleukin (IL)-6 were increased in affected patients. METHOD OF STUDY Endometrial and endometriotic tissue biopsy specimens, and serum and peritoneal fluid (PF) samples, were obtained from 85 endometriosis patients and 53 controls. VIP and IL-6 analysis and measurement of microvessel density in tissue were performed using immunohistochemistry, Western blotting, RT-qPCR, and ELISA. RESULTS Compared with controls, VIP transcript and protein levels were increased in endometrium from endometriosis patients and further elevated in patients with CPP. In addition, microvessel density, a measurement of angiogenic activity, was increased in the endometrium and in endometriosis lesions in the same subset of patients. Serum and PF levels of VIP and IL-6 were higher in women with endometriosis and CPP compared with endometriosis patients who reported no chronic pain. CONCLUSION Vasoactive intestinal peptide is upregulated in endometriosis patients reporting chronic pain. Increased microvessel density in tissue and peritoneal fluid concentrations of IL-6 indicate an elevated inflammation in the pelvic microenvironment of these patients.
Collapse
Affiliation(s)
- Vladimir Bourlev
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Christian Moberg
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Natalia Ilyasova
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Eva Davey
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Barra F, Ferrero S. The use of retinoic acid for the treatment of endometriosis. Arch Gynecol Obstet 2018; 298:231-232. [DOI: 10.1007/s00404-018-4774-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022]
|
20
|
Jiang Y, Chen L, Taylor RN, Li C, Zhou X. Physiological and pathological implications of retinoid action in the endometrium. J Endocrinol 2018; 236:R169-R188. [PMID: 29298821 DOI: 10.1530/joe-17-0544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 01/02/2023]
Abstract
Retinol (vitamin A) and its derivatives, collectively known as retinoids, are required for maintaining vision, immunity, barrier function, reproduction, embryogenesis and cell proliferation and differentiation. Despite the fact that most events in the endometrium are predominantly regulated by steroid hormones (estrogens and progesterone), accumulating evidence shows that retinoid signaling is also involved in the development and maintenance of the endometrium, stromal decidualization and blastocyst implantation. Moreover, aberrant retinoid metabolism seems to be a critical factor in the development of endometriosis, a common gynecological disease, which affects up to 10% of reproductive age women and is characterized by the ectopic localization of endometrial-like tissue in the pelvic cavity. This review summarizes recent advances in research on the mechanisms and molecular actions of retinoids in normal endometrial development and physiological function. The potential roles of abnormal retinoid signaling in endometriosis are also discussed. The objectives are to identify limitations in current knowledge regarding the molecular actions of retinoids in endometrial biology and to stimulate new investigations toward the development potential therapeutics to ameliorate or prevent endometriosis symptoms.
Collapse
Affiliation(s)
- Yanwen Jiang
- College of Animal SciencesJilin University, Changchun, Jilin, China
| | - Lu Chen
- College of Animal SciencesJilin University, Changchun, Jilin, China
| | - Robert N Taylor
- Departments of Obstetrics and Gynecology and Molecular Medicine and Translational SciencesWake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Chunjin Li
- College of Animal SciencesJilin University, Changchun, Jilin, China
| | - Xu Zhou
- College of Animal SciencesJilin University, Changchun, Jilin, China
| |
Collapse
|
21
|
Patel BG, Lenk EE, Lebovic DI, Shu Y, Yu J, Taylor RN. Pathogenesis of endometriosis: Interaction between Endocrine and inflammatory pathways. Best Pract Res Clin Obstet Gynaecol 2018; 50:50-60. [PMID: 29576469 DOI: 10.1016/j.bpobgyn.2018.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/23/2018] [Indexed: 01/26/2023]
Abstract
Despite an estimated prevalence of 11% in women and plausible historical descriptions dating back to the 17th century, the etiology of endometriosis remains poorly understood. Classical theories of the histological origins of endometriosis are reviewed below. Clinical presentations are variable, and signs and symptoms do not correlate well with the extent of disease. In this summary, we have attempted to synthesize the growing evidence that hormonal and immune factors conspire to activate a local inflammatory microenvironment that encourages endometriosis to persist and elaborate mediators of its two cardinal symptoms: pain and infertility. Surprisingly, in the search for novel therapeutics for medical treatment of endometriosis, some compounds appear to have dual pharmacological functions, simultaneously modifying the endocrine and immune system facets of this complex gynecologic syndrome. We predict that these lead drugs will provide more therapeutic choices for patients in the future.
Collapse
Affiliation(s)
- Bansari G Patel
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Emily E Lenk
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Dan I Lebovic
- Center for Reproductive Medicine, Minneapolis, MN 55435, USA
| | - Yimin Shu
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jie Yu
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
22
|
Abnormal Pathways in Endometriosis in Relation to Progesterone Resistance: A Review. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2017. [DOI: 10.5301/jeppd.5000302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction Endometriosis is an estrogen-dependent disorder, and recent studies suggest that progesterone resistance may contribute to the development and pathophysiology of the disorder. Based on this, identification of genetic and molecular perturbations in the endometrium of women with endometriosis is an important step towards understanding the pathogenesis of the disease, and the development of novel treatment and diagnostic strategies. Methods A systematic literature search in PubMed and Embase was performed, and 118 articles were identified for further screening. Two reviewers performed article screening independently using Covidence, and 16 studies fulfilled the inclusion criteria. The Newcastle-Ottawa Scale was used to assess the quality of these studies. Results This review presents data from eutopic endometrial biopsies from women with and without endometriosis. Several biomarkers related to a downregulated progesterone response were identified and discussed in detail. Conclusions Our review demonstrates significant results concerning the biomarkers investigated, which may substantiate the theory of progesterone resistance in women with endometriosis. However, further research is necessary to determine their specific role and relevance.
Collapse
|
23
|
Waiyaput W, Pumipichet S, Weerakiet S, Rattanasiri S, Sophonsritsuk A. Effect of simvastatin on monocyte chemoattractant protein-1 expression in endometriosis patients: a randomized controlled trial. BMC WOMENS HEALTH 2017; 17:89. [PMID: 28950844 PMCID: PMC5615793 DOI: 10.1186/s12905-017-0446-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/21/2017] [Indexed: 12/20/2022]
Abstract
Background Simvastatin is a promising new drug for the treatment of endometriosis. It is a cholesterol-lowering drug that acts by inhibiting HMG-CoA reductase, resulting in a decrease in mevalonate, a precursor of cholesterol and monocyte chemoattractant protein-1 (MCP-1). This study investigated the effect of pre-operative oral simvastatin administration on MCP-1 gene expression and serum MCP-1 protein levels in patients with endometriosis. Methods A prospective, randomized, controlled study was conducted at the Reproductive Endocrinology Unit of the Department of Obstetrics and Gynecology at the Faculty of Medicine Ramathibodi Hospital. Forty women (mean age: 18–45 years) scheduled for laparoscopic surgery who had been diagnosed with endometriosis were recruited and randomly assigned to either a treatment group (20 mg/d of orally administered simvastatin for 2 weeks before surgery) or an untreated control group. Serum was collected before and after treatment and protein levels of MCP-1 were determined. MCP-1 and CD68 transcript levels were also quantified using real-time PCR on endometriotic cyst tissues. Results MCP-1 gene expression on endometriotic cyst was not significantly different between the simvastatin-treated and untreated groups (P = 0.99). CD68 expression was higher in the treatment group compared to the control group, but this was not statistically significant (P = 0.055). Serum MCP-1 levels following simvastatin treatment were higher than in samples obtained before treatment (297.89 ± 70.77 and 255.51 ± 63.79 pg/ml, respectively) (P = 0.01). Conclusions Treatment with 20 mg/d of simvastatin for 2 weeks did not reduce the expression of either the chemokine MCP-1 gene or macrophage-specific genes. Cumulatively, this suggests that simvastatin is not ideal for treating endometriosis because a higher dose of simvastatin (40–100 mg/d) would be needed to achieve the target outcome, which would significantly increase the risk of myopathy in patients. Trial registration Thai Clinical Trials Registry TCTR20130627003 Registered: June 27, 2013.
Collapse
Affiliation(s)
- Wanwisa Waiyaput
- Office of Research Academic and Innovation, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Somphoch Pumipichet
- Department of Obstetrics and Gynecology, Faculty of Medicine Srinakharinwirot University, Bangkok, Thailand
| | - Sawaek Weerakiet
- Reproductive Endocrinology and Infertility Unit, Department of Obstetrics & Gynecology, Ramathibodi Hospital, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Sasivimol Rattanasiri
- Section for Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Areepan Sophonsritsuk
- Reproductive Endocrinology and Infertility Unit, Department of Obstetrics & Gynecology, Ramathibodi Hospital, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand.
| |
Collapse
|
24
|
Prodromidou A, Pergialiotis V, Pavlakis K, Korou LM, Frountzas M, Dimitroulis D, Vaos G, Perrea DN. A Novel Experimental Model of Colorectal Endometriosis. J INVEST SURG 2017; 31:275-281. [DOI: 10.1080/08941939.2017.1317374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Anastasia Prodromidou
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilios Pergialiotis
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University of Athens, Athens, Greece
| | - Kitty Pavlakis
- Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | - Laskarina Maria Korou
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University of Athens, Athens, Greece
| | - Maximos Frountzas
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Surgery, Laiko Univesity Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Vaos
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University of Athens, Athens, Greece
- Department of Paediatric Surgery, “ATTIKON” University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina N. Perrea
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Nothnick WB, Falcone T, Joshi N, Fazleabas AT, Graham A. Serum miR-451a Levels Are Significantly Elevated in Women With Endometriosis and Recapitulated in Baboons ( Papio anubis) With Experimentally-Induced Disease. Reprod Sci 2016; 24:1195-1202. [PMID: 27920341 DOI: 10.1177/1933719116681519] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that human microRNA-451a (miR-451a) endometriotic lesion expression is significantly higher compared to that of the corresponding eutopic endometrium. The objective of the current study was to examine the relationship between lesion and serum content of miR-451a and to determine the utility of serum miR-451a in distinguishing between women with and without visible signs of endometriosis. Eighty-one participants were enrolled in this study, 41 with confirmed endometriosis and 40 without visible signs of endometriosis at laparoscopy (n = 20) or symptoms of endometriosis (pain, infertility n = 20). Experimental endometriosis was also induced in 8 baboons. Blood, endometriotic lesions, and eutopic endometrial samples were collected from women undergoing laparoscopy for surgical removal of endometriosis. Blood was also collected from control participants with no signs and symptoms associated with the disease as well as from baboons prior to, and then 1, 3, 6, 9, and 15 months postinduction of endometriosis. MicroRNA-451a was assessed by quantitative real-time polymerase chain reaction in all samples. In humans, serum miR-451a levels positively correlated with endometriotic lesion miR-451a content, and sera levels were significantly higher in these participants compared to controls. The area under the curve (AUC) for miR-451a was 0.8599. In baboons, serum miR-451a reached statistically significant peak levels at 6 months postinduction of endometriosis. We conclude from this study that sera miR-451a levels positively correlated with endometriotic lesion content and are significantly greater compared to sera levels in women without visible signs or symptoms of endometriosis. MicroRNA-451a may serve as a serum diagnostic marker for endometriosis.
Collapse
Affiliation(s)
- Warren B Nothnick
- 1 Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,2 Center for Reproductive Sciences, Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tommaso Falcone
- 3 Department of Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Niraj Joshi
- 4 Department of Obstetrics and Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Asgerally T Fazleabas
- 4 Department of Obstetrics and Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Amanda Graham
- 1 Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
26
|
Goetz TG, Mamillapalli R, Taylor HS. Low Body Mass Index in Endometriosis Is Promoted by Hepatic Metabolic Gene Dysregulation in Mice. Biol Reprod 2016; 95:115. [PMID: 27628219 PMCID: PMC5315422 DOI: 10.1095/biolreprod.116.142877] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/26/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
The gynecological disease endometriosis is characterized by the deposition and proliferation of endometrial cells outside the uterus and clinically is linked to low body mass index (BMI). Gene expression in the liver of these women has not been reported. We hypothesized that endometriosis may impact hepatic gene expression, promoting a low BMI. To determine the effect of endometriosis on liver gene expression, we induced endometriosis in female mice by suturing donor mouse endometrium into the peritoneal cavity and measuring the weight of these mice. Dual-energy X-ray absorptiometry (DEXA) scanning of these mice showed lower body weight and lower total body fat than controls. Microarray analysis identified 26 genes differentially regulated in the livers of mice with endometriosis. Six of 26 genes were involved in metabolism. Four of six genes were upregulated and were related to weight loss, whereas two genes were downregulated and linked to obesity. Expression levels of Cyp2r1, Fabp4, Mrc1, and Rock2 were increased, whereas Igfbp1 and Mmd2 expression levels were decreased. Lep and Pparg, key metabolic genes in the pathways of the six genes identified from the microarray, were also upregulated. This dysregulation was specific to metabolic pathways. Here we demonstrate that endometriosis causes reduced body weight and body fat and disrupts expression of liver genes. We suggest that altered metabolism mediated by the liver contributes to the clinically observed low BMI that is characteristic of women with endometriosis. These findings reveal the systemic and multiorgan nature of endometriosis.
Collapse
Affiliation(s)
- Teddy G Goetz
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
27
|
Yu J, Berga SL, Johnston-MacAnanny EB, Sidell N, Bagchi IC, Bagchi MK, Taylor RN. Endometrial Stromal Decidualization Responds Reversibly to Hormone Stimulation and Withdrawal. Endocrinology 2016; 157:2432-46. [PMID: 27035651 PMCID: PMC4891781 DOI: 10.1210/en.2015-1942] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/23/2016] [Indexed: 01/08/2023]
Abstract
Human endometrial stromal decidualization is required for embryo receptivity, angiogenesis, and placentation. Previous studies from our laboratories established that connexin (Cx)-43 critically regulates endometrial stromal cell (ESC) differentiation, whereas gap junction blockade prevents it. The current study evaluated the plasticity of ESC morphology and Cx43 expression, as well as other biochemical markers of cell differentiation, in response to decidualizing hormones. Primary human ESC cultures were exposed to 10 nM estradiol, 100 nM progesterone, and 0.5 mM cAMP for up to 14 days, followed by hormone withdrawal for 14 days, mimicking a biphasic ovulatory cycle. Reversible differentiation was documented by characteristic changes in cell shape. Cx43 was reversibly up- and down-regulated after the estradiol, progesterone, and cAMP treatment and withdrawal, respectively, paralleled by fluctuations in prolactin, vascular endothelial growth factor, IL-11, and glycodelin secretion. Markers of mesenchymal-epithelial transition (MET), and its counterpart epithelial-mesenchymal transition, followed reciprocal patterns corresponding to the morphological changes. Incubation in the presence of 18α-glycyrrhetinic acid, an inhibitor of gap junctions, partially reversed the expression of decidualization and MET markers. In the absence of hormones, Cx43 overexpression promoted increases in vascular endothelial growth factor and IL-11 secretion, up-regulated MET markers, and reduced N-cadherin, an epithelial-mesenchymal transition marker. The combined results support the hypothesis that Cx43-containing gap junctions and endocrine factors cooperate to regulate selected biomarkers of stromal decidualization and MET and suggest roles for both phenomena in endometrial preparation for embryonic receptivity.
Collapse
Affiliation(s)
- Jie Yu
- Department of Obstetrics and Gynecology (J.Y., S.L.B., E.B.J.-M., R.N.T.), Clinical and Translational Science Institute (J.Y., R.N.T.), and Molecular Medicine and Translational Sciences Program (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Gynecology and Obstetrics (N.S.), Emory University School of Medicine, Atlanta, Georgia 30322; and Departments of Comparative Biosciences (I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois Urbana/Champaign, Illinois 61801
| | - Sarah L Berga
- Department of Obstetrics and Gynecology (J.Y., S.L.B., E.B.J.-M., R.N.T.), Clinical and Translational Science Institute (J.Y., R.N.T.), and Molecular Medicine and Translational Sciences Program (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Gynecology and Obstetrics (N.S.), Emory University School of Medicine, Atlanta, Georgia 30322; and Departments of Comparative Biosciences (I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois Urbana/Champaign, Illinois 61801
| | - Erika B Johnston-MacAnanny
- Department of Obstetrics and Gynecology (J.Y., S.L.B., E.B.J.-M., R.N.T.), Clinical and Translational Science Institute (J.Y., R.N.T.), and Molecular Medicine and Translational Sciences Program (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Gynecology and Obstetrics (N.S.), Emory University School of Medicine, Atlanta, Georgia 30322; and Departments of Comparative Biosciences (I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois Urbana/Champaign, Illinois 61801
| | - Neil Sidell
- Department of Obstetrics and Gynecology (J.Y., S.L.B., E.B.J.-M., R.N.T.), Clinical and Translational Science Institute (J.Y., R.N.T.), and Molecular Medicine and Translational Sciences Program (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Gynecology and Obstetrics (N.S.), Emory University School of Medicine, Atlanta, Georgia 30322; and Departments of Comparative Biosciences (I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois Urbana/Champaign, Illinois 61801
| | - Indrani C Bagchi
- Department of Obstetrics and Gynecology (J.Y., S.L.B., E.B.J.-M., R.N.T.), Clinical and Translational Science Institute (J.Y., R.N.T.), and Molecular Medicine and Translational Sciences Program (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Gynecology and Obstetrics (N.S.), Emory University School of Medicine, Atlanta, Georgia 30322; and Departments of Comparative Biosciences (I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois Urbana/Champaign, Illinois 61801
| | - Milan K Bagchi
- Department of Obstetrics and Gynecology (J.Y., S.L.B., E.B.J.-M., R.N.T.), Clinical and Translational Science Institute (J.Y., R.N.T.), and Molecular Medicine and Translational Sciences Program (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Gynecology and Obstetrics (N.S.), Emory University School of Medicine, Atlanta, Georgia 30322; and Departments of Comparative Biosciences (I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois Urbana/Champaign, Illinois 61801
| | - Robert N Taylor
- Department of Obstetrics and Gynecology (J.Y., S.L.B., E.B.J.-M., R.N.T.), Clinical and Translational Science Institute (J.Y., R.N.T.), and Molecular Medicine and Translational Sciences Program (R.N.T.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Gynecology and Obstetrics (N.S.), Emory University School of Medicine, Atlanta, Georgia 30322; and Departments of Comparative Biosciences (I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois Urbana/Champaign, Illinois 61801
| |
Collapse
|
28
|
Schatz F, Guzeloglu-Kayisli O, Arlier S, Kayisli UA, Lockwood CJ. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. Hum Reprod Update 2016; 22:497-515. [PMID: 26912000 DOI: 10.1093/humupd/dmw004] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Human pregnancy requires robust hemostasis to prevent hemorrhage during extravillous trophoblast (EVT) invasion of the decidualized endometrium, modification of spiral arteries and post-partum processes. However, decidual hemorrhage (abruption) can occur throughout pregnancy from poorly transformed spiral arteries, causing fetal death or spontaneous preterm birth (PTB), or it can promote the aberrant placentation observed in intrauterine growth restriction (IUGR) and pre-eclampsia; all leading causes of perinatal or maternal morbidity and mortality. In non-fertile cycles, the decidua undergoes controlled menstrual bleeding. Abnormal uterine bleeding (AUB) accompanying progestin-only, long-acting, reversible contraception (pLARC) accounts for most discontinuations of these safe and highly effective agents, thereby contributing to unwanted pregnancies and abortion. The aim of this study was to investigate the role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. METHODS We conducted a critical review of the literature arising from PubMed searches up to December 2015, regarding in situ and in vitro expression and regulation of several specific proteins involved in uterine hemostasis in decidua and cycling endometrium. In addition, we discussed clinical and molecular mechanisms associated with pLARC-induced AUB and pregnancy complications with abruptions, chorioamnionitis or pre-eclampsia. RESULTS Progestin-induced decidualization of estradiol-primed human endometrial stromal cells (HESCs) increases in vivo and in vitro expression of tissue factor (TF) and type-1 plasminogen activator inhibitor (PAI-1) while inhibiting plasminogen activators (PAs), matrix metalloproteinases (MMPs), and the vasoconstrictor, endothelin-1 (ET-1). These changes in decidual cell-derived regulators of hemostasis, fibrinolysis, extracellular matrix (ECM) turnover, and vascular tone prevent hemorrhage during EVT invasion and vascular remodeling. In non-fertile cycles, progesterone withdrawal reduces TF and PAI-1 while increasing PA, MMPs and ET-1, causing menstrual-associated bleeding, fibrinolysis, ECM degradation and ischemia. First trimester decidual hemorrhage elicits later adverse outcomes including pregnancy loss, pre-eclampsia, abruption, IUGR and PTB. Decidual hemorrhage generates excess thrombin that binds to decidual cell-expressed protease-activated receptors (PARs) to induce chemokines promoting shallow placentation; such bleeding later in pregnancy generates thrombin to down-regulate decidual cell progesterone receptors and up-regulate cytokines and MMPs linked to PTB. Endometria of pLARC users display ischemia-induced excess vasculogenesis and progestin inhibition of spiral artery vascular smooth muscle cell proliferation and migration leading to dilated fragile vessels prone to bleeding. Moreover, aberrant TF-derived thrombin signaling also contributes to the pathogenesis of endometriosis via induction of angiogenesis, inflammation and cell survival. CONCLUSION Perivascular decidualized HESCs promote endometrial hemostasis during placentation yet facilitate menstruation through progestational regulation of hemostatic, proteolytic, and vasoactive proteins. Pathological endometrial hemorrhage elicits excess local thrombin generation, which contributes to pLARC associated AUB, endometriosis and adverse pregnancy outcomes through several biochemical mechanisms.
Collapse
Affiliation(s)
- Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Sefa Arlier
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|