1
|
Cannarella R, Gusmano C, Condorelli RA, Bernini A, Kaftalli J, Maltese PE, Paolacci S, Dautaj A, Marceddu G, Bertelli M, La Vignera S, Calogero AE. Genetic Analysis of Patients with Congenital Hypogonadotropic Hypogonadism: A Case Series. Int J Mol Sci 2023; 24:ijms24087428. [PMID: 37108593 PMCID: PMC10138801 DOI: 10.3390/ijms24087428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Congenital hypogonadotropic hypogonadism (cHH)/Kallmann syndrome (KS) is a rare genetic disorder with variable penetrance and a complex inheritance pattern. Consequently, it does not always follow Mendelian laws. More recently, digenic and oligogenic transmission has been recognized in 1.5-15% of cases. We report the results of a clinical and genetic investigation of five unrelated patients with cHH/KS analyzed using a customized gene panel. Patients were diagnosed according to the clinical, hormonal, and radiological criteria of the European Consensus Statement. DNA was analyzed using next-generation sequencing with a customized panel that included 31 genes. When available, first-degree relatives of the probands were also analyzed to assess genotype-phenotype segregation. The consequences of the identified variants on gene function were evaluated by analyzing the conservation of amino acids across species and by using molecular modeling. We found one new pathogenic variant of the CHD7 gene (c.576T>A, p.Tyr1928) and three new variants of unknown significance (VUSs) in IL17RD (c.960G>A, p.Met320Ile), FGF17 (c.208G>A, p.Gly70Arg), and DUSP6 (c.434T>G, p.Leu145Arg). All were present in the heterozygous state. Previously reported heterozygous variants were also found in the PROK2 (c.163del, p.Ile55*), CHD7 (c.c.2750C>T, p.Thr917Met and c.7891C>T, p.Arg2631*), FLRT3 (c.1106C>T, p.Ala369Val), and CCDC103 (c.461A>C, p.His154Pro) genes. Molecular modeling, molecular dynamics, and conservation analyses were performed on three out of the nine variants identified in our patients, namely, FGF17 (p.Gly70Arg), DUSP6 (p.Leu145Arg), and CHD7 p.(Thr917Met). Except for DUSP6, where the L145R variant was shown to disrupt the interaction between β6 and β3, needed for extracellular signal-regulated kinase 2 (ERK2) binding and recognition, no significant changes were identified between the wild-types and mutants of the other proteins. We found a new pathogenic variant of the CHD7 gene. The molecular modeling results suggest that the VUS of the DUSP6 (c.434T>G, p.Leu145Arg) gene may play a role in the pathogenesis of cHH. However, our analysis indicates that it is unlikely that the VUSs for the IL17RD (c.960G>A, p.Met320Ile) and FGF17 (c.208G>A, p.Gly70Arg) genes are involved in the pathogenesis of cHH. Functional studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Carmelo Gusmano
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | | | | | | | | | | - Matteo Bertelli
- Diagnostics Unit, MAGI EUREGIO, 39100 Bolzano, Italy
- Diagnostics Unit, MAGI'S LAB, 38068 Rovereto, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| |
Collapse
|
2
|
Vezzoli V, Hrvat F, Goggi G, Federici S, Cangiano B, Quinton R, Persani L, Bonomi M. Genetic architecture of self-limited delayed puberty and congenital hypogonadotropic hypogonadism. Front Endocrinol (Lausanne) 2023; 13:1069741. [PMID: 36726466 PMCID: PMC9884699 DOI: 10.3389/fendo.2022.1069741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
Distinguishing between self limited delayed puberty (SLDP) and congenital hypogonadotropic hypogonadism (CHH) may be tricky as they share clinical and biochemical characteristics. and appear to lie within the same clinical spectrum. However, one is classically transient (SDLP) while the second is typically a lifetime condition (CHH). The natural history and long-term outcomes of these two conditions differ significantly and thus command distinctive approaches and management. Because the first presentation of SDLP and CHH is very similar (delayed puberty with low LH and FSH and low sex hormones), the scientific community is scrambling to identify diagnostic tests that can allow a correct differential diagnosis among these two conditions, without having to rely on the presence or absence of phenotypic red flags for CHH that clinicians anyway seem to find hard to process. Despite the heterogeneity of genetic defects so far reported in DP, genetic analysis through next-generation sequencing technology (NGS) had the potential to contribute to the differential diagnostic process between SLDP and CHH. In this review we will provide an up-to-date overview of the genetic architecture of these two conditions and debate the benefits and the bias of performing genetic analysis seeking to effectively differentiate between these two conditions.
Collapse
Affiliation(s)
- Valeria Vezzoli
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Faris Hrvat
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giovanni Goggi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Silvia Federici
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Biagio Cangiano
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Richard Quinton
- Department of Endocrinology, Diabetes & Metabolism, Newcastle-upon-Tyne Hospitals, Newcastle-upon-Tyne, United Kingdom
- Translational & Clinical Research Institute, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, United Kingdom
| | - Luca Persani
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Al Sayed Y, Howard SR. Panel testing for the molecular genetic diagnosis of congenital hypogonadotropic hypogonadism – a clinical perspective. Eur J Hum Genet 2022; 31:387-394. [PMID: 36517585 PMCID: PMC10133250 DOI: 10.1038/s41431-022-01261-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/16/2022] Open
Abstract
AbstractCongenital hypogonadotropic hypogonadism (CHH) is a rare endocrine disorder that results in reproductive hormone deficiency and reduced potential for fertility in adult life. Discoveries of the genetic aetiology of CHH have advanced dramatically in the past 30 years, with currently over 40 genes recognised to cause or contribute to the development of this condition. The genetic complexity of CHH is further increased by the observation of di- and oligogenic, as well as classic monogenic, inheritance and incomplete penetrance. Very recently in the UK, a panel of 14 genes has been curated for the genetic diagnosis of CHH within the NHS Genomic Medicine Service programme. The aim of this review is to appraise the advantages and potential pitfalls of the use of a CHH panel in clinical endocrine diagnostics, and to consider the future avenues for developing this panel including the potential of whole exome or whole genome sequencing data analysis in this condition.
Collapse
|
4
|
Stamou MI, Brand H, Wang M, Wong I, Lippincott MF, Plummer L, Crowley WF, Talkowski M, Seminara S, Balasubramanian R. Prevalence and Phenotypic Effects of Copy Number Variants in Isolated Hypogonadotropic Hypogonadism. J Clin Endocrinol Metab 2022; 107:2228-2242. [PMID: 35574646 PMCID: PMC9282252 DOI: 10.1210/clinem/dgac300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 12/24/2022]
Abstract
CONTEXT The genetic architecture of isolated hypogonadotropic hypogonadism (IHH) has not been completely defined. OBJECTIVE To determine the role of copy number variants (CNVs) in IHH pathogenicity and define their phenotypic spectrum. METHODS Exome sequencing (ES) data in IHH probands (n = 1394) (Kallmann syndrome [IHH with anosmia; KS], n = 706; normosmic IHH [nIHH], n = 688) and family members (n = 1092) at the Reproductive Endocrine Unit and the Center for Genomic Medicine of Massachusetts General Hospital were analyzed for CNVs and single nucleotide variants (SNVs)/indels in 62 known IHH genes. IHH subjects without SNVs/indels in known genes were considered "unsolved." Phenotypes associated with CNVs were evaluated through review of patient medical records. A total of 29 CNVs in 13 genes were detected (overall IHH cohort prevalence: ~2%). Almost all (28/29) CNVs occurred in unsolved IHH cases. While some genes (eg, ANOS1 and FGFR1) frequently harbor both CNVs and SNVs/indels, the mutational spectrum of others (eg, CHD7) was restricted to SNVs/indels. Syndromic phenotypes were seen in 83% and 63% of IHH subjects with multigenic and single gene CNVs, respectively. CONCLUSION CNVs in known genes contribute to ~2% of IHH pathogenesis. Predictably, multigenic contiguous CNVs resulted in syndromic phenotypes. Syndromic phenotypes resulting from single gene CNVs validate pleiotropy of some IHH genes. Genome sequencing approaches are now needed to identify novel genes and/or other elusive variants (eg, noncoding/complex structural variants) that may explain the remaining missing etiology of IHH.
Collapse
Affiliation(s)
- Maria I Stamou
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02141, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02141, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02141, USA
| | - Mei Wang
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| | - Isaac Wong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02141, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02141, USA
| | - Margaret F Lippincott
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| | - Lacey Plummer
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| | - William F Crowley
- Endocrine Division, Massachusetts General Hospital, Boston, MA 02141, USA
| | - Michael Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02141, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02141, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Stephanie Seminara
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| | - Ravikumar Balasubramanian
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| |
Collapse
|
5
|
Abstract
The diagnostic suspicion of congenital central hypogonadism is based on clinical signs. Biochemical confirmation is challenging, especially after the postnatal activation stage of the hypothalamic-pituitary-testicular axis. Sertoli cell markers, like AMH and inhibin B, have become useful tools for the diagnosis of male central hypogonadism during childhood. Different mechanisms can participate in the aetiopathogenesis of central hypogonadism, leading to a deficiency in the production of gonadotrophins. Advances in genetic studies, mainly next generation sequencing techniques, have allowed the discovery of a large number of genes related to central hypogonadism. However, a causal variant is found in approximately half of the patients. Central hypogonadism has been classically described as a pathology with variable expressivity and incomplete penetrance. Currently, these characteristics are known to be partially explained by the presence of oligogenicity, that is the participation of variants in more than one gene in the aetiology of central hypogonadism in the same patient.
Collapse
Affiliation(s)
- Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de, Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Mizumoto S, Yamada S. Congenital Disorders of Deficiency in Glycosaminoglycan Biosynthesis. Front Genet 2021; 12:717535. [PMID: 34539746 PMCID: PMC8446454 DOI: 10.3389/fgene.2021.717535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/04/2022] Open
Abstract
Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, and heparan sulfate are covalently attached to specific core proteins to form proteoglycans, which are distributed at the cell surface as well as in the extracellular matrix. Proteoglycans and GAGs have been demonstrated to exhibit a variety of physiological functions such as construction of the extracellular matrix, tissue development, and cell signaling through interactions with extracellular matrix components, morphogens, cytokines, and growth factors. Not only connective tissue disorders including skeletal dysplasia, chondrodysplasia, multiple exostoses, and Ehlers-Danlos syndrome, but also heart and kidney defects, immune deficiencies, and neurological abnormalities have been shown to be caused by defects in GAGs as well as core proteins of proteoglycans. These findings indicate that GAGs and proteoglycans are essential for human development in major organs. The glycobiological aspects of congenital disorders caused by defects in GAG-biosynthetic enzymes including specific glysocyltransferases, epimerases, and sulfotransferases, in addition to core proteins of proteoglycans will be comprehensively discussed based on the literature to date.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
7
|
Louden ED, Poch A, Kim HG, Ben-Mahmoud A, Kim SH, Layman LC. Genetics of hypogonadotropic Hypogonadism-Human and mouse genes, inheritance, oligogenicity, and genetic counseling. Mol Cell Endocrinol 2021; 534:111334. [PMID: 34062169 DOI: 10.1016/j.mce.2021.111334] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Hypogonadotropic hypogonadism, which may be normosmic (nHH) or anosmic/hyposmic, known as Kallmann syndrome (KS), is due to gonadotropin-releasing hormone deficiency, which results in absent puberty and infertility. Investigation of the genetic basis of nHH/KS over the past 35 years has yielded a substantial increase in our understanding, as variants in 44 genes in OMIM account for ~50% of cases. The first genes for KS (ANOS1) and nHH (GNRHR) were followed by the discovery that FGFR1 variants may cause either nHH or KS. Associated anomalies include midline facial defects, neurologic deficits, cardiac anomalies, and renal agenesis, among others. Mouse models for all but one gene (ANOS1) generally support findings in humans. About half of the known genes implicated in nHH/KS are inherited as autosomal dominant and half are autosomal recessive, whereas only 7% are X-linked recessive. Digenic and oligogenic inheritance has been reported in 2-20% of patients, most commonly with variants in genes that may result in either nHH or KS inherited in an autosomal dominant fashion. In vitro analyses have only been conducted for both gene variants in eight cases and for one gene variant in 20 cases. Rigorous confirmation that two gene variants in the same individual cause the nHH/KS phenotype is lacking for most. Clinical diagnosis is probably best accomplished by targeted next generation sequencing of the known candidate genes with confirmation by Sanger sequencing. Elucidation of the genetic basis of nHH/KS has resulted in an enhanced understanding of this disorder, as well as normal puberty, which makes genetic diagnosis clinically relevant.
Collapse
Affiliation(s)
- Erica D Louden
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience & Regenerative Medicine, Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Alexandra Poch
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience & Regenerative Medicine, Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience & Regenerative Medicine, Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
8
|
Kasak L, Laan M. Monogenic causes of non-obstructive azoospermia: challenges, established knowledge, limitations and perspectives. Hum Genet 2020; 140:135-154. [DOI: 10.1007/s00439-020-02112-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
|
9
|
Festa A, Umano GR, Miraglia del Giudice E, Grandone A. Genetic Evaluation of Patients With Delayed Puberty and Congenital Hypogonadotropic Hypogonadism: Is it Worthy of Consideration? Front Endocrinol (Lausanne) 2020; 11:253. [PMID: 32508745 PMCID: PMC7248176 DOI: 10.3389/fendo.2020.00253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
Delayed puberty is a common reason of pediatric endocrinological consultation. It is often a self-limited (or constitutional) condition with a strong familial basis. The type of inheritance is variable but most commonly autosomal dominant. Despite this strong genetic determinant, mutations in genes implicated in the regulation of hypothalamic-pituitary-gonadal axis have rarely been identified in cases of self-limited delayed puberty and often in relatives of patients with congenital hypogonadotropic hypogonadism (i.e., FGFR1 and GNRHR genes). However, recently, next-generation sequencing analysis has led to the discovery of new genes (i.e., IGSF10, HS6ST1, FTO, and EAP1) that are implicated in determining isolated self-limited delayed puberty in some families. Despite the heterogeneity of genetic defects resulting in delayed puberty, genetic testing may become a useful diagnostic tool for the correct classification and management of patients with delayed puberty. This article will discuss the benefits and the limitations of genetic testing execution in cases of delayed puberty.
Collapse
|
10
|
Kuure S, Sariola H. Mouse Models of Congenital Kidney Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:109-136. [PMID: 32304071 DOI: 10.1007/978-981-15-2389-2_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects, which cause the majority of chronic kidney diseases in children. CAKUT covers a wide range of malformations that derive from deficiencies in embryonic kidney and lower urinary tract development, including renal aplasia, hypodysplasia, hypoplasia, ectopia, and different forms of ureter abnormalities. The majority of the genetic causes of CAKUT remain unknown. Research on mutant mice has identified multiple genes that critically regulate renal differentiation. The data generated from this research have served as an excellent resource to identify the genetic bases of human kidney defects and have led to significantly improved diagnostics. Furthermore, genetic data from human CAKUT studies have also revealed novel genes regulating kidney differentiation.
Collapse
Affiliation(s)
- Satu Kuure
- GM-Unit, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland. .,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Hannu Sariola
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Paediatric Pathology, HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
11
|
Neocleous V, Fanis P, Toumba M, Tanteles GA, Schiza M, Cinarli F, Nicolaides NC, Oulas A, Spyrou GM, Mantzoros CS, Vlachakis D, Skordis N, Phylactou LA. GnRH Deficient Patients With Congenital Hypogonadotropic Hypogonadism: Novel Genetic Findings in ANOS1, RNF216, WDR11, FGFR1, CHD7, and POLR3A Genes in a Case Series and Review of the Literature. Front Endocrinol (Lausanne) 2020; 11:626. [PMID: 32982993 PMCID: PMC7485345 DOI: 10.3389/fendo.2020.00626] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disease caused by Gonadotropin-Releasing Hormone (GnRH) deficiency. So far a limited number of variants in several genes have been associated with the pathogenesis of the disease. In this original research and review manuscript the retrospective analysis of known variants in ANOS1 (KAL1), RNF216, WDR11, FGFR1, CHD7, and POLR3A genes is described, along with novel variants identified in patients with CHH by the present study. Methods: Seven GnRH deficient unrelated Cypriot patients underwent whole exome sequencing (WES) by Next Generation Sequencing (NGS). The identified novel variants were initially examined by in silico computational algorithms and structural analysis of their predicted pathogenicity at the protein level was confirmed. Results: In four non-related GnRH males, a novel X-linked pathogenic variant in ANOS1 gene, two novel autosomal dominant (AD) probably pathogenic variants in WDR11 and FGFR1 genes and one rare AD probably pathogenic variant in CHD7 gene were identified. A rare autosomal recessive (AR) variant in the SRA1 gene was identified in homozygosity in a female patient, whilst two other male patients were also, respectively, found to carry novel or previously reported rare pathogenic variants in more than one genes; FGFR1/POLR3A and SRA1/RNF216. Conclusion: This report embraces the description of novel and previously reported rare pathogenic variants in a series of genes known to be implicated in the biological development of CHH. Notably, patients with CHH can harbor pathogenic rare variants in more than one gene which raises the hypothesis of locus-locus interactions providing evidence for digenic inheritance. The identification of such aberrations by NGS can be very informative for the management and future planning of these patients.
Collapse
Affiliation(s)
- Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Pediatric Endocrine Clinic, IASIS Hospital, Paphos, Cyprus
| | - George A. Tanteles
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Clinical Genetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Melpo Schiza
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Feride Cinarli
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nicolas C. Nicolaides
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Childrens Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anastasis Oulas
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M. Spyrou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christos S. Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, Boston, MA, United States
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
- Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- St George's, University of London Medical School at the University of Nicosia, Nicosia, Cyprus
- *Correspondence: Nicos Skordis
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Leonidas A. Phylactou
| |
Collapse
|
12
|
Hug P, Kern P, Jagannathan V, Leeb T. A TAC3 Missense Variant in a Domestic Shorthair Cat with Testicular Hypoplasia and Persistent Primary Dentition. Genes (Basel) 2019; 10:genes10100806. [PMID: 31615056 PMCID: PMC6826659 DOI: 10.3390/genes10100806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 12/23/2022] Open
Abstract
A single male domestic shorthair cat that did not complete puberty was reported. At four years of age, it still had primary dentition, testicular hypoplasia, and was relatively small for its age. We hypothesized that the phenotype might have been due to an inherited form of hypogonadotropic hypogonadism (HH). We sequenced the genome of the affected cat and compared the data to 38 genomes from control cats. A search for private variants in 40 candidate genes associated with human HH revealed a single protein-changing variant in the affected cat. It was located in the TAC3 gene encoding tachykinin 3, a precursor protein of the signaling molecule neurokinin B, which is known to play a role in sexual development. TAC3 variants have been reported in human patients with HH. The identified feline variant, TAC3:c.220G>A or p.(Val74Met), affects a moderately conserved region of the precursor protein, 11 residues away from the mature neurokinin B sequence. The affected cat was homozygous for the mutant allele. In a cohort of 171 randomly sampled cats, 169 were homozygous for the wildtype allele and 2 were heterozygous. These data tentatively suggest that the identified TAC3 variant might have caused the suppression of puberty in the affected cat.
Collapse
Affiliation(s)
- Petra Hug
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.
| | - Patricia Kern
- Tierarztpraxis Spiegelberg AG, 4566 Halten, Switzerland.
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.
| |
Collapse
|
13
|
Cho HJ, Shan Y, Whittington NC, Wray S. Nasal Placode Development, GnRH Neuronal Migration and Kallmann Syndrome. Front Cell Dev Biol 2019; 7:121. [PMID: 31355196 PMCID: PMC6637222 DOI: 10.3389/fcell.2019.00121] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
The development of Gonadotropin releasing hormone-1 (GnRH) neurons is important for a functional reproduction system in vertebrates. Disruption of GnRH results in hypogonadism and if accompanied by anosmia is termed Kallmann Syndrome (KS). From their origin in the nasal placode, GnRH neurons migrate along the olfactory-derived vomeronasal axons to the nasal forebrain junction and then turn caudally into the developing forebrain. Although research on the origin of GnRH neurons, their migration and genes associated with KS has identified multiple factors that influence development of this system, several aspects still remain unclear. This review discusses development of the olfactory system, factors that regulate GnRH neuron formation and development of the olfactory system, migration of the GnRH neurons from the nose into the brain, and mutations in humans with KS that result from disruption of normal GnRH/olfactory systems development.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Niteace C Whittington
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Pavone P, Corsello G, Marino S, Ruggieri M, Falsaperla R. Microcephaly/Trigonocephaly, Intellectual Disability, Autism Spectrum Disorder, and Atypical Dysmorphic Features in a Boy with Xp22.31 Duplication. Mol Syndromol 2019; 9:253-258. [PMID: 30733660 PMCID: PMC6362926 DOI: 10.1159/000493174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2018] [Indexed: 12/23/2022] Open
Abstract
The Xp22.31 segment of the short arm of the human X chromosome is a region of high instability with frequent rearrangement. The duplication of this region has been found in healthy people as well as in individuals with varying degrees of neurological impairment. The incidence has been reported in a range of 0.4-0.44% of the patients with neurological impairment. Moreover, there is evidence that Xp22.31 duplication may cause a common phenotype including developmental delay, intellectual disability, feeding difficulty, autistic spectrum disorders, hypotonia, seizures, and talipes. We report on a patient with microcephaly and trigonocephaly, moderate intellectual disability, speech and language delay, and poor social interaction in addition to minor but atypical dysmorphic features. This report provides further insight into the pathogenicity of the Xp22.31 duplication by extending knowledge of its clinical features. This case, in association with those reported in the literature, indicates that the Xp22.31 duplication may contribute to cause pathological phenotypes with minor facial dysmorphisms, microcephaly, and intellectual disability as main features.
Collapse
Affiliation(s)
- Piero Pavone
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, A.U.O. Policlinico-Vittorio Emanuele Catania, Catania, Italy
| | - Giovanni Corsello
- Department of Maternal and Child Health, University of Palermo, Palermo, Italy
| | - Silvia Marino
- University Hospital, A.U.O. Policlinico-Vittorio Emanuele Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System, Section of Pediatrics and Child Neuropsychiatry, A.U.O. Policlinico-Vittorio Emanuele Catania, Catania, Italy
| | - Raffaele Falsaperla
- University Hospital, A.U.O. Policlinico-Vittorio Emanuele Catania, Catania, Italy
| |
Collapse
|
15
|
Kaprara A, Huhtaniemi IT. The hypothalamus-pituitary-gonad axis: Tales of mice and men. Metabolism 2018; 86:3-17. [PMID: 29223677 DOI: 10.1016/j.metabol.2017.11.018] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Reproduction is controlled by the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons play a central role in this axis through production of GnRH, which binds to a membrane receptor on pituitary gonadotrophs and stimulates the biosynthesis and secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Multiple factors affect GnRH neuron migration, GnRH gene expression, GnRH pulse generator, GnRH secretion, GnRH receptor expression, and gonadotropin synthesis and release. Among them anosmin is involved in the guidance of the GnRH neuron migration, and a loss-of-function mutation in its gene leads to a failure of their migration from the olfactory placode to the hypothalamus, with consequent anosmic hypogonadotropic hypogonadism (Kallmann syndrome). There are also cases of hypogonadotropic hypogonadim with normal sense of smell, due to mutations of other genes. Another protein, kisspeptin plays a crucial role in the regulation of GnRH pulse generator and the pubertal development. GnRH is the main hypothalamic regulator of the release of gonadotropins. Finally, FSH and LH are the essential hormonal regulators of testicular functions, acting through their receptors in Sertoli and Leydig cells, respectively. The main features of the male HPG axis will be described in this review.
Collapse
Affiliation(s)
- Athina Kaprara
- Unit of Reproductive Endocrinology, Medical School, Aristotle University of Thessaloniki, Greece.
| | | |
Collapse
|
16
|
Mizumoto S. Defects in Biosynthesis of Glycosaminoglycans Cause Hereditary Bone, Skin, Heart, Immune, and Neurological Disorders. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1812.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University
| |
Collapse
|
17
|
Maione L, Dwyer AA, Francou B, Guiochon-Mantel A, Binart N, Bouligand J, Young J. GENETICS IN ENDOCRINOLOGY: Genetic counseling for congenital hypogonadotropic hypogonadism and Kallmann syndrome: new challenges in the era of oligogenism and next-generation sequencing. Eur J Endocrinol 2018; 178:R55-R80. [PMID: 29330225 DOI: 10.1530/eje-17-0749] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS) are rare, related diseases that prevent normal pubertal development and cause infertility in affected men and women. However, the infertility carries a good prognosis as increasing numbers of patients with CHH/KS are now able to have children through medically assisted procreation. These are genetic diseases that can be transmitted to patients' offspring. Importantly, patients and their families should be informed of this risk and given genetic counseling. CHH and KS are phenotypically and genetically heterogeneous diseases in which the risk of transmission largely depends on the gene(s) responsible(s). Inheritance may be classically Mendelian yet more complex; oligogenic modes of transmission have also been described. The prevalence of oligogenicity has risen dramatically since the advent of massively parallel next-generation sequencing (NGS) in which tens, hundreds or thousands of genes are sequenced at the same time. NGS is medically and economically more efficient and more rapid than traditional Sanger sequencing and is increasingly being used in medical practice. Thus, it seems plausible that oligogenic forms of CHH/KS will be increasingly identified making genetic counseling even more complex. In this context, the main challenge will be to differentiate true oligogenism from situations when several rare variants that do not have a clear phenotypic effect are identified by chance. This review aims to summarize the genetics of CHH/KS and to discuss the challenges of oligogenic transmission and also its role in incomplete penetrance and variable expressivity in a perspective of genetic counseling.
Collapse
Affiliation(s)
- Luigi Maione
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| | - Andrew A Dwyer
- Boston College, William F. Connell School of Nursing, Chestnut Hill, Massachusetts, USA
| | - Bruno Francou
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Nadine Binart
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| | - Jérôme Bouligand
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Jacques Young
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| |
Collapse
|
18
|
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol 2017; 447:71-89. [PMID: 29079424 DOI: 10.1016/j.ydbio.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA
| | - Megan Lo
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA.
| |
Collapse
|
19
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in Pediatric Pathology, Chapter 18. Hypogonadotropic Hypogonadisms. Pediatric and Pubertal Presentations. Pediatr Dev Pathol 2016; 19:291-309. [PMID: 27135528 DOI: 10.2350/16-04-1810-pb.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Manuel Nistal
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Paniagua
- 2 Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | | | - Miguel Reyes-Múgica
- 3 Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
20
|
Dwyer AA, Raivio T, Pitteloud N. MANAGEMENT OF ENDOCRINE DISEASE: Reversible hypogonadotropic hypogonadism. Eur J Endocrinol 2016; 174:R267-74. [PMID: 26792935 DOI: 10.1530/eje-15-1033] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/20/2016] [Indexed: 01/21/2023]
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is characterized by lack of puberty and infertility. Traditionally, it has been considered a life-long condition yet cases of reversibility have been described wherein patients spontaneously recover function of the reproductive axis following treatment. Reversibility occurs in both male and female CHH cases and appears to be more common (~10-15%) than previously thought. These reversal patients span a range of GnRH deficiency from mild to severe and many reversal patients harbor mutations in genes underlying CHH. However, to date there are no clear factors for predicting reversible CHH. Importantly, recovery of reproductive axis function may not be permanent. Thus, CHH is not always life-long and the incidence of reversal warrants periodic treatment withdrawal with close monitoring and follow-up. Reversible CHH highlights the importance of environmental (epigenetic) factors such as sex steroid treatment on the reproductive axis in modifying the phenotype. This review provides an overview and an update on what is known about this phenomenon.
Collapse
Affiliation(s)
- Andrew A Dwyer
- EndocrinologyDiabetes and Metabolism Service of the Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1011 Lausanne, SwitzerlandFaculty of Medicine/PhysiologyUniversity of Helsinki, Helsinki, FinlandThe Children's HospitalHelsinki University Central Hospital (HUCH), Helsinki, FinlandDepartment of PhysiologyFaculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| | - Taneli Raivio
- EndocrinologyDiabetes and Metabolism Service of the Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1011 Lausanne, SwitzerlandFaculty of Medicine/PhysiologyUniversity of Helsinki, Helsinki, FinlandThe Children's HospitalHelsinki University Central Hospital (HUCH), Helsinki, FinlandDepartment of PhysiologyFaculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland EndocrinologyDiabetes and Metabolism Service of the Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1011 Lausanne, SwitzerlandFaculty of Medicine/PhysiologyUniversity of Helsinki, Helsinki, FinlandThe Children's HospitalHelsinki University Central Hospital (HUCH), Helsinki, FinlandDepartment of PhysiologyFaculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| | - Nelly Pitteloud
- EndocrinologyDiabetes and Metabolism Service of the Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1011 Lausanne, SwitzerlandFaculty of Medicine/PhysiologyUniversity of Helsinki, Helsinki, FinlandThe Children's HospitalHelsinki University Central Hospital (HUCH), Helsinki, FinlandDepartment of PhysiologyFaculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland EndocrinologyDiabetes and Metabolism Service of the Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1011 Lausanne, SwitzerlandFaculty of Medicine/PhysiologyUniversity of Helsinki, Helsinki, FinlandThe Children's HospitalHelsinki University Central Hospital (HUCH), Helsinki, FinlandDepartment of PhysiologyFaculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| |
Collapse
|
21
|
Boehm U, Bouloux PM, Dattani MT, de Roux N, Dodé C, Dunkel L, Dwyer AA, Giacobini P, Hardelin JP, Juul A, Maghnie M, Pitteloud N, Prevot V, Raivio T, Tena-Sempere M, Quinton R, Young J. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism--pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 2015; 11:547-64. [PMID: 26194704 DOI: 10.1038/nrendo.2015.112] [Citation(s) in RCA: 532] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder caused by the deficient production, secretion or action of gonadotropin-releasing hormone (GnRH), which is the master hormone regulating the reproductive axis. CHH is clinically and genetically heterogeneous, with >25 different causal genes identified to date. Clinically, the disorder is characterized by an absence of puberty and infertility. The association of CHH with a defective sense of smell (anosmia or hyposmia), which is found in ∼50% of patients with CHH is termed Kallmann syndrome and results from incomplete embryonic migration of GnRH-synthesizing neurons. CHH can be challenging to diagnose, particularly when attempting to differentiate it from constitutional delay of puberty. A timely diagnosis and treatment to induce puberty can be beneficial for sexual, bone and metabolic health, and might help minimize some of the psychological effects of CHH. In most cases, fertility can be induced using specialized treatment regimens and several predictors of outcome have been identified. Patients typically require lifelong treatment, yet ∼10-20% of patients exhibit a spontaneous recovery of reproductive function. This Consensus Statement summarizes approaches for the diagnosis and treatment of CHH and discusses important unanswered questions in the field.
Collapse
Affiliation(s)
- Ulrich Boehm
- University of Saarland School of Medicine, Germany
| | | | | | | | | | | | - Andrew A Dwyer
- Endocrinology, Diabetes and Metabolism Sevice of the Centre Hospitalier Universitaire Vaudois (CHUV), du Bugnon 46, Lausanne 1011, Switzerland
| | | | | | | | | | - Nelly Pitteloud
- Endocrinology, Diabetes and Metabolism Sevice of the Centre Hospitalier Universitaire Vaudois (CHUV), du Bugnon 46, Lausanne 1011, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Xu H, Li Z, Wang T, Wang S, Liu J, Wang DW. Novel homozygous deletion of segmentalKAL1and entireSTScause Kallmann syndrome and X-linked ichthyosis in a Chinese family. Andrologia 2015; 47:1160-5. [PMID: 25597551 DOI: 10.1111/and.12397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2014] [Indexed: 01/04/2023] Open
Affiliation(s)
- H. Xu
- Department of Urology; Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Z. Li
- Department of Internal Medicine and Gene Therapy Center; Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - T. Wang
- Department of Urology; Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - S. Wang
- Department of Urology; Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - J. Liu
- Department of Urology; Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - D. W. Wang
- Department of Internal Medicine and Gene Therapy Center; Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
23
|
Genetics of cleft lip and/or cleft palate: Association with other common anomalies. Eur J Med Genet 2014; 57:381-93. [DOI: 10.1016/j.ejmg.2014.04.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/03/2014] [Indexed: 12/16/2022]
|
24
|
|
25
|
Zhang S, Xu H, Wang T, Liu G, Liu J. The KAL1 pVal610Ile mutation is a recessive mutation causing Kallmann syndrome. Fertil Steril 2013; 99:1720-3. [PMID: 23410897 DOI: 10.1016/j.fertnstert.2013.01.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/17/2012] [Accepted: 01/07/2013] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To present the clinical, genetic, biochemical, and molecular findings in two Chinese siblings with X-linked recessive Kallmann syndrome (KS). DESIGN Case report. SETTING University medical center. PATIENT(S) Two Chinese siblings. INTERVENTION(S) Clinical evaluation, hormone assays, and gene mutation research. MAIN OUTCOME MEASURE(S) Endocrinologic evaluation and genetic analysis. RESULT(S) A missense mutation of KAL1, c.1828G>A, led to pVal610Ile substitution in two brothers with KS; their mother is heterozygous for this missense mutation encoded by single-nucleotide polymorphism rs2229013. CONCLUSION(S) Mutation analysis revealed that a missense mutation of KAL1 in two brothers with KS, while their mother was heterozygous for this missense mutation encoded by the single-nucleotide polymorphism rs2229013. Variant alleles of KAL1 related to X-linked recessive KS expand the spectrum of KAL1 mutations causing KS.
Collapse
Affiliation(s)
- Shilin Zhang
- Department of Urology, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, People's Republic of China.
| | | | | | | | | |
Collapse
|
26
|
Crowley WF. Commentary: the year in endocrine genetics for basic scientists. Mol Endocrinol 2011; 25:1989-2002. [PMID: 22108799 DOI: 10.1210/me.2011-1247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During the past several years, one of the most interesting and challenging issues in endocrine genetics is determining how to integrate the findings and approaches traditionally used to understand the powerful, single-gene mutations causing endocrine syndromes with those newer techniques used to dissect the complex genetic architecture of polygenic conditions. With this overriding consideration in mind, it makes sense to begin these considerations with recent novel findings derived from the study of a particularly prismatic monogenic disorder, isolated GnRH deficiency, in defining an area of neuroendocrinology and development. Careful study of this human disease model has been employed successfully by several groups to provide unique windows through which to gain an improved understanding of the challenging issues of the developmental biology of the GnRH neurons where previous nonhuman approaches have had significant technical limitations. For example, study of this disorder has provided the field of neuroendocrinology with several unique insights into the surprising origins and early development of the GnRH neuronal network. Its associated clinical phenotypes have helped to unearth a growing list of genes responsible for GnRH neuronal specification, migration, and neuroendocrine function. Finally, this human genetic model is beginning to provide increasing evidence of interactions between these single genes, clearly demonstrating that an oligogenic genetic architecture underlies this condition.
Collapse
Affiliation(s)
- William F Crowley
- Harvard Medical School, Harvard Medical School Center of Excellence in Reproductive Endocrinology (National Institute of Child Health and Human Development), MA 02114, USA.
| |
Collapse
|
27
|
Dhiman P, Bhansali A, Prasad R, Dutta P, Walia R, Ravikiran M. Predictors of pilosebaceous unit responsiveness to testosterone therapy in patients with hypogonadotrophic hypogonadism. Andrologia 2011; 43:422-7. [PMID: 21486418 DOI: 10.1111/j.1439-0272.2010.01093.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Testosterone replacement therapy is the mainstay of treatment in male patients with isolated hypogonadotrophic hypogonadism (HH) to achieve virilisation. However, responsiveness of pilosebaceous unit (PSU) to testosterone replacement therapy in these patients is quite variable. Androgen action is inversely proportional to the number of CAG repeats in exon 1 of androgen receptor gene; therefore, we hypothesised that CAG repeat length contributes to testosterone responsiveness in patients with HH. The CAG repeat length in 21 well-virilised men (hair score > 30, responders) and 25 poorly virilised men (hair score ≤ 30, non-responders) with HH on optimal testosterone replacement therapy at least for a period of 1 year was analysed. Serum LH, FSH, testosterone and 17 β oestradiol were estimated. Polymerase chain reaction (PCR) amplification of exon 1 of androgen receptor gene was performed from genomic DNA, and these PCR-amplified products were sequenced for the number of CAG repeats. The difference between number of CAG repeats in responders and non-responders was statistically significant (19.19 ± 3.25 and 22.24 ± 2.65, P = 0.001) and showed a strong negative correlation with total body hair score (r = -0.538 and P = 0.0001). In conclusion, these results suggest that the number of CAG repeats influences the responsiveness of PSU to testosterone treatment in patients with HH.
Collapse
Affiliation(s)
- P Dhiman
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | | |
Collapse
|
28
|
Jap TS, Chiu CY, Lirng JF, Won GS. Identification of two novel missense mutations in the KAL1 gene in Han Chinese subjects with Kallmann Syndrome. J Endocrinol Invest 2011; 34:53-9. [PMID: 20530987 DOI: 10.1007/bf03346695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES To identify mutations in the KAL1, the KAL2, and PROKR2/PROK2 genes and to characterize phenotypic features in 5 Chinese subjects with Kallmann Syndrome (KS) and 6 subjects with normosmic hypogonadotrophic hypogonadism (NHH) in Taiwan. DESIGN AND PATIENTS Five unrelated males (age range 22-52 yr) with clinical manifestations of KS and 6 unrelated males (age range 24-47 yr) with NHH were analyzed. In addition, 5 relatives of KS subjects were also evaluated. Genomic DNA extraction, PCR, and DNA sequence analyses were performed using standard procedures. RESULTS The 1st patient had a single missense mutation in his copy of the KAL1 gene, a T→G transversion in codon 134 that results in replacement of cysteine by gly cine. The 2nd affected subject had a single missense mutation in the KAL1 gene, a T→C transition in codon 163 that results in replacement of cysteine by arginine. The 3rd case was hemizygous for a nonsense mutation in codon 424 of exon 9 (c.CGA→TGA) of the KAL1 gene. This mutation predicts a markedly truncated protein. Two of the mutations (p.C134G and p.C163R) we identified in the KAL1 gene are novel. CONCLUSIONS We identified 3 mutations, including 2 novel mutations, in the KAL1 gene in patients with KS in Taiwan. These data extend the variety of KAL1 gene mutations in KS and further define the role of the KAL1 protein in olfactory bulb development.
Collapse
Affiliation(s)
- T-S Jap
- Section of Biochemistry, Department of Pathology and Laboratory Medicine, Taipei-Veterans General Hospital, Taipei, Taiwan, ROC 112.
| | | | | | | |
Collapse
|
29
|
Clinical assessment and genomic landscape of a consanguineous family with three Kallmann syndrome descendants. Asian J Androl 2010; 13:166-71. [PMID: 21042300 DOI: 10.1038/aja.2010.83] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although some genes that cause Kallmann syndrome (KS) have been identified by traditional linkage analysis and candidate gene techniques, the syndrome's molecular etiology in the majority of patients remains poorly understood. In this paper, we present the clinical assessments of a consanguineous Han Chinese family with three KS descendants. To understand the molecular etiology of KS from a genome-wide perspective, we investigated the genome-wide profile of structural variation in this family using the Affymetrix Genome-Wide Human SNP Array 6.0 platform. The results revealed that the three affected individuals had common copy number variants (microdeletions) on chromosomes 1p21.1, 2q32.2, 8q21.13, 14q21.2 and Xp22.31. Moreover, the copy number variants on Xp22.31 were located in the intron of KAL1, which causes X-linked KS. Two PCR assays were performed on these regions to validate the results obtained using the chips. In addition, genomic microdeletions in this region were verified in one of 29 Han Chinese sporadic KS cases and one of four other family cases, but not in 26 Han Chinese sporadic normosmic idiopathic hypogonadotropic hypogonadism cases and 100 unrelated Han Chinese normal controls. Our results provide a novel insight into the relative contributions of certain copy number variants to KS's molecular etiology and generate a list of interesting candidate regions for further studies.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW What controls puberty remains largely unknown and current gene mutations account for only about one-third of the apparently genetic cases of idiopathic hypogonadotropic hypogonadism. Lately important developments have occurred in this field. RECENT FINDINGS Substantial variation in clinical expression, from complete anosmia and hypogonadotropic hypogonadism to delayed puberty and normosmia, of the same Kallmann syndrome gene defects including in newer ones (FGF8 and CHD7) continues to be repeatedly observed. Digenic or oligogenic inheritance becomes another feature of Kallmann syndrome. Recent reports of mutations in TAC3 or TACR3 [encoding neurokinin B (NKB) and its receptor, NK3R, respectively] provided compelling evidence for the involvement of NKB signaling in puberty. This energized the field to understand the exact mechanism through which NKB signaling exerts its effects. With the important findings from these recent studies in association with the substantial data from kisspeptin studies in the last 6 years a sketch of GnRH pulse generator has emerged in which NKB signaling appears to play a key role. SUMMARY Autozygosity mapping may continue helping identify the other genes including those upstream to the GnRH pulse generator in this complex and elusive developmental process.
Collapse
|
31
|
Abstract
The complex organization and regulation of the human hypothalamic-pituitary-gonadal axis render it susceptible to dysfunction in the face of a variety of genetic insults, leading to different degrees of hypogonadotrophic hypogonadism (HH). Although the genetic basis of some HH was recognized more than 60 years ago the first specific pathogenic defect, in the KAL1 gene, was only identified within the last 20 years. In the past decade, the rate of genetic discovery has dramatically accelerated, with defects in more than 10 genes now associated with HH. Several themes have emerged as the genetic basis of HH has gradually been uncovered, including the association of some genes such as FGFR1, FGF8, PROK2 and PROKR2, both with HH in association with hyposmia/anosmia (Kallmann syndrome) and with normosmic HH, thus blurring the clinical distinction between ontogenic and purely functional defects in the axis. Many examples of digenic inheritance of HH have also been reported, sometimes producing variable reproductive and accessory phenotypes within a family with non-Mendelian inheritance patterns. In strictly normosmic HH, human genetics has made a particularly dramatic impact in the past 6 years through homozygosity mapping in consanguineous families, first through identification of a key role for kisspeptin in triggering GnRH release, and very recently through demonstration of a critical role for neurokinin B in normal sexual maturation. This review summarises current understanding of the genetic architecture of HH, as well as its diagnostic and mechanistic implications.
Collapse
Affiliation(s)
- Robert K Semple
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | |
Collapse
|
32
|
Gécz J, Shoubridge C, Corbett M. The genetic landscape of intellectual disability arising from chromosome X. Trends Genet 2009; 25:308-16. [PMID: 19556021 DOI: 10.1016/j.tig.2009.05.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/14/2009] [Accepted: 05/14/2009] [Indexed: 01/07/2023]
Abstract
X-linked mental retardation (XLMR) or intellectual disability (ID) is a common, clinically complex and genetically heterogeneous disease arising from many mutations along the X chromosome. It affects between 1/600-1/1000 males and a substantial number of females. Research during the past decade has identified >90 different XLMR genes, affecting a wide range of cellular processes. Many more genes remain uncharacterized, especially for the non-syndromic XLMR forms. Currently, approximately 11% of X-chromosome genes are implicated in XLMR; however, apart from a few notable exceptions, most contribute individually to <0.1% of the total landscape, which arguably remains only about half complete. There remain many hills to climb and valleys to cross before the ID landscape is fully triangulated.
Collapse
Affiliation(s)
- Jozef Gécz
- Molecular Pathology, SA Pathology at Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | | | | |
Collapse
|
33
|
O'Dea L, O'Brien F, Currie K, Hemsey G. Follicular development induced by recombinant luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in anovulatory women with LH and FSH deficiency: evidence of a threshold effect. Curr Med Res Opin 2008; 24:2785-93. [PMID: 18727841 DOI: 10.1185/03007990802374815] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To assess the requirement for luteinizing hormone (LH) in women deficient in LH and follicle-stimulating hormone (FSH). RESEARCH DESIGN AND METHODS A prospective, randomized, parallel-group, multicentre study was carried out in tertiary care and academic medical centres. Women with anovulatory amenorrhoea > or = 1 year, serum oestradiol (E(2)) < 60 pg/mL (< 220 pmol/L) and low normal serum gonadotrophins were randomized in cycle A to a fixed daily dose of recombinant human (r-h) FSH (150 IU) and r-hLH 0, 25, 75 or 225 IU. Cycles B and C were not randomized. MAIN OUTCOME MEASURES Follicular development, ovulation and luteinization. RESULTS In cycle A, follicular development was achieved by 63.6% (7/11), 100% (9/9), 72.7% (8/11) and 66.7% (6/9) of patients who received r-hFSH and r-hLH 0, 25, 75 or 225 IU/day, respectively (p = not significant). Among patients with basal serum LH of < 1.2 IU/L, a dose-response relationship of r-hLH to follicular development was observed (p = 0.039). Fourteen of 34 patients (41.2%) wishing to conceive became pregnant. Among patients with hypogonadotrophic hypogonadism (HH) treated with r-hFSH alone, a transition from LH dependence to independence was observed between basal LH values of > or = 1.2 IU/L and < or = 1.6 IU/L. The r-hLH was well tolerated and no serious adverse events occurred during treatment. The most common treatment-related events were related to the reproductive system and the gastrointestinal tract. CONCLUSIONS Recombinant human LH provides a safe treatment option for women with HH. This small study also provided evidence suggestive of an LH threshold: follicular development was suboptimal when less than 75 IU/day r-hLH was administered.
Collapse
|
34
|
Chung WCJ, Moyle SS, Tsai PS. Fibroblast growth factor 8 signaling through fibroblast growth factor receptor 1 is required for the emergence of gonadotropin-releasing hormone neurons. Endocrinology 2008; 149:4997-5003. [PMID: 18566132 PMCID: PMC2582917 DOI: 10.1210/en.2007-1634] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
GnRH neurons are essential for the onset and maintenance of reproduction. Mutations in both fibroblast growth factor receptor (Fgfr1) and Fgf8 have been shown to cause Kallmann syndrome, a disease characterized by hypogonadotropic hypogonadism and anosmia, indicating that FGF signaling is indispensable for the formation of a functional GnRH system. Presently it is unclear which stage of GnRH neuronal development is most impacted by FGF signaling deficiency. GnRH neurons express both FGFR1 and -3; thus, it is also unclear whether FGFR1 or FGFR3 contributes directly to GnRH system development. In this study, we examined the developing GnRH system in mice deficient in FGF8, FGFR1, or FGFR3 to elucidate the individual contribution of these FGF signaling components. Our results show that the early emergence of GnRH neurons from the embryonic olfactory placode requires FGF8 signaling, which is mediated through FGFR1, not FGFR3. These data provide compelling evidence that the developing GnRH system is exquisitely sensitive to reduced levels of FGF signaling. Furthermore, Kallmann syndrome stemming from FGF signaling deficiency may be due primarily to defects in early GnRH neuronal development prior to their migration into the forebrain.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Cell Movement/physiology
- Fibroblast Growth Factor 8/metabolism
- Gene Expression Regulation, Developmental
- Gonadotropin-Releasing Hormone/physiology
- Hypothalamus/cytology
- Hypothalamus/embryology
- Hypothalamus/physiology
- Intermediate Filament Proteins/metabolism
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/metabolism
- Neurons/physiology
- Olfactory Pathways/cytology
- Olfactory Pathways/embryology
- Olfactory Pathways/physiology
- Peripherins
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Signal Transduction/physiology
- Trans-Activators/metabolism
- Vomeronasal Organ/cytology
- Vomeronasal Organ/embryology
- Vomeronasal Organ/physiology
Collapse
Affiliation(s)
- Wilson C J Chung
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado 80309-0354, USA.
| | | | | |
Collapse
|
35
|
Kim HG, Bhagavath B, Layman LC. Clinical manifestations of impaired GnRH neuron development and function. Neurosignals 2008; 16:165-82. [PMID: 18253056 DOI: 10.1159/000111561] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) and olfactory neurons migrate together in embryologic development, and disruption of this process causes idiopathic hypogonadotropic hypogonadism (IHH) with anosmia (Kallmann syndrome (KS)). Patients with IHH/KS generally manifest irreversible pubertal delay and subsequent infertility due to deficient pituitary gonadotropins or GnRH. The molecular basis of IHH/KS includes genes that: (1) regulate GnRH and olfactory neuron migration; (2) control the synthesis or secretion of GnRH; (3) disrupt GnRH action upon pituitary gonadotropes, or (4) interfere with pituitary gonadotropin synthesis or secretion. KS patients may also have midline facial defects indicating the diverse developmental functions of genes involved. Most causative genes cause either normosmic IHH or KS except FGFR1, which may cause either phenotype. Recently, several balanced chromosomal translocations have been identified in IHH/KS patients, which could lead to the identification of new disease-producing genes. Although there are two cases reported who have digenic disease, this awaits confirmation in future larger studies. The challenge will be to determine the importance of these genes in the 10-15% of couples with normal puberty who have infertility.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Department of Obstetrics and Gynecology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-3360, USA
| | | | | |
Collapse
|
36
|
Pinto JM, Thanaviratananich S, Hayes MG, Naclerio RM, Ober C. A Genome-Wide Screen for Hyposmia Susceptibility Loci. Chem Senses 2008; 33:319-29. [DOI: 10.1093/chemse/bjm092] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
37
|
Kim SH, Hu Y, Cadman S, Bouloux P. Diversity in fibroblast growth factor receptor 1 regulation: learning from the investigation of Kallmann syndrome. J Neuroendocrinol 2008; 20:141-63. [PMID: 18034870 DOI: 10.1111/j.1365-2826.2007.01627.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The unravelling of the genetic basis of the hypogonadotrophic hypogonadal disorders, including Kallmann syndrome (KS), has led to renewed interest into the developmental biology of gonadotrophin-releasing hormone (GnRH) neurones and, more generally, into the molecular mechanisms of reproduction. KS is characterised by the association of GnRH deficiency with diminished olfaction. Until recently, only two KS-associated genes were known: KAL1 and KAL2. KAL1 encodes the cell membrane and extracellular matrix-associated secreted protein anosmin-1 which is implicated in the X-linked form of KS. Anosmin-1 shows high affinity binding to heparan sulphate (HS) and its function remains the focus of ongoing investigation, although a role in axonal guidance and neuronal migration, which are processes essential for normal GnRH ontogeny and olfactory bulb histogenesis, has been suggested. KAL2, identified as the fibroblast growth factor receptor 1 (FGFR1) gene, has now been recognised to be the underlying genetic defect for an autosomal dominant form of KS. The diverse signalling pathways initiated upon FGFR activation can elicit pleiotropic cellular responses depending on the cellular context. Signalling through FGFR requires HS for receptor dimerisation and ligand binding. Current evidence supports a HS-dependent interaction between anosmin-1 and FGFR1, where anosmin-1 serves as a co-ligand activator enhancing the signal activity, the finer details of whose mechanism remain the subject of intense investigation. Recently, mutations in the genes encoding prokineticin 2 (PK2) and prokineticin receptor 2 (PKR2) were reported in a cohort of KS patients, further reinforcing the view of KS as a multigenic trait involving divergent pathways. Here, we review the historical and current understandings of KS and discuss the latest findings from the molecular and cellular studies of the KS-associated proteins, and describe the evidence that suggests convergence of several of these pathways during normal GnRH and olfactory neuronal ontogeny.
Collapse
Affiliation(s)
- S-H Kim
- Centre for Neuroendocrinology, Royal Free and University College Medical School, University College London, London, UK.
| | | | | | | |
Collapse
|
38
|
Ghadami M, Salama SA, Khatoon N, Chilvers R, Nagamani M, Chedrese PJ, Al-Hendy A. Toward gene therapy of primary ovarian failure: adenovirus expressing human FSH receptor corrects the Finnish C566T mutation. Mol Hum Reprod 2007; 14:9-15. [PMID: 18084009 DOI: 10.1093/molehr/gam077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Resistance ovarian syndrome is a heterogeneous disorder inherited as a Mendelian recessive trait and characterized by infertility, primary amenorrhea, normal karyotype and elevated serum FSH and LH levels. An inactivating mutation, C566T, in FSH receptor gene (FSHR) has been identified initially in Finland. We investigated if an adenovirus expressing a normal copy of human FSHR (Ad-hFSHR) has the ability to: (i) transfect granulosa cell lines, (ii) render the transfected cell lines responsive to FSH stimulation and (iii) transcomplement the malfunctioning form of human FSHR gene with C566T mutation. COS-7, JC-410, JC-410-P450-scc-luc and JC-410-StAR-luc cell lines were infected by Ad-hFSHR followed by treatment with FSH. Functional activity of the Ad-hFSHR was tested by measuring cyclic adenosine monophosphate (cAMP) or luciferase activity in response to FSH stimulation, and showed 2-4.6-fold increases in Ad-hFSHR transfected cells compared with untransfected or Ad-LacZ transfected cells, indicating that Ad-hFSHR is functionally active and expressing hFSHR. Generation of cAMP in cells expressing only mutated hFSHR-T566 showed minimal increase after FSH stimulation. Co-transfection of Ad-hFSHR in these cells carrying the malfunction form of human FSHR caused significant increases of 2.2-7.4-fold in FSH dependent cAMP generation (P = 0.0007). We concluded that adenovirus expressing a normal human FSHR can compensate the inactivating human FSHR-C566T mutation and restore FSH responsiveness.
Collapse
Affiliation(s)
- M Ghadami
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Kallmann's syndrome is a rare genetic disorder due to abnormal migration of olfactory axons and gonadotropin releasing hormone producing neurons, characterized by hypogonadism and anosmia. The prevalence of Kallmann's syndrome is 1:10,000 to 1:60,000 with a male to female ratio of 5:1. The inheritance of Kallmann's syndrome may be X-linked, autosomal recessive or autosomal dominant with variable penetrance, mutation involving KAL-1 and KAL-2 gene respectively. We report a case of Kallmann's syndrome in a 19-year-old boy with characteristic clinical, biochemical and MRI findings.
Collapse
Affiliation(s)
- M L Kulkarni
- Department of Pediatrics, J.J.M. Medical College, Davangere, Karnataka, India
| | | | | | | | | |
Collapse
|
40
|
Abstract
Gonadotropin-releasing hormone (GnRH) and olfactory neurons migrate together from the olfactory placode, and GnRH neurons eventually reside in the hypothalamus. Hypogonadism in male infants may be diagnosed in the first 6 months of life but cannot be diagnosed during childhood until puberty occurs. Patients with low serum testosterone and low serum gonadotropin levels have idiopathic hypogonadotropic hypogonadism (IHH). Mutations in three genes (KAL1, FGFR1, and GNRHR) comprise most of the known genetic causes of IHH. Treatment with testosterone is indicated if fertility is not desired, whereas GnRH or gonadotropin treatment induces spermatogenesis and fertility.
Collapse
Affiliation(s)
- Lawrence C Layman
- Department of Obstetrics and Gynecology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
41
|
Bhagavath B, Xu N, Ozata M, Rosenfield RL, Bick DP, Sherins RJ, Layman LC. KAL1 mutations are not a common cause of idiopathic hypogonadotrophic hypogonadism in humans. Mol Hum Reprod 2007; 13:165-70. [PMID: 17213338 DOI: 10.1093/molehr/gal108] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypogonadotrophic hypogonadism results in the absence of puberty and if left untreated leads to infertility. Mutations in KAL1 are known to account for some of the cases of Kallmann syndrome. The aim of this study was to determine the prevalence of KAL1 mutations in a large number of patients with idiopathic hypogonadotrophic hypogonadism (IHH). One hundred and thirty eight patients (109 males and 29 females) with IHH were studied for mutations in KAL1. DNA from these patients was subjected to denaturing gradient gel electrophoresis or single strand conformation polymorphism to identify mutations. Sequencing was performed to confirm mutations detected. Four mutations were found in 109 males (3.7%). All four mutations were in anosmic/hyposmic men making the prevalence 4/63 (6.3%) in this group of patients. No mutations were found in the 29 female patients. KAL1 mutations are an uncommon cause of Kallmann syndrome.
Collapse
Affiliation(s)
- Balasubramanian Bhagavath
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Trarbach EB, Costa EMF, Versiani B, de Castro M, Baptista MTM, Garmes HM, de Mendonca BB, Latronico AC. Novel fibroblast growth factor receptor 1 mutations in patients with congenital hypogonadotropic hypogonadism with and without anosmia. J Clin Endocrinol Metab 2006; 91:4006-12. [PMID: 16882753 DOI: 10.1210/jc.2005-2793] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Kallmann syndrome is a clinically and genetically heterogeneous disorder. To date, loss-of-function mutations in the genes encoding anosmin-1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1) have been described in the X-linked and autosomal dominant forms of this syndrome, respectively. OBJECTIVE The objective was to investigate genetic defects in the KAL1 and FGFR1 genes in patients with congenital isolated hypogonadotropic hypogonadism (IHH). PATIENTS Eighty patients (71 males and nine females) with IHH were studied, of which 30 were familial. Forty-six of them had olfactory abnormalities. METHODS The coding regions of both KAL1 and FGFR1 genes were amplified and automatically sequenced. The KAL1 mutations were investigated only in patients with olfactory abnormalities, whereas FGFR1 was studied in the entire group. RESULTS Two novel KAL1 mutations, an intragenic deletion of exons 3-6 and a splicing mutation IVS7 + 1G>A, were identified in two of 46 patients with Kallmann syndrome. Eight novel heterozygous FGFR1 mutations (G48S, L245P, R250W, A343V, P366L, K618fsX654, P722S, and V795I) were identified in nine of 80 patients with IHH. Eight of them had olfactory abnormalities. Interestingly, the G48S mutation was identified in a normosmic IHH patient. Two unrelated females, who carried FGFR1 mutations, had anosmia and normal reproductive function. CONCLUSION We identified novel mutations in KAL1 and FGFR1 genes in IHH patients. FGFR1 mutations were identified in 17% of the patients with olfactory abnormalities and in one of 34 normosmic IHH patients. In addition, isolated anosmia was identified in two unrelated females as a partial phenotypic manifestation of FGFR1 defects.
Collapse
Affiliation(s)
- Ericka Barbosa Trarbach
- Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Disciplina de Endocrinologia e Metabologia, Av Dr Enéas de Carvalho Aguiar, 155 2o andar Bloco 6, 05403-900 São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bhagavath B, Podolsky RH, Ozata M, Bolu E, Bick DP, Kulharya A, Sherins RJ, Layman LC. Clinical and molecular characterization of a large sample of patients with hypogonadotropic hypogonadism. Fertil Steril 2006; 85:706-13. [PMID: 16500342 DOI: 10.1016/j.fertnstert.2005.08.044] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 08/15/2005] [Accepted: 08/15/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To characterize the phenotype, modes of inheritance, karyotype, and molecular basis of patients with idiopathic hypogonadotropic hypogonadism (IHH). DESIGN Review of medical records, karyotyping, and collation of gene mutation analysis. SETTING University molecular reproductive endocrinology laboratory. PATIENT(S) Patients with IHH. INTERVENTION(S) Review of medical records, laboratory studies, and molecular studies. MAIN OUTCOME MEASURE(S) Sense of smell, severity of IHH (complete vs. incomplete), associated anomalies, karyotype, mutation analysis, and genotype/phenotype correlations were studied. RESULT(S) Of 315 patients with IHH, 6.3% had one or more affected relatives. Autosomal recessive inheritance was likely in most of these familial cases, but autosomal-dominant and X-linked recessive inheritance patterns were likely in some families. Complete IHH was more commonly found in males (62%), whereas incomplete IHH was more commonly observed in females (54.3%). Anosmia was present in 31.3% of males and 27.9% of females. The karyotype was normal in all 19 females tested, but was abnormal in 3 of 57 (5.3%) of males tested. Although cryptorchidism did not differ among those who were anosmic vs. normosmic, it was approximately four times more common in patients with complete IHH than incomplete IHH (15.3% vs. 3.9%). Approximately 10% of the IHH patients tested had mutations in either the GNRHR or KAL1 gene. CONCLUSION(S) Idiopathic hypogonadotropic hypogonadism is a heterogeneous disorder affecting fertility, in which the number of familial cases is probably underestimated. Further study of genes that regulate hypothalamic-pituitary development and function will likely reveal important information regarding the development of normal puberty in humans.
Collapse
Affiliation(s)
- Balasubramanian Bhagavath
- Division of Reproductive Endocrinology, Infertility, and Genetics, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta, Georgia 30912-3360, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Tsai PS, Gill JC. Mechanisms of Disease: insights into X-linked and autosomal-dominant Kallmann syndrome. ACTA ACUST UNITED AC 2006; 2:160-71. [PMID: 16932275 DOI: 10.1038/ncpendmet0119] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 12/05/2005] [Indexed: 11/08/2022]
Abstract
Kallmann syndrome (KS) is a disorder characterized by hypogonadotropic hypogonadism and anosmia. Although KS is genetically heterogeneous, only two causal genes have been identified to date. These include an X-linked gene that encodes anosmin 1 and an autosomal gene that encodes fibroblast growth factor receptor 1. Mutations in these two genes result in disorders that often include, but are not limited to, severe defects in olfactory and reproductive functions. In this respect, KS can be regarded as a 'human model' for understanding critical factors that regulate olfactory and reproductive development. Here we give an overview of the disorders that stem from mutations in these two genes, with special emphasis on the cellular mechanisms underlying olfactory and reproductive anomalies. Other, less well-known aspects of KS, such as the convergence of symptoms in patients with different genetic forms of KS and the unpredictable manifestation of KS symptoms, are also discussed.
Collapse
Affiliation(s)
- Pei-San Tsai
- Department of Integrative Physiology, University of Colorado at Boulder, CO 80309-0354, USA.
| | | |
Collapse
|
45
|
Tasar M, Bozlar U, Yetiser S, Bolu E, Tasar A, Gonul E. Idiopathic hypogonadotrophic hypogonadism associated with arachnoid cyst of the middle fossa and forebrain anomalies: presentation of an unusual case. J Endocrinol Invest 2005; 28:935-9. [PMID: 16419497 DOI: 10.1007/bf03345326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report a 22-yr-old male patient with hypogonadotrophic hypogonadism (HH) associated with a giant middle fossa arachnoid cyst (AC) diagnosed by magnetic resonance imaging (MRI). He presented with pubertal and growth delay. He also had learning disabilities and anosmia. Laboratory investigation revealed pre-pubertal levels of testosterone and normal results of the combined test of anterior pituitary function, except for in GnRH acute and prolonged test. Cranial MRI showed an AC in left middle fossa with expansion to suprasellar cisterna and several abnormalities like left temporal lobe hypoplasia, left optic tract and bilateral olfactory bulb hypoplasia and left hypothalamic hypoplasia.
Collapse
Affiliation(s)
- M Tasar
- Department of Radiology, Gulhane Military Medical Academy, Etlik-Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
46
|
Cheng CK, Leung PCK. Molecular biology of gonadotropin-releasing hormone (GnRH)-I, GnRH-II, and their receptors in humans. Endocr Rev 2005; 26:283-306. [PMID: 15561800 DOI: 10.1210/er.2003-0039] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In human beings, two forms of GnRH, termed GnRH-I and GnRH-II, encoded by separate genes have been identified. Although these hormones share comparable cDNA and genomic structures, their tissue distribution and regulation of gene expression are significantly dissimilar. The actions of GnRH are mediated by the GnRH receptor, which belongs to a member of the rhodopsin-like G protein-coupled receptor superfamily. However, to date, only one conventional GnRH receptor subtype (type I GnRH receptor) uniquely lacking a carboxyl-terminal tail has been found in the human body. Studies on the transcriptional regulation of the human GnRH receptor gene have indicated that tissue-specific gene expression is mediated by differential promoter usage in various cell types. Functionally, there is growing evidence showing that both GnRH-I and GnRH-II are potentially important autocrine and/or paracrine regulators in some extrapituitary compartments. Recent cloning of a second GnRH receptor subtype (type II GnRH receptor) in nonhuman primates revealed that it is structurally and functionally distinct from the mammalian type I receptor. However, the human type II receptor gene homolog carries a frameshift and a premature stop codon, suggesting that a full-length type II receptor does not exist in humans.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada V6H 3V5
| | | |
Collapse
|
47
|
Dodé C, Hardelin JP. Kallmann syndrome: fibroblast growth factor signaling insufficiency? J Mol Med (Berl) 2004; 82:725-34. [PMID: 15365636 DOI: 10.1007/s00109-004-0571-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
Kallmann syndrome (KAL) is a developmental disease that combines hypogonadotropic hypogonadism and anosmia. Anosmia is related to the absence or hypoplasia of the olfactory bulbs. Hypogonadism is due to GnRH deficiency and is likely to result from the failed embryonic migration of GnRH-synthesizing neurons. These cells normally migrate from the olfactory epithelium to the forebrain along the olfactory nerve pathway. KAL is phenotypically and genetically heterogeneous. The gene responsible for the X-chromosome linked form of the disease (KAL1) has been identified in 1991. KAL1 encodes anosmin-1, an approximately 95-kDa glycoprotein of unknown function which is present locally in various extracellular matrices during the period of organogenesis. The recent finding that FGFR1 mutations are involved in an autosomal dominant form of Kallmann syndrome (KAL2), combined with the analysis of mutant mouse embryos that no longer express Fgfr1 in the telencephalon, suggests that the disease results from a deficiency in FGF signaling at the earliest stage of olfactory bulb morphogenesis. We propose that the role of anosmin-1 is to enhance FGF signaling and suggest that the gender difference in anosmin-1 dose (because KAL1 partially escapes X-inactivation) explains the higher prevalence of the disease in males.
Collapse
Affiliation(s)
- Catherine Dodé
- Institut Cochin et Laboratoire de Biochimie et Génétique Moléculaire, Hôpital Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France.
| | | |
Collapse
|
48
|
Jennings JE, Costigan C, Reardon W. Moebius sequence and hypogonadotrophic hypogonadism. Am J Med Genet A 2004; 123A:107-10. [PMID: 14556256 DOI: 10.1002/ajmg.a.20500] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A distinct form of Moebius sequence is associated with hypogonadotrophic hypogonadism. There have been five such cases to date. We now add a further case with detailed neurologic, endocrine, and autopsy findings and offer a hypothesis drawing parallels with the already established basis of hypogonadotrophic hypogonadism in the X-linked form of Kallman syndrome.
Collapse
Affiliation(s)
- Juliet E Jennings
- Our Lady's Hospital for Sick Children, National Centre for Medical Genetics, Crumlin, Dublin, Ireland
| | | | | |
Collapse
|
49
|
Soffer Y. Azoospermies non obstructives; facteurs prédictifs du prélèvement testiculaire et risques de la fécondation assistée. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/bf03035466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Abstract
There is a male factor involved in up to half of all infertile couples. Potential etiologies in male factor infertility are many and require thorough evaluation for their accurate identification. A complete medical history in conjunction with a focused examination can allow for an appropriate choice of laboratory and imaging studies. The semen analysis is a crucial first step, but by no means is it sufficient to determine a specific etiology or dictate therapy. A systematic approach is necessary to help guide the work-up and rule out less likely causes. The etiologies discussed within this article are tremendously broad, and the prognosis for any given couple depends, in large part, on the etiology. Without a firm understanding of the genetics, anatomy, physiology, and complex interplay of the male reproductive system, the evaluation becomes an inefficient exercise that often fails to define the precise etiology. Couples with male factor infertility need a systematic approach with the efficiency of ultimate treatment determined largely by the physician's ability to identify the specific cause of the man's reproductive failure.
Collapse
Affiliation(s)
- Victor M Brugh
- Department of Urology, Eastern Virginia Medical School, 400 West Brambleton Avenue, Suite 100, Norfolk, VA 23510, USA
| | | |
Collapse
|