1
|
Shen J, Duan X, Xie T, Zhang X, Cai Y, Pan J, Zhang X, Sun X. Advances in locally administered nucleic acid therapeutics. Bioact Mater 2025; 49:218-254. [PMID: 40144794 PMCID: PMC11938090 DOI: 10.1016/j.bioactmat.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Nucleic acid drugs represent the latest generation of precision therapeutics, holding significant promise for the treatment of a wide range of intractable diseases. Delivery technology is crucial for the clinical application of nucleic acid drugs. However, extrahepatic delivery of nucleic acid drugs remains a significant challenge. Systemic administration often fails to achieve sufficient drug enrichment in target tissues. Localized administration has emerged as the predominant approach to facilitate extrahepatic delivery. While localized administration can significantly enhance drug accumulation at the injection sites, nucleic acid drugs still face biological barriers in reaching the target lesions. This review focuses on non-viral nucleic acid drug delivery techniques utilized in local administration for the treatment of extrahepatic diseases. First, the classification of nucleic acid drugs is described. Second, the current major non-viral delivery technologies for nucleic acid drugs are discussed. Third, the bio-barriers, administration approaches, and recent research advances in the local delivery of nucleic acid drugs for treating lung, brain, eye, skin, joint, and heart-related diseases are highlighted. Finally, the challenges associated with the localized therapeutic application of nucleic acid drugs are addressed.
Collapse
Affiliation(s)
- Jie Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xusheng Duan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ting Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinrui Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junhao Pan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xin Zhang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Marchionini DM, De Lombaerde S, van Rijswijk J, Zajicek F, Everix L, Miranda A, Aaltonen MJ, Kluger CM, Wild T, Kakoulidou A, Gundelach J, Fieblinger T, Fentz J, Rosinski J, Obenauer J, Greene JR, Liu L, Munoz-Sanjuan I, Verhoye M, Verhaeghe J, Bard J, Staelens S, Bertoglio D. Pharmacodynamic biomarkers responsive to mutant huntingtin lowering in a Huntington's disease mouse model. Neurobiol Dis 2025; 209:106906. [PMID: 40204170 DOI: 10.1016/j.nbd.2025.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/20/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025] Open
Affiliation(s)
- Deanna M Marchionini
- CHDI Management, Inc., The Company That Manages the Scientific Activities of CHDI Foundation, Inc., 350 7(th) Ave, Suite 200, New York, NY, 10001, USA.
| | - Stef De Lombaerde
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Campus Drie Eiken, Room D.UC.059, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Joëlle van Rijswijk
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Building UC, Room 111, Universiteitsplein 1, B-2610 Wilrijk, Belgium; μNeuro Centre of Excellence, University of Antwerp, Campus Drie Eiken, Building N, D.N. 110, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Franziska Zajicek
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Campus Drie Eiken, Room D.UC.059, Universiteitsplein 1, B-2610 Wilrijk, Belgium; μNeuro Centre of Excellence, University of Antwerp, Campus Drie Eiken, Building N, D.N. 110, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Liesbeth Everix
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Campus Drie Eiken, Room D.UC.059, Universiteitsplein 1, B-2610 Wilrijk, Belgium; μNeuro Centre of Excellence, University of Antwerp, Campus Drie Eiken, Building N, D.N. 110, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Alan Miranda
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Campus Drie Eiken, Room D.UC.059, Universiteitsplein 1, B-2610 Wilrijk, Belgium; μNeuro Centre of Excellence, University of Antwerp, Campus Drie Eiken, Building N, D.N. 110, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Mari J Aaltonen
- Evotec International GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Carleen M Kluger
- Evotec International GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Thomas Wild
- Evotec International GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Aglaia Kakoulidou
- Evotec International GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Jannis Gundelach
- Evotec International GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Tim Fieblinger
- Evotec International GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Joachim Fentz
- Evotec International GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Jim Rosinski
- CHDI Management, Inc., The Company That Manages the Scientific Activities of CHDI Foundation, Inc., 350 7(th) Ave, Suite 200, New York, NY, 10001, USA
| | - John Obenauer
- Rancho Biosciences, 16955 Via Del Campo, Suite 200, San Diego, CA, 92127, USA
| | - Jonathan R Greene
- Rancho Biosciences, 16955 Via Del Campo, Suite 200, San Diego, CA, 92127, USA
| | - Longbin Liu
- CHDI Management, Inc., The Company That Manages the Scientific Activities of CHDI Foundation, Inc., 350 7(th) Ave, Suite 200, New York, NY, 10001, USA
| | - Ignacio Munoz-Sanjuan
- CHDI Management, Inc., The Company That Manages the Scientific Activities of CHDI Foundation, Inc., 350 7(th) Ave, Suite 200, New York, NY, 10001, USA
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Building UC, Room 111, Universiteitsplein 1, B-2610 Wilrijk, Belgium; μNeuro Centre of Excellence, University of Antwerp, Campus Drie Eiken, Building N, D.N. 110, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Jeroen Verhaeghe
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Building UC, Room 111, Universiteitsplein 1, B-2610 Wilrijk, Belgium; μNeuro Centre of Excellence, University of Antwerp, Campus Drie Eiken, Building N, D.N. 110, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Jonathan Bard
- CHDI Management, Inc., The Company That Manages the Scientific Activities of CHDI Foundation, Inc., 350 7(th) Ave, Suite 200, New York, NY, 10001, USA
| | - Steven Staelens
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Building UC, Room 111, Universiteitsplein 1, B-2610 Wilrijk, Belgium; μNeuro Centre of Excellence, University of Antwerp, Campus Drie Eiken, Building N, D.N. 110, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Daniele Bertoglio
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Campus Drie Eiken, Room D.UC.059, Universiteitsplein 1, B-2610 Wilrijk, Belgium; Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Building UC, Room 111, Universiteitsplein 1, B-2610 Wilrijk, Belgium; μNeuro Centre of Excellence, University of Antwerp, Campus Drie Eiken, Building N, D.N. 110, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
3
|
Belgrad J, McConnell E, Leonard S, Nolen N, Lauffer MC, Watts JK, Yu T, Yan WX, Aartsma-Rus A. The N=1 Collaborative: advancing customized nucleic acid therapies through collaboration and data sharing. Nucleic Acids Res 2025; 53:gkaf346. [PMID: 40277082 DOI: 10.1093/nar/gkaf346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Developing customized gene-targeting therapies for the millions of individuals affected by ultra-rare diseases globally requires breaking new ground in therapeutic and regulatory innovation. To address this need, the N=1 Collaborative (N1C) was established to unite academia, industry, patients, and regulators, building an open, shared ecosystem for personalized medicines. Initially focusing on antisense oligonucleotides (ASOs) for rare, fatal neurodegenerative conditions, the N1C aims to develop frameworks that can rapidly extend to other treatment modalities and conditions. Progress in the advancement of personalized therapies has also propelled advancements in the nucleic acids field, offering critical insights into dosing, safety, and efficacy. In October 2024, the N1C convened scientific, regulatory, and advocacy leaders in ASO development for an inaugural meeting. This review report examines the current state of the scientific and clinical ecosystems enabling customized genetic therapies and explores the innovation, frameworks, and systems needed to deliver additional individualized medicines safely and at scale.
Collapse
Affiliation(s)
- Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
- N=1 Collaborative, Somerville, MA 02143, United States
| | - Erin McConnell
- N=1 Collaborative, Somerville, MA 02143, United States
- Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Stef Leonard
- N=1 Collaborative, Somerville, MA 02143, United States
| | - Nicole Nolen
- N=1 Collaborative, Somerville, MA 02143, United States
| | - Marlen C Lauffer
- N=1 Collaborative, Somerville, MA 02143, United States
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
- N=1 Collaborative, Somerville, MA 02143, United States
| | - Timothy Yu
- N=1 Collaborative, Somerville, MA 02143, United States
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, United States
- Harvard Medical School, Division of Medical Sciences, Boston, MA, 02115, United States
| | - Winston X Yan
- N=1 Collaborative, Somerville, MA 02143, United States
| | - Annemieke Aartsma-Rus
- N=1 Collaborative, Somerville, MA 02143, United States
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
4
|
Scelsa SN, MacGowan DJL. Disease Modification in SOD1-ALS With Tofersen May Result in Serious CNS Inflammation. Muscle Nerve 2025. [PMID: 40235273 DOI: 10.1002/mus.28413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/24/2025] [Accepted: 04/05/2025] [Indexed: 04/17/2025]
Affiliation(s)
- Stephen N Scelsa
- Department of Neurology, Mount Sinai Union Square, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel J L MacGowan
- Department of Neurology, Mount Sinai Union Square, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Durr A. Uncontrolled CAG expansion in neurons susceptible to Huntington's disease. Lancet Neurol 2025; 24:282-284. [PMID: 40120604 DOI: 10.1016/s1474-4422(25)00071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025]
Affiliation(s)
- Alexandra Durr
- Sorbonne Université, Paris Brain Institute-Institut du Cerveau, ICM, Inserm, CNRS APHP, Pitié-Salpêtrière University Hospital, Paris, France.
| |
Collapse
|
6
|
Geva M, Goldberg YP, Schuring H, Tan AM, Long JD, Hayden MR. Antidopaminergic Medications and Clinical Changes in Measures of Huntington's Disease: A Causal Analysis. Mov Disord 2025. [PMID: 40099482 DOI: 10.1002/mds.30164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Antidopaminergic medications (ADM) are often used for symptom management of Huntington's disease (HD). Evidence from past research suggests that ADMs are associated with worse clinical outcomes in HD, but their impact on various domains remains underexplored. OBJECTIVE We used causal inference analysis to understand the impact of ADM use on measures of clinical progression in HD across multiple domains over 2 years. METHODS We used the Enroll-HD database with a new-user design, which compared a cohort that initiated ADM use after the first visit with an unexposed cohort that remained off ADMs. To control for 27 covariates, we used a doubly robust targeted maximum likelihood estimation and conducted two analyses. First, we analyzed ADM treatment 2 years post-baseline and separately for 12 outcome measures. Second, we examined the association of ADM dose with measures of clinical outcomes. RESULTS The ADM-exposed group exhibited faster change in measures of clinical outcome compared with the off-ADM group, which was statistically reliable in cognitive and functional outcome measures, and the composite Unified Huntington's Disease Rating Scale (cUHDRS). Motor domain analyses showed faster change in bradykinesia in the ADM-exposed group versus off-ADM but no difference in chorea or total motor score (TMS). Higher ADM doses also showed greater differences compared to the off-ADM group. CONCLUSIONS ADM use was associated with more rapid change in clinical measures, particularly in cognitive and functional domains. However, assumptions required to establish causation between ADM use and disease progression may not have been fully met, and further research is warranted. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Michal Geva
- Prilenia Therapeutics B.V, Naarden, The Netherlands
| | | | | | - Andrew M Tan
- Prilenia Therapeutics B.V, Naarden, The Netherlands
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Michael R Hayden
- Prilenia Therapeutics B.V, Naarden, The Netherlands
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Marzec P, Richer M, Lahue RS. Therapeutic targeting of mismatch repair proteins in triplet repeat expansion diseases. DNA Repair (Amst) 2025; 147:103817. [PMID: 40010080 DOI: 10.1016/j.dnarep.2025.103817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
Triplet repeat expansion diseases are a class of ∼20 inherited neurological disorders. Many of these diseases are debilitating, sometimes fatally so, and they have unfortunately proved difficult to treat. New compelling evidence shows that somatic repeat expansions in some diseases are essential to the pathogenic process, accelerating the age of onset and the rate of disease progression. Inhibiting somatic repeat expansions, therefore, provides a therapeutic opportunity to delay or block disease onset and/or slow progression. Several key aspects enhance the appeal of this therapeutic approach. First, the proteins responsible for promoting expansions are known from human genetics and model systems, obviating the need for lengthy target searches. They include the mismatch repair proteins MSH3, PMS1 and MLH3. Second, inhibiting or downregulating any of these three proteins is attractive due to their good safety profiles. Third, having three potential targets helps mitigate risk. Fourth, another protein, the nuclease FAN1, protects against expansions; in principle, increasing FAN1 activity could be therapeutic. Fifth, therapies aimed at inhibiting somatic repeat expansions could be used against several diseases that display this shared mechanistic feature, offering the opportunity for one treatment against multiple diseases. This review will address the underlying findings and the recent therapeutic advances in targeting MSH3, PMS1, MLH3 and FAN1 in triplet repeat expansion diseases.
Collapse
Affiliation(s)
- Paulina Marzec
- LoQus23 Therapeutics Ltd, Cambridge CB22 3AT, United Kingdom
| | | | - Robert S Lahue
- Centre for Chromosome Biology, University of Galway, H91W2TY, Ireland; Galway Neuroscience Centre, University of Galway, H91W2TY, Ireland.
| |
Collapse
|
8
|
Scahill RI, Farag M, Murphy MJ, Hobbs NZ, Leocadi M, Langley C, Knights H, Ciosi M, Fayer K, Nakajima M, Thackeray O, Gobom J, Rönnholm J, Weiner S, Hassan YR, Ponraj NKP, Estevez-Fraga C, Parker CS, Malone IB, Hyare H, Long JD, Heslegrave A, Sampaio C, Zhang H, Robbins TW, Zetterberg H, Wild EJ, Rees G, Rowe JB, Sahakian BJ, Monckton DG, Langbehn DR, Tabrizi SJ. Somatic CAG repeat expansion in blood associates with biomarkers of neurodegeneration in Huntington's disease decades before clinical motor diagnosis. Nat Med 2025; 31:807-818. [PMID: 39825149 PMCID: PMC11922752 DOI: 10.1038/s41591-024-03424-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 01/20/2025]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease with the age at which characteristic symptoms manifest strongly influenced by inherited HTT CAG length. Somatic CAG expansion occurs throughout life and understanding the impact of somatic expansion on neurodegeneration is key to developing therapeutic targets. In 57 HD gene expanded (HDGE) individuals, ~23 years before their predicted clinical motor diagnosis, no significant decline in clinical, cognitive or neuropsychiatric function was observed over 4.5 years compared with 46 controls (false discovery rate (FDR) > 0.3). However, cerebrospinal fluid (CSF) markers showed very early signs of neurodegeneration in HDGE with elevated neurofilament light (NfL) protein, an indicator of neuroaxonal damage (FDR = 3.2 × 10-12), and reduced proenkephalin (PENK), a surrogate marker for the state of striatal medium spiny neurons (FDR = 2.6 × 10-3), accompanied by brain atrophy, predominantly in the caudate (FDR = 5.5 × 10-10) and putamen (FDR = 1.2 × 10-9). Longitudinal increase in somatic CAG repeat expansion ratio (SER) in blood was a significant predictor of subsequent caudate (FDR = 0.072) and putamen (FDR = 0.148) atrophy. Atypical loss of interruption HTT repeat structures, known to predict earlier age at clinical motor diagnosis, was associated with substantially faster caudate and putamen atrophy. We provide evidence in living humans that the influence of CAG length on HD neuropathology is mediated by somatic CAG repeat expansion. These critical mechanistic insights into the earliest neurodegenerative changes will inform the design of preventative clinical trials aimed at modulating somatic expansion. ClinicalTrials.gov registration: NCT06391619 .
Collapse
Affiliation(s)
- Rachael I Scahill
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Mena Farag
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Michael J Murphy
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nicola Z Hobbs
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Michela Leocadi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Harry Knights
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marc Ciosi
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kate Fayer
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Mitsuko Nakajima
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Olivia Thackeray
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - John Rönnholm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Sophia Weiner
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Yara R Hassan
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nehaa K P Ponraj
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Carlos Estevez-Fraga
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christopher S Parker
- Department of Computer Science and Centre for Medical Image Computing, University College London, London, UK
| | - Ian B Malone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Harpreet Hyare
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jeffrey D Long
- Department of Psychiatry and Biostatistics, Carver College of Medicine and College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Amanda Heslegrave
- Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Cristina Sampaio
- Faculdade Medicina da Universidade de Lisboa (FMUL), Lisbon, Portugal
- CHDI Management, Inc. Advisors to CHDI Foundation, Princeton, NJ, USA
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, University College London, London, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Hong Kong Center for Neurodegeneassociated with substantially fasterrative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Edward J Wild
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Geraint Rees
- UCL Institute of Cognitive Neuroscience, University College London, London, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Douglas R Langbehn
- Department of Psychiatry and Biostatistics, Carver College of Medicine and College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
9
|
Feigin A, Evans EE, Fisher TL, Zauderer M. Pepinemab: a SEMA4D antagonist for treatment of Huntington's and other neurodegenerative diseases. Expert Opin Investig Drugs 2025; 34:109-119. [PMID: 40007468 DOI: 10.1080/13543784.2025.2473055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/29/2025] [Accepted: 02/24/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION Huntington's Disease (HD) is a progressive fatal neurodegenerative disease with an unmet need for disease-modifying therapies. Neuroinflammation, particularly astrogliosis, plays a crucial role in the pathogenesis of HD and modulation of this damaging activity and its downstream effects presents a promising therapeutic avenue. Pepinemab, a semaphorin 4D (SEMA4D) blocking antibody, has the potential to serve this purpose. AREAS COVERED We review the proposed mechanisms of action of pepinemab, published safety and efficacy results from the 'SIGNAL' Phase 2 trial in HD and supporting data from a Phase 1 trial in multiple sclerosis (MS). EXPERT OPINION Pepinemab's potential to reduce reactive gliosis and inflammation is a novel mechanism of action (MOA) that may be effective as a standalone therapy as well as one that may complement other strategies to reduce toxic disease associated processes. Pepinemab has demonstrated a favorable safety profile and treatment benefits in fluid biomarkers, imaging endpoints, and measures of cognitive function that encourage continued development in HD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Andrew Feigin
- NYU Langone Health, New York, NY, USA
- Rho, Inc., Durham, NC, USA
| | | | | | | |
Collapse
|
10
|
Sartorelli J, Ng J, Rahim AA, Waddington SN, Kurian MA. Genetic therapies for movement disorders - current status. J Neurol 2025; 272:220. [PMID: 39985571 PMCID: PMC11846774 DOI: 10.1007/s00415-025-12940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/26/2025] [Indexed: 02/24/2025]
Abstract
Movement disorders are a group of heterogeneous neurological conditions associated with alterations of tone, posture and voluntary movement. They may either occur in isolation or as part of a multisystemic condition. More recently, the advent of next generation sequencing technologies has facilitated better understanding of the underlying causative genes and molecular pathways, thereby identifying targets for genetic therapy. In this review, we summarize the advances in genetic therapy approaches for both hyperkinetic and hypokinetic movement disorders, including Parkinson's Disease, Huntington's Disease and rarer monogenic conditions of childhood onset. While there have been significant advances in the field, multiple challenges remain, related to safety, toxicity, efficacy and brain biodistribution, which will need to be addressed by the next generation of genetic therapies.
Collapse
Affiliation(s)
- J Sartorelli
- Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London, WC1N 1DZ, UK
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - J Ng
- Genetic Therapy Accelerator Centre, UCL Queen Square Institute of Neurology, London, UK
| | - A A Rahim
- UCL School of Pharmacy, University College London, London, UK
| | - S N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - M A Kurian
- Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London, WC1N 1DZ, UK.
- Department of Neurology, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
11
|
Handsaker RE, Kashin S, Reed NM, Tan S, Lee WS, McDonald TM, Morris K, Kamitaki N, Mullally CD, Morakabati NR, Goldman M, Lind G, Kohli R, Lawton E, Hogan M, Ichihara K, Berretta S, McCarroll SA. Long somatic DNA-repeat expansion drives neurodegeneration in Huntington's disease. Cell 2025; 188:623-639.e19. [PMID: 39824182 DOI: 10.1016/j.cell.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/15/2024] [Accepted: 11/29/2024] [Indexed: 01/20/2025]
Abstract
In Huntington's disease (HD), striatal projection neurons (SPNs) degenerate during midlife; the core biological question involves how the disease-causing DNA repeat (CAG)n in the huntingtin (HTT) gene leads to neurodegeneration after decades of biological latency. We developed a single-cell method for measuring this repeat's length alongside genome-wide RNA expression. We found that the HTT CAG repeat expands somatically from 40-45 to 100-500+ CAGs in SPNs. Somatic expansion from 40 to 150 CAGs had no apparent cell-autonomous effect, but SPNs with 150-500+ CAGs lost positive and then negative features of neuronal identity, de-repressed senescence/apoptosis genes, and were lost. Our results suggest that somatic repeat expansion beyond 150 CAGs causes SPNs to degenerate quickly and asynchronously. We conclude that in HD, at any one time, most neurons have an innocuous but unstable HTT gene and that HD pathogenesis is a DNA process for almost all of a neuron's life.
Collapse
Affiliation(s)
- Robert E Handsaker
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Seva Kashin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Nora M Reed
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven Tan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Won-Seok Lee
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tara M McDonald
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Nolan Kamitaki
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher D Mullally
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Melissa Goldman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriel Lind
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rhea Kohli
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Marina Hogan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiku Ichihara
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sabina Berretta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA.
| | - Steven A McCarroll
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02215, USA.
| |
Collapse
|
12
|
Andreone BJ, Lin J, Tocci J, Rook M, Omer A, Carito LM, Yang C, Zhoba H, DeJesus C, Traore M, Haruehanroengra P, Prinzen A, Miglis G, Deninger M, Li M, Lynch T, Howat B, Rogers KA, Gallant-Behm CL, Kinberger GA, Yudowski G, Chen Q, Jackson AL, McDonough SI. Durable suppression of seizures in a preclinical model of KCNT1 genetic epilepsy with divalent small interfering RNA. Epilepsia 2025. [PMID: 39871703 DOI: 10.1111/epi.18278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/29/2025]
Abstract
OBJECTIVE Gain-of-function variants in the KCNT1 gene, which encodes a sodium-activated potassium ion channel, drive severe early onset developmental epileptic encephalopathies including epilepsy of infancy with migrating focal seizures and sleep-related hypermotor epilepsy. No therapy provides more than sporadic or incremental improvement. Here, we report suppression of seizures in a genetic mouse model of KCNT1 epilepsy by reducing Kcnt1 transcript with divalent small interfering RNA (siRNA), an emerging variant of oligonucleotide technology developed for the central nervous system. METHODS The ATL-201 molecule is two identical synthetic double-stranded siRNAs, covalently linked, with 100% nucleotide base pair match to sequence present in both human KCNT1 and mouse Kcnt1 that does not contain any known pathogenic variant. ATL-201 activity was tested in cortical neurons cultured from wild-type mice and in mice homozygous for Kcnt1-Y777H, the mouse ortholog to the human pathogenic KCNT1-Y796H missense variant. Seizures and nest-building behavior were measured in freely behaving Kcnt1-Y777H mice. The number and duration of seizures were measured by electrocorticography in mice dosed with ATL-201 or phosphate-buffered saline in a 6-month durability study and in a 2-month dose-efficacy study. RESULTS In vitro, ATL-201 reduced KCNT1 transcript from whole-cell lysate and eliminated potassium currents from KCNT1 channels in heterologous expression. ATL-201 also eliminated sodium-activated potassium currents recorded from individual cortical neurons. In vivo, ATL-201 suppressed seizures in Kcnt1-Y777H homozygous mice in a dose-dependent manner with near-complete suppression from 2 weeks to at least 4 months. Kcnt1-Y777H mice had defects in nest building, whereas in ATL-201-treated mice nest building was equivalent to wild-type mice. SIGNIFICANCE Patients with KCNT1-driven epilepsy experience up to hundreds of seizures per day and have severe impairment in cognitive, motor, and language development and high mortality. The dose-dependent efficacy and long durability of ATL-201 in mice show promise for ATL-201 as a disease-modifying treatment of KCNT1 epilepsy.
Collapse
Affiliation(s)
| | - Jennifer Lin
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | - Jenna Tocci
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | - Matthew Rook
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | - Amr Omer
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | | | - Chunhua Yang
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | | | | | | | | | - Alex Prinzen
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | | | | | - Mingwei Li
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | - Taylor Lynch
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | - Bryce Howat
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | | | | | | | | | - Qingmin Chen
- Atalanta Therapeutics, Boston, Massachusetts, USA
| | | | | |
Collapse
|
13
|
Turner MR, Thompson AG, Teunissen CE. Blood level of neurofilament light chain as a biomarker for neurological disorders. BMJ MEDICINE 2025; 4:e000958. [PMID: 39845125 PMCID: PMC11749884 DOI: 10.1136/bmjmed-2024-000958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025]
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Charlotte E Teunissen
- Laboratory Medicine - Neurochemistry, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Moon J, Oh E, Kim M, Kim R, Yoo D, Shin C, Lee JY, Kim JM, Koh SB, Kim M, Jeon B. A Practical Guide for Diagnostic Investigations and Special Considerations in Patients With Huntington's Disease in Korea. J Mov Disord 2025; 18:17-30. [PMID: 39725405 PMCID: PMC11824489 DOI: 10.14802/jmd.24232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024] Open
Abstract
This review provides a comprehensive framework for the diagnostic approach and management of Huntington's disease (HD) tailored to the Korean population. Key topics include genetic counseling, predictive testing, and reproductive options like preimplantation genetic testing. Strategies for assessing disease progression in premanifest HD through laboratory investigations, biofluid, and imaging biomarkers are highlighted. Special considerations for juvenile and late-onset HD, along with associated comorbidities like diabetes mellitus, hypertension, and cardiovascular abnormalities, are discussed. The guide emphasizes personalized symptom management, including pharmacotherapy, physical therapy, and nutritional support, while exploring emerging disease-modifying treatments. A multidisciplinary care model is advocated to improve outcomes for HD patients and caregivers in Korea.
Collapse
Affiliation(s)
- Jangsup Moon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon, Korea
- Department of Neurology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Minkyeong Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Korea
| | - Ryul Kim
- Department of Neurology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Dallah Yoo
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Korea
| | - Chaewon Shin
- Department of Neurology, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Jee-Young Lee
- Department of Neurology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Min Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Seong-Beom Koh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - on behalf of the Korean Huntington’s Disease Society
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Neurology, Chungnam National University Hospital, Daejeon, Korea
- Department of Neurology, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Korea
- Department of Neurology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Korea
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, Korea
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Miller R, Paquette J, Barker A, Sapp E, McHugh N, Bramato B, Yamada N, Alterman J, Echeveria D, Yamada K, Watts J, Anaclet C, DiFiglia M, Khvorova A, Aronin N. Preventing acute neurotoxicity of CNS therapeutic oligonucleotides with the addition of Ca 2+ and Mg 2+ in the formulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102359. [PMID: 39554992 PMCID: PMC11567125 DOI: 10.1016/j.omtn.2024.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024]
Abstract
Oligonucleotide therapeutics (ASOs and siRNAs) have been explored for modulation of gene expression in the central nervous system (CNS), with several drugs approved and many in clinical evaluation. Administration of highly concentrated oligonucleotides to the CNS can induce acute neurotoxicity. We demonstrate that delivery of concentrated oligonucleotides to the CSF in awake mice induces acute toxicity, observable within seconds of injection. Electroencephalography and electromyography in awake mice demonstrated seizures. Using ion chromatography, we show that siRNAs can tightly bind Ca2+ and Mg2+ up to molar equivalents of the phosphodiester/phosphorothioate bonds independently of the structure or phosphorothioate content. Optimization of the formulation by adding high concentrations (above biological levels) of divalent cations (Ca2+ alone, Mg2+ alone, or Ca2+ and Mg2+) prevents seizures with no impact on the distribution or efficacy of the oligonucleotide. The data here establish the importance of adding Ca2+ and Mg2+ to the formulation for the safety of CNS administration of therapeutic oligonucleotides.
Collapse
Affiliation(s)
- Rachael Miller
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Joseph Paquette
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Alexandra Barker
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Ellen Sapp
- MassGeneral Institute for Neurodegenerative Disease, 114 16 Street, Charlestown, MA 02129, USA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Brianna Bramato
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Nozomi Yamada
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Julia Alterman
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Dimas Echeveria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Ken Yamada
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Jonathan Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Christelle Anaclet
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis, CA 95618, USA
| | - Marian DiFiglia
- MassGeneral Institute for Neurodegenerative Disease, 114 16 Street, Charlestown, MA 02129, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
16
|
Ocampo-Ortega SA, Sierra-Sanchez VM, Blancas-Napoles CM, González-Carteño A, Mera-Jiménez E, Macías-Pérez ME, Hernandez-Guerra A, Romero-Nava R, Huang F, Hong E, Villafaña S. Evaluation of an Antisense Oligonucleotide Targeting CAG Repeats: A Patient-Customized Therapy Study for Huntington's Disease. Life (Basel) 2024; 14:1607. [PMID: 39768315 PMCID: PMC11677511 DOI: 10.3390/life14121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Huntington's disease is a genetic disorder characterized by progressive neuronal cell damage in some areas of the brain; symptoms are commonly associated with chorea, rigidity and dystonia. The symptoms in Huntington's Disease are caused by a pathological increase in the number of Cytokine-Adenine-Guanine (CAG) repeats on the first exon of the Huntingtin gene, which causes a protein to have an excessive number of glutamine residues; this alteration leads to a change in the protein's conformation and function. Therefore, the purpose of this work was to design, synthesize and evaluate an antisense oligonucleotide (ASO; 95 nucleotides) HTT 90-5 directed to the Huntingtin CAG repeats in primary leukocyte culture cells from a patient with Huntington's Disease; approximately 500,000 leukocytes per well extracted from venous blood were used, to which 100 pMol of ASO were administered, and the expression of Huntingtin was subsequently evaluated at 72 h by RT-PCR. Our results showed that the administration of the HTT 90-5 antisense decreased the expression of Huntingtin mRNA in the primary culture leukocyte cells from our patient. These results suggest that the use of long antisense targeting the CAG Huntingtin cluster may be an option to decrease the expression of Huntingtin and probably could be adjusted depending on the number of CAG repeats in the cluster.
Collapse
Affiliation(s)
- Sergio Adrian Ocampo-Ortega
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Vivany Maydel Sierra-Sanchez
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Citlali Margarita Blancas-Napoles
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Asdrúbal González-Carteño
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Elvia Mera-Jiménez
- Laboratorio de Cultivo Celular, Neurobiología y Conducta, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (E.M.-J.); (M.E.M.-P.)
| | - Martha Edith Macías-Pérez
- Laboratorio de Cultivo Celular, Neurobiología y Conducta, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (E.M.-J.); (M.E.M.-P.)
| | - Adriana Hernandez-Guerra
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Rodrigo Romero-Nava
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Fengyang Huang
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de Mexico “Federico Gómez”, Ciudad de Mexico 06720, Mexico;
| | - Enrique Hong
- Departamento de Neurofarmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico 14330, Mexico;
| | - Santiago Villafaña
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| |
Collapse
|
17
|
García-González N, Gonçalves-Sánchez J, Gómez-Nieto R, Gonçalves-Estella JM, López DE. Advances and Challenges in Gene Therapy for Neurodegenerative Diseases: A Systematic Review. Int J Mol Sci 2024; 25:12485. [PMID: 39684197 DOI: 10.3390/ijms252312485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
This review explores recent advancements in gene therapy as a potential treatment for neurodegenerative diseases, focusing on intervention mechanisms, administration routes, and associated limitations. Following the PRISMA procedure guidelines, we systematically analyzed studies published since 2020 using the PICO framework to derive reliable conclusions. The efficacy of various gene therapies was evaluated for Parkinson's disease (n = 12), spinal muscular atrophy (n = 8), Huntington's disease (n = 3), Alzheimer's disease (n = 3), and amyotrophic lateral sclerosis (n = 6). For each condition, we assessed the therapeutic approach, curative or disease-modifying potential, delivery methods, advantages, drawbacks, and side effects. Results indicate that gene therapies targeting specific genes are particularly effective in monogenic disorders, with promising clinical outcomes expected in the near future. In contrast, in polygenic diseases, therapies primarily aim to promote cell survival. A major challenge remains: the translation of animal model success to human clinical application. Additionally, while intracerebral delivery methods enhance therapeutic efficacy, they are highly invasive. Despite these hurdles, gene therapy represents a promising frontier in the treatment of neurodegenerative diseases, underscoring the need for continued research to refine and personalize treatments for each condition.
Collapse
Affiliation(s)
| | - Jaime Gonçalves-Sánchez
- Institute of Neuroscience of Castilla y León, 37007 Salamanca, Spain
- Department of Cellular Biology and Pathology, School of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neuroscience of Castilla y León, 37007 Salamanca, Spain
- Department of Cellular Biology and Pathology, School of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jesús M Gonçalves-Estella
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Surgery, School of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Dolores E López
- Institute of Neuroscience of Castilla y León, 37007 Salamanca, Spain
- Department of Cellular Biology and Pathology, School of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
18
|
Mathews EW, Coffey SR, Gärtner A, Belgrad J, Bragg RM, O’Reilly D, Cantle JP, McHugh C, Summers A, Fentz J, Schwagarus T, Cornelius A, Lingos I, Burch Z, Kovalenko M, Andrew MA, Frank Bennett C, Kordasiewicz HB, Marchionini DM, Wilkinson H, Vogt TF, Pinto RM, Khvorova A, Howland D, Wheeler VC, Carroll JB. Suppression of Huntington's Disease Somatic Instability by Transcriptional Repression and Direct CAG Repeat Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.619693. [PMID: 39574582 PMCID: PMC11580907 DOI: 10.1101/2024.11.04.619693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Huntington's disease (HD) arises from a CAG expansion in the huntingtin (HTT) gene beyond a critical threshold. A major thrust of current HD therapeutic development is lowering levels of mutant HTT mRNA (mHTT) and protein (mHTT) with the aim of reducing the toxicity of these product(s). Human genetic data also support a key role for somatic instability (SI) in HTT's CAG repeat - whereby it lengthens with age in specific somatic cell types - as a key driver of age of motor dysfunction onset. Thus, an attractive HD therapy would address both mHTT toxicity and SI, but to date the relationship between SI and HTT lowering remains unexplored. Here, we investigated multiple therapeutically-relevant HTT-lowering modalities to establish the relationship between HTT lowering and SI in HD knock-in mice. We find that repressing transcription of mutant Htt (mHtt) provides robust protection from SI, using diverse genetic and pharmacological approaches (antisense oligonucleotides, CRISPR-Cas9 genome editing, the Lac repressor, and virally delivered zinc finger transcriptional repressor proteins, ZFPs). However, we find that small interfering RNA (siRNA), a potent HTT-lowering treatment, lowers HTT levels without influencing SI and that SI is also normal in mice lacking 50% of total HTT levels, suggesting HTT levels, per se, do not modulate SI in trans. Remarkably, modified ZFPs that bind the mHtt locus, but lack a repressive domain, robustly protect from SI, despite not reducing HTT mRNA or protein levels. These results have important therapeutic implications in HD, as they suggest that DNA-targeted HTT-lowering treatments may have significant advantages compared to other HTT-lowering approaches, and that interaction of a DNA-binding protein and HTT's CAG repeats may provide protection from SI while sparing HTT expression.
Collapse
Affiliation(s)
- Ella W. Mathews
- Department of Neurology, University of Washington, Seattle WA 98104, USA
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | - Sydney R. Coffey
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | | | - Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Robert M. Bragg
- Department of Neurology, University of Washington, Seattle WA 98104, USA
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | - Daniel O’Reilly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jeffrey P. Cantle
- Department of Neurology, University of Washington, Seattle WA 98104, USA
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | - Cassandra McHugh
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| | - Ashley Summers
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | | | | | | | - Zoe Burch
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marina Kovalenko
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marissa A Andrew
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Deanna M. Marchionini
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Hilary Wilkinson
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Thomas F. Vogt
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Ricardo M. Pinto
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David Howland
- CHDI Management, Inc., the company that manages the scientific activities of CHDI Foundation Inc., Princeton, NJ 08540, USA
| | - Vanessa C. Wheeler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts Hospital and Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Jeffrey B. Carroll
- Department of Neurology, University of Washington, Seattle WA 98104, USA
- Department of Psychology, Western Washington University, Bellingham WA 98225, USA
| |
Collapse
|
19
|
Li X, Tong H, Xu S, Zhou G, Yang T, Yin S, Yang S, Li X, Li S. Neuroinflammatory Proteins in Huntington's Disease: Insights into Mechanisms, Diagnosis, and Therapeutic Implications. Int J Mol Sci 2024; 25:11787. [PMID: 39519337 PMCID: PMC11546928 DOI: 10.3390/ijms252111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by a CAG tract expansion in the huntingtin gene (HTT). HD is characterized by involuntary movements, cognitive decline, and behavioral changes. Pathologically, patients with HD show selective striatal neuronal vulnerability at the early disease stage, although the mutant protein is ubiquitously expressed. Activation of the immune system and glial cell-mediated neuroinflammatory responses are early pathological features and have been found in all neurodegenerative diseases (NDDs), including HD. However, the role of inflammation in HD, as well as its therapeutic significance, has been less extensively studied compared to other NDDs. This review highlights the significantly elevated levels of inflammatory proteins and cellular markers observed in various HD animal models and HD patient tissues, emphasizing the critical roles of microglia, astrocytes, and oligodendrocytes in mediating neuroinflammation in HD. Moreover, it expands on recent discoveries related to the peripheral immune system's involvement in HD. Although current immunomodulatory treatments and inflammatory biomarkers for adjunctive diagnosis in HD are limited, targeting inflammation in combination with other therapies, along with comprehensive personalized treatment approaches, shows promising therapeutic potential.
Collapse
Affiliation(s)
- Xinhui Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Huichun Tong
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuying Xu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Gongke Zhou
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Tianqi Yang
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Shurui Yin
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Sitong Yang
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Xiaojiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (X.L.); (H.T.); (S.X.); (G.Z.); (T.Y.); (S.Y.); (S.Y.); (X.L.)
| |
Collapse
|
20
|
Currie AD, Wong JK, Okun MS. A review of temporal interference, nanoparticles, ultrasound, gene therapy, and designer receptors for Parkinson disease. NPJ Parkinsons Dis 2024; 10:195. [PMID: 39443513 PMCID: PMC11500395 DOI: 10.1038/s41531-024-00804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
In this review, we summarize preclinical and clinical trials investigating innovative neuromodulatory approaches for Parkinson disease (PD) motor symptom management. We highlight the following technologies: temporal interference, nanoparticles for drug delivery, blood-brain barrier opening, gene therapy, optogenetics, upconversion nanoparticles, magnetothermal nanoparticles, magnetoelectric nanoparticles, ultrasound-responsive nanoparticles, and designer receptors exclusively activated by designer drugs. These studies establish the basis for novel and promising neuromodulatory treatments for PD motor symptoms.
Collapse
Affiliation(s)
- A D Currie
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| | - J K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - M S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
Caron NS, Byrne LM, Lemarié FL, Bone JN, Aly AEE, Ko S, Anderson C, Casal LL, Hill AM, Hawellek DJ, McColgan P, Wild EJ, Leavitt BR, Hayden MR. Elevated plasma and CSF neurofilament light chain concentrations are stabilized in response to mutant huntingtin lowering in the brains of Huntington's disease mice. Transl Neurodegener 2024; 13:50. [PMID: 39380076 PMCID: PMC11460072 DOI: 10.1186/s40035-024-00443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Therapeutic approaches aimed at lowering toxic mutant huntingtin (mHTT) levels in the brain can reverse disease phenotypes in animal models of Huntington's disease (HD) and are currently being evaluated in clinical trials. Sensitive and dynamic response biomarkers are needed to assess the efficacy of such candidate therapies. Neurofilament light chain (NfL) is a biomarker of neurodegeneration that increases in cerebrospinal fluid (CSF) and blood with progression of HD. However, it remains unknown whether NfL in biofluids could serve as a response biomarker for assessing the efficacy of disease-modifying therapies for HD. METHODS Longitudinal plasma and cross-sectional CSF samples were collected from the YAC128 transgenic mouse model of HD and wild-type (WT) littermate control mice throughout the natural history of disease. Additionally, biofluids were collected from YAC128 mice following intracerebroventricular administration of an antisense oligonucleotide (ASO) targeting the mutant HTT transgene (HTT ASO), at ages both before and after the onset of disease phenotypes. NfL concentrations in plasma and CSF were quantified using ultrasensitive single-molecule array technology. RESULTS Plasma and CSF NfL concentrations were significantly elevated in YAC128 compared to WT littermate control mice from 9 months of age. Treatment of YAC128 mice with either 15 or 50 µg HTT ASO resulted in a dose-dependent, allele-selective reduction of mHTT throughout the brain at a 3-month interval, which was sustained with high-dose HTT ASO treatment for up to 6 months. Lowering of brain mHTT prior to the onset of regional brain atrophy and HD-like motor deficits in this model had minimal effect on plasma NfL at either dose, but led to a dose-dependent reduction of CSF NfL. In contrast, initiating mHTT lowering in the brain after the onset of neuropathological and behavioural phenotypes in YAC128 mice resulted in a dose-dependent stabilization of NfL increases in both plasma and CSF. CONCLUSIONS Our data provide evidence that the response of NfL in biofluids is influenced by the magnitude of mHTT lowering in the brain and the timing of intervention, suggesting that NfL may serve as a promising exploratory response biomarker for HD.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Lauren M Byrne
- UCL Huntington's Disease Centre, University College London Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Fanny L Lemarié
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jeffrey N Bone
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Statistics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Amirah E-E Aly
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Christine Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Lorenzo L Casal
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Austin M Hill
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - David J Hawellek
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Peter McColgan
- Roche Products Ltd., Welwyn Garden City, AL7 1TW, United Kingdom
| | - Edward J Wild
- UCL Huntington's Disease Centre, University College London Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
22
|
Sumner CJ, Miller TM. The expanding application of antisense oligonucleotides to neurodegenerative diseases. J Clin Invest 2024; 134:e186116. [PMID: 39352381 PMCID: PMC11444189 DOI: 10.1172/jci186116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Affiliation(s)
- Charlotte J. Sumner
- Departments of Neurology, Neuroscience, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore Maryland, USA
| | - Timothy M. Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Louçã M, El Akrouti D, Lemesle A, Louessard M, Dufour N, Baroin C, de la Fouchardière A, Cotter L, Jean-Jacques H, Redeker V, Perrier AL. Huntingtin lowering impairs the maturation and synchronized synaptic activity of human cortical neuronal networks derived from induced pluripotent stem cells. Neurobiol Dis 2024; 200:106630. [PMID: 39106928 DOI: 10.1016/j.nbd.2024.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024] Open
Abstract
Despite growing descriptions of wild-type Huntingtin (wt-HTT) roles in both adult brain function and, more recently, development, several clinical trials are exploring HTT-lowering approaches that target both wt-HTT and the mutant isoform (mut-HTT) responsible for Huntington's disease (HD). This non-selective targeting is based on the autosomal dominant inheritance of HD, supporting the idea that mut-HTT exerts its harmful effects through a toxic gain-of-function or a dominant-negative mechanism. However, the precise amount of wt-HTT needed for healthy neurons in adults and during development remains unclear. In this study, we address this question by examining how wt-HTT loss affects human neuronal network formation, synaptic maturation, and homeostasis in vitro. Our findings establish a role of wt-HTT in the maturation of dendritic arborization and the acquisition of network-wide synchronized activity by human cortical neuronal networks modeled in vitro. Interestingly, the network synchronization defects only became apparent when more than two-thirds of the wt-HTT protein was depleted. Our study underscores the critical need to precisely understand wt-HTT role in neuronal health. It also emphasizes the potential risks of excessive wt-HTT loss associated with non-selective therapeutic approaches targeting both wt- and mut-HTT isoforms in HD patients.
Collapse
Affiliation(s)
- Mathilde Louçã
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Donya El Akrouti
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Aude Lemesle
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Morgane Louessard
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Noëlle Dufour
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Chloé Baroin
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Aurore de la Fouchardière
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Laurent Cotter
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Hélène Jean-Jacques
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell, 91198 Gif-sur-Yvette, France
| | - Virginie Redeker
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell, 91198 Gif-sur-Yvette, France
| | - Anselme L Perrier
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France.
| |
Collapse
|
24
|
Kim LJY, Kundu B, Moretti P, Lozano AM, Rahimpour S. Advancements in surgical treatments for Huntington disease: From pallidotomy to experimental therapies. Neurotherapeutics 2024; 21:e00452. [PMID: 39304438 PMCID: PMC11585891 DOI: 10.1016/j.neurot.2024.e00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder characterized by choreic movements, behavioral changes, and cognitive impairment. The pathogenesis of this process is a consequence of mutant protein toxicity in striatal and cortical neurons. Thus far, neurosurgical management of HD has largely been limited to symptomatic relief of motor symptoms using ablative and stimulation techniques. These interventions, however, do not modify the progressive course of the disease. More recently, disease-modifying experimental therapeutic strategies have emerged targeting intrastriatal infusion of neurotrophic factors, cell transplantation, HTT gene silencing, and delivery of intrabodies. Herein we review therapies requiring neurosurgical intervention, including those targeting symptom management and more recent disease-modifying agents, with a focus on safety, efficacy, and surgical considerations.
Collapse
Affiliation(s)
- Leo J Y Kim
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Bornali Kundu
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Paolo Moretti
- Department of Neurology, University of Utah, Salt Lake City, UT, USA; Department of Neurology, George E. Wahlen VA Medical Center, Salt Lake City, UT, USA
| | - Andres M Lozano
- Division of Neurosurgery and Toronto Western Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shervin Rahimpour
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
25
|
Coarelli G, Dubec-Fleury C, Petit E, Sayah S, Fischer C, Nassisi M, Gatignol P, Dorgham K, Daghsen L, Daye P, Cunha P, Kacher R, Hilab R, Hurmic H, Lamazière A, Lamy JC, Welter ML, Chupin M, Mangin JF, Lane R, Gaymard B, Pouget P, Audo I, Brice A, Tezenas du Montcel S, Durr A. Longitudinal Changes of Clinical, Imaging, and Fluid Biomarkers in Preataxic and Early Ataxic Spinocerebellar Ataxia Type 2 and 7 Carriers. Neurology 2024; 103:e209749. [PMID: 39133883 PMCID: PMC11361831 DOI: 10.1212/wnl.0000000000209749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/18/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Brain MRI abnormalities and increases in neurofilament light chain (NfL) have mostly been observed in cross-sectional studies before ataxia onset in polyglutamine spinocerebellar ataxias. Our study aimed to identify longitudinal changes in biological, clinical, and/or imaging biomarkers in spinocerebellar ataxia (SCA) 2 and SCA7 carriers over 1 year. METHODS We studied SCA2 and SCA7 carriers and controls (expansion-negative relatives) at the Paris Brain Institute. Inclusion criteria included Scale for the Assessment and Rating of Ataxia (SARA) scores between 0 and 15. Assessments at baseline, 6 months, and 12 months comprised neurologic, quality of life, orofacial motor, neuropsychological, and ophthalmologic examinations, along with gait and oculomotor recordings, brain MRI, CSF, and blood sampling. The primary outcome was the longitudinal change in these assessments over 1 year. RESULTS We included 15 SCA2 carriers, 15 SCA7 carriers, and 10 controls between May 2020 and April 2021. At baseline, the ages were similar (41 [37, 46] for SCA2, 38 [28.5, 39.8] for SCA7, and 39.5 [31, 54.5] for controls, p = 0.78), as well the sex (p = 0.61); SARA scores were low but different (4 [1.25, 6.5] in SCA2, 2 [0, 11.5] in SCA7, and 0 in controls, p < 0.01). Pons and medulla volumes were smaller in SCAs (p < 0.05) and cerebellum volume only in SCA2 (p = 0.01). Plasma NfL levels were higher in SCA participants (SCA2: 14.2 pg/mL [11.52, 15.89], SCA7: 15.53 [13.27, 23.23]) than in controls (4.88 [3.56, 6.17], p < 0.001). After 1-year follow-up, in SCA2, there was significant pons (-144 ± 60 mm3) and cerebellum (-1,508 ± 580 mm3) volume loss and a worsening of gait assessment; in SCA7, SARA score significantly increased (+1.3 ± 0.4) and outer retinal nuclear layer thickness decreased (-15.4 ± 1.6 μm); for both SCA groups, the orofacial motor assessment significantly worsened. For preataxic and early ataxic carriers, the strongest longitudinal deterioration on outcome measures was orofacial motility in SCA2 and retinal thickness in SCA7. DISCUSSION Despite the limitation of the small sample size, we detected annual changes in preataxic and early ataxic SCA individuals across brain MRI imaging, clinical scores, gait parameters, and retinal thickness. These parameters could serve as potential end points for future therapeutic trials in the preataxic phase. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov NCT04288128.
Collapse
Affiliation(s)
- Giulia Coarelli
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Charlotte Dubec-Fleury
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Emilien Petit
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Sabrina Sayah
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Clara Fischer
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Marco Nassisi
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Peggy Gatignol
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Karim Dorgham
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Lina Daghsen
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Pierre Daye
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Paulina Cunha
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Radhia Kacher
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Rania Hilab
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Hortense Hurmic
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Antonin Lamazière
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Jean-Charles Lamy
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Marie-Laure Welter
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Marie Chupin
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Jean-François Mangin
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Roger Lane
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Bertrand Gaymard
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Pierre Pouget
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Isabelle Audo
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Alexis Brice
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Sophie Tezenas du Montcel
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Alexandra Durr
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
26
|
Ghofrani-Jahromi M, Poudel GR, Razi A, Abeyasinghe PM, Paulsen JS, Tabrizi SJ, Saha S, Georgiou-Karistianis N. Prognostic enrichment for early-stage Huntington's disease: An explainable machine learning approach for clinical trial. Neuroimage Clin 2024; 43:103650. [PMID: 39142216 PMCID: PMC11367643 DOI: 10.1016/j.nicl.2024.103650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND In Huntington's disease clinical trials, recruitment and stratification approaches primarily rely on genetic load, cognitive and motor assessment scores. They focus less on in vivo brain imaging markers, which reflect neuropathology well before clinical diagnosis. Machine learning methods offer a degree of sophistication which could significantly improve prognosis and stratification by leveraging multimodal biomarkers from large datasets. Such models specifically tailored to HD gene expansion carriers could further enhance the efficacy of the stratification process. OBJECTIVES To improve stratification of Huntington's disease individuals for clinical trials. METHODS We used data from 451 gene positive individuals with Huntington's disease (both premanifest and diagnosed) from previously published cohorts (PREDICT, TRACK, TrackON, and IMAGE). We applied whole-brain parcellation to longitudinal brain scans and measured the rate of lateral ventricular enlargement, over 3 years, which was used as the target variable for our prognostic random forest regression models. The models were trained on various combinations of features at baseline, including genetic load, cognitive and motor assessment score biomarkers, as well as brain imaging-derived features. Furthermore, a simplified stratification model was developed to classify individuals into two homogenous groups (low risk and high risk) based on their anticipated rate of ventricular enlargement. RESULTS The predictive accuracy of the prognostic models substantially improved by integrating brain imaging features alongside genetic load, cognitive and motor biomarkers: a 24 % reduction in the cross-validated mean absolute error, yielding an error of 530 mm3/year. The stratification model had a cross-validated accuracy of 81 % in differentiating between moderate and fast progressors (precision = 83 %, recall = 80 %). CONCLUSIONS This study validated the effectiveness of machine learning in differentiating between low- and high-risk individuals based on the rate of ventricular enlargement. The models were exclusively trained using features from HD individuals, which offers a more disease-specific, simplified, and accurate approach for prognostic enrichment compared to relying on features extracted from healthy control groups, as done in previous studies. The proposed method has the potential to enhance clinical utility by: i) enabling more targeted recruitment of individuals for clinical trials, ii) improving post-hoc evaluation of individuals, and iii) ultimately leading to better outcomes for individuals through personalized treatment selection.
Collapse
Affiliation(s)
| | - Govinda R Poudel
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne VIC3000, Australia
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Clayton VIC3800, Australia
| | - Pubu M Abeyasinghe
- Turner Institute for Brain and Mental Health, Monash University, Clayton VIC3800, Australia
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI, USA
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, UK Dementia Research Institute, Department of Neurodegenerative Diseases, University College London, London, UK
| | - Susmita Saha
- Turner Institute for Brain and Mental Health, Monash University, Clayton VIC3800, Australia
| | | |
Collapse
|
27
|
Gao J, Gunasekar S, Xia ZJ, Shalin K, Jiang C, Chen H, Lee D, Lee S, Pisal ND, Luo JN, Griciuc A, Karp JM, Tanzi R, Joshi N. Gene therapy for CNS disorders: modalities, delivery and translational challenges. Nat Rev Neurosci 2024; 25:553-572. [PMID: 38898231 DOI: 10.1038/s41583-024-00829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Swetharajan Gunasekar
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziting Judy Xia
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kiruba Shalin
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Christopher Jiang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| | - Dongtak Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sohyung Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nishkal D Pisal
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - James N Luo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Ana Griciuc
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Jeffrey M Karp
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Rudolph Tanzi
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Saade J, Mestre TA. Huntington's Disease: Latest Frontiers in Therapeutics. Curr Neurol Neurosci Rep 2024; 24:255-264. [PMID: 38861215 DOI: 10.1007/s11910-024-01345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
PURPOSE OF REVIEW Huntington's disease (HD) is an autosomal-dominant disorder caused by a pathological expansion of a trinucleotide repeat (CAG) on exon 1 of the huntingtin (HTT) gene. HD is characterized by the presence of chorea, alongside other hyperkinesia, parkinsonism and a combination of cognitive and behavioural features. Currently, there are no disease-modifying therapies (DMTs) for HD, and the only intervention(s) with approved indication target the treatment of chorea. This article reviews recent research on the clinical development of DMTs and newly developed tools that enhance clinical trial design towards a successful DMT in the future. RECENT FINDINGS HD is living in an era of target-specific drug development with emphasis on the mechanisms related to mutant Huntingtin (HTT) protein. Examples include antisense oligonucleotides (ASO), splicing modifiers and microRNA molecules that aim to reduce the levels of mutant HTT protein. After initial negative results with ASO molecules Tominersen and WVE-120101/ WVE-120102, the therapeutic landscape continues to expand, with various trials currently under development to document proof-of-concept and safety/tolerability. Immune-targeted therapies have also been evaluated in early-phase clinical trials, with promising preliminary findings. The possibility of quantifying mHTT in CSF, along with the development of an integrated biological staging system in HD are important innovations applicable to clinical trial design that enhance the drug development process. Although a future in HD with DMTs remains a hope for those living with HD, care partners and care providers, the therapeutic landscape is promising, with various drug development programs underway following a targeted approach supported by disease-specific biomarkers and staging frameworks.
Collapse
Affiliation(s)
- Joseph Saade
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Tiago A Mestre
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- The University of Ottawa Brain and Research Institute, Ottawa, ON, Canada.
- Parkinson's Disease and Movement Disorder Clinic, Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
| |
Collapse
|
29
|
Shirguppe S, Gapinske M, Swami D, Gosstola N, Acharya P, Miskalis A, Joulani D, Szkwarek MG, Bhattacharjee A, Elias G, Stilger M, Winter J, Woods WS, Anand D, Lim CKW, Gaj T, Perez-Pinera P. In vivo CRISPR base editing for treatment of Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602282. [PMID: 39005280 PMCID: PMC11245100 DOI: 10.1101/2024.07.05.602282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Huntington's disease (HD) is an inherited and ultimately fatal neurodegenerative disorder caused by an expanded polyglutamine-encoding CAG repeat within exon 1 of the huntingtin (HTT) gene, which produces a mutant protein that destroys striatal and cortical neurons. Importantly, a critical event in the pathogenesis of HD is the proteolytic cleavage of the mutant HTT protein by caspase-6, which generates fragments of the N-terminal domain of the protein that form highly toxic aggregates. Given the role that proteolysis of the mutant HTT protein plays in HD, strategies for preventing this process hold potential for treating the disorder. By screening 141 CRISPR base editor variants targeting splice elements in the HTT gene, we identified platforms capable of producing HTT protein isoforms resistant to caspase-6-mediated proteolysis via editing of the splice acceptor sequence for exon 13. When delivered to the striatum of a rodent HD model, these base editors induced efficient exon skipping and decreased the formation of the N-terminal fragments, which in turn reduced HTT protein aggregation and attenuated striatal and cortical atrophy. Collectively, these results illustrate the potential for CRISPR base editing to decrease the toxicity of the mutant HTT protein for HD.
Collapse
|
30
|
Cattaneo E, Barker RA. Brain cholesterol therapy for Huntington's disease - Does it make sense? Clin Transl Med 2024; 14:e1746. [PMID: 38924677 PMCID: PMC11199055 DOI: 10.1002/ctm2.1746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Affiliation(s)
- Elena Cattaneo
- Department of BiosciencesUniversity of MilanMilanItaly
- Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Roger A Barker
- Cambridge Stem Cell Institute and John van Geest Centre for Brain Repair Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
31
|
Chen KS, Koubek EJ, Sakowski SA, Feldman EL. Stem cell therapeutics and gene therapy for neurologic disorders. Neurotherapeutics 2024; 21:e00427. [PMID: 39096590 PMCID: PMC11345629 DOI: 10.1016/j.neurot.2024.e00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Rapid advances in biological knowledge and technological innovation have greatly advanced the fields of stem cell and gene therapies to combat a broad spectrum of neurologic disorders. Researchers are currently exploring a variety of stem cell types (e.g., embryonic, progenitor, induced pluripotent) and various transplantation strategies, each with its own advantages and drawbacks. Similarly, various gene modification techniques (zinc finger, TALENs, CRISPR-Cas9) are employed with various delivery vectors to modify underlying genetic contributors to neurologic disorders. While these two individual fields continue to blaze new trails, it is the combination of these technologies which enables genetically engineered stem cells and vastly increases investigational and therapeutic opportunities. The capability to culture and expand stem cells outside the body, along with their potential to correct genetic abnormalities in patient-derived cells or enhance cells with extra gene products, unleashes the full biological potential for innovative, multifaceted approaches to treat complex neurological disorders. In this review, we provide an overview of stem cell and gene therapies in the context of neurologic disorders, highlighting recent advances and current shortcomings, and discuss prospects for future therapies in clinical settings.
Collapse
Affiliation(s)
- Kevin S Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
32
|
Shafie A, Ashour AA, Anwar S, Anjum F, Hassan MI. Exploring molecular mechanisms, therapeutic strategies, and clinical manifestations of Huntington's disease. Arch Pharm Res 2024; 47:571-595. [PMID: 38764004 DOI: 10.1007/s12272-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
Huntington's disease (HD) is a paradigm of a genetic neurodegenerative disorder characterized by the expansion of CAG repeats in the HTT gene. This extensive review investigates the molecular complexities of HD by highlighting the pathogenic mechanisms initiated by the mutant huntingtin protein. Adverse outcomes of HD include mitochondrial dysfunction, compromised protein clearance, and disruption of intracellular signaling, consequently contributing to the gradual deterioration of neurons. Numerous therapeutic strategies, particularly precision medicine, are currently used for HD management. Antisense oligonucleotides, such as Tominersen, play a leading role in targeting and modulating the expression of mutant huntingtin. Despite the promise of these therapies, challenges persist, particularly in improving delivery systems and the necessity for long-term safety assessments. Considering the future landscape, the review delineates promising directions for HD research and treatment. Innovations such as Clustered regularly interspaced short palindromic repeats associated system therapies (CRISPR)-based genome editing and emerging neuroprotective approaches present unprecedented opportunities for intervention. Collaborative interdisciplinary endeavors and a more insightful understanding of HD pathogenesis are on the verge of reshaping the therapeutic landscape. As we navigate the intricate landscape of HD, this review serves as a guide for unraveling the intricacies of this disease and progressing toward transformative treatments.
Collapse
Affiliation(s)
- Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
33
|
Vogt L, Quiroz V, Ebrahimi-Fakhari D. Emerging therapies for childhood-onset movement disorders. Curr Opin Pediatr 2024; 36:331-341. [PMID: 38655812 PMCID: PMC11047116 DOI: 10.1097/mop.0000000000001354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW We highlight novel and emerging therapies in the treatment of childhood-onset movement disorders. We structured this review by therapeutic entity (small molecule drugs, RNA-targeted therapeutics, gene replacement therapy, and neuromodulation), recognizing that there are two main approaches to treatment: symptomatic (based on phenomenology) and molecular mechanism-based therapy or 'precision medicine' (which is disease-modifying). RECENT FINDINGS We highlight reports of new small molecule drugs for Tourette syndrome, Friedreich's ataxia and Rett syndrome. We also discuss developments in gene therapy for aromatic l-amino acid decarboxylase deficiency and hereditary spastic paraplegia, as well as current work exploring optimization of deep brain stimulation and lesioning with focused ultrasound. SUMMARY Childhood-onset movement disorders have traditionally been treated symptomatically based on phenomenology, but focus has recently shifted toward targeted molecular mechanism-based therapeutics. The development of precision therapies is driven by increasing capabilities for genetic testing and a better delineation of the underlying disease mechanisms. We highlight novel and exciting approaches to the treatment of genetic childhood-onset movement disorders while also discussing general challenges in therapy development for rare diseases. We provide a framework for molecular mechanism-based treatment approaches, a summary of specific treatments for various movement disorders, and a clinical trial readiness framework.
Collapse
Affiliation(s)
- Lindsey Vogt
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto Ontario, Canada
| | - Vicente Quiroz
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Darius Ebrahimi-Fakhari
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
LeDoux MS. Polymerase I as a Target for Treating Neurodegenerative Disorders. Biomedicines 2024; 12:1092. [PMID: 38791054 PMCID: PMC11118182 DOI: 10.3390/biomedicines12051092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerase I (Pol I) is at the epicenter of ribosomal RNA (rRNA) synthesis. Pol I is a target for the treatment of cancer. Given the many cellular commonalities between cancer and neurodegeneration (i.e., different faces of the same coin), it seems rational to consider targeting Pol I or, more generally, rRNA synthesis for the treatment of disorders associated with the death of terminally differentiated neurons. Principally, ribosomes synthesize proteins, and, accordingly, Pol I can be considered the starting point for protein synthesis. Given that cellular accumulation of abnormal proteins such as α-synuclein and tau is an essential feature of neurodegenerative disorders such as Parkinson disease and fronto-temporal dementia, reduction of protein production is now considered a viable target for treatment of these and closely related neurodegenerative disorders. Abnormalities in polymerase I activity and rRNA production may also be associated with nuclear and nucleolar stress, DNA damage, and childhood-onset neuronal death, as is the case for the UBTF E210K neuroregression syndrome. Moreover, restraining the activity of Pol I may be a viable strategy to slow aging. Before starting down the road of Pol I inhibition for treating non-cancerous disorders of the nervous system, many questions must be answered. First, how much Pol I inhibition can neurons tolerate, and for how long? Should inhibition of Pol I be continuous or pulsed? Will cells compensate for Pol I inhibition by upregulating the number of active rDNAs? At present, we have no effective and safe disease modulatory treatments for Alzheimer disease, α-synucleinopathies, or tauopathies, and novel therapeutic targets and approaches must be explored.
Collapse
Affiliation(s)
- Mark S. LeDoux
- Department of Psychology and College of Health Sciences, University of Memphis, Memphis, TN 38152, USA; or
- Veracity Neuroscience LLC, Memphis, TN 38157, USA
| |
Collapse
|
35
|
Sampaio C. Huntington disease - Update on ongoing therapeutic developments and a look toward the future. Parkinsonism Relat Disord 2024; 122:106049. [PMID: 38418319 DOI: 10.1016/j.parkreldis.2024.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Affiliation(s)
- Cristina Sampaio
- CHDI Management, Inc. Advisors to CHDI Foundation, Princeton, USA; Faculdade Medicina da Universidade de Lisboa (FMUL), Portugal.
| |
Collapse
|
36
|
Reilmann R. Concern about Tominersen in Patients with Huntington's Disease. N Engl J Med 2024; 390:1058-1059. [PMID: 38478005 DOI: 10.1056/nejmc2400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
|
37
|
Mestre TA. Laquinimod, Huntington's disease, and disease modification. Lancet Neurol 2024; 23:220-221. [PMID: 38280390 DOI: 10.1016/s1474-4422(24)00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/29/2024]
Affiliation(s)
- Tiago A Mestre
- Ottawa Hospital Research Institute; University of Ottawa Brain and Mind Research Institute; Division of Neurology, Department of Medicine, University of Ottawa, The Ottawa Hospital Ottawa, Ottawa, ON K1Y 4E9, Canada.
| |
Collapse
|
38
|
Franklin GL, Teive HAG, Tensini FS, Camargo CHF, de Lima NDSC, de Dos Santos DDC, Meira AT, Tabrizi SJ. The Huntington's Disease Gene Discovery. Mov Disord 2024; 39:227-234. [PMID: 38179605 DOI: 10.1002/mds.29703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
The gene for Huntington's disease (HD) was discovered in 1993, after an international collaborative initiative that led researchers to remote regions of South America. It was the most remarkable milestone, since George Huntington's initial description. Through the phenomenological discussions led by Jean-Martin Charcot and Willian Osler, and finally Americo Negrette's reports, which served as the inspiration for the Venezuela Project led by Nancy Wexler, the journey toward discovering the Huntington's disease (HD) gene was marked by substantial efforts. This monumental achievement involved the analysis of more than 18,000 blood samples and gathered dozens of researchers in an integrated effort, enabling the mapping of the gene on chromosome 4 in 1983 and leading, a decade later, to the precise localization and identification of the HTT gene. The discovery of the HD mutation represented a pivotal moment in the field of genetics and neurology, significantly enhancing our understanding of the disease and creating opportunities for future treatments. The progress made and the knowledge gained during this journey catalyzed the development of many innovative molecular techniques that have advanced research in other medical conditions. In this article, the authors celebrate three decades of this memorable event, revisiting the historical aspects, providing insights into the techniques developed, and delving into the paths that ultimately led to the discovery of the HD gene. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gustavo L Franklin
- Internal Medicine Department, Pontifical University Catholic of Parana, Medical School, Curitiba, Brazil
| | - Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, HC, Federal University of Paraná, Curitiba, Brazil
| | - Fernando Spina Tensini
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, HC, Federal University of Paraná, Curitiba, Brazil
| | | | | | | | - Alex T Meira
- Internal Medicine Department, Federal University of Paraíba, João Pessoa, Brazil
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, UK Dementia Research Institute, University College London, London, UK
| |
Collapse
|
39
|
Estevez-Fraga C, Tabrizi SJ, Wild EJ. Huntington's Disease Clinical Trials Corner: March 2024. J Huntingtons Dis 2024; 13:1-14. [PMID: 38489195 DOI: 10.3233/jhd-240017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
In this edition of the Huntington's Disease Clinical Trials Update, we expand on the ongoing program from VICO Therapeutics and on the recently terminated VIBRANT-HD clinical trials. We also discuss updates from uniQure's AMT-130 program and PTC therapeutics' trial of PTC518 and list all currently registered and ongoing clinical trials in Huntington's disease.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Edward J Wild
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
40
|
DiFiglia M, Leavitt BR, Macdonald D, Thompson LM. Towards Standardizing Nomenclature in Huntington's Disease Research. J Huntingtons Dis 2024; 13:119-131. [PMID: 38968054 PMCID: PMC11307060 DOI: 10.3233/jhd-240044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/07/2024]
Abstract
The field of Huntington's disease research covers many different scientific disciplines, from molecular biology all the way through to clinical practice, and as our understanding of the disease has progressed over the decades, a great deal of different terminology has accrued. The field is also renowned for its collaborative spirit and use of standardized reagents, assays, datasets, models, and clinical measures, so the use of standardized terms is especially important. We have set out to determine, through a consensus exercise involving basic and clinical scientists working in the field, the most appropriate language to use across disciplines. Nominally, this article will serve as the style guide for the Journal of Huntington's Disease (JHD), the only journal devoted exclusively to HD, and we lay out the preferred and standardized terminology and nomenclature for use in JHD publications. However, we hope that this article will also serve as a useful resource to the HD research community at large and that these recommended naming conventions will be adopted widely.
Collapse
Affiliation(s)
- Marian DiFiglia
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Charlestown, MA, USA
| | - Blair R. Leavitt
- Center for Molecular Medicine and Therapeutics and Departments of Medical Genetics and Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Douglas Macdonald
- CHDI Management, Inc., The Company that Manages the Scientific Activities of CHDI Foundation, Inc, Los Angeles, CA, USA
| | - Leslie M. Thompson
- Departments of Psychiatry and Human Behavior and Neurobiology and Behavior, University of California, Irvine, CA, USA
| |
Collapse
|