1
|
Exome Sequencing Revealed a Novel Splice Site Variant in the CRB2 Gene Underlying Nephrotic Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121784. [PMID: 36556986 PMCID: PMC9781877 DOI: 10.3390/medicina58121784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
Background and Objectives: Nephrotic syndrome (NS) is a kidney disease where the patient has a classic triad of signs and symptoms including hypercholesterolemia, hypoalbuminemia, proteinuria (>3.5 g/24 h), and peripheral edema. In case of NS, the damaged nephrons (structural and functional unit of the kidney) filter unwanted blood contents to make urine. Thus, the urine contains unwanted proteins (proteinuria) and blood cells (hematuria), while the bloodstream lacks enough protein albumin (hypoalbuminemia). Nephrotic syndrome is divided into two types, primary NS, and secondary NS. Primary NS, also known as primary glomerulonephrosis, is the result of a glomerular disease that is limited to the kidney, while secondary NS is a condition that affects the kidney and other parts of the body. The main causes of primary NS are minimal change disease, membranous glomerulonephritis, and focal segmental glomerulosclerosis. In the present study we recruited a family segregating primary NS with the aim to identify the underlying genetic etiology. Such type of study is important in children because it allows counseling of other family members who may be at risk of developing NS, predicts risk of recurrent disease phenotypes after kidney transplant, and predicts response to immunosuppressive therapy. Materials and Methods: All affected individuals were clinically evaluated. Clinical examination, results of laboratory tests, and biopsy investigations led us to the diagnosis. The next-generation sequencing technique (whole-exome sequencing) followed by Sanger sequencing identified a novel homozygous splice site variant (NM_173689.7: c.941-3C>T) in the CRB2 gene. The variant was present in a homozygous state in the affected individuals, while in a heterozygous state in phenotypically normal parents. Results: The study expanded the spectrum of the mutations in the gene CRB2 responsible for causing NS. Conclusions: In addition, the study will also help in genetic counseling, carrier testing, and prenatal and/or postnatal early diagnosis of the disease in the affected family.
Collapse
|
2
|
Lee MS, Devi S, He JC, Zhou W. A zebrafish model of congenital nephrotic syndrome of the Finnish type. Front Cell Dev Biol 2022; 10:976043. [PMID: 36187478 PMCID: PMC9515793 DOI: 10.3389/fcell.2022.976043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Nephrotic syndrome (NS) is a disease characterized by proteinuria and subsequent hypoalbuminemia, hyperlipidemia and edema due to the defective renal glomerular filtration barrier (GFB). Mutations of NPHS1, encoding NEPHRIN, a podocyte protein essential for normal GFB, cause congenital nephrotic syndrome (CNS) of the Finnish type (CNF), which accounts for about 50% of CNS cases. We generated zebrafish nphs1 mutants by using CRISPR/Cas9. These mutants completely lack nephrin proteins in podocytes and develop progressive peri-orbital and whole-body edema after 5 days post fertilization. Ultra-structurally, loss of nephrin results in absence of slit-diaphragms and progressive foot process effacement in zebrafish pronephric glomeruli, similar to the pathological changes in human CNF patients. Interestingly, some nphs1 mutants are viable to adulthood despite ultra-structural defects in renal glomeruli. Using a reporter line Tg (l-fabp:VDBP-GFP) expressing GFP-tagged vitamin-D-binding protein in the blood plasma, we observed a reduction of intravascular GFP fluorescence in the nphs1 mutants, a hypoalbuminemia-like phenotype. In addition, we detected excretion of GFP by the nphs1 mutants, reminiscent of proteinuria. Therefore, we have demonstrated that the nphs1 mutant zebrafish recapitulate the human NS phenotypes and provide a novel and relevant animal model useful for screening therapeutical agents for this disease.
Collapse
Affiliation(s)
- Mi-Sun Lee
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Sulochana Devi
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: John Cijiang He, ; Weibin Zhou,
| | - Weibin Zhou
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: John Cijiang He, ; Weibin Zhou,
| |
Collapse
|
3
|
Najafi M, Riedhammer KM, Rad A, Torbati PN, Berutti R, Schüle I, Schroda S, Meitinger T, Ćomić J, Bojd SS, Baranzehi T, Shojaei A, Azarfar A, Khazaei MR, Köttgen A, Backofen R, Karimiani EG, Hoefele J, Schmidts M. High detection rate for disease-causing variants in a cohort of 30 Iranian pediatric steroid resistant nephrotic syndrome cases. Front Pediatr 2022; 10:974840. [PMID: 36245711 PMCID: PMC9555279 DOI: 10.3389/fped.2022.974840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Steroid resistant nephrotic syndrome (SRNS) represents a significant renal disease burden in childhood and adolescence. In contrast to steroid sensitive nephrotic syndrome (SSNS), renal outcomes are significantly poorer in SRNS. Over the past decade, extensive genetic heterogeneity has become evident while disease-causing variants are still only identified in 30% of cases in previously reported studies with proportion and type of variants identified differing depending on the age of onset and ethnical background of probands. A genetic diagnosis however can have implications regarding clinical management, including kidney transplantation, extrarenal disease manifestations, and, in some cases, even causal therapy. Genetic diagnostics therefore play an important role for the clinical care of SRNS affected individuals. METHODOLOGY AND RESULTS Here, we performed NPHS2 Sanger sequencing and subsequent exome sequencing in 30 consanguineous Iranian families with a child affected by SRNS with a mean age of onset of 16 months. We identified disease-causing variants and one variant of uncertain significance in 22 families (73%), including variants in NPHS1 (30%), followed by NPHS2 (20%), WT1 (7%) as well as in NUP205, COQ6, ARHGDIA, SGPL1, and NPHP1 in single cases. Eight of these variants have not previously been reported as disease-causing, including four NPHS1 variants and one variant in NPHS2, ARHGDIA, SGPL1, and NPHP1 each. CONCLUSION In line with previous studies in non-Iranian subjects, we most frequently identified disease-causing variants in NPHS1 and NPHS2. While Sanger sequencing of NPHS2 can be considered as first diagnostic step in non-congenital cases, the genetic heterogeneity underlying SRNS renders next-generation sequencing based diagnostics as the most efficient genetic screening method. In accordance with the mainly autosomal recessive inheritance pattern, diagnostic yield can be significantly higher in consanguineous than in outbred populations.
Collapse
Affiliation(s)
- Maryam Najafi
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Nijmegen, Netherlands.,Pediatric Genetics Division, Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Aboulfazl Rad
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Nijmegen, Netherlands.,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Riccardo Berutti
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Isabel Schüle
- Pediatric Genetics Division, Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany
| | - Sophie Schroda
- Pediatric Genetics Division, Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Jasmina Ćomić
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Simin Sadeghi Bojd
- Children and Adolescents Health Research Center, Research Institute of Cellular and Molecular Science in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Tayebeh Baranzehi
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Azadeh Shojaei
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Anoush Azarfar
- Pediatric Nephrology, Kidney Transplantation Complications Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmood Reza Khazaei
- Department of Pediatrics, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany.,Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Ehsan Ghayoor Karimiani
- Next Generation Genetic Polyclinic, Mashhad, Iran.,Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George's University, London, United Kingdom
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Miriam Schmidts
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Nijmegen, Netherlands.,Pediatric Genetics Division, Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany.,Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Sanjad SA, Ulinski T, Aoun B. Editorial: Nephrotic Syndrome in Children. Front Pediatr 2021; 9:803923. [PMID: 34900881 PMCID: PMC8651990 DOI: 10.3389/fped.2021.803923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Sami A Sanjad
- Department of Pediatrics/Nephrology, American University of Beirut Med Center, Beirut, Lebanon
| | - Tim Ulinski
- Department of Pediatric Nephrology, Armand Trousseau Hospital, Paris, France
| | - Bilal Aoun
- Department of Pediatrics/Nephrology, American University of Beirut Med Center, Beirut, Lebanon
| |
Collapse
|
5
|
Graft immaturity and safety concerns in transplanted human kidney organoids. Exp Mol Med 2019; 51:1-13. [PMID: 31776328 PMCID: PMC6881327 DOI: 10.1038/s12276-019-0336-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
For chronic kidney disease, regeneration of lost nephrons with human kidney organoids derived from induced pluripotent stem (iPS) cells is proposed to be an attractive potential therapeutic option. It remains unclear, however, whether organoids transplanted into kidneys in vivo would be safe or functional. Here, we purified kidney organoids and transplanted them beneath the kidney capsules of immunodeficient mice to test their safety and maturity. Kidney organoid grafts survived for months after transplantation and became vascularized from host mouse endothelial cells. Nephron-like structures in grafts appeared more mature than kidney organoids in vitro, but remained immature compared with the neighboring mouse kidney tissue. Ultrastructural analysis revealed filtration barrier-like structures, capillary lumens, and tubules with brush border in the transplanted kidney organoids, which were more mature than those of the kidney organoids in vitro but not as organized as adult mammalian kidneys. Immaturity was a common feature of three separate differentiation protocols by immunofluorescence analysis and single cell RNA sequencing. Stroma of transplanted kidney organoid grafts were filled with vimentin-positive mesenchymal cells, and chondrogenesis, cystogenesis, and stromal expansion were observed in the long term. Transcription profiles showed that long-term maintenance after kidney organoid transplantation induced transcriptomic reprogramming with prominent suppression of cell-cycle-related genes and upregulation of extracellular matrix organization. Our data suggest that kidney organoids derived from iPS cells may be transplantable but strategies to improve nephron differentiation and purity are required before they can be applied in humans as a therapeutic option.
Collapse
|
6
|
Varner JD, Matory A, Gbadegesin RA. Genetic Basis of Health Disparity in Childhood Nephrotic Syndrome. Am J Kidney Dis 2019; 72:S22-S25. [PMID: 30343718 DOI: 10.1053/j.ajkd.2018.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/25/2018] [Indexed: 11/11/2022]
Abstract
Nephrotic syndrome is the most common glomerular disease in children. There is wide variation in the incidence of nephrotic syndrome in different populations, with a higher incidence in children of South Asian descent. However, nephrotic syndrome with a more indolent course and poor prognosis is more common in African American children. The disparity in the prevalence and severity of nephrotic syndrome is likely due to complex interactions between environmental and biological factors. Recent advances in genome science are providing insight into some of the biological factors that may explain these disparities. For example, risk alleles in the gene encoding apolipoprotein L1 (APOL1) have been established as the most important factor in the high incidence of chronic glomerular diseases in African Americans. Conversely, the locus for childhood steroid-sensitive nephrotic syndrome in the gene encoding major histocompatibility complex-class II-DQ-alpha 1 (HLA-DQA1) is unlikely to be the explanation for the high incidence of steroid-sensitive nephrotic syndrome in Asian children because the same variants are equally common in whites and African Americans. There is a need for collaborative large-scale studies to identify additional risk loci to explain disparities in disease incidence and response to therapy. Findings from such studies have the potential to lead to the identification of new therapeutic targets for nephrotic syndrome.
Collapse
Affiliation(s)
- Jennifer D Varner
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC; Duke University School of Medicine, Durham, NC
| | - Ayo Matory
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC
| | - Rasheed A Gbadegesin
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC; Duke University School of Medicine, Durham, NC; Division of Nephrology, Department of Pediatrics, Duke University Medical Center, Durham, NC.
| |
Collapse
|
7
|
Uwaezuoke SN, Ndu IK, Mbanefo NR. Prevalence rates of histopathologic subtypes associated with steroid resistance in childhood nephrotic syndrome in Sub-Saharan Africa: a systematic review. Int J Nephrol Renovasc Dis 2019; 12:167-176. [PMID: 31372025 PMCID: PMC6627175 DOI: 10.2147/ijnrd.s207372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/22/2019] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION The prevalence rates of the common histopathologic subtypes of childhood nephrotic syndrome associated with steroid resistance appear to be changing globally. In Sub Saharan Africa (SSA), the trend is similar over the past few decades. AIM This systematic review aims to determine the current prevalence rates of the histopathologic subtypes associated with childhood steroid-resistant nephrotic syndrome (SRNS) in SSA. METHODS A search of the PubMed, Google and African Journals Online databases was conducted from January to December 2018 using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow-chart to identify relevant articles which met the aim of the systematic review. A qualitative synthesis and descriptive analysis of the extracted data were then conducted. The mean values for the prevalence rates of the reported histopathologic subtypes were calculated. A meta-analysis was not done due to few numbers of studies reviewed. The review is registered with PROSPERO, number CRD42018111916. RESULTS In the West African sub-region, the currently reported histopathologic subtypes associated with childhood nephrotic syndrome are focal segmental glomerulosclerosis (FSGS), minimal-change nephropathy (MCN), membrano-proliferative glomerulonephritis (MPGN), membranous nephropathy (MN) and mesangial proliferative glomerulonephritis (MesPGN). The picture is the same in South Africa. More importantly, the predominant histopathologic lesions associated with steroid resistance are FSGS (West Africa) and MCN/FSGS (South Africa), with mean prevalence rates of 57.2% and 36.1% respectively. CONCLUSION The prevalence of FSGS is currently high in childhood nephrotic syndrome in SSA. This histopathologic subtype remains the commonest lesion associated with SRNS in this part of the globe.
Collapse
Affiliation(s)
- Samuel N Uwaezuoke
- Pediatric Nephrology Firm, Department of Pediatrics, College of Medicine, University of Nigeria Nsukka/University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| | - Ikenna K Ndu
- Department of Pediatrics, Enugu State University Teaching Hospital, Enugu, Nigeria
| | - Ngozi R Mbanefo
- Pediatric Nephrology Firm, Department of Pediatrics, College of Medicine, University of Nigeria Nsukka/University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| |
Collapse
|
8
|
Anigilaje EA, Olutola A. Prospects of genetic testing for steroid-resistant nephrotic syndrome in Nigerian children: a narrative review of challenges and opportunities. Int J Nephrol Renovasc Dis 2019; 12:119-136. [PMID: 31190951 PMCID: PMC6512787 DOI: 10.2147/ijnrd.s193874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prevalence of childhood steroid-resistant nephrotic syndrome (SRNS) ranges from 35% to 92%. This steroid resistance among Nigerian children also reflects underlying renal histopathology, revealing a rare minimal-change disease and a varying burden of membranoproliferative glomerulonephritis and focal segmental glomerulosclerosis (FSGS). FSGS tends to progress to end-stage kidney disease, which requires dialysis and/or renal transplantation. While knowledge of the molecular basis of NS is evolving, recent data support the role of mutant genes that otherwise maintain the structural and functional composition of the glomerular filtration barrier to account for many monogenic forms of FSGS. With the advent of next-generation sequencing, >39 genes are currently associated with SRNS, and the number is likely to increase in the near future. Monogenic FSGS is primarily resistant to steroids, and this foreknowledge obviates the need for steroids, other immunosuppressive therapy, and renal biopsy. Therefore, a multidisciplinary collaboration among cell biologists, molecular physiologists, geneticists, and clinicians holds prospects of fine-tuning the management of SRNS caused by known mutant genes. This article describes the genetics of NS/SRNS in childhood and also gives a narrative review of the challenges and opportunities for molecular testing among children with SRNS in Nigeria. For these children to benefit from genetic diagnosis, Nigeria must aspire to have and develop the manpower and infrastructure required for medical genetics and genomic medicine, leveraging on her existing experiences in genomic medicine. Concerted efforts can be put in place to increase the number of enrollees in Nigeria’s National Health Insurance Scheme (NHIS). The scope of the NHIS can be expanded to cater for the expensive bill of genetic testing within or outside the structure of the National Renal Care Policy proposed by Nigerian nephrologists.
Collapse
Affiliation(s)
- Emmanuel Ademola Anigilaje
- Nephrology Unit, Department of Paediatrics, Faculty of Clinical Sciences, College of Health Sciences, University of Abuja, Abuja, Nigeria,
| | | |
Collapse
|
9
|
Stone H, Magella B, Bennett MR. The Search for Biomarkers to Aid in Diagnosis, Differentiation, and Prognosis of Childhood Idiopathic Nephrotic Syndrome. Front Pediatr 2019; 7:404. [PMID: 31681707 PMCID: PMC6805718 DOI: 10.3389/fped.2019.00404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
Identification of genes associated with childhood-onset nephrotic syndrome has significantly advanced our understanding of the pathogenesis of this complex disease over the past two decades, however the precise etiology in many cases remains unclear. At this time, we still rely on invasive kidney biopsy to determine the underlying cause of nephrotic syndrome in adults. In children, response to steroid therapy has been shown to be the best indicator of prognosis, and therefore all children are treated initially with corticosteroids. Because this strategy exposes a large number of children to the toxicities of steroids without providing any benefit, many researchers have sought to find a marker that could predict a patient's response to steroids at the time of diagnosis. Additionally, the identification of such a marker could provide prognostic information about a patient's response to medications, progression to end stage renal disease, and risk of disease recurrence following transplantation. Major advances have been made in understanding how genetic biomarkers can be used to predict a patient's response to therapies and disease course, especially after transplantation. Research attempting to identify urine- and serum-based biomarkers which could be used for the diagnosis, differentiation, and prognosis of nephrotic syndrome has become an area of emphasis. In this review, we explore the most exciting biomarkers and their potential clinical applications.
Collapse
Affiliation(s)
- Hillarey Stone
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Bliss Magella
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael R Bennett
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
10
|
Abstract
Practice Gap Pediatricians must be aware of screening indications and the evaluation and management of a child with hematuria and/or proteinuria. Objectives After completing this article, readers should be able to: 1. Understand the common causes of proteinuria and hematuria and be able to differentiate between benign and serious causes. 2. Describe screening techniques for initial evaluation of hematuria and proteinuria. 3. Recognize the criteria for diagnosis of proteinuria and hematuria. 4. Plan the appropriate initial evaluation for hematuria and proteinuria and interpret laboratory findings essential for diagnosis. 5. Recognize serious causes of hematuria and proteinuria that warrant immediate referral.
Collapse
|
11
|
Yu SMW, Nissaisorakarn P, Husain I, Jim B. Proteinuric Kidney Diseases: A Podocyte's Slit Diaphragm and Cytoskeleton Approach. Front Med (Lausanne) 2018; 5:221. [PMID: 30255020 PMCID: PMC6141722 DOI: 10.3389/fmed.2018.00221] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/18/2018] [Indexed: 01/19/2023] Open
Abstract
Proteinuric kidney diseases are a group of disorders with diverse pathological mechanisms associated with significant losses of protein in the urine. The glomerular filtration barrier (GFB), comprised of the three important layers, the fenestrated glomerular endothelium, the glomerular basement membrane (GBM), and the podocyte, dictates that disruption of any one of these structures should lead to proteinuric disease. Podocytes, in particular, have long been considered as the final gatekeeper of the GFB. This specialized visceral epithelial cell contains a complex framework of cytoskeletons forming foot processes and mediate important cell signaling to maintain podocyte health. In this review, we will focus on slit diaphragm proteins such as nephrin, podocin, TRPC6/5, as well as cytoskeletal proteins Rho/small GTPases and synaptopodin and their respective roles in participating in the pathogenesis of proteinuric kidney diseases. Furthermore, we will summarize the potential therapeutic options targeting the podocyte to treat this group of kidney diseases.
Collapse
Affiliation(s)
- Samuel Mon-Wei Yu
- Department of Medicine, Jacobi Medical Center, Bronx, NY, United States
| | | | - Irma Husain
- Department of Medicine, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Belinda Jim
- Department of Medicine, Jacobi Medical Center, Bronx, NY, United States.,Renal Division, Jacobi Medical Center, Bronx, NY, United States
| |
Collapse
|
12
|
Lepori N, Zand L, Sethi S, Fernandez-Juarez G, Fervenza FC. Clinical and pathological phenotype of genetic causes of focal segmental glomerulosclerosis in adults. Clin Kidney J 2018; 11:179-190. [PMID: 29644057 PMCID: PMC5888331 DOI: 10.1093/ckj/sfx143] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histologic lesion resulting from a variety of pathogenic processes that cause injury to the podocytes. Recently, mutations in more than 50 genes expressed in podocyte or glomerular basement membrane were identified as causing genetic forms of FSGS, the majority of which are characterized by onset in childhood. The prevalence of adult-onset genetic FSGS is likely to be underestimated and its clinical and histological features have not been clearly described. A small number of studies of adult-onset genetic FSGS showed that there is heterogeneity in clinical and histological findings, with a presentation ranging from sub-nephrotic proteinuria to full nephrotic syndrome. A careful evaluation of adult-onset FSGS that do not have typical features of primary or secondary FSGS (familial cases, resistance to immunosuppression and absence of evident cause of secondary FSGS) should include a genetic evaluation. Indeed, recognizing genetic forms of adult-onset FSGS is of the utmost importance, given that this diagnosis will have major implications on treatment strategies, selecting of living-related kidney donor and renal transplantation success.
Collapse
Affiliation(s)
- Nicola Lepori
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Dialysis, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | - Ladan Zand
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sanjeev Sethi
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Gema Fernandez-Juarez
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Nephrology Division, Hospital Universitario Fundacion Alcorcon, Madrid, Spain
| | | |
Collapse
|
13
|
Asfahani RI, Tahoun MM, Miller-Hodges EV, Bellerby J, Virasami AK, Sampson RD, Moulding D, Sebire NJ, Hohenstein P, Scambler PJ, Waters AM. Activation of podocyte Notch mediates early Wt1 glomerulopathy. Kidney Int 2018; 93:903-920. [PMID: 29398135 PMCID: PMC6169130 DOI: 10.1016/j.kint.2017.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 01/26/2023]
Abstract
The Wilms' tumor suppressor gene, WT1, encodes a zinc finger protein that regulates podocyte development and is highly expressed in mature podocytes. Mutations in the WT1 gene are associated with the development of renal failure due to the formation of scar tissue within glomeruli, the mechanisms of which are poorly understood. Here, we used a tamoxifen-based CRE-LoxP system to induce deletion of Wt1 in adult mice to investigate the mechanisms underlying evolution of glomerulosclerosis. Podocyte apoptosis was evident as early as the fourth day post-induction and increased during disease progression, supporting a role for Wt1 in mature podocyte survival. Podocyte Notch activation was evident at disease onset with upregulation of Notch1 and its transcriptional targets, including Nrarp. There was repression of podocyte FoxC2 and upregulation of Hey2 supporting a role for a Wt1/FoxC2/Notch transcriptional network in mature podocyte injury. The expression of cleaved Notch1 and HES1 proteins in podocytes of mutant mice was confirmed in early disease. Furthermore, induction of podocyte HES1 expression was associated with upregulation of genes implicated in epithelial mesenchymal transition, thereby suggesting that HES1 mediates podocyte EMT. Lastly, early pharmacological inhibition of Notch signaling ameliorated glomerular scarring and albuminuria. Thus, loss of Wt1 in mature podocytes modulates podocyte Notch activation, which could mediate early events in WT1-related glomerulosclerosis.
Collapse
Affiliation(s)
- Rowan I Asfahani
- Programme of Developmental Biology of Birth Defects, Great Ormond Street Institute of Child Health, University College of London, London, UK
| | - Mona M Tahoun
- Programme of Developmental Biology of Birth Defects, Great Ormond Street Institute of Child Health, University College of London, London, UK; Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eve V Miller-Hodges
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Jack Bellerby
- Programme of Developmental Biology of Birth Defects, Great Ormond Street Institute of Child Health, University College of London, London, UK
| | - Alex K Virasami
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Robert D Sampson
- Institute of Ophthalmology, University College of London, London, UK
| | - Dale Moulding
- Programme of Developmental Biology of Birth Defects, Great Ormond Street Institute of Child Health, University College of London, London, UK
| | - Neil J Sebire
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | | | - Peter J Scambler
- Programme of Developmental Biology of Birth Defects, Great Ormond Street Institute of Child Health, University College of London, London, UK
| | - Aoife M Waters
- Programme of Developmental Biology of Birth Defects, Great Ormond Street Institute of Child Health, University College of London, London, UK; Great Ormond Street Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
14
|
Cil O, Perwad F. Monogenic Causes of Proteinuria in Children. Front Med (Lausanne) 2018; 5:55. [PMID: 29594119 PMCID: PMC5858124 DOI: 10.3389/fmed.2018.00055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/15/2018] [Indexed: 01/02/2023] Open
Abstract
Glomerular disease is a common cause for proteinuria and chronic kidney disease leading to end-stage renal disease requiring dialysis or kidney transplantation in children. Nephrotic syndrome in children is diagnosed by the presence of a triad of proteinuria, hypoalbuminemia, and edema. Minimal change disease is the most common histopathological finding in children and adolescents with nephrotic syndrome. Focal segmental sclerosis is also found in children and is the most common pathological finding in patients with monogenic causes of nephrotic syndrome. Current classification system for nephrotic syndrome is based on response to steroid therapy as a majority of patients develop steroid sensitive nephrotic syndrome regardless of histopathological diagnosis or the presence of genetic mutations. Recent studies investigating the genetics of nephrotic syndrome have shed light on the pathophysiology and mechanisms of proteinuria in nephrotic syndrome. Gene mutations have been identified in several subcellular compartments of the glomerular podocyte and play a critical role in mitochondrial function, actin cytoskeleton dynamics, cell-matrix interactions, slit diaphragm, and podocyte integrity. A subset of genetic mutations are known to cause nephrotic syndrome that is responsive to immunosuppressive therapy but clinical data are limited with respect to renal prognosis and disease progression in a majority of patients. To date, more than 50 genes have been identified as causative factors in nephrotic syndrome in children and adults. As genetic testing becomes more prevalent and affordable, we expect rapid advances in our understanding of mechanisms of proteinuria and genetic diagnosis will help direct future therapy for individual patients.
Collapse
Affiliation(s)
- Onur Cil
- Department of Pediatrics, Division of Nephrology, University of California San Francisco, San Francisco, CA, United States
| | - Farzana Perwad
- Department of Pediatrics, Division of Nephrology, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
15
|
Varner JD, Chryst-Stangl M, Esezobor CI, Solarin A, Wu G, Lane B, Hall G, Abeyagunawardena A, Matory A, Hunley TE, Lin JJ, Howell D, Gbadegesin R. Genetic Testing for Steroid-Resistant-Nephrotic Syndrome in an Outbred Population. Front Pediatr 2018; 6:307. [PMID: 30406062 PMCID: PMC6204400 DOI: 10.3389/fped.2018.00307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Steroid-resistant nephrotic syndrome (SRNS) is a leading cause of end-stage kidney disease in children and young adults. Despite advances in genomic science that have led to the discovery of >50 monogenic causes of SRNS, there are no clear guidelines for genetic testing in clinical practice. Methods: Using high throughput sequencing, we evaluated 492 individuals from 181 families for mutations in 40 known SRNS genes. Causative mutations were defined as missense, truncating, and obligatory splice site variants with a minor allele frequency <1% in controls. Non-synonymous variants were considered pathogenic if determined to be deleterious by at least two in silico models. We further evaluated for differences in age at disease onset, family history of SRNS or chronic kidney disease, race, sex, renal biopsy findings, and extra-renal manifestations in subgroups with and without disease causing variants. Results: We identified causative variants in 40 of 181 families (22.1%) with SRNS. Variants in INF2, COL4A3, and WT1 were the most common, accounting for over half of all causative variants. Causative variants were identified in 34 of 86 families (39.5%) with familial disease and 6 of 95 individuals (6.3%) with sporadic disease (χ2 p < 0.00001). Family history was the only significant clinical predictor of genetic SRNS. Conclusion: We identified causative mutations in almost 40% of all families with hereditary SRNS and 6% of individuals with sporadic disease, making family history the single most important clinical predictors of monogenic SRNS. We recommend genetic testing in all patients with SRNS and a positive family history, but only selective testing in those with sporadic disease.
Collapse
Affiliation(s)
- Jennifer D Varner
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Megan Chryst-Stangl
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | | | - Adaobi Solarin
- Department of Pediatrics, Lagos State University Teaching Hospital, Ikeja, Nigeria
| | - Guanghong Wu
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Brandon Lane
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Gentzon Hall
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | | | - Ayo Matory
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States
| | - Tracy E Hunley
- Division of Nephrology, Department of Pediatrics, Vanderbilt University, Nashville, TN, United States
| | - Jen Jar Lin
- Department of Pediatrics, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - David Howell
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Rasheed Gbadegesin
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
16
|
Karp AM, Gbadegesin RA. Genetics of childhood steroid-sensitive nephrotic syndrome. Pediatr Nephrol 2017; 32:1481-1488. [PMID: 27470160 PMCID: PMC5276801 DOI: 10.1007/s00467-016-3456-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023]
Abstract
The pathogenesis of childhood-onset nephrotic syndrome (NS), disparity in incidence of NS among races, and variable responses to therapies in children with NS have defied explanation to date. In the last 20 years over 50 genetic causes of steroid-resistant nephrotic syndrome (SRNS) have been identified, and at least two disease loci for two pathologic variants of SRNS (focal segmental glomerulosclerosis and membranous nephropathy) have been defined. However, the genetic causes and risk loci for steroid-sensitive nephrotic syndrome (SSNS) remain elusive, partly because SSNS is relatively rare and also because cases of SSNS vary widely in phenotypic expression over time. A recent study of a well-defined modest cohort of children with SSNS identified variants in HLA-DQA1 as a risk factor for SSNS. Here we review what is currently known about the genetics of SSNS and also discuss how recent careful phenotypic and genomic studies reinforce the role of adaptive immunity in the molecular mechanisms of SSNS.
Collapse
Affiliation(s)
- Alana M. Karp
- Department of Pediatrics, Division of Nephrology, Emory University, Atlanta, GA, USA
| | - Rasheed A. Gbadegesin
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, NC,Duke Molecular Physiology Institute, Duke University, Durham, NC,To whom correspondence should be addressed:
| |
Collapse
|
17
|
Mutation spectrum of genes associated with steroid-resistant nephrotic syndrome in Chinese children. Gene 2017; 625:15-20. [PMID: 28476686 DOI: 10.1016/j.gene.2017.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/21/2017] [Accepted: 04/30/2017] [Indexed: 12/11/2022]
Abstract
Approximately 20% of children with idiopathic nephrotic syndrome do not respond to steroid therapy. More than 30 genes have been identified as disease-causing genes for the steroid-resistant nephrotic syndrome (SRNS). Few reports were from the Chinese population. The coding regions of genes commonly associated with SRNS were analyzed to characterize the gene mutation spectrum in children with SRNS in central China. The first phase study involved 38 children with five genes (NPHS1, NPHS2, PLCE1, WT1, and TRPC6) by Sanger sequencing. The second phase study involved 33 children with 17 genes by next generation DNA sequencing (NGS. 22 new patients, and 11 patients from first phase study but without positive findings). Overall deleterious or putatively deleterious gene variants were identified in 19 patients (31.7%), including four NPHS1 variants among five patients and three PLCE1 variants among four other patients. Variants in COL4A3, COL4A4, or COL4A5 were found in six patients. Eight novel variants were identified, including two in NPHS1, two in PLCE1, one in NPHS2, LAMB2, COL4A3, and COL4A4, respectively. 55.6% of the children with variants failed to respond to immunosuppressive agent therapy, while the resistance rate in children without variants was 44.4%. Our results show that screening for deleterious variants in some common genes in children clinically suspected with SRNS might be helpful for disease diagnosis as well as prediction of treatment efficacy and prognosis.
Collapse
|