1
|
Hancevic M, Nemir J, Marasanov S, Hrsak H, Luketin L, Peric I, Ozretic D, Jovanovic I, Rados M, Bilic E, Mrak G, Heinrich Z. Gamma Knife radiosurgery for brain arteriovenous malformations - a single-center experience. Acta Neurochir (Wien) 2025; 167:121. [PMID: 40272578 PMCID: PMC12021701 DOI: 10.1007/s00701-025-06523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Gamma Knife stereotactic radiosurgery (SRS) has emerged as a non-invasive and effective treatment for brain arteriovenous malformations (AVM), particularly in cases where surgical resection is not feasible. The factors influencing AVM obliteration following Gamma Knife radiosurgery remain incompletely understood and differing results across studies indicate the need for further research. This study reviews a single center's 20-year experience with Gamma Knife radiosurgery for AVMs, evaluating factors associated with successful treatment outcomes. METHODS A retrospective analysis was conducted on 241 patients treated with Gamma Knife SRS for intracranial AVMs at University Hospital Center Zagreb between 2004 and 2021. Patient demographics, AVM characteristics, prior treatments, radiosurgical parameters, and clinical outcomes were analyzed. AVM obliteration was assessed using MR angiography and digital subtraction angiography. Binary logistic regression and Cox regression analysis were performed to identify factors associated with treatment success and shorter time to obliteration. RESULTS AVM obliteration was achieved in 171 patients (71%), with a mean time to complete obliteration of 3 years. Higher prescription doses correlated with increased obliteration rates (p < 0.05), as did hemispheric AVM location (p < 0.05) while smaller nidus volumes were associated with faster obliteration times (p < 0.05). 75.5% of previously embolized AVMs achieved obliteration vs 68.2% of non-embolized AVMs, however the difference was not statistically significant. The introduction of cone beam CT angiography in treatment planning improved obliteration rates (69.1% to 75.8%), though statistical significance was not reached. The overall complication rate was 15.4%, with 5.8% experiencing post-SRS hemorrhage. CONCLUSION Higher prescription doses correlated with improved obliteration rates, and smaller AVMs achieved faster obliteration. The use of additional imaging modalities in treatment planning possibly contributed to non-inferior obliteration rates in previously embolized AVMs.
Collapse
Affiliation(s)
- Mirea Hancevic
- Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia.
| | - Jakob Nemir
- Department of Neurosurgery, University Hospital Center Zagreb, Zagreb, Croatia
| | - Sergej Marasanov
- Department of Neurosurgery, University Hospital Center Zagreb, Zagreb, Croatia
| | - Hrvoje Hrsak
- Department of Medical Physics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Luka Luketin
- Department of Medical Physics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ivan Peric
- Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia
| | - David Ozretic
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ivan Jovanovic
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Marko Rados
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ervina Bilic
- Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Goran Mrak
- Department of Neurosurgery, University Hospital Center Zagreb, Zagreb, Croatia
| | - Zdravko Heinrich
- Department of Neurosurgery, University Hospital Center Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Luxán G. Enhancing our understanding of endothelial cells. eLife 2025; 14:e106133. [PMID: 40067164 PMCID: PMC11896606 DOI: 10.7554/elife.106133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
What determines whether an endothelial cell becomes part of an artery, a vein or a capillary?
Collapse
Affiliation(s)
- Guillermo Luxán
- Institute of Cardiovascular Regeneration, Goethe University FrankfurtFrankfurt am MainGermany
- Cardiopulmonary InstituteFrankfurt am MainGermany
- DZHK, site Rhine-MainFrankfurt am MainGermany
| |
Collapse
|
3
|
Yang Y, Wu X, Zhao Y, Zhang D, Zhang L, Cai X, Ji J, Jing Z, Boström KI, Yao Y. Arterial-Lymphatic-Like Endothelial Cells Appear in Hereditary Hemorrhagic Telangiectasia 2 and Contribute to Vascular Leakage and Arteriovenous Malformations. Circulation 2025; 151:299-317. [PMID: 39429196 PMCID: PMC11789604 DOI: 10.1161/circulationaha.124.070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Arteriovenous malformations (AVMs) are characteristic of hereditary hemorrhagic telangiectasia. Loss-of-function mutations in the activin receptor-like kinase 1 (Alk1) are linked to hemorrhagic telangiectasia type 2. METHODS Endothelial-specific deletion of Alk1, endothelial lineage tracing, transcriptomics of single-cell analysis, and electron microscopy were performed to examine the vascular phenotype and characteristics of ALK1-deficient endothelial cells (ECs) after EC-specific Alk1 deletion. Ischemia assays were used to examine the cell capacity for vascular malformation. Connectivity Map with transcriptomic analysis was applied to identify chemical compounds. Specific methods for arteriovenous malformations, such as micro-computed tomography, with other molecular and cell biological tools were also performed. RESULTS We performed endothelial-specific deletion of Alk1 in mice and found severe arteriovenous malformations and vascular leakage. The transcriptomics of single-cell analysis revealed a new distinctive cell cluster formed after Alk1 deletion where the cells coexpressed arterial and lymphatic endothelial markers. The analysis projected that these cells potentially originated from arterial ECs after Alk1 deletion. This new population was referred to as arterial-lymphatic-like ECs according to its cellular markers, and its appearance was validated in the pulmonary small arteries after Alk1 deletion. Transplantation of these cells caused vascular malformations. Endothelial lineage tracing confirmed that these new arterial-lymphatic-like ECs were derived from ALK1 depleted ECs, potentially arterial ECs. We discovered that SOX17 (SRY-box transcription factor 17) induction was responsible for the derivation of these arterial-lymphatic-like ECs. We showed that direct binding of MDM2 (mouse double minute 2) was required for Sox17 to execute this activity. Inhibition of MDM2 reduced the arteriovenous malformations in the mouse model. CONCLUSIONS Together, our studies revealed the mechanistic underpinnings of ALK1 signaling in regulating the endothelial phenotype and provided possibilities for new therapeutic strategies in hemorrhagic telangiectasia type 2.
Collapse
MESH Headings
- Animals
- Arteriovenous Malformations/pathology
- Arteriovenous Malformations/genetics
- Arteriovenous Malformations/metabolism
- Telangiectasia, Hereditary Hemorrhagic/genetics
- Telangiectasia, Hereditary Hemorrhagic/pathology
- Telangiectasia, Hereditary Hemorrhagic/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Mice
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Activin Receptors, Type II/deficiency
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/deficiency
- Disease Models, Animal
- SOXF Transcription Factors/metabolism
- SOXF Transcription Factors/genetics
- Humans
- Mice, Knockout
- Arteries/pathology
- Arteries/metabolism
- Lymphatic Vessels/pathology
- Lymphatic Vessels/metabolism
Collapse
Affiliation(s)
- Yang Yang
- Division of Cardiology, David Geffen School of Medicine (Y. Yang, X.W., Y.Z., L.Z., X.C., J.J., Z.J., K.I.B., Y. Yao), University of California, Los Angeles
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine (Y. Yang, X.W., Y.Z., L.Z., X.C., J.J., Z.J., K.I.B., Y. Yao), University of California, Los Angeles
| | - Yan Zhao
- Division of Cardiology, David Geffen School of Medicine (Y. Yang, X.W., Y.Z., L.Z., X.C., J.J., Z.J., K.I.B., Y. Yao), University of California, Los Angeles
| | - Daoqin Zhang
- Department of Pediatrics, Stanford University, CA (D.Z.)
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine (Y. Yang, X.W., Y.Z., L.Z., X.C., J.J., Z.J., K.I.B., Y. Yao), University of California, Los Angeles
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine (Y. Yang, X.W., Y.Z., L.Z., X.C., J.J., Z.J., K.I.B., Y. Yao), University of California, Los Angeles
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine (Y. Yang, X.W., Y.Z., L.Z., X.C., J.J., Z.J., K.I.B., Y. Yao), University of California, Los Angeles
| | - Zheng Jing
- Division of Cardiology, David Geffen School of Medicine (Y. Yang, X.W., Y.Z., L.Z., X.C., J.J., Z.J., K.I.B., Y. Yao), University of California, Los Angeles
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine (Y. Yang, X.W., Y.Z., L.Z., X.C., J.J., Z.J., K.I.B., Y. Yao), University of California, Los Angeles
- Molecular Biology Institute (K.I.B.), University of California, Los Angeles
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine (Y. Yang, X.W., Y.Z., L.Z., X.C., J.J., Z.J., K.I.B., Y. Yao), University of California, Los Angeles
| |
Collapse
|
4
|
Graffeo CS, Kotecha R, Sahgal A, Fariselli L, Gorgulho A, Levivier M, Ma L, Paddick I, Regis J, Sheehan JP, Suh JH, Yomo S, Pollock BE. Stereotactic Radiosurgery for Intermediate (III) or High (IV-V) Spetzler-Martin Grade Arteriovenous Malformations: International Stereotactic Radiosurgery Society Practice Guideline. Neurosurgery 2025; 96:298-307. [PMID: 38989995 DOI: 10.1227/neu.0000000000003102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/29/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Consensus guidelines do not exist to guide the role of stereotactic radiosurgery (SRS) in the management of patients with Spetzler-Martin Grade III-V arteriovenous malformations (AVMs). We sought to establish SRS practice guidelines for Grade III-V AVMs based on a critical systematic review of the published literature. METHODS A Preferred Reporting Items for Systematic Reviews and Meta-Analyses-compliant search of Medline, Embase, and Scopus, 1986 to 2023, for publications reporting post-SRS outcomes in ≥10 Grade III-V AVMs with the median follow-up ≥24 months was performed. Primary end points were AVM obliteration and post-SRS hemorrhage. Secondary end points included dosimetric variables, Spetzler-Martin parameters, and neurological outcome. RESULTS : In total, 2463 abstracts were screened, 196 manuscripts were reviewed, and 9 met the strict inclusion criteria. The overall sample of 1634 AVMs consisted of 1431 Grade III (88%), 186 Grade IV (11%), and 11 Grade V lesions (1%). Total median post-SRS follow-up was 53 months for Grade III and 43 months for Grade IV-V AVMs (ranges, 2-290; 12-262). For Grade III AVMs, the crude obliteration rate was 72%, and among Grade IV-V lesions, the crude obliteration rate was 46%. Post-SRS hemorrhage was observed in 7% of Grade III compared with 17% of Grade IV-V lesions. Major permanent deficits or death from hemorrhage or radiation-induced complications occurred in 86 Grade III (6%) and 22 Grade IV-V AVMs (12%). CONCLUSION Most patients with Spetzler-Martin Grade III AVMs have favorable SRS treatment outcomes; however, the obliteration rate for Grade IV-V AVMs is less than 50%. The available studies are heterogenous and lack nuanced, long-term, grade-specific outcomes.
Collapse
Affiliation(s)
- Christopher S Graffeo
- Department of Neurological Surgery, University of Oklahoma, Oklahoma City , Oklahoma , USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami , Florida , USA
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto , Ontario , Canada
| | - Laura Fariselli
- Department of Neurosurgery, Unit of Radiotherapy, Fondazione IRCCS Istituto Neurologico C Besta, Milan , Italy
| | - Alessandra Gorgulho
- Department of Neurosurgery, State University of São Paulo, NeuroSapiens Group, São Paulo , Brazil
- D'Or Institute for Research and Education, São Paulo , Brazil
| | - Marc Levivier
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, Lausanne , Switzerland
| | - Lijun Ma
- Department of Radiation Oncology, University of Southern California, Los Angeles , California , USA
| | - Ian Paddick
- Queen Square Radiosurgery Centre, National Hospital for Neurology and Neurosurgery, London , UK
| | - Jean Regis
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille , France
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville , Virginia , USA
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland , Ohio , USA
| | - Shoji Yomo
- Division of Radiation Oncology, Aizawa Comprehensive Cancer Center, Aizawa Hospital, Matsumoto , Japan
| | - Bruce E Pollock
- Department of Neurological Surgery, Mayo Clinic, Rochester , Minnesota , USA
| |
Collapse
|
5
|
Yuan J, Niu H, Lei C, Xu R, Liu Y, Yuan K, Zou L, He S, Zhao Y. Neuroplasticity and functional reorganization of language in patients with arteriovenous malformations: insights from neuroimaging and clinical interventions. Front Hum Neurosci 2025; 19:1503864. [PMID: 39958956 PMCID: PMC11825511 DOI: 10.3389/fnhum.2025.1503864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Patients with arteriovenous malformations (AVMs) located in the functional area of speech often exhibit language dysfunction, and neuroplasticity allows the brain of some patients to regain speech through functional reorganization. Exploring the mechanism of AVMs-induced reorganization of language function is important for understanding neuroplasticity and improving clinical intervention strategies. This review systematically searched and analyzed the research literature in related fields in recent years, covering data from neuroimaging, functional magnetic resonance imaging (fMRI), and clinical case studies. By integrating these evidences, the phenomenon of functional reorganization within non-verbal functional areas and its influencing factors in patients with AVMs were assessed. It concluded that functional reorganization of language due to AVMs is a manifestation of a high degree of neurological plasticity and that understanding this process has important implications for neurosurgical planning and postoperative rehabilitation of patients. Future research should continue to explore the mechanisms of functional reorganization in the brain and work to develop new diagnostic tools and therapeutic approaches to improve the rate of recovery of language function in patients with AVMs.
Collapse
Affiliation(s)
- Jialong Yuan
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongchuan Niu
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Chengxu Lei
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ruichen Xu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yutong Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Kexin Yuan
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Linru Zou
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shihao He
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| |
Collapse
|
6
|
Zhang Y, Chen Y, Li R, Ma L, Han H, Li Z, Zhang H, Yuan K, Zhao Y, Jin W, Chen P, Zhou W, Ye X, Li Y, Wang S, Chen X, Zhao Y. Overloaded transnidal pressure gradient as the hemodynamic mechanism leading to arteriovenous malformation rupture: a quantitative analysis using intravascular pressure monitoring and color-coded digital subtraction angiography. J Neurointerv Surg 2025; 17:186-191. [PMID: 38471763 DOI: 10.1136/jnis-2023-021348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The hemodynamics of brain arteriovenous malformations (AVMs) may have implications for hemorrhage. This study aimed to explore the hemodynamics of ruptured AVMs by direct microcatheter intravascular pressure monitoring (MIPM) and indirect quantitative digital subtraction angiography (QDSA). METHODS We recruited patients with AVMs at a tertiary neurosurgery center from October 2020 to March 2023. In terms of MIPM, we preoperatively super-selected a predominant feeding artery and main draining vein through angiography to measure intravascular pressure before embolization. In processing of QDSA, we adopted previously standardized procedure for quantitative hemodynamics analysis of pre-embolization digital subtraction angiography (DSA), encompassing main feeding artery, nidus, and the main draining vein. Subsequently, we investigated the correlation between AVM rupture and intravascular pressure from MIPM, as well as hemodynamic parameters derived from QDSA. Additionally, we explored the interrelationships between hemodynamic indicators in both dimensions. RESULTS After strict screening of patients, our study included 10 AVMs (six ruptured and four unruptured). We found that higher transnidal pressure gradient (TPG) (53.00±6.36 vs 39.25±8.96 mmHg, p=0.042), higher feeding artery pressure (FAP) (72.83±5.46 vs 65.00±6.48 mmHg, p=0.031) and higher stasis index of nidus (3.54±0.73 vs 2.43±0.70, p=0.043) were significantly correlated with AVM rupture. In analysis of interrelationships between hemodynamic indicators in both dimensions, a strongly positive correlation (r=0.681, p=0.030) existed between TPG and stasis index of nidus. CONCLUSIONS TPG and FAP from MIPM platform and nidus stasis index from QDSA platform were correlated with AVM rupture, and both were positively correlated, suggesting that higher pressure load within nidus may be the central mechanism leading to AVM rupture.
Collapse
Affiliation(s)
- Yukun Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Li Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Heze Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Haibin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Kexin Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yang Zhao
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Weitao Jin
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Pingting Chen
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Wanting Zhou
- Department of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
7
|
Orscelik A, Musmar B, Matsukawa H, Ismail M, Elawady SS, Assad S, Cunningham C, Sowlat MM, Spiotta AM. Optimal Timing of Microsurgical Treatment for Ruptured Arteriovenous Malformations: A Systematic Review and Meta-Analysis. Neurosurgery 2025; 96:18-28. [PMID: 38912816 DOI: 10.1227/neu.0000000000003043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/19/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The timing of microsurgical treatment (MST) for ruptured brain arteriovenous malformations (bAVM) is a contentious issue in the literature. This study aimed to investigate the impact of MST timing on outcomes in patients with ruptured bAVMs, considering MST with and without preoperative endovascular treatment (EVT). METHOD Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines, a comprehensive search was conducted across multiple databases, yielding 15 studies meeting the inclusion criteria. The timing was defined as the duration from the rupture of bAVM to the MST. The patients were divided into 4 different groups based on MST timing: <48 hours, <1 week, <2 weeks, and <1 month. The primary outcome was favorable outcome defined as a modified Rankin Scale score of 0 to 2 or a Glasgow Outcome Scale score of 4 to 5 in the last clinical follow-up. Secondary outcomes included periprocedural mortality and complete excision. RESULTS MST time >48 hours were associated with a significantly higher favorable outcome rate (odds ratio: 9.71, 95% Cl: 3.09-30.57, P < .01) and a lower mortality rate (OR: 0.15, 95% Cl: 0.02-0.88, P = .04) compared with MST timing ≤48 hours. After exclusion of patients who underwent MST with preoperative EVT, MST time >48 hours had a significantly higher rate of favorable outcome (OR: 9.39, 95% CI: 2.53-34.89, P < .01). CONCLUSION This meta-analysis suggests that delayed surgical intervention beyond 48 hours may be associated with improved favorable outcomes in patients who underwent MST with and without preoperative EVT for ruptured bAVMs.
Collapse
Affiliation(s)
- Atakan Orscelik
- Department of Neurosurgery, Division of Neuroendovascular Surgery, Medical University of South Carolina, Charleston , South Carolina , USA
| | - Basel Musmar
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia , Pennsylvania , USA
| | - Hidetoshi Matsukawa
- Department of Neurosurgery, Division of Neuroendovascular Surgery, Medical University of South Carolina, Charleston , South Carolina , USA
- Department of Neurosurgery, Hyogo Medical University, Nishinomiya , Japan
| | - Mustafa Ismail
- College of Medicine, University of Baghdad, Baghdad , Iraq
| | - Sameh Samir Elawady
- Department of Neurosurgery, Division of Neuroendovascular Surgery, Medical University of South Carolina, Charleston , South Carolina , USA
| | - Salman Assad
- Department of Neurology, University of Nebraska Medical Center, Omaha , Nebraska , USA
| | - Conor Cunningham
- Department of Neurosurgery, Division of Neuroendovascular Surgery, Medical University of South Carolina, Charleston , South Carolina , USA
| | - Mohamed Mahdi Sowlat
- Department of Neurosurgery, Division of Neuroendovascular Surgery, Medical University of South Carolina, Charleston , South Carolina , USA
| | - Alejandro M Spiotta
- Department of Neurosurgery, Division of Neuroendovascular Surgery, Medical University of South Carolina, Charleston , South Carolina , USA
| |
Collapse
|
8
|
Yurtluk MD, Bin-Alamer O, Flickinger JC, Hadjipanayis CG, Niranjan A, Lunsford LD. Multistaged Stereotactic Radiosurgery for Complex Large Lobar Arteriovenous Malformations: A Case Series. Neurosurgery 2025; 96:223-232. [PMID: 38967428 DOI: 10.1227/neu.0000000000003060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Although stereotactic radiosurgery (SRS) has well defined outcomes in the management of smaller-volume arteriovenous malformations (AVM), this report evaluates the outcomes when SRS is used for large-volume (≥10 cc) lobar AVMs. METHODS Between 1990 and 2022, a cohort of 1325 patients underwent Leksell Gamma Knife SRS for brain AVMs. Among these, 40 patients (25 women; median age: 37 years) with large lobar AVMs underwent volume-staged SRS followed by additional SRS procedures if needed (2-5 procedures). The patients presented with diverse AVM locations and Spetzler-Martin Grades. Before SRS, 16 patients underwent a total of 43 embolization procedures. RESULTS Over a median follow-up of 73 months, 20 patients achieved AVM obliteration. The 3, 5, and 10-year obliteration rates were 9.3%, 15.3%, and 53.3%, respectively. During the latency interval between the first SRS procedure and the last follow-up, 11 patients had intracerebral hemorrhages (ICH) and 6 developed new neurological deficits unrelated to ICH. The postoperative hemorrhage risk after the first SRS was 13.8% at 3 years, 16.6% at 5 years, and 36.2% at 10 years. No hemorrhagic event was documented after confirmed obliteration. Compared with the modified Rankin Scale (mRS) scores before SRS, the mRS improved or remained stable in 28 patients. Nine patients died during the observation interval. Five were related to ICH. CONCLUSION These outcomes underscore both the potential effectiveness and the limitations of multistage SRS procedures for complex high-risk large volume AVMs in critical brain lobar locations. Most patients retained either stable or improved long-term mRS scores. During the latency interval from the first SRS until obliteration, achieved after two or more procedures, the risk of hemorrhage and treatment-related complications persists.
Collapse
Affiliation(s)
- Mehmet Denizhan Yurtluk
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - Othman Bin-Alamer
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - John C Flickinger
- Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - Constantinos G Hadjipanayis
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - Ajay Niranjan
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - L Dade Lunsford
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| |
Collapse
|
9
|
Khan H, Sangah AB, Nasir R, Khan SA, Shaikh SS, Ahmed I, Abbasi MK, Ahmed A, Siddiqui D, Hussain SA, Akhunzada NZ, Godfrey O. Efficacy of radiosurgery with and without angioembolization: A subgroup analysis of effectiveness in ruptured versus unruptured arteriovenous malformations - An updated systematic review and meta-analysis. Surg Neurol Int 2024; 15:467. [PMID: 39777180 PMCID: PMC11704434 DOI: 10.25259/sni_737_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background Congenital arterial defects such as cerebral arteriovenous malformations (AVMs) increase brain bleeding risk. Conservative therapy, microsurgical removal, percutaneous embolization, stereotactic radiosurgery (SRS), or a combination may treat this serious disease. This study compares angioembolization with SRS to SRS alone in ruptured or unruptured brain ateriovenous malformations (BAVM) patients. Methods We followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses recommendations for this study. Until September 2023, PubMed/Medline, Cochrane, and Clinicaltrials.gov were searched for literature. English-language studies comparing SRS alone to embolization with SRS on ruptured or non-ruptured AVMs that could not be operated on were considered. The Newcastle-Ottawa Scale assessed research study quality. Results Results included 46 studies with a total of 7077 participants. There was a greater obliteration rate in the SRS-only group (60.4%) than in the embolization plus SRS group (49.73%). Particularly in the SRS-only group, ruptured AVMs showed a noticeably greater obliteration rate than unruptured AVMs (P = 0.002). However, no notable differences were found in hemorrhagic events or radiation-induced changes between the two groups; however, the SRS-only group had a slightly greater, yet not statistically significant, mortality rate. Conclusion Our data showed that ruptured brain AVMs had a much greater obliteration rate than unruptured ones, mostly due to SRS alone, without embolization. The aggregated data showed no significant changes, whereas SRS alone decreased radiation-induced alterations and hemorrhagic rates but with increased mortality. SRS alone may have a higher risk-to-reward ratio for nidus obliteration in ruptured brain AVM patients, so it should be used without embolization, although more research is needed to determine the effects of immediate and late complications.
Collapse
Affiliation(s)
- Hamza Khan
- Department of Neurosurgery, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Abdul Basit Sangah
- Department of Neurosurgery, Liaquat National Hospital, Karachi, Pakistan
| | - Roua Nasir
- Department of Neurosurgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Saad Akhtar Khan
- Department of Neurosurgery, Liaquat National Hospital, Karachi, Pakistan
| | | | - Ikhlas Ahmed
- Department of Neurosurgery, Liaquat National Hospital, Karachi, Pakistan
| | - Mohad Kamran Abbasi
- Department of Neurosurgery, Rehman Medical Institute Peshawar, Peshawar, Pakistan
| | - Asma Ahmed
- Department of Neurosurgery, Rehman Medical Institute Peshawar, Peshawar, Pakistan
| | - Dua Siddiqui
- Department of Neurosurgery, Liaquat National Hospital, Karachi, Pakistan
| | - Syeda Ayesha Hussain
- Department of Neurosurgery, Rehman Medical Institute Peshawar, Peshawar, Pakistan
| | | | - Oswin Godfrey
- Department of Neurosurgery, Sohail Trust Hospital, Karachi, Pakistan
| |
Collapse
|
10
|
Zhang X, Jacobs KA, Raygor KP, Li S, Li J, Wang RA. Arterial endothelial deletion of hereditary hemorrhagic telangiectasia 2/ Alk1 causes epistaxis and cerebral microhemorrhage with aberrant arteries and defective smooth muscle coverage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.622742. [PMID: 39651127 PMCID: PMC11623514 DOI: 10.1101/2024.11.25.622742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant vascular disorder with manifestations including severe nose bleeding and microhemorrhage in brains. Despite being the second most common inherited bleeding disorder, the pathophysiological mechanism underlying HHT-associated hemorrhage is poorly understood. HHT pathogenesis is thought to follow a Knudsonian two-hit model, requiring a second somatic mutation for lesion formation. Mutations in activin receptor-like kinase 1 ( ALK1 ) gene cause HHT type 2. We hypothesize that somatic mutation of Alk1 in arterial endothelial cells (AECs) leads to arterial defects and hemorrhage. Here, we mutated Alk1 in AECs in postnatal mice using Bmx(PAC)-Cre ERT2 and found that somatic arterial endothelial mutation of Alk1 was sufficient to induce spontaneous epistaxis and multifocal cerebral microhemorrhage. This bleeding occurred in the presence of tortuous and enlarged blood vessels, loss of arterial molecular marker Efnb2 , disorganization of vascular smooth muscle, and impaired vasoregulation. Our data suggest that arterial endothelial deletion of Alk1 leading to reduced arterial identity and disrupted vascular smooth muscle cell coverage is a plausible molecular mechanism for HHT-associated severe epistaxis. This work provides the first evidence that somatic Alk1 mutation in AECs can cause hemorrhagic vascular lesions, offering a novel preclinical model critically needed for studying HHT-associated epistaxis, and delineating an arterial mechanism to HHT pathophysiology.
Collapse
|
11
|
Jabarkheel R, Li L, Frankfurter M, Zhang DY, Gajjar A, Muhammad N, Srinivasan VM, Burkhardt JK, Kahn M. Untangling sporadic brain arteriovenous malformations: towards targeting the KRAS/MAPK pathway. Front Surg 2024; 11:1504612. [PMID: 39687326 PMCID: PMC11646853 DOI: 10.3389/fsurg.2024.1504612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 12/18/2024] Open
Abstract
Brain arteriovenous malformations (AVMs) are vascular lesions characterized by abnormal connections between parenchymal arteries and veins, bypassing a capillary bed, and forming a nidus. Brain AVMs are consequential as they are prone to rupture and associated with significant morbidity. They can broadly be subdivided into hereditary vs. sporadic lesions with sporadic brain AVMs representing the majority of all brain AVMs. However, little had been known about the pathogenesis of sporadic brain AVMs until the landmark discovery in 2018 that the majority of sporadic brain AVMs carry somatic activating mutations of the oncogene, Kirsten rat sarcoma viral oncogene homologue (KRAS), in their endothelial cells. Here, we review the history of brain AVMs, their treatments, and recent advances in uncovering the pathogenesis of sporadic brain AVMs. We specifically focus on the latest studies suggesting that pharmacologically targeting the KRAS/MEK pathway may be a potentially efficacious treatment for sporadic brain AVMs.
Collapse
Affiliation(s)
- Rashad Jabarkheel
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Lun Li
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Maxwell Frankfurter
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Y. Zhang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Avi Gajjar
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Najib Muhammad
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Visish M. Srinivasan
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jan-Karl Burkhardt
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mark Kahn
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Hirata T, Umekawa M, Shinya Y, Hasegawa H, Katano A, Shinozaki-Ushiku A, Saito N. Radiation-induced malignancies after stereotactic radiosurgery for brain arteriovenous malformations: a large single-center retrospective study and systematic review. Neurosurg Rev 2024; 47:870. [PMID: 39586842 PMCID: PMC11588909 DOI: 10.1007/s10143-024-03093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
Stereotactic radiosurgery (SRS) is widely utilized to treat small- and medium-sized brain arteriovenous malformations (BAVMs); however, radiation-induced malignancies (RIMs) have been reported as extremely rare yet potentially life-threatening complications of SRS. This study aimed to investigate the risk of RIMs after SRS for BAVMs. The outcomes of patients who underwent single-session SRS for BAVMs at our institution and were followed for ≥ 5 years were analyzed to calculate the incidence of RIMs. In addition, a systematic review was conducted using the existing literature reporting RIMs after SRS for BAVMs in compliance with the PRISMA guideline. Regarding the in-hospital analysis, only one (0.18%) RIM (gliosarcoma) was observed among 569 patients, with a median follow-up period of 151 months (interquartile range, 103-255 months). The 15, 20, and 25-year cumulative incidences of RIMs were 0%, 0%, and 1.01%, respectively, whereas the overall incidence rate was 0.12 per 1,000 patient-years. In the systematic review, 14 studies were included, with the incidence of RIMs ranging from 0.00 to 0.24%. Eight patients with RIMs were identified, and the most common pathology was glioblastoma. The median time until the diagnosis of RIM was 7.1 years (range, 4-19 years) after SRS, and their clinical courses were largely dismal, with the post-diagnosis survival periods being 1-10 months. RIM constitutes an extremely rare but potentially fatal complication following SRS for BAVMs, with its incidence rate being at most 0.24%.
Collapse
Affiliation(s)
- Takeru Hirata
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Motoyuki Umekawa
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yuki Shinya
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Neurologic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Hirotaka Hasegawa
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsuto Katano
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Aya Shinozaki-Ushiku
- Department of Pathology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
13
|
Orrego Gonzalez E, Mantziaris G, Shaaban A, Starke RM, Ding D, Lee JYK, Mathieu D, Kondziolka D, Feliciano C, Grills IS, Barnett GH, Lunsford LD, Liščák R, Lee CC, Martinez Álvarez R, Peker S, Samanci Y, Cockroft KM, Tripathi M, Palmer JD, Zada G, Cifarelli CP, Nabeel AM, Pikis S, Sheehan JP. Comparison of Repeat Versus Initial Stereotactic Radiosurgery for Intracranial Arteriovenous Malformations: A Retrospective Multicenter Matched Cohort Study. Neurosurgery 2024; 95:904-914. [PMID: 39283113 DOI: 10.1227/neu.0000000000002950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/24/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Studies comparing neurological and radiographic outcomes of repeat to initial stereotactic radiosurgery (SRS) intracranial arteriovenous malformations are scarce. Our aim was to perform a retrospective matched comparison of patients initially treated with SRS with those undergoing a second radiosurgical procedure. METHODS We collected data from arteriovenous malformations managed in 21 centers that underwent initial and repeated radiosurgery from 1987 to 2022. Based on arteriovenous malformations volume, margin dose, deep venous drainage, deep, and critical location, we matched 1:1 patients who underwent an initial SRS for treatment-naive arteriovenous malformations and a group with repeated SRS treatment. RESULTS After the selection process, our sample consisted of 328 patients in each group. Obliteration in the initial SRs group was 35.8% at 3 and 56.7% at 5 years post-SRS, while the repeat SRS group showed obliteration rates of 33.9% at 3 years and 58.6% at 5 years, without statistically significant differences (P = .75 and P = .88, respectively). There were no statistically significant differences between the 2 groups for obliteration rates (hazard ratio = 0.93; 95% CI, 0.77-1.13; P = .5), overall radiation-induced changes (RIC) (OR = 1.1; 95% CI, 0.75-1.6; P = .6), symptomatic RIC (OR = 0.78; 95% CI, 0.4-1.5; P = .4), and post-SRS hemorrhage (OR = 0.68; 95% CI; P = .3). CONCLUSION In matched cohort analysis, a second SRS provides comparable outcomes in obliteration and RIC compared with the initial SRS. Dose reduction on repeat SRS may not be warranted.
Collapse
Affiliation(s)
| | - Georgios Mantziaris
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Ahmed Shaaban
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Robert M Starke
- Department of Neurosurgery, University of Miami, Miami, Florida, USA
| | - Dale Ding
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - John Y K Lee
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Mathieu
- Department of Neurosurgery, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Caleb Feliciano
- Department of Neurosurgery, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Inga S Grills
- Gamma Knife Center, Beaumont Health System, Royal Oak, Michigan, USA
| | - Gene H Barnett
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - L Dade Lunsford
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Roman Liščák
- Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Cheng-Chia Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei City, Taiwan
| | | | - Selcuk Peker
- Department of Neurosurgery, Koc University School of Medicine, Istanbul, Turkey
| | - Yavuz Samanci
- Department of Neurosurgery, Koc University School of Medicine, Istanbul, Turkey
| | - Kevin M Cockroft
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Manjul Tripathi
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Joshua D Palmer
- Department of Radiation Oncology, The James Comprehensive Cancer Center Ohio State University, Columbus, Ohio, USA
| | - Gabriel Zada
- Department of Neurosurgery, University of Southern California, Los Angeles, California, USA
| | | | - Ahmed M Nabeel
- Gamma Knife Center Cairo, Nasser Institute Hospital, Cairo, Egypt
- Department of Neurosurgery, Benha University, Benha, Egypt
| | - Stylianos Pikis
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
14
|
Delawan M, Muthana A, Dolachee AA, Kashif M, Al-Qudah AM, Ahmed FO, Alrawi MA, Hoz SS. Microsurgery of Cerebral Arteriovenous Malformations in a Resource-Limited Setting: The First Case-Series from Iraq. World Neurosurg 2024; 190:e468-e477. [PMID: 39094935 DOI: 10.1016/j.wneu.2024.07.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Cerebral arteriovenous malformations (AVMs) can lead to significant morbidity and are particularly challenging to manage in resource-limited settings where endovascular treatment modalities are unaffordable for most patients. OBJECTIVE To describe the first case series of AVM from Iraq with an analysis of the related clinicoradiologic characteristics, operative features, and outcomes. METHODS A single-center database from October 2018 to December 2022 was reviewed to analyze the characteristics of cerebral AVMs who underwent surgical treatment in Baghdad, Iraq. We collected patient demographics, clinical, radiologic, operative, and the follow-up combined outcome results (modified Rankin Scale score and the presence of AVM remnants). RESULTS Of the 54 AVM patients treated with microsurgery, the majority of lesions have Spetzler-Martin grade of 3 (31.5%), followed by grade 1 (29.6%). The parietal lobe was the most common location of AVM in 25.9% of the cases, and the temporal location had better outcomes. The mean duration of surgery was 8.5 hours, ranging from 3 to 14 hours, with 20.3% of cases having undergone preoperative stereotactic radiosurgery, and just one patient received preoperative embolization. Good combined outcome (modified Rankin Scale 0-2 and no AVM remnant) was associated with lower SM grades (P=0.003); location in the nondominant hemisphere (P=0.036), and noneloquent regions (P=0.006); absence of deep venous drainage (P=0.042) and no intraoperative brain swelling (P=0.004). The mortality rate in our series was 5.5%. CONCLUSIONS Good clinicoradiologic outcomes can be achieved through microsurgery in a setting where endovascular treatment is inaccessible to patients due to limited resources.
Collapse
Affiliation(s)
- Maliya Delawan
- Department of Emergency, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Ahmed Muthana
- Department of Neurosurgery, University of Baghdad, Baghdad, Iraq
| | - Ali A Dolachee
- Department of Surgery, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Muhammad Kashif
- Department of Emergency, Midwestern University, Glendale, Arizona, USA
| | - Abdullah M Al-Qudah
- Department of Emergency, UPMC Stroke Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Fatimah Oday Ahmed
- Department of Neurosurgery, Neurosurgery Teaching Hospital, Baghdad, Iraq
| | - Mohammed A Alrawi
- Department of Neurosurgery, Neurosurgery Teaching Hospital, Baghdad, Iraq
| | - Samer S Hoz
- Department of Neurosurgery, Neurosurgery Teaching Hospital, Baghdad, Iraq; Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
15
|
Zhang B, Chen X, Qin W, Ge L, Zhang X, Ding G, Wang S. Enhancing cerebral arteriovenous malformation analysis: Development and application of patient-specific lumped parameter models based on 3D imaging data. Comput Biol Med 2024; 180:108977. [PMID: 39111153 DOI: 10.1016/j.compbiomed.2024.108977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES Cerebral arteriovenous malformations (AVMs) present complex neurovascular challenges, characterized by direct arteriovenous connections that disrupt normal brain blood flow dynamics. Traditional lumped parameter models (LPMs) offer a simplified angioarchitectural representation of AVMs, yet often fail to capture the intricate structure within the AVM nidus. This research aims at refining our understanding of AVM hemodynamics through the development of patient-specific LPMs utilizing three-dimensional (3D) medical imaging data for enhanced structural fidelity. METHODS This study commenced with the meticulous delineation of AVM vascular architecture using threshold segmentation and skeletonization techniques. The AVM nidus's core structure was outlined, facilitating the extraction of vessel connections and the formation of a detailed fistulous vascular tree model. Sampling points, spatially distributed and derived from the pixel intensity in imaging data, guided the construction of a complex plexiform tree within the nidus by generating smaller Y-shaped vascular formations. This model was then integrated with an electrical analog model to enable precise numerical simulations of cerebral hemodynamics with AVMs. RESULTS The study successfully generated two distinct patient-specific AVM networks, mirroring the unique structural and morphological characteristics of the AVMs as captured in medical imaging. The models effectively represented the intricate fistulous and plexiform vessel structures within the nidus. Numerical analysis of these models revealed that AVMs induce a blood shunt effect, thereby diminishing blood perfusion to adjacent brain tissues. CONCLUSION This investigation enhances the theoretical framework for AVM research by constructing patient-specific LPMs that accurately reflect the true vascular structures of AVMs. These models offer profound insights into the hemodynamic behaviors of AVMs, including their impact on cerebral circulation and the blood steal phenomenon. Further incorporation of clinical data into these models holds the promise of deepening the theoretical comprehension of AVMs and fostering advancements in the diagnosis and treatment of AVMs.
Collapse
Affiliation(s)
- Bowen Zhang
- Institute for biomechanics, Department of Aeronautics and Astronautics, Fudan University, No. 220 Handan Road, Shanghai, 200433, China
| | - Xi Chen
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Wang Qin
- Institute for biomechanics, Department of Aeronautics and Astronautics, Fudan University, No. 220 Handan Road, Shanghai, 200433, China
| | - Liang Ge
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Xiaolong Zhang
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Guanghong Ding
- Institute for biomechanics, Department of Aeronautics and Astronautics, Fudan University, No. 220 Handan Road, Shanghai, 200433, China; Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function, Shanghai, 200043, China
| | - Shengzhang Wang
- Institute for biomechanics, Department of Aeronautics and Astronautics, Fudan University, No. 220 Handan Road, Shanghai, 200433, China; Institute of Biomedical Engineering & Technology, Academy of Engineering Technology, Fudan University, No. 220 Handan Road, Shanghai, 200043, China.
| |
Collapse
|
16
|
Yang T, Liu Y, Yuan B, Han Y, Xiang Y, Sun J, Guo W, Chen M, Wang H. Three-Pillar Expansive Craniotomy in Children with Acute Ruptured Supratentorial Brain Arteriovenous Malformations. World Neurosurg 2024; 189:e347-e354. [PMID: 38878889 DOI: 10.1016/j.wneu.2024.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/09/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Acute rupture and hemorrhage of pediatric brain arteriovenous malformations (AVMs) may lead to cerebral herniation or intractable intracranial hypertension, necessitating emerging surgical interventions to alleviate intracranial pressure. However, there is still controversy regarding the timing of treatment for ruptured AVMs. This study aimed to assess the feasibility of utilizing three-pillar expansive craniotomy (3PEC) at different times during the treatment of pediatric ruptured supratentorial AVMs. METHODS A retrospective analysis was conducted on all consecutive cases of acute rupture in supratentorial AVM children who underwent 3PEC at a single institution from 2020 to 2022. General information, clinical characteristics, radiological data, and prognosis were reviewed and analyzed. RESULTS Thirteen children were included in the analysis. The intracranial pressure of all patients decreased to below 15 mmHg within 10 days. The expansion volume of the cranial cavity of the patients increased by 18.3 cm3 (95% confidence interval, 10.2-26.3; P < 0.001) compared to the hematoma volume. None of the patients required decompressive craniectomy due to intractable intracranial hypertension caused by cerebral swelling. The median waiting period for patients with delayed AVMs treatment was 8 days, during which no rebleeding occurred. CONCLUSIONS Emergency intervention with 3PEC in children experiencing acutely ruptured supratentorial AVMs appears to be feasible. For children requiring delayed management of the AVMs, 3PEC may diminish the risk of rebleeding during the waiting period and shorten the waiting period.
Collapse
Affiliation(s)
- Tianquan Yang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuchen Liu
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Yuan
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yong Han
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yongjun Xiang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jingxuan Sun
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wanliang Guo
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Min Chen
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hangzhou Wang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
17
|
Zhao Y, Wu X, Yang Y, Zhang L, Cai X, Chen S, Vera A, Ji J, Boström KI, Yao Y. Inhibition of endothelial histone deacetylase 2 shifts endothelial-mesenchymal transitions in cerebral arteriovenous malformation models. J Clin Invest 2024; 134:e176758. [PMID: 38781032 PMCID: PMC11290970 DOI: 10.1172/jci176758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Cerebral arteriovenous malformations (AVMs) are the most common vascular malformations worldwide and the leading cause of hemorrhagic strokes that may result in crippling neurological deficits. Here, using recently generated mouse models, we uncovered that cerebral endothelial cells (ECs) acquired mesenchymal markers and caused vascular malformations. Interestingly, we found that limiting endothelial histone deacetylase 2 (HDAC2) prevented cerebral ECs from undergoing mesenchymal differentiation and reduced cerebral AVMs. We found that endothelial expression of HDAC2 and enhancer of zeste homolog 1 (EZH1) was altered in cerebral AVMs. These alterations changed the abundance of H4K8ac and H3K27me in the genes regulating endothelial and mesenchymal differentiation, which caused the ECs to acquire mesenchymal characteristics and form AVMs. This investigation demonstrated that the induction of HDAC2 altered specific histone modifications, which resulted in mesenchymal characteristics in the ECs and cerebral AVMs. The results provide insight into the epigenetic impact on AVMs.
Collapse
Affiliation(s)
- Yan Zhao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yang Yang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sydney Chen
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Abigail Vera
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- The Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
18
|
Silva AHD, James G. Natural history and clinical manifestation of Pediatric Brain Arteriovenous Malformations. J Korean Neurosurg Soc 2024; 67:280-288. [PMID: 38720544 PMCID: PMC11079564 DOI: 10.3340/jkns.2024.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) are aberrant arteriovenous shunts through a vascular nidus with no intervening capillary beds. They are one of the commonest causes of spontaneous intracranial haemorrhage in children and may be associated with significant morbidity and mortality in cases of rupture. Treatment strategies include microsurgical resection, endovascular embolisation, stereotactic radiosurgery, multimodality treatment with a combination thereof, and particularly in high-grade bAVMs, conservative management. Clinicians involved in treating bAVMs need to have familiarity with the natural history pertaining to bAVMs in terms of risk of rupture, risk factors elevating rupture risk as well as understanding the clinical manifestations of bAVMs. This invited review serves to provide a synthesis on natural history and clinical presentation of bAVMs with particular focus in children to inform decision-making pertaining to management.
Collapse
Affiliation(s)
- Adikarige Haritha Dulanka Silva
- Department of Neurosurgery, Great Ormond Street Hospital for Children, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Greg James
- Department of Neurosurgery, Great Ormond Street Hospital for Children, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
19
|
Li B, Xuan H, Yin Y, Wu S, Du L. The N 6-methyladenosine modification in pathologic angiogenesis. Life Sci 2024; 339:122417. [PMID: 38244915 DOI: 10.1016/j.lfs.2024.122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
The vascular system is a vital circulatory network in the human body that plays a critical role in almost all physiological processes. The production of blood vessels in the body is a significant area of interest for researchers seeking to improve their understanding of vascular function and maintain normal vascular operation. However, an excessive or insufficient vascular regeneration process may lead to the development of various ailments such as cancer, eye diseases, and ischemic diseases. Recent preclinical and clinical studies have revealed new molecular targets and principles that may enhance the therapeutic effect of anti-angiogenic strategies. A thorough comprehension of the mechanism responsible for the abnormal vascular growth in disease processes can enable researchers to better target and effectively suppress or treat the disease. N6-methyladenosine (m6A), a common RNA methylation modification method, has emerged as a crucial regulator of various diseases by modulating vascular development. In this review, we will cover how m6A regulates various vascular-related diseases, such as cancer, ocular diseases, neurological diseases, ischemic diseases, emphasizing the mechanism of m6A methylation regulators on angiogenesis during pathological process.
Collapse
Affiliation(s)
- Bin Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hanqin Xuan
- Department of Pathology, the First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
20
|
González EO, Runge S, Mantziaris G, Ironside N, Sheehan JP. Stereotactic radiosurgery for brain arteriovenous malformations in patients with hereditary hemorrhagic telangiectasia. Acta Neurochir (Wien) 2024; 166:21. [PMID: 38231447 PMCID: PMC10794397 DOI: 10.1007/s00701-024-05923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
OBJECTIVE Brain arteriovenous malformations (AVMs) in patients with hereditary hemorrhagic telangiectasia (HHT) present different characteristics from sporadic AVMs, and they have lower initial bleeding rates. Conservative management is usually preferred for the treatment of these lesions. In this case study, we present the largest series of HHT patients treated with stereotactic radiosurgery to date. METHODS We identified eight patients with HHT and 14 AVMs. We retrospectively collected clinical, radiographic, and treatment characteristics of the patients and each AVM. RESULTS Most patients in our sample presented with small AVMs. The median volume of these AVMs was 0.22 cm3 (IQR 0.08-0.59). Three out of eight patients presented with initial intracerebral hemorrhage (ICH). The majority of lesions had low (12/14) Spetzler-Martin grades (I-II). Median maximum and margin doses used for treatment were 36.2 (IQR 35.25-44.4) and 20 (IQR 18-22.5) Gy, respectively. The overall obliteration rate after SRS was 11/14, and the median time to obliteration across all 11 obliterated AVMs was 35.83 months (IQR, 17-39.99). Neurological status was favorable with all patients having a mRS of 0 or 1 at the last follow-up. Symptomatic radiation-induced changes (RIC) after SRS were low (7.1%), and there were no permanent RIC. CONCLUSIONS Patients with HHT who present with multiple brain AVMs are generally well served by SRS. Obliteration can be achieved in the majority of HHT patients and with a low complication rate. In the current study, initial hemorrhage rates prior to SRS were noticeable which supports the decision to treat these AVMs. Future studies are needed to better address the role of SRS for HHT patients harboring ruptured and unruptured AVMs.
Collapse
Affiliation(s)
- Eduardo Orrego González
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Sean Runge
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Georgios Mantziaris
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Natasha Ironside
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
21
|
Lin JY, Lu CF, Hu YS, Yang HC, Liu YT, Loo JK, Lee KL, Liao CY, Chang FC, Liou KD, Lin CJ. Magnetic resonance radiomics-derived sphericity correlates with seizure in brain arteriovenous malformations. Eur Radiol 2024; 34:588-599. [PMID: 37553487 DOI: 10.1007/s00330-023-09982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/14/2023] [Accepted: 05/29/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVES Angioarchitectural analysis of brain arteriovenous malformations (BAVMs) is qualitative and subject to interpretation. This study quantified the morphology of and signal changes in the nidal and perinidal areas by using MR radiomics and compared the performance of MR radiomics and angioarchitectural analysis in detecting epileptic BAVMs. MATERIALS AND METHODS From 2010 to 2020, a total of 111 patients with supratentorial BAVMs were retrospectively included and grouped in accordance with the initial presentation of seizure. Patients' angiograms and MR imaging results were analyzed to determine the corresponding angioarchitecture. The BAVM nidus was contoured on time-of-flight MR angiography images. The perinidal brain parenchyma was contoured on T2-weighted images, followed by radiomic analysis. Logistic regression analysis was performed to determine the independent risk factors for seizure. ROC curve analysis, decision curve analysis (DCA), and calibration curve were performed to compare the performance of angioarchitecture-based and radiomics-based models in diagnosing epileptic BAVMs. RESULTS In multivariate analyses, low sphericity (OR: 2012.07, p = .04) and angiogenesis (OR: 5.30, p = .01) were independently associated with a high risk of seizure after adjustment for age, sex, temporal location, and nidal volume. The AUC for the angioarchitecture-based, MR radiomics-based, and combined models was 0.672, 0.817, and 0.794, respectively. DCA confirmed the clinical utility of the MR radiomics-based and combined models. CONCLUSIONS Low nidal sphericity and angiogenesis were associated with high seizure risk in patients with BAVMs. MR radiomics-derived tools may be used for noninvasive and objective measurement for evaluating the risk of seizure due to BAVM. CLINICAL RELEVANCE STATEMENT Low nidal sphericity was associated with high seizure risk in patients with brain arteriovenous malformation and MR radiomics may be used as a noninvasive and objective measurement method for evaluating seizure risk in patients with brain arteriovenous malformation. KEY POINTS • Low nidal sphericity was associated with high seizure risk in patients with brain arteriovenous malformation. • The performance of MR radiomics in detecting epileptic brain arteriovenous malformations was more satisfactory than that of angioarchitectural analysis. • MR radiomics may be used as a noninvasive and objective measurement method for evaluating seizure risk in patients with brain arteriovenous malformation.
Collapse
Affiliation(s)
- Jih-Yuan Lin
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
| | - Yong-Sin Hu
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
- Department of Radiology, Taipei Hospital, Ministry of Health and Welfare, No. 127, Su-Yuan Rd., Hsin-Chuang Dist., New Taipei City, 24213, Taiwan
| | - Huai-Che Yang
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Yo-Tsen Liu
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
- Brain Research Centre, National Yang Ming Chiao Tung University College of Medicine, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
| | - Jing Kai Loo
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
| | - Kang-Lung Lee
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
| | - Chien-Yi Liao
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX, USA
| | - Feng-Chi Chang
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
| | - Kang-Du Liou
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Chung-Jung Lin
- Department of Radiology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou District, Taipei City, 112, Taiwan.
| |
Collapse
|
22
|
Han H, Gao D, Ma L, Li R, Li Z, Zhang H, Yuan K, Wang K, Zhang Y, Zhao Y, Jin W, Jin H, Meng X, Yan D, Li R, Lin F, Hao Q, Wang H, Ye X, Kang S, Pu J, Shi Z, Chao X, Lin Z, Lu J, Li Y, Zhao Y, Sun S, Chen Y, Chen X, Wang S. Long-term outcomes of microsurgery and stereotactic radiosurgery as the first-line treatment for arteriovenous malformations: a propensity score-matched analysis using nationwide multicenter prospective registry data. Int J Surg 2023; 109:3983-3992. [PMID: 37720924 PMCID: PMC10720861 DOI: 10.1097/js9.0000000000000751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND This study aimed to compare the risk and benefit profile of microsurgery (MS) and stereotactic radiosurgery (SRS) as the first-line treatment for unruptured and ruptured arteriovenous malformations (AVMs). MATERIALS AND METHODS The authors included AVMs underwent MS or SRS as the first-line treatment from a nationwide prospective multicenter registry in mainland China. The authors used propensity score-matched methods to balance baseline characteristics between the MS and SRS groups. The primary outcomes were long-term hemorrhagic stroke or death, and the secondary outcomes were long-term obliteration and neurological outcomes. Subgroup analyses and sensitivity analyses with different study designs were performed to confirm the stability of our findings. RESULTS Of the 4286 consecutive AVMs in the registry from August 2011 to December 2021; 1604 patients were eligible. After matching, 244 unruptured and 442 ruptured AVMs remained for the final analysis. The mean follow-up duration was 7.0 years in the unruptured group and 6.1 years in the ruptured group. In the comparison of primary outcomes, SRS was associated with a higher risk of hemorrhagic stroke or death both in the unruptured and ruptured AVMs (unruptured: hazard ratio 4.06, 95% CI: 1.15-14.41; ruptured: hazard ratio 4.19, 95% CI: 1.58-11.15). In terms of the secondary outcomes, SRS was also observed to have a significant disadvantage in long-term obliteration [unruptured: odds ratio (OR) 0.01, 95% CI: 0.00-0.04; ruptured: OR 0.09, 95% CI: 0.05-0.15]. However, it should be noted that SRS may have advantages in preventing neurofunctional decline (unruptured: OR 0.56, 95% CI: 0.27-1.14; ruptured: OR 0.41, 95% CI: 0.23-0.76). The results of subgroup analyses and sensitivity analyses were consistent in trend but with slightly varied powers. CONCLUSIONS This clinical practice-based real-world study comprehensively compared MS and SRS for AVMs with long-term outcomes. MS is more effective in preventing future hemorrhage or death and achieving obliteration, while the risk of neurofunctional decline should not be ignored.
Collapse
Affiliation(s)
- Heze Han
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | | | - Li Ma
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Ruinan Li
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Zhipeng Li
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Haibin Zhang
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Kexin Yuan
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Ke Wang
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Yukun Zhang
- Department of Neurosurgery, Peking University International Hospital, Peking University
| | - Yang Zhao
- Department of Neurosurgery, Peking University International Hospital, Peking University
| | - Weitao Jin
- Department of Neurosurgery, Peking University International Hospital, Peking University
| | - Hengwei Jin
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University
| | - Xiangyu Meng
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang
| | - Debin Yan
- Department of Neurosurgery, Shanxi Provincial People’s Hospital, Shanxi
| | - Runting Li
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Fa Lin
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Qiang Hao
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Hao Wang
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Xun Ye
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Shuai Kang
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Jun Pu
- First Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming
| | - Zhiyong Shi
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated to Nanjing University, Nanjing, Jiangsu
| | - Xiaofeng Chao
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Jiangsu
| | - Zhengfeng Lin
- Department of Neurosurgery, The First People’s Hospital of Qinzhou, Guangxi
| | - Junlin Lu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University
| | - Yuanli Zhao
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | | | - Yu Chen
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Xiaolin Chen
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| | - Shuo Wang
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases, Beijing
| |
Collapse
|
23
|
Al-Smadi MW, Fazekas LA, Aslan S, Bernat B, Beqain A, Al-Khafaji MQM, Priksz D, Orlik B, Nemeth N. A Microsurgical Arteriovenous Malformation Model on Saphenous Vessels in the Rat. Biomedicines 2023; 11:2970. [PMID: 38001970 PMCID: PMC10669800 DOI: 10.3390/biomedicines11112970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Arteriovenous malformation (AVM) is an anomaly of blood vessel formation. Numerous models have been established to understand the nature of AVM. These models have limitations in terms of the diameter of the vessels used and the impact on the circulatory system. Our goal was to establish an AVM model that does not cause prompt and significant hemodynamic and cardiac alterations but is feasible for follow-up of the AVM's progression. Sixteen female rats were randomly divided into sham-operated and AVM groups. In the AVM group, the saphenous vein and artery were interconnected using microsurgical techniques. The animals were followed up for 12 weeks. Anastomosis patency and the structural and hemodynamic changes of the heart were monitored. The hearts and vessels were histologically analyzed. During the follow-up period, shunts remained unobstructed. Systolic, diastolic, mean arterial pressure, and heart rate values slightly and non-significantly decreased in the AVM group. Echocardiogram results indicated minor systolic function impact, with slight and insignificant changes in aortic pressure and blood velocity, and minimal left ventricular wall enlargement. The small-caliber saphenous AVM model does not cause acute hemodynamic changes. Moderate but progressive alterations and venous dilatation confirmed AVM-like features. The model seems to be suitable for studying further the progression, enlargement, or destabilization of AVM.
Collapse
Affiliation(s)
- Mohammad Walid Al-Smadi
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
- Kalman Laki Doctoral School, University of Debrecen, 4032 Debrecen, Hungary
| | - Laszlo Adam Fazekas
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
| | - Siran Aslan
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
| | - Brigitta Bernat
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (B.B.); (D.P.)
| | - Anas Beqain
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
| | - Mustafa Qais Muhsin Al-Khafaji
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
| | - Daniel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (B.B.); (D.P.)
| | - Brigitta Orlik
- Department of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary;
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
| |
Collapse
|
24
|
Deng X, Zhou S, Hu Z, Gong F, Zhang J, Zhou C, Lan W, Gao X, Huang Y. Nicotinic Acid-Mediated Modulation of Metastasis-Associated Protein 1 Methylation and Inflammation in Brain Arteriovenous Malformation. Biomolecules 2023; 13:1495. [PMID: 37892177 PMCID: PMC10605296 DOI: 10.3390/biom13101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
We explored metastasis-associated protein 1 (MTA1) promoter methylation in the development of brain arteriovenous malformation (BAVM). The clinical data of 148 sex- and age-matched BAVMs and controls were collected, and the MTA1 DNA methylation in peripheral white blood cells (WBC) was assessed by bisulfite pyrosequencing. Among them, 18 pairs of case-control samples were used for WBC mRNA detection, 32 pairs were used for WBC MTA1 protein measurement, and 50 pairs were used for plasma inflammatory factor analysis. Lipopolysaccharide (LPS) treatment was used to induce an inflammatory injury cell model of human brain microvascular endothelial cells (BMECS). 5-Aza-2'-deoxycytidine (5-AZA), nicotinic acid (NA), and MTA1 siRNAs were used in functional experiments to examine BMECS behaviors. RT-qPCR, Western blot, and ELISA or cytometric bead arrays were used to measure the expression levels of MTA1, cytokines, and signaling pathway proteins in human blood or BMECS. The degree of MTA1 promoter methylation was reduced in BAVM compared with the control group and was inversely proportional to MTA1 expression. Plasma ApoA concentrations in BAVM patients were significantly lower than those in controls and correlated positively with MTA1 promoter methylation and negatively with MTA1 expression. The expression of cytokine was markedly higher in BAVM than in controls. Cell experiments showed that 5-AZA decreased the methylation level of MTA1 and increased the expression of MTA1 protein. LPS treatment significantly increased cytokine concentrations (p < 0.05). NA and MTA1 silencing could effectively reverse the LPS-mediated increase in IL-6 and TNF-α expression through the NF-κB pathway. Our study indicated that NA may regulate MTA1 expression by affecting promoter DNA methylation, improve vascular inflammation through the NF-κB pathway, and alleviate the pathological development of BAVM.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Shengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315302, China
| | - Fanyong Gong
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Junjun Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Chenhui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Wenting Lan
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China;
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| |
Collapse
|
25
|
De Maria L, Serioli S, Fontanella MM. Brain Arteriovenous Malformations and Pregnancy: A Systematic Review of the Literature. World Neurosurg 2023; 177:100-108. [PMID: 37355173 DOI: 10.1016/j.wneu.2023.06.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND The bleeding risk and outcome of pregnant women harboring intracranial arteriovenous malformations are still unclear, and no consensus has been achieved on management timing and strategy. METHODS We searched PubMed, MEDLINE, and EMBASE from 1990 to 2022 for studies evaluating the bleeding risk and the outcome of women with intracranial arteriovenous malformations. Our primary end point was the hemorrhage rate. The secondary end points were pregnancy outcome and treatment safety for the mother and the fetus. RESULTS Nine studies reporting on 2426 women were included. The overall hemorrhage rate in untreated women was 2.6%. The rate of first bleeding during pregnancy and postpartum was greater than the respective fertile period in unpregnant women (11% vs. 6.7%). The risk of first bleeding was greater in the II and III trimesters (4.5% and 2.9%), while was lower during delivery and puerperium (0.1% and 0.2%). The majority of the women did not report any complications after pregnancy and early postpartum death occurred in 4.1% of cases. The overall miscarriage rate was 12.4%. CONCLUSIONS Women harboring intracranial arteriovenous malformations appear to have a greater risk of hemorrhage during pregnancy. There is an increased bleeding risk in the later stages of gestation, whereas delivery and puerperium are less risky phases. Outcomes are relatively good for the mother, with low rates of mortality and unfavorable sequelae, but there is a risk of miscarriage for the fetus. Intervention should be undertaken prophylactically before pregnancy or during early gestation if possible. For pregnant women who deferred treatment, multidisciplinary management is advised.
Collapse
Affiliation(s)
- Lucio De Maria
- Unit of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Spedali Civili of Brescia, University of Brescia, Brescia, Italy.
| | - Simona Serioli
- Unit of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Marco Maria Fontanella
- Unit of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| |
Collapse
|
26
|
Sattari SA, Shahbandi A, Kim JE, Lee RP, Feghali J, Hung A, Yang W, Rincon-Torroella J, Xu R, Caplan JM, Gonzalez LF, Tamargo RJ, Huang J. Microsurgery Versus Stereotactic Radiosurgery for Treatment of Patients With Brain Arteriovenous Malformation: A Systematic Review and Meta-Analysis. Neurosurgery 2023; 93:510-523. [PMID: 36999929 DOI: 10.1227/neu.0000000000002460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Treatment decision-making for brain arteriovenous malformations (bAVMs) with microsurgery or stereotactic radiosurgery (SRS) is controversial. OBJECTIVE To conduct a systematic review and meta-analysis to compare microsurgery vs SRS for bAVMs. METHOD Medline and PubMed were searched from inception to June 21, 2022. The primary outcomes were obliteration and follow-up hemorrhage, and secondary outcomes were permanent neurological deficit, worsened modified Rankin scale (mRS), follow-up mRS > 2, and mortality. The GRADE approach was used for grading the level of evidence. RESULTS Eight studies were included, which yielded 817 patients, of which 432 (52.8%) and 385 (47.1%) patients underwent microsurgery and SRS, respectively. Two cohorts were comparable in age, sex, Spetzler-Martin grade, nidus size, location, deep venous drainage, eloquence, and follow-up. In the microsurgery group, the odds ratio (OR) of obliteration was higher (OR = 18.51 [11.05, 31.01], P < .000001, evidence: high) and the hazard ratio of follow-up hemorrhage was lower (hazard ratio = 0.47 [0.23, 0.97], P = .04, evidence: moderate). The OR of permanent neurological deficit was higher with microsurgery (OR = 2.85 [1.63, 4.97], P = .0002, evidence: low), whereas the OR of worsened mRS (OR = 1.24 [0.65, 2.38], P = .52, evidence: moderate), follow-up mRS > 2 (OR = 0.78 [0.36, 1.7], P = .53, evidence: moderate), and mortality (OR = 1.17 [0.41, 3.3], P = .77, evidence: moderate) were comparable between the groups. CONCLUSION Microsurgery was superior at obliterating bAVMs and preventing further hemorrhage. Despite a higher rate of postoperative neurological deficit with microsurgery, functional status and mortality were comparable with patients who underwent SRS. Microsurgery should remain a first-line consideration for bAVMs, with SRS reserved for inaccessible locations, highly eloquent areas, and medically high-risk or unwilling patients.
Collapse
Affiliation(s)
- Shahab Aldin Sattari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Ataollah Shahbandi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
- Tehran School of Medicine, Tehran University of Medical Science, Tehran , Iran
| | - Jennifer E Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Ryan P Lee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - James Feghali
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Alice Hung
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Wuyang Yang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Risheng Xu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Justin M Caplan
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - L Fernando Gonzalez
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Rafael J Tamargo
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Judy Huang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| |
Collapse
|
27
|
Zhu H, Liu L, Chang Y, Song Y, Liang S, Ma C, Zhang L, Liang F, Jiang C, Zhang Y. Quantitative evaluation of the subsequent hemorrhage with arteriography-derived hemodynamic features in patients with untreated cerebral arteriovenous malformation. Front Neurol 2023; 14:1174245. [PMID: 37654429 PMCID: PMC10466408 DOI: 10.3389/fneur.2023.1174245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Background Patients with untreated cerebral arteriovenous malformations (AVMs) are at risk of intracerebral hemorrhage. However, treatment to prevent AVM hemorrhage carries risks. Objective This study aimed to analyze the AVM nidus-related hemodynamic features and identify the risk factors for subsequent hemorrhage. Methods We retrospectively identified patients with untreated AVMs who were assessed at our institution between March 2010 and March 2021. Patients with ≥6 months of treatment-free and hemorrhage-free follow-up after diagnosed by digital subtraction angiography were included in subsequent examinations. The hemodynamic features were extracted from five contrast flow-related parameter maps. The Kaplan-Meier analyses and Cox proportional hazards regression models were used to find the potential risk factors for subsequent hemorrhage. Results Overall, 104 patients with a mean follow-up duration of 3.37 years (median, 2.42 years; range, 6-117 months) were included in study, and the annual risk of rupture was 3.7%. Previous rupture (hazard ratio [HR], 4.89; 95% confidence interval [CI], 1.16-20.72), deep AVM location (HR, 4.02; 95% CI, 1.01-15.99), higher cerebral blood volume (HR, 3.35; 95% CI, 1.15-9.74) in the nidus, and higher stasis index (HR, 1.54; 95% CI, 1.06-2.24) in the nidus were associated with subsequent hemorrhage in untreated AVMs. Conclusion Higher cerebral blood volume and stasis index in the nidus suggest increased blood inflow and stagnant blood drainage. The combination of these factors may cause subsequent hemorrhage of AVMs.
Collapse
Affiliation(s)
- Haoyu Zhu
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lian Liu
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuzhou Chang
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuqi Song
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shikai Liang
- Department of Neurosurgery, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Chao Ma
- Department of Neurosurgery, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Longhui Zhang
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Liang
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Chuhan Jiang
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yupeng Zhang
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Rivera R, Cespedes A, Cruz JP, Rivera GC, Valencia A, Rouchaud A, Mounayer C. Endovascular treatment simulations using a novel in vitro brain arteriovenous malformation model based on three-dimensional printing millifluidic technology. Interv Neuroradiol 2023:15910199231184605. [PMID: 37350047 DOI: 10.1177/15910199231184605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Brain arteriovenous malformations (bAVM) are complex vascular diseases. Several models have been used to simulate endovascular treatments; thus in vitro models have not been widely employed because it has been difficult to recreate realistic phantoms of this disease. OBJECTIVE To describe the development and evaluate the preliminary experience of a novel bAVM in vitro model for endovascular embolization using millifluidic three-dimensional (3D) printing technology. METHODS We designed a bAVM phantom starting from simple to more complex designs, composed of a nidus, feeding arteries and draining vein. We recreate the design by using millifluidic technology with stereolithography 3D printing. Structural and functional tests were performed using angiographic images and computer flow dynamics. Treatment simulations with ethylene vinyl alcohol were tested using two different microcatheter position techniques. A Likert-scale questionnaire was applied to perform a qualitative evaluation of the model. RESULTS We developed a realistic model of a bAVM with hollow channels. The structural evaluation showed a high precision of the 3D printing process. Embolization tests with the liquid agent gave similar sensations and material behaviour as in vivo cases. There were no significant differences between microcatheter position techniques, thus we observed a trend for better nidus filling with a deeper in-nidus position technique. CONCLUSIONS We were able to create and test a novel bAVM in vitro model with stereolithography 3D printing in resin. It showed a high capacity for simulating endovascular embolization characteristics, with an excellent user experience. It could be potentially used for training and testing of bAVM embolizations.
Collapse
Affiliation(s)
- Rodrigo Rivera
- Neuroradiology Department, Instituto de Neurocirugia Dr Asenjo, Santiago, Chile
- CNRS XLIM UMLR 7252, Université de Limoges, Limoges, France
| | - Alvaro Cespedes
- Department of Design and Manufacturing, Universidad Santa Maria, Viña del Mar, Chile
| | - Juan Pablo Cruz
- Neuroradiology Department, Instituto de Neurocirugia Dr Asenjo, Santiago, Chile
| | | | - Alvaro Valencia
- Department of Mechanical Engineering, Universidad de Chile, Santiago, Chile
| | - Aymeric Rouchaud
- CNRS XLIM UMLR 7252, Université de Limoges, Limoges, France
- Neuroradiology Department, CHU, Limoges, France
| | - Charbel Mounayer
- CNRS XLIM UMLR 7252, Université de Limoges, Limoges, France
- Neuroradiology Department, CHU, Limoges, France
| |
Collapse
|
29
|
Huang L, Cheng F, Zhang X, Zielonka J, Nystoriak MA, Xiang W, Raygor K, Wang S, Lakshmanan A, Jiang W, Yuan S, Hou KS, Zhang J, Wang X, Syed AU, Juric M, Takahashi T, Navedo MF, Wang RA. Nitric oxide synthase and reduced arterial tone contribute to arteriovenous malformation. SCIENCE ADVANCES 2023; 9:eade7280. [PMID: 37235659 PMCID: PMC10219588 DOI: 10.1126/sciadv.ade7280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Mechanisms underlying arteriovenous malformations (AVMs) are poorly understood. Using mice with endothelial cell (EC) expression of constitutively active Notch4 (Notch4*EC), we show decreased arteriolar tone in vivo during brain AVM initiation. Reduced vascular tone is a primary effect of Notch4*EC, as isolated pial arteries from asymptomatic mice exhibited reduced pressure-induced arterial tone ex vivo. The nitric oxide (NO) synthase (NOS) inhibitor NG-nitro-l-arginine (L-NNA) corrected vascular tone defects in both assays. L-NNA treatment or endothelial NOS (eNOS) gene deletion, either globally or specifically in ECs, attenuated AVM initiation, assessed by decreased AVM diameter and delayed time to moribund. Administering nitroxide antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl also attenuated AVM initiation. Increased NOS-dependent production of hydrogen peroxide, but not NO, superoxide, or peroxynitrite was detected in isolated Notch4*EC brain vessels during AVM initiation. Our data suggest that eNOS is involved in Notch4*EC-mediated AVM formation by up-regulating hydrogen peroxide and reducing vascular tone, thereby permitting AVM initiation and progression.
Collapse
Affiliation(s)
- Lawrence Huang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Feng Cheng
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Xuetao Zhang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jacek Zielonka
- Free Radical Research Laboratory, Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew A. Nystoriak
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Weiwei Xiang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kunal Raygor
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Shaoxun Wang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Aditya Lakshmanan
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Weiya Jiang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sai Yuan
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kevin S. Hou
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jiayi Zhang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Xitao Wang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Arsalan U. Syed
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Matea Juric
- Free Radical Research Laboratory, Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Rong A. Wang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
30
|
Shah S, Gautam A, Tamboli A, Bhoite A. When formation of cerebral vasculature goes aberrant – A pictorial essay. MEDICAL JOURNAL OF DR. D.Y. PATIL VIDYAPEETH 2023. [DOI: 10.4103/mjdrdypu.mjdrdypu_756_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
31
|
Schmitt N, Wucherpfennig L, Hohenstatt S, Karimian-Jazi K, Breckwoldt MO, Kauczor HU, Bendszus M, Möhlenbruch MA, Vollherbst DF. Material-Specific Roadmap Modes Can Improve the Visibility of Liquid Embolic Agents for Endovascular Embolization: A Systematic In Vitro Study. AJNR Am J Neuroradiol 2022; 43:1749-1755. [PMID: 36357152 DOI: 10.3174/ajnr.a7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND PURPOSE Endovascular embolization using liquid embolic agents is a safe and effective treatment option for AVMs and fistulas. Because reliable visibility of these liquid embolic agents is essential for intraprocedural visual control to prevent complications, novel angiographic systems are equipped with material-specific roadmap modes. The aim of this study was the systematic in vitro comparison of conventional and material-specific roadmap modes regarding the visibility of the most used liquid embolic agents. MATERIALS AND METHODS A recently introduced in vitro model, resembling cerebral vessels, was embolized with Onyx 18, Squid 18, PHIL 25%, and n-BCA mixed with iodized oil (n = 4 for each liquid embolic agent), as well as with contrast medium and saline, both serving as a reference. Imaging was performed in conventional and material-specific roadmap modes. The visibility of the liquid embolic agents in both modes was compared quantitatively and qualitatively. RESULTS Significant differences between conventional and material-specific roadmap modes regarding the visibility of the liquid embolic agents were observed for all study groups. All liquid embolic agents were better visible in the material-specific roadmap modes compared with the conventional mode in qualitative and quantitative analyses (eg, Onyx in conventional-versus-material-specific modes along the 1.0-mm sector: mean contrast-to-noise ratio, 5.69 [SD, 0.85] versus 47.18 [SD, 5.72]; P < .001, respectively). CONCLUSIONS In this in vitro study, we demonstrated a better visibility of all investigated liquid embolic agents by using material-specific roadmap modes compared with the conventional roadmap technique. Especially in complex anatomic situations, these novel roadmap modes could improve the visual control and thus the safety and efficacy of embolization procedures in clinical practice.
Collapse
Affiliation(s)
- N Schmitt
- From the Departments of Neuroradiology (N.S., S.H., K.K.-J., M.O.B., M.B., M.A.M., D.F.V.)
| | - L Wucherpfennig
- Diagnostic and Interventional Radiology (L.W., H.-U.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - S Hohenstatt
- From the Departments of Neuroradiology (N.S., S.H., K.K.-J., M.O.B., M.B., M.A.M., D.F.V.)
| | - K Karimian-Jazi
- From the Departments of Neuroradiology (N.S., S.H., K.K.-J., M.O.B., M.B., M.A.M., D.F.V.)
| | - M O Breckwoldt
- From the Departments of Neuroradiology (N.S., S.H., K.K.-J., M.O.B., M.B., M.A.M., D.F.V.)
| | - H-U Kauczor
- Diagnostic and Interventional Radiology (L.W., H.-U.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - M Bendszus
- From the Departments of Neuroradiology (N.S., S.H., K.K.-J., M.O.B., M.B., M.A.M., D.F.V.)
| | - M A Möhlenbruch
- From the Departments of Neuroradiology (N.S., S.H., K.K.-J., M.O.B., M.B., M.A.M., D.F.V.)
| | - D F Vollherbst
- From the Departments of Neuroradiology (N.S., S.H., K.K.-J., M.O.B., M.B., M.A.M., D.F.V.)
| |
Collapse
|
32
|
Sattari SA, Yang W, Xu R, Feghali J, Tamargo RJ, Huang J. Natural history and treatment of deep-seated brain arteriovenous malformations in pediatric patients. J Neurosurg Pediatr 2022; 30:578-585. [PMID: 36087319 DOI: 10.3171/2022.8.peds22213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Pediatric deep brain arteriovenous malformations (bAVMs) represent a unique management challenge given their higher cumulative risk of hemorrhage as well as a higher risk of treatment. Better understanding of hemorrhage risk in this patient population will lead to a better decision-making process for patient management. METHODS The authors retrospectively reviewed their institutional bAVM database from 1990 to 2019 and included patients younger than 21 years who had deep-seated bAVMs. They present the annual hemorrhage risk, during the natural history and after treatment, and functional outcomes. RESULTS Thirty-one pediatric patients were included in this study (13 males and 18 females) with a mean age of 11.8 (SD 4.4) years. The most frequent presenting symptoms were headache (54.8%), weakness (38.7%), and seizure (22.6%). The mean follow-up duration was 13.14 (SD 12.5) years, during which 7 (22.6%) AVMs were obliterated, 10 (32.3%) individuals experienced hemorrhage, and the modified Rankin Scale score worsened in 8 (25.8%) patients. The annual natural history risk of hemorrhage was 3.24% per patient, and the overall annual hemorrhage risk after treatment was 1.98% per patient. In particular, the risk was reduced to 0.64% per patient in the stereotactic radiosurgery (SRS) group. Non-White race showed a trend of higher rupture at presentation (OR 5 [95% CI 0.84-41.68], p = 0.09). Female sex was associated with higher odds (OR 13.076 [95% CI 1.424-333.591], p = 0.048) and SRS was associated with lower odds (OR 0.122 [95% CI 0.011-0.862], p = 0.049) of follow-up hemorrhage. CONCLUSIONS Given the substantial cumulative risk of lifelong hemorrhagic stroke in pediatric patients, timely definitive treatment is warranted. SRS may be beneficial when the risk-benefit profile is deemed acceptable.
Collapse
|
33
|
Nielsen CM, Zhang X, Raygor K, Wang S, Bollen AW, Wang RA. Endothelial Rbpj deletion normalizes Notch4-induced brain arteriovenous malformation in mice. J Exp Med 2022; 220:213722. [PMID: 36441145 PMCID: PMC9700524 DOI: 10.1084/jem.20211390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/10/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Upregulation of Notch signaling is associated with brain arteriovenous malformation (bAVM), a disease that lacks pharmacological treatments. Tetracycline (tet)-regulatable endothelial expression of constitutively active Notch4 (Notch4*tetEC) from birth induced bAVMs in 100% of mice by P16. To test whether targeting downstream signaling, while sustaining the causal Notch4*tetEC expression, induces AVM normalization, we deleted Rbpj, a mediator of Notch signaling, in endothelium from P16, by combining tet-repressible Notch4*tetEC with tamoxifen-inducible Rbpj deletion. Established pathologies, including AV connection diameter, AV shunting, vessel tortuosity, intracerebral hemorrhage, tissue hypoxia, life expectancy, and arterial marker expression were improved, compared with Notch4*tetEC mice without Rbpj deletion. Similarly, Rbpj deletion from P21 induced advanced bAVM regression. After complete AVM normalization induced by repression of Notch4*tetEC, virtually no bAVM relapsed, despite Notch4*tetEC re-expression in adults. Thus, inhibition of endothelial Rbpj halted Notch4*tetEC bAVM progression, normalized bAVM abnormalities, and restored microcirculation, providing proof of concept for targeting a downstream mediator to treat AVM pathologies despite a sustained causal molecular lesion.
Collapse
Affiliation(s)
- Corinne M. Nielsen
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Xuetao Zhang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Kunal Raygor
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Shaoxun Wang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Andrew W. Bollen
- Department of Pathology, University of California, San Francisco, San Francisco, CA
| | - Rong A. Wang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA,Correspondence to Rong A. Wang:
| |
Collapse
|
34
|
Tsentsiper LM, Dryagina NV, Terekhov IS, Aybazova MI, Rumyantseva MV, Petrov AE, Petrova AO, Kondratyev AN. Inflammatory Response in Patients with Spontaneous Intracranial Hemorrhages. MESSENGER OF ANESTHESIOLOGY AND RESUSCITATION 2022. [DOI: 10.21292/2078-5658-2022-19-5-71-78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mortality and disability rates in spontaneous intracranial hemorrhages remain high despite medical advances. In recent decades, much attention has been paid to neuroinflammation as a typical response to brain damage. Inflammation plays an important role in the acute and chronic phases of the disease. The relationship between plasma and cerebrospinal fluid cytokines, as well as the factors affecting their ratios, is currently not completely clear.The objective was to study the inflammatory response to spontaneous intracranial hemorrhage.Subjects and Methods. 59 patients aged 18 to 72 years (48 ± 6) were enrolled in the study. Patients were admitted to the intensive care unit after an episode of spontaneous intracranial hemorrhage. The levels of interleukins in blood plasma were studied: 6, 8, 10, TNF-α, C-reactive protein,blood leukocytes, and procalcitonin (by a semi-quantitative method). In the cerebrospinal fluid, the following parameters were evaluated: cytosis, protein, glucose, lactate, cytokines (6, 8, 10, TNF-α). Blood samples were collected on days 1, 2, 3, 5, 7, 9, 14, 21, 28, 35, and 45.Results. Systemic inflammatory response developed in all patients from the first day of acute brain injury. The most significant response was formed by glial brain cells which was confirmed by high levels of cytokines in the cerebrospinal fluid, hundreds and thousands of times higher than blood levels of cytokines.Conclusion. Levels of pro-inflammatory cytokines are predictors of an unfavorable outcome.
Collapse
Affiliation(s)
- L. M. Tsentsiper
- Polenov Neurosurgical Institute, the Branch of Almazov National Medical Research Center
| | - N. V. Dryagina
- Polenov Neurosurgical Institute, the Branch of Almazov National Medical Research Center
| | - I. S. Terekhov
- Polenov Neurosurgical Institute, the Branch of Almazov National Medical Research Center
| | - M. I. Aybazova
- Polenov Neurosurgical Institute, the Branch of Almazov National Medical Research Center
| | - M. V. Rumyantseva
- North-Western District Scientific and Clinical Center Named after L. G. Sokolov
| | - A. E. Petrov
- Polenov Neurosurgical Institute, the Branch of Almazov National Medical Research Center
| | | | - A. N. Kondratyev
- Polenov Neurosurgical Institute, the Branch of Almazov National Medical Research Center
| |
Collapse
|
35
|
Vetiska S, Wälchli T, Radovanovic I, Berhouma M. Molecular and genetic mechanisms in brain arteriovenous malformations: new insights and future perspectives. Neurosurg Rev 2022; 45:3573-3593. [PMID: 36219361 DOI: 10.1007/s10143-022-01883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 10/17/2022]
Abstract
Brain arteriovenous malformations (bAVMs) are rare vascular lesions made of shunts between cerebral arteries and veins without the interposition of a capillary bed. The majority of bAVMs are asymptomatic, but some may be revealed by seizures and potentially life-threatening brain hemorrhage. The management of unruptured bAVMs remains a matter of debate. Significant progress in the understanding of their pathogenesis has been made during the last decade, particularly using genome sequencing and biomolecular analysis. Herein, we comprehensively review the recent molecular and genetic advances in the study of bAVMs that not only allow a better understanding of the genesis and growth of bAVMs, but also open new insights in medical treatment perspectives.
Collapse
Affiliation(s)
- Sandra Vetiska
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Thomas Wälchli
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Moncef Berhouma
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France. .,CREATIS Lab, CNRS UMR 5220, INSERM U1294, Lyon 1, University, Lyon, France.
| |
Collapse
|
36
|
Amin MA, Nahin S, Hawlader MDH. Persistent headaches sometimes concern incidental findings: A rare case of internal jugular vein agenesis in a 32-year-old man. Clin Case Rep 2022; 10:e6423. [PMID: 36237945 PMCID: PMC9536497 DOI: 10.1002/ccr3.6423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022] Open
Abstract
Absence of an internal jugular vein at birth is infrequent. These developmental anomalies affect approximately 0.05 percent to 0.25 percent of the population in the general community. Avascular abnormalities emerging from the internal jugular vein were detected during radiographic studies of chronic headache in an adult male patient. A dull headache troubled a 32-year-old man for more than 20 years. After taking most of NSAIDs and other medications for the condition, which persisted, a diagnosis of left internal jugular vein agenesis was made, which was most likely the cause of the headaches. When treating recurrent, persistent headaches in the emergency room and outdoor medical services, keep in mind that agenesis of the jugular venous system can play a role-one of the uncommon causes of headaches we have observed in our cases.
Collapse
Affiliation(s)
- Mohammad Ashraful Amin
- Department of Public HealthNorth South UniversityDhakaBangladesh
- Public Health Professional Development Society (PPDS)DhakaBangladesh
| | - Sabrina Nahin
- Department of PhysiologyGreen Life Medical College HospitalDhakaBangladesh
| | | |
Collapse
|
37
|
Karanth S, Rao S, Savardekar A, HR A, Pruthi N, Arivazhagan A, Bhat DI, Srinivas D, Devi BI, Somanna S, Mahadevan A. Pathological Spectrum of Vascular Malformations of the Central Nervous System: A Single Institution Experience of a Decade. INDIAN JOURNAL OF NEUROSURGERY 2022. [DOI: 10.1055/s-0042-1749141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Abstract
Background Vascular malformations (VMs) of the central nervous system comprise a variety of lesions that could affect the arteries, veins, or capillaries.
Materials and Methods We analyzed the histopathological features of all the VMs diagnosed at our centre over a decade.
Results Intracranial VM included arteriovenous malformation (AVM) (53%), cerebral cavernous malformations (CCMs) (45%), capillary telangiectasia (2%), venous angioma (0.5%), and arteriovenous fistula (AVF) (0.5%). In spinal VMs, capillary telangiectasia (40%) were the most common, followed by cavernomas (34%), AVF (16%), and AVMs and venous angiomas (5%). Clinical presentation varied from focal deficit to features of raised intracranial tension.
Conclusion Imaging and histopathology plays an important role in the diagnosis and management of VMs. Histopathological examination is essential for characterization of the VMs, which influences the prognosis.
Collapse
Affiliation(s)
- Shrithi Karanth
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Shilpa Rao
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Amey Savardekar
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Aravind HR
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangaluru, India
| | - Nupur Pruthi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Arimapamagan Arivazhagan
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Dhananjaya I. Bhat
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Dwarakanath Srinivas
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Bhagvatula Indira Devi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sampath Somanna
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
38
|
Scherschinski L, McNeill IT, Schlachter L, Shuman WH, Oemke H, Yaeger KA, Bederson JB. Augmented reality–assisted microsurgical resection of brain arteriovenous malformations: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2022; 3:CASE21135. [PMID: 35733837 PMCID: PMC9210269 DOI: 10.3171/case21135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/04/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Arteriovenous malformations (AVMs) of the brain are vessel conglomerates of feeding arteries and draining veins that carry a risk of spontaneous and intraoperative rupture. Augmented reality (AR)-assisted neuronavigation permits continuous, real-time, updated visualization of navigation information through a heads-up display, thereby potentially improving the safety of surgical resection of AVMs. OBSERVATIONS The authors report a case of a 37-year-old female presenting with a 2-year history of recurrent falls due to intermittent right-sided weakness and increasing clumsiness in the right upper extremity. Magnetic resonance imaging, magnetic resonance angiography, and cerebral angiography of the brain revealed a left parietal Spetzler-Martin grade III AVM. After endovascular embolization of the AVM, microsurgical resection using an AR-assisted neuronavigation system was performed. Postoperative angiography confirmed complete obliteration of arteriovenous shunting. The postsurgical course was unremarkable, and the patient remains in excellent health. LESSONS Our case describes the operative setup and intraoperative employment of AR-assisted neuronavigation for AVM resection. Application of this technology may improve workflow and enhance patient safety.
Collapse
Affiliation(s)
- Lea Scherschinski
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; and
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Ian T. McNeill
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Leslie Schlachter
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - William H. Shuman
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Holly Oemke
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Kurt A. Yaeger
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Joshua B. Bederson
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; and
| |
Collapse
|
39
|
Schmitt N, Wucherpfennig L, Hohenstatt S, Weyland CS, Sommer CM, Bendszus M, Möhlenbruch MA, Vollherbst DF. Visibility of liquid embolic agents in fluoroscopy: a systematic in vitro study. J Neurointerv Surg 2022; 15:594-599. [PMID: 35508379 DOI: 10.1136/neurintsurg-2022-018958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Endovascular embolization using liquid embolic agents (LEAs) is frequently applied for the treatment of intracranial vascular malformations. Appropriate visibility of LEAs during embolization is essential for visual control and to prevent complications. Since LEAs contain different radiopaque components of varying concentrations, our aim was the systematic assessment of the visibility of the most used LEAs in fluoroscopy. METHODS A specifically designed in vitro model, resembling cerebral vessels, was embolized with Onyx 18, Squid 18, Squid 12, PHIL (precipitating hydrophobic injectable liquid) 25%, PHIL LV (low viscosity) and NBCA (n-butyl cyanoacrylate) mixed with iodized oil (n=3 for each LEA), as well as with contrast medium and saline, both serving as a reference. Fluoroscopic image acquisition was performed in accordance with clinical routine settings. Visibility was graded quantitatively (contrast to noise ratio, CNR) and qualitatively (five-point scale). RESULTS Overall, all LEAs provided at least acceptable visibility in this in vitro model. Onyx and Squid as well as NBCA mixed with iodized oil were best visible at a comparable level and superior to the formulations of PHIL, which did not differ in quantitative and qualitative analyses (eg, Onyx 18 vs PHIL 25% along the 2.0 mm sector: mean CNR±SD: 3.02±0.42 vs 1.92±0.35; mean score±SD: 5.00±0.00 vs 3.75±0.45; p≤0.001, respectively). CONCLUSION In this systematic in vitro study, relevant differences in the fluoroscopic visibility of LEAs in neurointerventional embolization procedures were demonstrated, while all investigated LEAs provided acceptable visibility in our in vitro model.
Collapse
Affiliation(s)
- Niclas Schmitt
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lena Wucherpfennig
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sophia Hohenstatt
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Charlotte S Weyland
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christof M Sommer
- Clinic of Radiology, University Hospital Heidelberg, Heidelberg, Germany.,Clinic of Radiology and Neuroradiology, Sana Kliniken Duisburg GmbH, Duisburg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus A Möhlenbruch
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dominik F Vollherbst
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
40
|
Liu J, Li Y, Zhang H, Luo C, Yuan D, Jiang W, Yan J. Associated genetic variants and potential pathogenic mechanisms of brain arteriovenous malformation. J Neurointerv Surg 2022; 15:572-578. [PMID: 35470246 DOI: 10.1136/neurintsurg-2022-018776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/10/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND The pathogenic mechanism of brain arteriovenous malformation (bAVM) is poorly understood. A growing body of evidence indicates that genetic factors play crucial roles in bAVM. This study examined genetic variants associated with bAVM through quantitative synthesis and qualitative description of literature. METHODS Five databases were searched to gather potentially relevant articles published up to January 2022. STATA 14.0 software was used for statistical analyses. Pooled odds ratios and 95% confidence intervals were calculated with random effect models, and heterogeneity was assessed using the Cochran Q test and quantified with the I 2 test. Sensitivity and publication bias were analyzed to test the robustness of the associations. Variants identified in only one study or with great heterogeneity were not suitable for pooling association analysis, and therefore a qualitative systematic review was performed. RESULTS In total, 30 papers were included in a systematic review involving 4709 cases and 7832 controls, where 17 papers were in a meta-analysis. A suggested association of bAVM was observed with ACVRL1 rs2071219 in the additive model and CDKN2B-AS1 rs1333040 in the recessive and additive models. Other variants of genes that could not be analyzed were summarized by qualitative description. These genes were mostly involved in bone morphogenic protein/transforming growth factor beta (BMP/TGF-β), vascular endothelial growth factor/vascular endothelial growth factor receptor (VEGF/VEGFR), and RAS-mitogen activated protein kinase (MAPK) signaling and inflammation. CONCLUSIONS According to our meta-analysis, ACVRL1 rs2071219 and CDKN2B-AS1 rs1333040 were potentially associated with bAVM. Multiple pathological signaling pathways could affect disease development. Future studies should aim to determine the interaction of candidate genes with environmental risk factors and to elucidate detailed mechanisms of action of variants and genes.1.
Collapse
Affiliation(s)
- Junyu Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Yifeng Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hao Zhang
- Interventional Medical Center, Hunan Province People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, China
| | - Chun Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South university, Changsha 410078, China
| | - Dun Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weixi Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Junxia Yan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South university, Changsha 410078, China .,Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| |
Collapse
|
41
|
Morton A. Pregnancy complicated by neurological and neurosurgical conditions - The evidence regarding mode of delivery. Obstet Med 2022; 15:11-18. [PMID: 35444727 PMCID: PMC9014549 DOI: 10.1177/1753495x211000176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 09/21/2020] [Accepted: 02/10/2021] [Indexed: 11/15/2022] Open
Abstract
Neurological and neurosurgical conditions complicating pregnancy may precipitate considerable concern regarding the risk of complications, and uncertainty regarding the preferred mode of delivery and anaesthesia. Caesarean section is known to be associated with significantly increased risk of adverse maternal outcomes compared with vaginal delivery in healthy pregnancy. Nevertheless, a common perception exists among the general population and some health professionals that caesarean section is safer for the mother and baby in high-risk pregnancies. This manuscript examines the literature regarding the risks and outcomes related to mode of delivery in pregnancy complicated by disorders of the central nervous system. With the exception of women with raised intracranial pressure, and some women with Von Hippel-Lindau syndrome, the available evidence suggests that the mode of delivery should be based upon obstetric indications.
Collapse
Affiliation(s)
- Adam Morton
- Obstetric Medicine Department, Mater Hospital, South Brisbane,
Australia
- Faculty of Medicine, University of Queensland, St Lucia,
Australia
| |
Collapse
|
42
|
Genetics and Emerging Therapies for Brain Arteriovenous Malformations. World Neurosurg 2022; 159:327-337. [PMID: 35255632 DOI: 10.1016/j.wneu.2021.10.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022]
Abstract
Brain arteriovenous malformations (AVMs) are characterized by a high-pressure, low-resistance vascular nidus created by direct shunting of blood from feeding arteries into arterialized veins, bypassing intervening capillaries. AVMs pose a risk of spontaneous rupture because the vessel walls are continuously exposed to increased shear stress and abnormal flow phenomena, which lead to vessel wall inflammation and distinct morphologic changes. The annual rupture rate is estimated at 2%, and once an AVM ruptures, the risk of rerupture increases 5-fold. The ability of AVMs to grow, regress, recur, and undergo remodeling shows their dynamic nature. Identifying the underlying cellular and molecular pathways of AVMs not only helps us understand their natural physiology but also allows us to directly block vital pathways, thus preventing AVM development and progression. Management of AVMs is challenging and often necessitates a multidisciplinary approach, including neurosurgical, endovascular, and radiosurgical expertise. Because many of these procedures are invasive, carry a risk of inciting hemorrhage, or are controversial, the demand for pharmacologic treatment options is increasing. In this review, we introduce novel findings of cellular and molecular AVM physiology and highlight key signaling mediators that are potential targets for AVM treatment. Furthermore, we give an overview of syndromes associated with hereditary and nonhereditary AVM formation and discuss causative genetic alterations.
Collapse
|
43
|
Multimodality Treatment of Brain Arteriovenous Malformations with One-Staged Hybrid Operation: Clinical Characteristics and Long-Term Prognosis. DISEASE MARKERS 2022; 2022:2559004. [PMID: 35265225 PMCID: PMC8898859 DOI: 10.1155/2022/2559004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022]
Abstract
Objective We aimed to evaluate the clinical characteristics and long-term prognosis of brain arteriovenous malformations (bAVMs) treated with multimodality management of one-staged hybrid operation. Methods We identified bAVM patients treated with one-staged hybrid operation from a multicenter prospective cohort study (NCT03774017) between January 2016 and June 2020. Patients were divided into unruptured and ruptured groups by the hemorrhagic presentation. Long-term (>12 months) neurological disability, postoperative complications of stroke, and nidus obliteration were evaluated and compared between groups. Prognostic predictors associated with outcomes were analyzed. Results A total of 130 patients were identified in the study receiving one-staged hybrid operations, including 61 unruptured cases and 69 ruptured cases. Mean age was 29.1 years old, with 78 (60.0%) being male. Patients included in the study were followed up for a mean period of 37.4 (11.07) months. The annual hemorrhagic risk was 4.2% per year. Thirteen postoperative stroke events were detected in 11 patients (8.5%). Long-term disability occurred in 6.9% of cases, and 86.2% of patients experienced an unchanged or improved neurological status at the last follow-up. All patients achieved complete obliteration on follow-up angiographies. Increased AVM volume was associated with a higher risk of postoperative stroke (odds ratio (OR) 1.021, 95% confidence interval (CI) 1.006-1.037, and P = 0.006). Poor neurological status (OR 6.461, 95% CI 1.309-31.889, and P = 0.022) and infratentorial location (OR 5.618, 95% CI 1.158-27.246, and P = 0.032) were independent predictors for long-term disability. Conclusions One-staged hybrid operation of embolization combined microsurgical resection can be performed as a safe and effective strategy for bAVM treatments. Long-term prognosis of complete obliteration with low rates of morbidity and mortality can be achieved. Unruptured and ruptured bAVMs acquired similar favorable outcomes after the multimodality treatment.
Collapse
|
44
|
Gamma Knife radiosurgery for cerebral arteriovenous malformations: a systematic review and meta-analysis. Neurosurg Rev 2022; 45:1987-2004. [PMID: 35178626 PMCID: PMC9160151 DOI: 10.1007/s10143-022-01751-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
|
45
|
Li S, Tao W, Huang Z, Yan L, Chen B, Zeng C, Chen F. The Transcriptional Landscapes and Key Genes in Brain Arteriovenous Malformation Progression in a Venous Hypertension Rat Model Revealed by RNA Sequencing. J Inflamm Res 2022; 15:1381-1397. [PMID: 35250290 PMCID: PMC8893156 DOI: 10.2147/jir.s347754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 01/23/2023] Open
Abstract
Background Brain arteriovenous malformations (bAVM) are abnormal vascular lesions characterized by direct connections between arteries and veins without an intervening capillary bed. The primary goal for brain AVM treatment is to prevent rupture and hemorrhage; however, the underlying molecular mechanisms are still unknown. Methods We constructed venous hypertension (VH) rat model with end-to-end anastomosis of the proximal left common carotid artery and the left distal external jugular vein. Thirty-eight adult rats were randomly assigned to four groups: the 0-week (n=5), the 1-week VH group (n=12), the 3-week VH group (n=9), and the 6-week VH group (n=12). We measured the hemodynamics and diameter of the arterialized veins. An RNA sequencing of arterialized veins was conducted, followed by comprehensive bioinformatics analysis to identify key genes and biological pathways involved in VH progression. The candidate genes from RNA-Seq were validated by RT-qPCR and immunostaining in human tissues. Results We observed high-flow and low resistance characteristics in VH models. A total of 317 upregulated and 258 downregulated common genes were consistently differentially expressed during VH progression. Thirteen co-expression modules were obtained by WGCNA analysis, and 4 key modules were identified. Thirteen genes: Adamts8, Adamtsl3, Spon2, Adamtsl2, Chad, Itga7, Comp, Itga8, Bmp6, Fst, Smad6, Smad7, Grem1, and Nog with differential expressions were identified using the density of maximum neighborhood component (DMNC) algorithm in Cytohubba. The expression of five potential genes (Adamts8, Adamtsl3, Spon2, Adamtsl2, Itga8) were increased in RT-qPCR, while in human bAVM tissue, the protein levels of Adamtsl2 and Itga8 were significant elevated and Spon2 and Adamtsl3 were decreased. Conclusion The identified gene networks of Adamtsl3, Spon2, Adamtsl2, and Itga8 provided key genes for further intervention.
Collapse
Affiliation(s)
- Shifu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Wengui Tao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Zheng Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Langchao Yan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Chudai Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Fenghua Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Correspondence: Fenghua Chen, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People’s Republic of China, Email
| |
Collapse
|
46
|
Wang M, Lin F, Qiu H, Cao Y, Wang S, Zhao J. Comparison of Endovascular Embolization Plus Simultaneous Microsurgical Resection vs. Primary Microsurgical Resection for High-Grade Brain Arteriovenous Malformations. Front Neurol 2022; 12:756307. [PMID: 35002920 PMCID: PMC8740155 DOI: 10.3389/fneur.2021.756307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: It remains a challenge in surgical treatments of brain arteriovenous malformations (AVMs) in Spetzler-Martin Grade (SMG) IV and V to achieve both optimal neurological outcomes and complete obliteration. The authors reported a series of patients with AVMs in SMG IV and V who underwent a surgical paradigm of endovascular embolization and simultaneous microsurgical resection based on the one-staged hybrid operation. Methods: Participants in the multicenter prospective clinical trial (NCT03774017) between January 2016 and December 2019 were enrolled. Patients who received endovascular embolization plus microsurgical resection (EE+MRS) and those who received intraoperative digital subtraction angiography plus microsurgical resection (iDSA+MRS) were divided into two groups. Information on clinical features, operative details, and clinical outcomes were extracted from the database. Deterioration of neurological deficits (DNDs) was defined as the primary outcome, which represented neurological outcomes. The time of microsurgical operation and blood loss were defined as the secondary outcomes representing microsurgical risks and difficulties. Outcomes and technical details were compared between groups. Results: Thirty-eight cases (male: female = 23:15) were enrolled, with 24 cases in the EE+MRS group and 14 in the iDSA+MRS group. Five cases (13.2%) were in SMG V and 33 cases (86.8%) were in SMG IV. Fourteen cases (36.8%) underwent the paradigm of microsurgical resection plus intraoperative DSA. Twenty-four cases (63.2%, n = 24) underwent the paradigm of endovascular embolization plus simultaneous microsurgical resection. Degradations of SMG were achieved in 15 cases. Of the cases, two cases got the residual nidus detected via intraoperative DSA and resected. Deterioration of neurological deficits occurred in 23.7% of cases (n = 9) when discharged, and in 13.5, 13.5, 8.1% of cases at the follow-ups of 3, 6, and 12 months, respectively, without significant difference between groups (P > 0.05). Intracranial hemorrhagic complications were reported in three cases (7.9%) of the EE+MRS group only. The embolization did not significantly affect the surgical time and intraoperative blood loss. The subtotal embolization or the degradation of size by 2 points resulted in no DNDs. Conclusions: The paradigms based on the one-staged hybrid operation were practical and effective in treating high-grade AVMs. Appropriate intraoperative embolization could help decrease operative risks and difficulties and improve neurological outcomes.
Collapse
Affiliation(s)
- Mingze Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute of Brain Disorder, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Fa Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute of Brain Disorder, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Hancheng Qiu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute of Brain Disorder, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute of Brain Disorder, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute of Brain Disorder, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute of Brain Disorder, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
47
|
Rajan J, Pan S, Kannath S, Singh G. A Prospective Study Comparing the Three-Dimensional Rotational Angiography and Two-Dimensional Digital Subtraction Angiography in Evaluation of Brain Arteriovenous Malformations. Neurol India 2022; 70:1905-1910. [DOI: 10.4103/0028-3886.359242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Weyhenmeyer J, Ordaz JD, Cohen Gadol A, Shah M. Preoperative Embolization With Fused CT Angiography and Tractography Facilitates Safe Resection of a Spetzler-Martin Grade IV Arteriovenous Malformation. Cureus 2021; 13:e20657. [PMID: 35106209 PMCID: PMC8786565 DOI: 10.7759/cureus.20657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 11/05/2022] Open
Abstract
Brain arteriovenous malformations (BAVMs) are high-flow vascular lesions that have a propensity to rupture resulting in high rates of morbidity and mortality. Microsurgical resection of BAVMs is the standard of care for high-risk, resectable lesions. Multiple imaging modalities aid in the surgical planning and resection of high-grade BAVMs, but all have hidden variables that would prove useful if available. We present a 20-year-old male with a ruptured BAVM with concern for the involvement of the corticospinal tract (CST) and basal ganglia. We describe the melding of computed tomography angiography (CTA) and diffusion tensor imaging (DTI) in addition to preoperative embolization to aid in the planning and resection of a lesion close to eloquent structures. Post-operative CTA and DTI showed a total resection of the lesion with retained CST white matter tracts, and the patient retained the functional ability of the contralateral limbs. The combination of CTA, brain DTI, and preoperative embolization provides a framework to improve the safety of resection of BAVMs that occur near eloquent brain networks.
Collapse
Affiliation(s)
- Jonathan Weyhenmeyer
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, USA
| | - Josue D Ordaz
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, USA
| | - Aaron Cohen Gadol
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, USA
| | - Mitesh Shah
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
49
|
Schmitt N, Weyland CS, Wucherpfennig L, Herweh C, Bendszus M, Möhlenbruch MA, Vollherbst DF. Iterative Metal Artifact Reduction (iMAR) of the Non-adhesive Liquid Embolic Agent Onyx in Computed Tomography : An Experimental Study. Clin Neuroradiol 2021; 32:695-703. [PMID: 34643742 PMCID: PMC9424152 DOI: 10.1007/s00062-021-01101-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/09/2021] [Indexed: 12/04/2022]
Abstract
Background A drawback of Onyx, one of the most used embolic agents for endovascular embolization of intracranial arteriovenous malformations (AVM), is the generation of imaging artifacts (IA) in computed tomography (CT). Since these artifacts can represent an obstacle for the detection of periprocedural bleeding, this study investigated the effect of artifact reduction by an iterative metal artifact reduction (iMAR) software in CT in a brain phantom. Methods Two different in vitro models with two-dimensional tube and three-dimensional AVM-like configuration were filled with Onyx 18. The models were inserted into a brain imaging phantom and images with (n = 5) and without (n = 10) an experimental hemorrhage adjacent were acquired. Afterwards, the iMAR algorithm was applied for artifact reduction. The IAs of the original and the post-processed images were graded quantitatively and qualitatively. Moreover, qualitative definition of the experimental hemorrhage was investigated. Results Comparing the IAs of the original and the post-processed CT images, quantitative and qualitative analysis showed a lower degree of IAs in the post-processed images, i.e. quantitative analysis: 2D tube model: 23.92 ± 8.02 Hounsfield units (HU; no iMAR; mean ± standard deviation) vs. 5.93 ± 0.43 HU (with iMAR; p < 0.001); qualitative analysis: 3D AVM model: 4.93 ± 0.18 vs. 3.40 ± 0.48 (p < 0.001). Furthermore, definition of the experimental hemorrhage was better in the post-processed images of both in vitro models (2D tube model: p = 0.004; 3D AVM model: p = 0.002). Conclusion The iMAR algorithm can significantly reduce the IAs evoked by Onyx 18 in CT. Applying iMAR could thus improve the accuracy of postprocedural CT imaging after embolization with Onyx in clinical practice.
Collapse
Affiliation(s)
- Niclas Schmitt
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Charlotte S Weyland
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Lena Wucherpfennig
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Herweh
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Markus A Möhlenbruch
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Dominik F Vollherbst
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
50
|
Comparison of management approaches in deep-seated intracranial arteriovenous malformations: Does treatment improve outcome? J Clin Neurosci 2021; 92:191-196. [PMID: 34509251 DOI: 10.1016/j.jocn.2021.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/22/2021] [Accepted: 08/14/2021] [Indexed: 11/23/2022]
Abstract
Deep-seated intracranial arteriovenous malformations (AVMs) represent a subset of AVMs characterized by variably reported outcomes regarding the risk of hemorrhage, microsurgical complications, and response to stereotactic radiosurgery (SRS). We aimed to compare outcomes of microsurgery, SRS, endovascular therapy, and conservative follow-up in deep-seated AVMs. A prospectively maintained database of AVM patients (1990-2017) was queried to identify patients with ruptured and unruptured deep-seated AVMs (extension into thalamus, basal ganglia, or brainstem). Comparisons of hemorrhage-free survival and poor functional outcome (modified Rankin scale [mRS] > 2) were performed between conservative management, microsurgery (±pre-procedural embolization), SRS (±pre-procedural embolization), and embolization utilizing multivariable Cox and logistic regression analyses controlling for univariable factors with p < 0.05. Of 789 AVM patients, 102 had deep-seated AVMs (conservative: 34; microsurgery: 6; SRS: 54; embolization: 8). Mean follow-up time was 6.1 years and did not differ significantly between management groups (p = 0.393). Complete obliteration was achieved in 49% of SRS patients. Upon multivariable analysis controlling for baseline rupture with conservative management as a reference group, embolization was associated with an increased hazard of hemorrhage (HR = 6.2, 95%CI [1.1-40.0], p = 0.037), while microsurgery (p = 0.118) and SRS (p = 0.167) provided no significant protection from hemorrhage. Controlling for baseline mRS, microsurgery was associated with an increased risk of poor outcome (OR = 9.2[1.2-68.3], p = 0.030), while SRS (p = 0.557) and embolization (p = 0.541) did not differ significantly from conservative management. Deep AVMs harbor a high risk of hemorrhage, but the benefit from intervention Remains uncertain. SRS may be a relatively more effective approach if interventional therapy is indicated.
Collapse
|