1
|
Yi JS, Cuglievan B. Acute Leukemia in the Crosshairs: First-in-Class Menin Inhibitor Approval for Adults and Children. Pediatr Blood Cancer 2025; 72:e31657. [PMID: 40103277 DOI: 10.1002/pbc.31657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Affiliation(s)
- Joanna S Yi
- Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas, USA
| | - Branko Cuglievan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Guidi L, Etessami J, Valenza C, Valdivia A, Meric-Bernstam F, Felip E, Curigliano G. Bispecific Antibodies in Hematologic and Solid Tumors: Current Landscape and Therapeutic Advances. Am Soc Clin Oncol Educ Book 2025; 45:e473148. [PMID: 40198874 DOI: 10.1200/edbk-25-473148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Bispecific antibodies (bsAbs) have emerged as a novel class of therapeutics, offering a dual-targeting strategy to enhance the therapeutic efficacy of monoclonal antibodies, which is often limited by tumor heterogeneity and the occurrence of resistance mechanisms. By simultaneously engaging two distinct antigens or pathways, bsAbs disrupt multiple signaling cascades simultaneously, preventing escape mechanisms and offering a more durable response. Furthermore, they can optimize immune activation, improving immune cell recruitment strategies. In particular, T-cell engager bsAbs facilitate immune cell-mediated tumor destruction by linking T cells to tumor antigens. Instead, dual immune checkpoint inhibitors (CPIs) enhance immune activation by blocking inhibitory signals. Additionally, bsAbs targeting tumor growth factors or receptor tyrosine kinases offer solutions for overcoming drug resistance in solid tumors. Although bsAbs have shown remarkable success in hematologic malignancies, their expansion into solid tumors faces key challenges, including tumor heterogeneity, limited tumor penetration, and the risk of on-target, off-tumor toxicities. Addressing these challenges requires innovative engineering strategies, optimized delivery mechanisms, and careful patient selection to maximize therapeutic benefit while mitigating adverse effects. The efficacy of bsAbs in clinical trials has led to their approval for both hematologic and solid malignancies, with numerous agents in development. Combination strategies with chemotherapy, targeted agents, and immune CPIs could represent a promising strategy to further expand their potential. As research progresses, bsAbs are expected to play a role in reshaping the future of precision oncology, offering more effective and tailored treatment options.
Collapse
Affiliation(s)
- Lorenzo Guidi
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Julian Etessami
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA
| | - Augusto Valdivia
- Department of Medical Oncology, Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Enriqueta Felip
- Department of Medical Oncology, Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Annesley C, Lamble A, Summers C, Pulsipher MA, Wayne AS, Rivers J, Huang W, Wilson A, Wu QV, Seidel K, Mgebroff S, Brown C, Lindgren C, Park JR, Jensen M, Gardner R. Feasibility and favorable responses after investigational CAR T-cell therapy for relapsed and refractory infant ALL. Blood Adv 2025; 9:2068-2078. [PMID: 39133891 DOI: 10.1182/bloodadvances.2024012638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/12/2024] [Indexed: 04/24/2025] Open
Abstract
ABSTRACT Infants with B-cell acute lymphoblastic leukemia (B-ALL) continue to have significantly worse outcomes compared with older children with B-ALL, and those with relapsed or refractory (R/R) infant ALL have especially dismal outcomes with conventional treatment. CD19-targeting chimeric antigen receptor (CAR) T-cell therapy has demonstrated remarkable success in the treatment of R/R childhood B-ALL, although the majority of reports have been in noninfant patients. Barriers to the successful implementation of CAR T-cell therapy in infant B-ALL include challenges related to apheresis, product manufacturing, and disease-specific considerations such as lineage switch. We describe our experience using 2 experimental CD19 CAR T-cell products, SCRI-CAR19 or SCRI-CAR19x22, for 19 patients with R/R infant B-ALL enrolled in 3 clinical trials. CAR T-cell products were successfully manufactured in 18 of 19 (94.7%) patients, with a median age of 22.5 months at enrollment (range, 14.5-40.1). Of 17 (94.1%) treated patients, 16 achieved a complete remission without detectable minimal residual disease. The 1-year leukemia-free survival was 75%, and 1-year overall survival was 76.5%, with a median follow-up time of 35.8 months (range, 1.7-83.6). Cytokine release syndrome (CRS) occurred in 14 of 17 (82.4%) patients, with only 1 patient experiencing grade 3 CRS. Neurotoxicity occurred in 2 of 17 (11.8%) patients with all events grade ≤2. With the successful early clinical experience of CAR T-cell therapy in this population, more systematic evaluation specific to infant ALL is warranted.
Collapse
Affiliation(s)
- Colleen Annesley
- Department of Pediatrics, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
- Seattle Children's Therapeutics, Seattle, WA
| | - Adam Lamble
- Department of Pediatrics, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Corinne Summers
- Department of Pediatrics, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
- Seattle Children's Therapeutics, Seattle, WA
| | - Michael A Pulsipher
- Division of Hematology and Oncology, Intermountain Primary Children's Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
| | - Alan S Wayne
- Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Julie Rivers
- Department of Pediatrics, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | | | | | - Qian Vicky Wu
- Divisions of Clinical Research and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | | | | | - Julie R Park
- Department of Pediatrics, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
- Seattle Children's Therapeutics, Seattle, WA
| | | | - Rebecca Gardner
- Department of Pediatrics, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
- Seattle Children's Therapeutics, Seattle, WA
| |
Collapse
|
4
|
Holland AC, Smith J, Wang L, Muller B, Inaba H. Reduced-Intensity Chemotherapy With Immunotherapy for Children With Down Syndrome and B-Cell Acute Lymphoblastic Leukemia. Pediatr Blood Cancer 2025; 72:e31634. [PMID: 40038910 DOI: 10.1002/pbc.31634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 03/06/2025]
Affiliation(s)
- Ashley C Holland
- Center of Advanced Practice, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jasmine Smith
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bradley Muller
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
5
|
Holzmann JJ, Kotecha RS. Utility of Daratumumab as Bridging Therapy in De Novo T-Cell Acute Lymphoblastic Lymphoma. Pediatr Blood Cancer 2025; 72:e31526. [PMID: 39762504 DOI: 10.1002/pbc.31526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/25/2025]
Affiliation(s)
- Jonathan J Holzmann
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Rishi S Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, University of Western Australia, Perth, Western Australia, Australia
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Arabatzis TJ, Desai B, Baril S, Rasul S, Tekle-Yohannes G, Miller MA. A long-term survivor of congenital KMT2A-R B-lymphoblastic leukemia with persistently positive bone marrow MRD and multiple CNS relapses. BMC Pediatr 2025; 25:151. [PMID: 40016709 PMCID: PMC11869613 DOI: 10.1186/s12887-024-05093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/20/2024] [Indexed: 03/01/2025] Open
Abstract
Here we describe the case of an infant incidentally diagnosed with congenital KMT2A-rearranged (KMT2A-r) B-cell ALL on Day of Life 4. He received the first dose of intrathecal methotrexate on DOL 5, and induction systemic therapy on DOL 6. He demonstrated morphologic remission at the end of induction but had positive bone marrow. Minimal residual disease (MRD) was 1.4%. He experienced isolated CNS disease after consolidation and immunotherapy. At 8 months of age he underwent hematopoietic stem cell transplantation (HSCT). At 14 months of age he had medullary and CNS relapse, and at 16 months of age underwent CD19 CAR-T therapy. At 6 years of age he remains in remission with tolerable developmental delays and a good quality of life.
Collapse
Affiliation(s)
- Taxiarhia J Arabatzis
- Department of Internal Medicine-Pediatrics, Janet Weis Children's Hospital, Danville, PA, USA
| | - Biren Desai
- Department of Internal Medicine-Pediatrics, Janet Weis Children's Hospital, Danville, PA, USA
| | - Sandra Baril
- Department of Pediatrics, Janet Weis Children's Hospital, Danville, PA, USA
| | - Susan Rasul
- Department of Internal Medicine-Pediatrics, Janet Weis Children's Hospital, Danville, PA, USA
| | - Girmay Tekle-Yohannes
- Department of Pediatric Hematology and Oncology, Janet Weis Children's Hospital, 100 N Academy Ave, Danville, PA, 17822, USA
| | - Michal Ann Miller
- Department of Pediatric Hematology and Oncology, Janet Weis Children's Hospital, 100 N Academy Ave, Danville, PA, 17822, USA.
| |
Collapse
|
7
|
Jamil A, Qureshi Z, Riaz R, Akram H, Jamil R, Kichloo A, Selene II. Impact of Minimal Residual Diseases Status and Depth of Response on Survival Outcomes in Blinatumomab-Treated Acute Lymphoblastic Leukemia: A Systematic Review and Meta-Analysis. Am J Clin Oncol 2025:00000421-990000000-00263. [PMID: 40008415 DOI: 10.1097/coc.0000000000001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
OBJECTIVES Acute lymphoblastic leukemia (ALL) is a common hematological malignancy that occurs due to blockage of B-lymphocyte maturation at an early stage of development and differentiation. The Food and Drug Administration approved blinotumomab to manage relapsed/refractory ALL (R/R ALL). This review aimed to determine the comparative efficacy of blinatumomab in treating R/R ALL. METHODS Two reviewers searched 3 electronic databases, PubMed, ScienceDirect, and CENTRAL, for all relevant articles published until July 2024. All the articles that met the inclusion criteria were included in the review. RESULTS Four hundred thirty-seven articles were found from the electronic search; however, only 21 articles met the inclusion criteria. A pooled analysis of the outcomes found that blinatumomab resulted in an improvement in both the OS (HR: 0.65; 95% CI: 0.51, 0.82; P=0.0003) and the DFS (HR: 0.57; 95% CI: 0.41, 0.80; P=0.001). Further analysis showed that the CR rate and MRD response of ALL patients to blinatumomab was 51.6% (95% CI: 48.5%, 54.6%; P=0.319) and 64.6% (95% CI: 53.4%, 74.3%; P=0.011), respectively. The safety analysis indicated that the incidence of serious AEs was comparable in patients receiving blinotumomab and those receiving standard chemotherapy (OR: 1.34; 95% CI; 0.91, 1.97; P=0.14). CONCLUSIONS The findings show that blinatumomab is superior to standard chemotherapy in improving the OS and DFS of patients with R/R ALL. Furthermore, it has a more favorable safety profile, making it an effective alternative to conventional chemotherapy for managing R/R ALL.
Collapse
Affiliation(s)
| | - Zaheer Qureshi
- Department of Internal Medicine, Frank H. Netter M.D. School of Medicine at Quinnipiac University, Bridgeport, CT
| | - Rida Riaz
- Internal Medicine, Samaritan Medical Center, Watertown, NY
| | - Hamzah Akram
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Rohma Jamil
- FMH College of Medicine & Dentistry, Lahore, Pakistan
| | - Asim Kichloo
- Texas College of Osteopathic Medicine (UNTHSC/TCOM), University of North Texas, Fort Worth, TX
| | | |
Collapse
|
8
|
Kalwak K, Moser LM, Pötschger U, Bader P, Kleinschmidt K, Meisel R, Dalle JH, Yesilipek A, Balduzzi A, Krivan G, Goussetis E, Staciuk R, Sedlacek P, Pichler H, Svec P, Gabriel M, Güngör T, Bilic E, Buechner J, Renard M, Vettenranta K, Ifversen M, Diaz-de-Heredia C, Stein J, Toporski J, Bierings M, Peters C, Ansari M, Locatelli F. Comparable outcomes after busulfan- or treosulfan-based conditioning for allo-HSCT in children with ALL: results of FORUM. Blood Adv 2025; 9:741-751. [PMID: 39602342 PMCID: PMC11869852 DOI: 10.1182/bloodadvances.2024014548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
ABSTRACT The superiority of total body irradiation (TBI)-based vs chemotherapy conditioning for allogeneic hematopoietic stem cell transplantation (allo-HSCT) in children with acute lymphoblastic leukemia (ALL) has been established in the international, prospective phase-3 FORUM study, randomizing 417 patients aged 4-18 years in complete remission (CR), who received allo-HSCT from HLA-matched sibling or unrelated donors. Because of the unavailability of TBI in some regions and to accommodate individual contraindications, this study reports the prespecified comparison of outcomes of patients receiving busulfan (BU)- or treosulfan (TREO)-based regimens from 2013 to 2018. Overall, 180 and 128 patients received BU/thiotepa (THIO)/fludarabine (FLU) or TREO/THIO/FLU, respectively. Data were analyzed as of February 2023, with a median follow-up of 4.2 years (range, 0.3-9.1). 3-year overall survival was 0.71 (BU, 95% confidence interval [0.64-0.77]) and 0.72 (TREO, [0.63-0.79]) and 3-year event-free survival was 0.60 (BU, [0.53-0.67]) and 0.55 (TREO, [0.46-0.63]). The 3-year cumulative incidence of relapse (BU, 0.31 [0.25-0.38]; TREO, 0.36 [0.27-0.44]); and nonrelapse mortality (BU, 0.08 [0.05-0.13]; TREO, 0.09 [0.05-0.15]) were comparable. One case of fatal veno-occlusive disease occurred in each group. No significant differences in acute and chronic graft-versus-host disease (GVHD) or 3-year GVHD-free and relapse-free survival (BU, 0.48 [0.41-0.55]; TREO, 0.45 [0.37-0.54]) were recorded. Outcomes for patients in first and second CR were similar irrespective of the regimen. In conclusion, BU/THIO/FLU or TREO/THIO/FLU regimens can be an alternative to TBI for patients with ALL aged >4 years with contraindications or lack of access to TBI. This trial was registered at www.ClinicalTrials.gov as #NCT01949129.
Collapse
Affiliation(s)
- Krzysztof Kalwak
- Department of Pediatric Hematology, Oncology, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Laura M. Moser
- Division for Stem Cell Transplantation and Immunology, Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | | | - Peter Bader
- Division for Stem Cell Transplantation and Immunology, Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Katharina Kleinschmidt
- Department of Pediatric Hematology, Oncology, and Stem Cell Transplantation, University Children’s Hospital Regensburg, Regensburg, Germany
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Jean-Hugues Dalle
- Pediatric Hematology and Immunology Department, Robert Debré Hospital, Groupe Hospitalo-Universitaire Assistance Publique Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
| | | | - Adriana Balduzzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pediatric Hematopoietic Stem Cell Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Gergely Krivan
- Pediatric Hematology and Stem Cell Transplantation Department, National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - Evgenios Goussetis
- Stem Cell Transplant Unit, Agia Sofia Children's Hospital, Athens, Greece
| | - Raquel Staciuk
- Hospital de Pediatría “Prof. Dr Juan P. Garrahan,” Buenos Aires, Argentina
| | - Petr Sedlacek
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - Herbert Pichler
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- Department of Pediatric Hematology and Oncology, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
| | - Peter Svec
- Department of Pediatric Hematology and Oncology, National Institute of Children’s Diseases, Comenius University, Bratislava, Slovakia
| | | | - Tayfun Güngör
- Division of Hematology/Oncology/Immunology, Gene Therapy, and Stem Cell Transplantation, University Children's Hospital Zurich, Eleonore Foundation and Children’s Research Center, Zürich, Switzerland
| | - Ernest Bilic
- Division for Hematology and Oncology, Department of Pediatrics Zagreb, University Hospital Center, Zagreb, Croatia
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - Marleen Renard
- Department of Paediatric Oncology, University Hospital Leuven, Leuven, Belgium
| | - Kim Vettenranta
- University of Helsinki and the Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland
| | - Marianne Ifversen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Cristina Diaz-de-Heredia
- Division of Pediatric Hematology and Oncology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jerry Stein
- Schneider Children's Medical Center of Israel and Sackler Faculty of Medicine Tel Aviv University, Petah Tikva, Israel
| | - Jacek Toporski
- Department Cell Therapy and Allogeneic Stem Cell Transplant, Karolinska University Hospital, Stockholm, Sweden
| | - Marc Bierings
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Christina Peters
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- Department of Pediatric Hematology and Oncology, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
| | - Marc Ansari
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
9
|
Chiu SK, Ferrari E, Oommen J, Malinge S, Cheung LC, Kotecha RS. Preclinical Assessment of Dactinomycin in KMT2A-Rearranged Infant Acute Lymphoblastic Leukemia. Cancers (Basel) 2025; 17:527. [PMID: 39941894 PMCID: PMC11816686 DOI: 10.3390/cancers17030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Infants with KMT2A-rearranged B-cell acute lymphoblastic leukemia (ALL) have high rates of relapse and poor survival compared with children. Few new therapies have been identified over the past twenty years. The aim of this study was to identify existing anti-cancer agents that have the potential to be repurposed for the treatment of infant ALL. Methods: Eight extensively characterized infant ALL cell lines were treated with 62 anti-neoplastic drugs in vitro to identify agents that exhibit significant cytotoxicity. From this screen, we selected the most effective and clinically translatable agent for further in vitro and in vivo assessment to determine the potential for use in the clinical setting. Results: Our anti-cancer drug screen revealed significant activity of dactinomycin across all infant ALL cell lines. Further in vitro testing identified low half-maximal inhibitory concentrations (IC50) across our infant ALL cell lines in the nanomolar range. Combination testing with the conventional chemotherapeutic agents currently used to treat infants with ALL demonstrated additivity with cytarabine. In vivo assessment of dactinomycin identified 36 μg/kg as the maximum tolerated dose, with unacceptable toxicities at higher dose treatment. Treatment using doses of 18 μg/kg administered either once or twice a week derived a small but significant survival benefit in patient-derived xenografts. Conclusions: Dactinomycin is extensively used for the treatment of solid tumors in children and has an acceptable safety profile when used to treat infants in this context. However, despite being readily translational and exhibiting promising in vitro cytotoxicity, dactinomycin showed limited efficacy in vivo and therefore does not represent a priority candidate for integrating into therapy for infants with ALL.
Collapse
Affiliation(s)
- Sung K. Chiu
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA 6009, Australia; (S.K.C.); (E.F.); (J.O.); (S.M.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Emanuela Ferrari
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA 6009, Australia; (S.K.C.); (E.F.); (J.O.); (S.M.); (L.C.C.)
| | - Joyce Oommen
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA 6009, Australia; (S.K.C.); (E.F.); (J.O.); (S.M.); (L.C.C.)
| | - Sebastien Malinge
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA 6009, Australia; (S.K.C.); (E.F.); (J.O.); (S.M.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA 6009, Australia; (S.K.C.); (E.F.); (J.O.); (S.M.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, WA Kids Cancer Centre, The Kids Research Institute Australia, Perth, WA 6009, Australia; (S.K.C.); (E.F.); (J.O.); (S.M.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Medical School, University of Western Australia, Perth, WA 6009, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
| |
Collapse
|
10
|
Caye-Eude A, Fazio G, Pastorczak A, Boer JM, Steinemann D, Ganguli D, Sonneveld E, Haslinger S, D'Andrea L, Bradtke J, Lopes BA, Zaliova M, Escherich G, König M, Fortschegger K, Inthal A, Stasevich I, Emerenciano M, Trka J, Castillo L, Parihar M, Moorman AV, Bergmann AK, den Boer ML, Młynarski W, Cazzaniga G, Cavé H, Nebral K, Schinnerl D, Strehl S. PAX5::AUTS2 childhood B-ALL: a relapse-prone genetic subtype with frequent central nervous system involvement and a poor outcome. Leukemia 2025; 39:482-486. [PMID: 39702796 PMCID: PMC11794147 DOI: 10.1038/s41375-024-02502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Affiliation(s)
- Aurélie Caye-Eude
- Department of Genetics, University Hospital Robert Debré, Paris, France
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université Paris-Cité, Paris, France
| | - Grazia Fazio
- Tettamanti Center, Fondazione IRCCS, San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Agata Pastorczak
- Department of Genetic Predisposition to Cancer, Medical University of Łódź, Łódź, Poland
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Debdutta Ganguli
- Administrative-Lead Genomics, Tata Translational Cancer Research Center/Tata Medical Center, Kolkata, India
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Dutch Childhood Oncology Group (DCOG), Utrecht, The Netherlands
| | - Sabrina Haslinger
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - Lucía D'Andrea
- Department of Pediatric Hematology and Oncology, Hospital Pereira Rossell, Pérez Scremini Foundation, Montevideo, Uruguay
| | - Jutta Bradtke
- Universitätsklinikum Gießen und Marburg, Institut für Pathologie, Onkogenetisches Labor Molekularpathologie, Gießen, Germany
| | - Bruno A Lopes
- Leukemia DataLab, Instituto Nacional de Câncer-INCA, Rio de Janeiro, Brazil
| | - Marketa Zaliova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | | | - Margit König
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | | | - Andrea Inthal
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - Irina Stasevich
- NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Mariana Emerenciano
- Genetics of Acute Leukaemia Laboratory-GenLAb, Instituto Nacional de Câncer-INCA, Rio de Janeiro, Brazil
| | - Jan Trka
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Luis Castillo
- Department of Pediatric Hematology and Oncology, Hospital Pereira Rossell, Pérez Scremini Foundation, Montevideo, Uruguay
| | - Mayur Parihar
- Department of Laboratory Haematology and Cytogenetics, Tata Medical Centre, Kolkata, India
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Anke K Bergmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Łódź, Łódź, Poland
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS, San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Hélène Cavé
- Department of Genetics, University Hospital Robert Debré, Paris, France
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université Paris-Cité, Paris, France
| | - Karin Nebral
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - Dagmar Schinnerl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Sabine Strehl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| |
Collapse
|
11
|
Ribera JM, Torrent A. Novel prognostic factors and therapeutic advances in adult acute lymphoblastic leukemia. Leuk Lymphoma 2025; 66:218-228. [PMID: 39421899 DOI: 10.1080/10428194.2024.2416569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The prognosis of adult patients with acute lymphoblastic leukemia (ALL) has improved in the last decades. This has been due to the sum of several factors including more precise recognition of the ALL subtypes, refinement of the assessment of prognostic factors, improvement in pediatric-inspired chemotherapy regimens and especially to the incorporation of novel targeted and immune therapeutics, as well as engineered cellular therapies, among others. These therapies were initially developed for relapsed or refractory patients but are now being incorporated into frontline treatment and represent a major step forward in ALL therapy. This review focuses on the recent advances in ALL characterization and especially on the treatment of ALL in adults.
Collapse
Affiliation(s)
- Josep-Maria Ribera
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, Badalona, Spain
- Josep Carreras Research Institute, Badalona, Spain
| | - Anna Torrent
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
12
|
Bartram J, Ancliff P, Vora A. How I treat infant acute lymphoblastic leukemia. Blood 2025; 145:35-42. [PMID: 38905593 DOI: 10.1182/blood.2023023154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Infant acute lymphoblastic leukemia (ALL) is an aggressive malignancy that has historically been associated with a very poor prognosis. Despite large cooperative international trials and incremental increases in intensity of therapy, there has been no significant improvement in outcome over the last 3 decades. Using representative cases, we highlight the key differences between KMT2A-rearranged and KMT2A-germ line infant ALL, and how advances in molecular diagnostics are unpicking KMT2A-germ line genetics and guiding treatment reduction. We focus on KM2TA-rearranged infant B-cell ALL for which the last few years have seen the emergence of novel therapies that both are more effective and less toxic than conventional chemotherapy. Of these, there is promising early data on the efficacy and tolerability of the bispecific T-cell engager monoclonal antibody, blinatumomab, as well as the use of autologous and allogeneic chimeric antigen receptor T-cell therapy. We discuss how we can improve risk stratification and incorporate these new agents to replace the most toxic elements of currently deployed intensive chemotherapy schedules with their associated unacceptable toxicity.
Collapse
Affiliation(s)
- Jack Bartram
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Philip Ancliff
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
13
|
Vignot S, Bellesoeur A, Bouleuc C, Cohen R, Courtier B, Crozier C, De Nonneville A, Delom F, Evrard S, Firmin N, Gandemer V, Khettab M, Magné N, Orbach D, Pellier I, Rodrigues M, Wislez M, Bay JO. [A 2024 inventory in oncology news]. Bull Cancer 2025; 112:19-34. [PMID: 39690092 DOI: 10.1016/j.bulcan.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
The editorial board of the Bulletin du cancer has compiled a summary of the news from 2024 in oncology, based on the main results presented at international congresses or published over the past year. After a year marked by the success of the Olympic Games, the selection of data is presented and discussed in podiums of three main results by topic. Emphasis is placed on studies that have an immediate impact on practice and on data that raise important questions for the year 2025.
Collapse
Affiliation(s)
- Stéphane Vignot
- UR7509 IRMAIC, université Reims Champagne Ardenne, 1, rue du Maréchal-Juin, 51100 Reims, France; Département d'oncologie médicale, institut Godinot, 1, rue du Général Koenig, 51100 Reims, France.
| | | | - Carole Bouleuc
- Département de soins de support, institut Curie, Paris, France
| | - Romain Cohen
- Service d'oncologie médicale, hôpital Saint-Antoine, AP-HP, Paris, France; Inserm, unité mixte de recherche scientifique 938 et SIRIC CURAMUS, centre de recherche Saint-Antoine, équipe instabilite des microsatellites et cancer, Paris, France
| | | | - Carolyne Crozier
- Département d'oncologie médicale, institut Paoli-Calmettes, Marseille, France
| | | | - Frédéric Delom
- ARTiSt Lab, Inserm U1312, université de Bordeaux, Bordeaux, France
| | - Serge Evrard
- Institut Bergonié, université de Bordeaux, Inserm BRIC 1312, Bordeaux, France
| | - Nelly Firmin
- ICM Montpellier et Inserm U1194, IRCM, université de Montpellier, Montpellier, France
| | - Virginie Gandemer
- Service d'onco-hématologie pédiatrie, CHU hôpital sud, université Rennes 1, 16, boulevard de Bulgarie, 35203 Rennes, France
| | - Mohamed Khettab
- Service d'hémato-oncologie, centre hospitalier universitaire de la Réunion, groupe hospitalier Sud Réunion, Saint-Pierre, France
| | - Nicolas Magné
- UMR CNRS5822/IP2I Cellular and Molecular Radiobiology Laboratory, université de Lyon, Lyon, France; Faculté de médecine Jacques-Lisfranc, université Jean Monnet, Saint-Étienne, France; Département de radiothérapie, institut Bergonie, Bordeaux, France
| | - Daniel Orbach
- Centre intégré de soins et de recherche en oncologie de l'enfant, adolescent et jeune adulte (SIREDO), université PSL, institut Curie, Paris, France
| | - Isabelle Pellier
- Unité d'onco-hématologie et immunologie pédiatrique, CHU d'Angers, Angers, France
| | - Manuel Rodrigues
- Département d'oncologie médicale, Institut Curie, PSL Research University, Paris, France
| | - Marie Wislez
- Service de pneumologie, unité d'oncologie thoracique, AP-HP centre, hôpital Cochin, Paris, France
| | - Jacques-Olivier Bay
- UE7453 CHELTER, Inserm CIC-501, site Estaing, service de thérapie cellulaire et d'hématologie clinique adulte, service d'oncologie médicale, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
14
|
Hollander JF, Szymansky A, Wünschel J, Astrahantseff K, Rosswog C, Thorwarth A, Thole-Kliesch TM, Chamorro González R, Hundsdörfer P, Hauptmann K, Schmelz K, Gürgen D, Rogasch JM, Henssen AG, Fischer M, Schulte JH, Eckert C, Eggert A, Lodrini M, Deubzer HE. Serially Quantifying TERT Rearrangement Breakpoints in ctDNA Enables Minimal Residual Disease Monitoring in Patients with Neuroblastoma. CANCER RESEARCH COMMUNICATIONS 2025; 5:167-177. [PMID: 39760332 PMCID: PMC11774142 DOI: 10.1158/2767-9764.crc-24-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
SIGNIFICANCE Real-time molecular monitoring of TERT-rearranged high-risk neuroblastoma is an unmet clinical need. We tested liquid biopsy-based assays for patient-individualized TERT breakpoint sequences to monitor disease in pediatric patients. Our digital PCR approach provides high resolution of spatial and temporal disease quantification in individual patients and is applicable for clinical routine.
Collapse
Affiliation(s)
- Jan F. Hollander
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Annabell Szymansky
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jasmin Wünschel
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Carolina Rosswog
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anne Thorwarth
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Theresa M. Thole-Kliesch
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Rocío Chamorro González
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of Charité, Max-Delbrück-Center of Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Max-Delbrück Center of Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Patrick Hundsdörfer
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatrics, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Kathrin Hauptmann
- Institute of Pathology, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karin Schmelz
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité - 3R, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Dennis Gürgen
- Experimental Pharmacology and Oncology Berlin-Buch GmbH (EPO), Berlin, Germany
| | - Julian M.M. Rogasch
- Department of Nuclear Medicine, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| | - Anton G. Henssen
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of Charité, Max-Delbrück-Center of Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Max-Delbrück Center of Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, University Hospital Tübingen, Tübingen, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Lodrini
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Hedwig E. Deubzer
- Department of Pediatric Oncology and Hematology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of Charité, Max-Delbrück-Center of Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Max-Delbrück Center of Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Jureczek J, Kałwak K, Dzięgiel P. Antibody-Based Immunotherapies for the Treatment of Hematologic Malignancies. Cancers (Basel) 2024; 16:4181. [PMID: 39766080 PMCID: PMC11674729 DOI: 10.3390/cancers16244181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/05/2025] Open
Abstract
Despite the great advancements in treatment strategies for hematological malignancies (HMs) over the years, their effective treatment remains challenging. Conventional treatment strategies are burdened with several serious drawbacks limiting their effectiveness and safety. Improved understanding of tumor immunobiology has provided novel anti-cancer strategies targeting selected immune response components. Currently, immunotherapy is counted as the fourth pillar of oncological treatment (together with surgery, chemo- and radiotherapy) and is becoming standard in the treatment regimen, alone or in combination therapy. Several categories of immunotherapies have been developed and are currently being assessed in clinical trials for the treatment of blood cancers, including immune checkpoint inhibitors, antigen-targeted antibodies, antibody-drug conjugates, tumor vaccines, and adoptive cell therapies. However, monoclonal antibodies (mAbs) and their derivatives have achieved the most notable clinical outcome so far. Since the approval of rituximab for treating B-cell malignancies, the availability of mAbs against tumor-specific surface molecules for clinical use has flourished. Antibody-based therapy has become one of the most successful strategies for immunotherapeutic cancer treatment in the last few decades, and many mAbs have already been introduced into standard treatment protocols for some hematologic malignancies. To further increase the efficacy of mAbs, they can be conjugated to radioisotopes or cytostatic drugs, so-called antibody-drug conjugates. Moreover, with the growing recognition of T-cell immunity's role in cancer development, strategies aimed at enhancing T cell activation and inhibiting mechanisms that suppress T cell function are actively being developed. This review provides a comprehensive overview of the current status of immunotherapeutic strategies based on monoclonal antibodies and their derivatives, including antibody-drug conjugates, bispecific T-cell engagers, and checkpoint inhibitors, approved for the treatment of various HMs.
Collapse
Affiliation(s)
- Justyna Jureczek
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Krzysztof Kałwak
- Clinical Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
16
|
Østergaard A, Boer JM, van Leeuwen FN, Pieters R, Den Boer ML. IKZF1 in acute lymphoblastic leukemia: the rise before the fall? Leuk Lymphoma 2024; 65:2077-2087. [PMID: 39210599 DOI: 10.1080/10428194.2024.2396046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children and adolescents and in recent decades, the survival rates have risen to >90% in children largely due the introduction of risk adapted therapy. Therefore, knowledge of factors influencing risk of relapse is important. The transcription factor IKAROS is a regulator of lymphocyte development and alterations of its coding gene, IKZF1, are frequent in ALL and are associated with higher relapse risk. This concise review will discuss the normal function of IKAROS together with the effect of gene alterations in ALL such as relieved energy restriction and altered response to anti-leukemic drugs. Besides the biology, the clinical impact of gene alterations in the different subtypes of ALL will be discussed. Finally, possibilities for treating ALL with IKZF1 alterations will be considered including novel therapies like cell signaling inhibitors and immunotherapy.
Collapse
Affiliation(s)
- Anna Østergaard
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | |
Collapse
|
17
|
Aldoss I, Roboz GJ, Bassan R, Boissel N, DeAngelo DJ, Fleming S, Gökbuget N, Logan AC, Luger SM, Menne T, Park J, Schuh AC, Shah B, Jabbour E. Frontline treatment of adults with newly diagnosed B-cell acute lymphoblastic leukaemia. Lancet Haematol 2024; 11:e959-e970. [PMID: 39638543 DOI: 10.1016/s2352-3026(24)00285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 12/07/2024]
Abstract
In the past decade, there has been considerable progress in the treatment of adults with newly diagnosed B-cell acute lymphoblastic leukaemia. This evolution is the product of a more profound understanding of acute lymphoblastic leukaemia biology, innovations in measurable residual disease quantification that led to precise disease-risk stratification, adoption of contemporary paediatric-inspired regimens, inclusion of tyrosine kinase inhibitors in the treatment of Philadelphia chromosome-positive acute lymphoblastic leukaemia, and the introduction of immunotherapy in the frontline setting. Nevertheless, outcomes of acute lymphoblastic leukaemia in adults are inferior compared with those of children, with excessive rates of treatment failure, and therapy-related morbidity and mortality. Simultaneously, transplant consolidation has continued to be used frequently for high-risk adults with acute lymphoblastic leukaemia in first complete remission. Considering the rapid pace of evolution in acute lymphoblastic leukaemia management, novel trial designs are warranted to accelerate advancements and streamline approaches. Here, we summarise progress in the treatment of adults with newly diagnosed acute lymphoblastic leukaemia, which adds to previously published guidelines by focusing specifically on first-line decisions for B-cell acute lymphoblastic leukaemia and how to best personalise treatment. This Viewpoint also includes experiences with regimens and testing approaches currently available not only in Europe, but also on multiple continents with different practices and resources.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA.
| | - Gail J Roboz
- Clinical and Translational Leukemia Program, Weill Medical College of Cornell University, New York, NY, USA
| | - Renato Bassan
- Department of Hematology, Ospedale dell'Angelo and Ospedale SS Giovanni e Paolo, Mestre Venezia, Italy
| | - Nicolas Boissel
- Department of Hematology, Hôpital Saint-Louis, AP-HP, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | | | - Shaun Fleming
- Hematology Department, The Alfred Hospital, Melbourne, VIC, Australia
| | - Nicola Gökbuget
- Department of Haematology and Oncology, Goethe-Universität, University Hospital, Frankfurt, Germany
| | - Aaron C Logan
- Department of Hematology and Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Selina M Luger
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tobias Menne
- Cancer Services and Clinical Haematology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Jae Park
- Chief of the Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andre C Schuh
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Bijal Shah
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Lopez-Millan B, Rubio-Gayarre A, Vinyoles M, Trincado JL, Fraga MF, Fernandez-Fuentes N, Guerrero-Murillo M, Martinez A, Velasco-Hernandez T, Falgàs A, Panisello C, Valcarcel G, Sardina JL, López-Martí P, Javierre BM, Del Valle-Pérez B, García de Herreros A, Locatelli F, Pieters R, Bardini M, Cazzaniga G, Rodríguez-Manzaneque JC, Hanewald T, Marschalek R, Milne TA, Stam RW, Tejedor JR, Menendez P, Bueno C. NG2 is a target gene of MLL-AF4 and underlies glucocorticoid resistance in MLLr B-ALL by regulating NR3C1 expression. Blood 2024; 144:2002-2017. [PMID: 39093982 DOI: 10.1182/blood.2023022050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
ABSTRACT B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer, with long-term overall survival rates of ∼85%. However, B-ALL harboring rearrangements of the MLL gene (also known as KMT2A), referred to as MLLr B-ALL, is common in infants and is associated with poor 5-year survival, relapses, and refractoriness to glucocorticoids (GCs). GCs are an essential part of the treatment backbone for B-ALL, and GC resistance is a major clinical predictor of poor outcome. Elucidating the mechanisms of GC resistance in MLLr B-ALL is, therefore, critical to guide therapeutic strategies that deepen the response after induction therapy. Neuron-glial antigen-2 (NG2) expression is a hallmark of MLLr B-ALL and is minimally expressed in healthy hematopoietic cells. We recently reported that NG2 expression is associated with poor prognosis in MLLr B-ALL. Despite its contribution to MLLr B-ALL pathogenesis, the role of NG2 in MLLr-mediated leukemogenesis/chemoresistance remains elusive. Here, we show that NG2 is an epigenetically regulated direct target gene of the leukemic MLL-ALF transcription elongation factor 4 (AF4) fusion protein. NG2 negatively regulates the expression of the GC receptor nuclear receptor subfamily 3 group C member 1 (NR3C1) and confers GC resistance to MLLr B-ALL cells. Mechanistically, NG2 interacts with FLT3 to render ligand-independent activation of FLT3 signaling (a hallmark of MLLr B-ALL) and downregulation of NR3C1 via activating protein-1 (AP-1)-mediated transrepression. Collectively, our study elucidates the role of NG2 in GC resistance in MLLr B-ALL through FLT3/AP-1-mediated downregulation of NR3C1, providing novel therapeutic avenues for MLLr B-ALL.
Collapse
Affiliation(s)
- Belén Lopez-Millan
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada/Junta de Andalucía, Granada, Spain
- Department of Physiology, University of Granada, Granada, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Rubio-Gayarre
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada/Junta de Andalucía, Granada, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Vinyoles
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan L Trincado
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Mario F Fraga
- Fundación para la Investigación Biosanitaria de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología de Asturias, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Oviedo, Spain
- Nanomaterials and Nanotechnology Research Center, Universidad de Oviedo, Oviedo, Spain
| | - Narcís Fernandez-Fuentes
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Guerrero-Murillo
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Martinez
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Talia Velasco-Hernandez
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Aïda Falgàs
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Carla Panisello
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Valcarcel
- Epigenetic Control of Hematopoiesis Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - José Luis Sardina
- Epigenetic Control of Hematopoiesis Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Paula López-Martí
- 3D Chromatin Organization Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Biola M Javierre
- 3D Chromatin Organization Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Beatriz Del Valle-Pérez
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Unitat Associada al Consejo Superior de Investigaciones Científicas, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Unitat Associada al Consejo Superior de Investigaciones Científicas, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Bambino Gesù Children's Hospital, Rome, Italy
| | - Rob Pieters
- Princess Màxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Michela Bardini
- Tettamanti Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milan Bicocca, Monza, Italy
| | | | - Thomas Hanewald
- Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia, Goethe University of Frankfurt, Biocenter, Frankfurt/Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia, Goethe University of Frankfurt, Biocenter, Frankfurt/Main, Germany
| | - Thomas A Milne
- Medical Research Council, Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, National Institute for Health and Care Research, Oxford Biomedical Research Center Hematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ronald W Stam
- Princess Màxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Juan Ramón Tejedor
- Fundación para la Investigación Biosanitaria de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología de Asturias, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Oviedo, Spain
- Nanomaterials and Nanotechnology Research Center, Universidad de Oviedo, Oviedo, Spain
| | - Pablo Menendez
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Clara Bueno
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas Network, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
19
|
Rheingold SR, Bhojwani D, Ji L, Xu X, Devidas M, Kairalla JA, Shago M, Heerema NA, Carroll AJ, Breidenbach H, Borowitz M, Wood BL, Angiolillo AL, Asselin BL, Bowman WP, Brown P, Dreyer ZE, Dunsmore KP, Hilden JM, Larsen E, Maloney K, Matloub Y, Mattano LA, Winter SS, Gore L, Winick NJ, Carroll WL, Hunger SP, Raetz EA, Loh ML. Determinants of survival after first relapse of acute lymphoblastic leukemia: a Children's Oncology Group study. Leukemia 2024; 38:2382-2394. [PMID: 39261601 PMCID: PMC11518984 DOI: 10.1038/s41375-024-02395-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Limited prognostic factors have been associated with overall survival (OS) post-relapse in childhood Acute Lymphoblastic Leukemia (ALL). Patients enrolled on 12 Children's Oncology Group frontline ALL trials (1996-2014) were analyzed to assess for additional prognostic factors associated with OS post-relapse. Among 16,115 patients, 2053 (12.7%) relapsed. Relapse rates were similar for B-ALL (12.5%) and T-ALL (11.2%) while higher for infants (34.2%). Approximately 50% of B-ALL relapses occurred late (≥36 months) and 72.5% involved the marrow. Conversely, 64.8% of T-ALL relapses occurred early (<18 months) and 47.1% involved the central nervous system. The 5-year OS post-relapse for the entire cohort was 48.9 ± 1.2%; B-ALL:52.5 ± 1.3%, T-ALL:35.5 ± 3.3%, and infant ALL:21.5 ± 3.9%. OS varied by early, intermediate and late time-to-relapse; 25.8 ± 2.4%, 49.5 ± 2.2%, and 66.4 ± 1.8% respectively for B-ALL and 29.8 ± 3.9%, 33.3 ± 7.6%, 58 ± 9.8% for T-ALL. Patients with ETV6::RUNX1 or Trisomy 4 + 10 had median time-to-relapse of 43 months and higher OS post-relapse 74.4 ± 3.1% and 70.2 ± 3.6%, respectively. Patients with hypodiploidy, KMT2A-rearrangement, and TCF3::PBX1 had short median time-to-relapse (12.5-18 months) and poor OS post-relapse (14.2 ± 6.1%, 31.9 ± 7.7%, 36.8 ± 6.6%). Site-of-relapse varied by cytogenetic subtype. This large dataset provided the opportunity to identify risk factors for OS post-relapse to inform trial design and highlight populations with dismal outcomes post-relapse.
Collapse
Affiliation(s)
- Susan R Rheingold
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Deepa Bhojwani
- Division of Pediatric Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center and Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lingyun Ji
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xinxin Xu
- Children's Oncology Group, Monrovia, CA, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - John A Kairalla
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Mary Shago
- Department of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Nyla A Heerema
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Michael Borowitz
- Department of Pathology and Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Brent L Wood
- Department of Pathology and Laboratory Medicine, Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Barbara L Asselin
- Department of Pediatrics, Golisano Children's Hospital, Wilmot Cancer Center at University of Rochester Medical Center, Rochester, New York, NY, USA
| | | | | | - ZoAnn E Dreyer
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Kimberly P Dunsmore
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Joanne M Hilden
- Department of Pediatrics, University of Colorado School of Medicine and Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Eric Larsen
- Department of Pediatrics, Maine Medical Center, Portland, ME, USA
| | - Kelly Maloney
- Department of Pediatrics, University of Colorado School of Medicine and Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Yousif Matloub
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | | | - Stuart S Winter
- Cancer and Blood Disorders Program, Children's Minnesota, Minneapolis, MN, USA
| | - Lia Gore
- Department of Pediatrics, University of Colorado School of Medicine and Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Naomi J Winick
- Department of Pediatrics, University of Texas Southwestern Medical Center, Childrens Health, Dallas, TX, USA
| | - William L Carroll
- Perlmutter Cancer Center, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Raetz
- Perlmutter Cancer Center, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Mignon L Loh
- Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| |
Collapse
|
20
|
Janssens DH, Duran M, Otto DJ, Wu W, Xu Y, Kirkey D, Mullighan CG, Yi JS, Meshinchi S, Sarthy JF, Ahmad K, Henikoff S. MLL oncoprotein levels influence leukemia lineage identities. Nat Commun 2024; 15:9341. [PMID: 39472576 PMCID: PMC11522475 DOI: 10.1038/s41467-024-53399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Chromosomal translocations involving the mixed-lineage leukemia (MLL) locus generate potent oncogenic fusion proteins (oncoproteins) that disrupt regulation of developmental gene expression. By profiling the oncoprotein-target sites of 36 broadly representative MLL-rearranged leukemia samples, including three samples that underwent a lymphoid-to-myeloid lineage-switching event in response to therapy, we find the genomic enrichment of the oncoprotein is highly variable between samples and subject to dynamic regulation. At high levels of expression, the oncoproteins preferentially activate either an acute lymphoblastic leukemia (ALL) program, enriched for pro-B-cell genes, or an acute myeloid leukemia (AML) program, enriched for hematopoietic-stem-cell genes. The fusion-partner-specific-binding patterns over these gene sets are highly correlated with the prevalence of each mutation in ALL versus AML. In lineage-switching samples the oncoprotein levels are reduced and the oncoproteins preferentially activate granulocyte-monocyte progenitor (GMP) genes. In a sample that lineage switched during treatment with the menin inhibitor revumenib, the oncoprotein and menin are reduced to undetectable levels, but ENL, a transcriptional cofactor of the oncoprotein, persists on numerous oncoprotein-target loci, including genes in the GMP-like lineage-switching program. We propose MLL oncoproteins promote lineage-switching events through dynamic chromatin binding at lineage-specific target genes, and may support resistance to menin inhibitors through similar changes in chromatin occupancy.
Collapse
Affiliation(s)
- Derek H Janssens
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Melodie Duran
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Dominik J Otto
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Weifang Wu
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yiling Xu
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Danielle Kirkey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joanna S Yi
- Pediatric Hematology and Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Soheil Meshinchi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jay F Sarthy
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
21
|
Verbeek TCAI, Vrenken KS, Arentsen-Peters STCJM, Castro PG, van de Ven M, van Tellingen O, Pieters R, Stam RW. Selective inhibition of HDAC class IIA as therapeutic intervention for KMT2A-rearranged acute lymphoblastic leukemia. Commun Biol 2024; 7:1257. [PMID: 39362994 PMCID: PMC11450098 DOI: 10.1038/s42003-024-06916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
KMT2A-rearranged acute lymphoblastic leukemia (ALL) is characterized by deregulation of the epigenome and shows susceptibility towards histone deacetylase (HDAC) inhibition. Most broad-spectrum HDAC inhibitors simultaneously target multiple human HDAC isoforms. Consequently, they often induce toxicity and especially in combination with other therapeutic agents. Therefore, more specifically targeting HDAC isoforms may represent a safer therapeutic strategy. Here we show that shRNA-mediated knock-down of the class IIA HDAC isoforms HDAC4, HDAC5, and HDAC7 results in apoptosis induction and cell cycle arrest in KMT2A-rearranged ALL cells. In concordance, the HDAC4/5 selective small molecule inhibitor LMK-235 effectively eradicates KMT2A-rearranged ALL cell lines as well as primary patient samples in vitro. However, using a xenograft mouse model of KMT2A-rearranged ALL we found that the maximum achievable dose of LMK-235 was insufficient to induce anti-leukemic effects in vivo. Similar results were obtained for the specific class IIA HDAC inhibitors MC1568 and TMP195. Finally, LMK-235 appeared to exert minimal anti-leukemic effects in vivo in combination with the BCL-2 inhibitor venetoclax, but not enough to prolong survival in treated mice. In conclusion, class IIA HDAC isoforms represent attractive therapeutic target in KMT2A-rearranged ALL, although clinical applications require the development of more stable and efficient specific HDAC inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rob Pieters
- Princess Máxima Center, Utrecht, The Netherlands
| | | |
Collapse
|
22
|
Cuglievan B, Kantarjian H, Rubnitz JE, Cooper TM, Zwaan CM, Pollard JA, DiNardo CD, Kadia TM, Guest E, Short NJ, McCall D, Daver N, Nunez C, Haddad FG, Garcia M, Bhalla KN, Maiti A, Catueno S, Fiskus W, Carter BZ, Gibson A, Roth M, Khazal S, Tewari P, Abbas HA, Bourgeois W, Andreeff M, Shukla NN, Truong DD, Connors J, Ludwig JA, Stutterheim J, Salzer E, Juul-Dam KL, Sasaki K, Mahadeo KM, Tasian SK, Borthakur G, Dickson S, Jain N, Jabbour E, Meshinchi S, Garcia-Manero G, Ravandi F, Stein EM, Kolb EA, Issa GC. Menin inhibitors in pediatric acute leukemia: a comprehensive review and recommendations to accelerate progress in collaboration with adult leukemia and the international community. Leukemia 2024; 38:2073-2084. [PMID: 39179671 PMCID: PMC11436367 DOI: 10.1038/s41375-024-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
Aberrant expression of HOX and MEIS1 family genes, as seen in KMT2A-rearranged, NUP98-rearranged, or NPM1-mutated leukemias leads to arrested differentiation and leukemia development. HOX family genes are essential gatekeepers of physiologic hematopoiesis, and their expression is regulated by the interaction between KMT2A and menin. Menin inhibitors block this interaction, downregulate the abnormal expression of MEIS1 and other transcription factors and thereby release the differentiation block. Menin inhibitors show significant clinical efficacy against KMT2A-rearranged and NPM1-mutated acute leukemias, with promising potential to address unmet needs in various pediatric leukemia subtypes. In this collaborative initiative, pediatric and adult hematologists/oncologists, and stem cell transplant physicians have united their expertise to explore the potential of menin inhibitors in pediatric leukemia treatment internationally. Our efforts aim to provide a comprehensive clinical overview of menin inhibitors, integrating preclinical evidence and insights from ongoing global clinical trials. Additionally, we propose future international, inclusive, and efficient clinical trial designs, integrating pediatric populations in adult trials, to ensure broad access to this promising therapy for all children and adolescents with menin-dependent leukemias.
Collapse
Affiliation(s)
- Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd M Cooper
- Cancer and Blood Disorders Center, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - C Michel Zwaan
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands; Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; The Innovative Therapies for Children with Cancer Consortium, Paris, France
| | | | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erin Guest
- Department of Pediatric Oncology, Children's Mercy, Kansas City, MO, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar Nunez
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miriam Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kapil N Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samanta Catueno
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Warren Fiskus
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bing Z Carter
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Roth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sajad Khazal
- Division of Transplant and Cellular Therapy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Priti Tewari
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Danh D Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeremy Connors
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Elisabeth Salzer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Kristian L Juul-Dam
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kris M Mahadeo
- Division of Pediatric Transplantation and Cellular Therapy, Duke University, Durham, NC, USA
| | - Sarah K Tasian
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samantha Dickson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eytan M Stein
- Department of Leukemia, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Anders Kolb
- Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, DE, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
Kager L, Evans WE. Pharmacogenomics in Pediatric Oncology Research and Treatment. J Pediatr Pharmacol Ther 2024; 29:554-557. [PMID: 39411408 PMCID: PMC11472404 DOI: 10.5863/1551-6776-29.5.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Leo Kager
- Department of Pediatrics and Adolescent Medicine (LK), St. Anna Children’s Hospital, Medical University Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI) (LK), Vienna, Austria
| | - William E. Evans
- Department of Pharmaceutical Sciences (WEE), St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
24
|
Ahmed N, Cavattoni I, Villiers W, Cugno C, Deola S, Mifsud B. Multi-omic analysis of longitudinal acute myeloid leukemia patient samples reveals potential prognostic markers linked to disease progression. Front Genet 2024; 15:1442539. [PMID: 39399221 PMCID: PMC11466779 DOI: 10.3389/fgene.2024.1442539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Relapse remains a determinant of treatment failure and contributes significantly to mortality in acute myeloid leukemia (AML) patients. Despite efforts to understand AML progression and relapse mechanisms, findings on acquired gene mutations in relapse vary, suggesting inherent genetic heterogeneity and emphasizing the role of epigenetic modifications. We conducted a multi-omic analysis using Omni-C, ATAC-seq, and RNA-seq on longitudinal samples from two adult AML patients at diagnosis and relapse. Herein, we characterized genetic and epigenetic changes in AML progression to elucidate the underlying mechanisms of relapse. Differential interaction analysis showed significant 3D chromatin landscape reorganization between relapse and diagnosis samples. Comparing global open chromatin profiles revealed that relapse samples had significantly fewer accessible chromatin regions than diagnosis samples. In addition, we discovered that relapse-related upregulation was achieved either by forming new active enhancer contacts or by losing interactions with poised enhancers/potential silencers. Altogether, our study highlights the impact of genetic and epigenetic changes on AML progression, underlining the importance of multi-omic approaches in understanding disease relapse mechanisms and guiding potential therapeutic interventions.
Collapse
Affiliation(s)
- Nisar Ahmed
- College of Health and Life Sciences, Genomics and Precision Medicine, Hamad Bin Khalifa University, Doha, Qatar
| | - Irene Cavattoni
- Hematology and Bone Marrow Transplant Unit, Ospedale Centrale Bolzano, Bolzano, Italy
| | - William Villiers
- College of Health and Life Sciences, Genomics and Precision Medicine, Hamad Bin Khalifa University, Doha, Qatar
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Chiara Cugno
- Advanced Cell Therapy Core, Research, Sidra Medicine, Doha, Qatar
| | - Sara Deola
- Advanced Cell Therapy Core, Research, Sidra Medicine, Doha, Qatar
| | - Borbala Mifsud
- College of Health and Life Sciences, Genomics and Precision Medicine, Hamad Bin Khalifa University, Doha, Qatar
- William Harvey Research Institute, Queen Mary University London, London, United Kingdom
| |
Collapse
|
25
|
Lecornec N, Fahd M, De Lorenzo P, Valsecchi MG, Micalizzi C, Diaz P, Pennella C, Locatelli F, Vinti L, Cavé H, Caye-Eude A, Stary J, Pieters R, Baruchel A, Brethon B. Outcomes of infants with very late relapse of acute lymphoblastic leukaemia initially treated in Interfant-06. Br J Haematol 2024; 205:1230-1233. [PMID: 38982637 DOI: 10.1111/bjh.19634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Affiliation(s)
- Nicolas Lecornec
- Department of Pediatric Hematology and Immunology, Hôpital Universitaire Robert Debré, AP-HP and Université Paris-Cité, Paris, France
| | - Mony Fahd
- Department of Pediatric Hematology and Immunology, Hôpital Universitaire Robert Debré, AP-HP and Université Paris-Cité, Paris, France
| | - Paola De Lorenzo
- Pediatrics and Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Maria Grazia Valsecchi
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Concetta Micalizzi
- Clinical Experimental Haematology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Paulina Diaz
- Hospital Gustavo Fricke, Pediatrics, Viña del Mar, Chile
| | - Carla Pennella
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C. "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy
| | - Luciana Vinti
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy
| | - Hélène Cavé
- Department of Genetics, Hôpital Universitaire Robert Debré, AP-HP and Université Paris-Cité, Paris, France
| | - Aurélie Caye-Eude
- Department of Genetics, Hôpital Universitaire Robert Debré, AP-HP and Université Paris-Cité, Paris, France
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Rob Pieters
- Pediatric Oncology, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - André Baruchel
- Department of Pediatric Hematology and Immunology, Hôpital Universitaire Robert Debré, AP-HP and Université Paris-Cité, Paris, France
| | - Benoit Brethon
- Department of Pediatric Hematology and Immunology, Hôpital Universitaire Robert Debré, AP-HP and Université Paris-Cité, Paris, France
| |
Collapse
|
26
|
Bełdzińska-Gądek K, Zarzycka E, Pastuszak K, Borman K, Lewandowski K, Zaucha JM, Prejzner W. Immune escape of B-cell lymphoblastic leukemic cells through a lineage switch to acute myeloid leukemia. Leuk Lymphoma 2024; 65:1292-1302. [PMID: 38775354 DOI: 10.1080/10428194.2024.2351194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 08/31/2024]
Abstract
Acute leukemia (AL) with a lineage switch (LS) is associated with poor prognosis. The predisposing factors of LS are unknown, apart from KMT2A rearrangements that have been reported to be associated with LS. Herein, we present two cases and review all 104 published cases to identify risk factors for LS. Most of the patients (75.5%) experienced a switch from the lymphoid phenotype to the myeloid phenotype. Eighteen patients (17.0%) experienced a transformation from acute myelogenous leukemia (AML) to acute lymphoblastic leukemia (ALL). Forty-nine (46.2%) patients carried a KMT2A rearrangement. Most of the cases involved LS from B-cell ALL (B-ALL) to AML (59.4%), and 49 patients (46.2%) carried KMT2A-rearrangements. Forty patients (37.7%) received lineage-specific immunotherapy. Our findings suggest that the prevalence of KMT2A rearrangements together with the lineage-specific immunotherapy may trigger LS, which supports the thesis of the existence of leukemia stem cells that are capable of lymphoid or myeloid differentiation.
Collapse
MESH Headings
- Humans
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Gene Rearrangement/immunology
- Histone-Lysine N-Methyltransferase/genetics
- Immunophenotyping
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Myeloid-Lymphoid Leukemia Protein/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Tumor Escape/genetics
- Tumor Escape/immunology
Collapse
Affiliation(s)
- Karolina Bełdzińska-Gądek
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
- First Doctoral School, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Zarzycka
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Pastuszak
- Department of Algorithms and System Modelling, Gdansk University of Technology, Gdansk, Poland
- Department of Translational Oncology, Medical University of Gdańsk, Gdansk, Poland
- Centre of Biostatistics and Bioinformatics, Medical University of Gdańsk, Gdansk, Poland
| | - Katarzyna Borman
- Intercollegiate Biotechnology Doctoral School, University of Gdańsk and Medical University of Gdańsk, Gdansk, Poland
| | | | - Jan M Zaucha
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Witold Prejzner
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
27
|
Zhang Q, Falqués‐Costa T, Pilheden M, Sturesson H, Ovlund T, Rissler V, Castor A, Marquart HVH, Lausen B, Fioretos T, Hyrenius‐Wittsten A, Hagström‐Andersson AK. Activating mutations remodel the chromatin accessibility landscape to drive distinct regulatory networks in KMT2A-rearranged acute leukemia. Hemasphere 2024; 8:e70006. [PMID: 39329074 PMCID: PMC11426354 DOI: 10.1002/hem3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/28/2024] Open
Abstract
Activating FLT3 and RAS mutations commonly occur in leukemia with KMT2A-gene rearrangements (KMT2A-r). However, how these mutations cooperate with the KMT2A-r to remodel the epigenetic landscape is unknown. Using a retroviral acute myeloid leukemia (AML) mouse model driven by KMT2A::MLLT3, we show that FLT3 ITD , FLT3 N676K , and NRAS G12D remodeled the chromatin accessibility landscape and associated transcriptional networks. Although the activating mutations shared a common core of chromatin changes, each mutation exhibits unique profiles with most opened peaks associating with enhancers in intronic or intergenic regions. Specifically, FLT3 N676K and NRAS G12D rewired similar chromatin and transcriptional networks, distinct from those mediated by FLT3 ITD . Motif analysis uncovered a role for the AP-1 family of transcription factors in KMT2A::MLLT3 leukemia with FLT3 N676K and NRAS G12D , whereas Runx1 and Stat5a/Stat5b were active in the presence of FLT3 ITD . Furthermore, transcriptional programs linked to immune cell regulation were activated in KMT2A-r AML expressing NRAS G12D or FLT3 N676K , and the expression of NKG2D-ligands on KMT2A-r cells rendered them sensitive to CAR T cell-mediated killing. Human KMT2A-r AML cells could be pharmacologically sensitized to NKG2D-CAR T cells by treatment with the histone deacetylase inhibitor LBH589 (panobinostat) which caused upregulation of NKG2D-ligand levels. Co-treatment with LBH589 and NKG2D-CAR T cells enabled robust AML cell killing, and the strongest effect was observed for cells expressing NRAS G12D . Finally, the results were validated and extended to acute leukemia in infancy. Combined, activating mutations induced mutation-specific changes in the epigenetic landscape, leading to changes in transcriptional programs orchestrated by specific transcription factor networks.
Collapse
Affiliation(s)
- Qirui Zhang
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Ton Falqués‐Costa
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Mattias Pilheden
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Helena Sturesson
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Tina Ovlund
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Vendela Rissler
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Anders Castor
- Childhood Cancer CenterSkåne University HospitalLundSweden
| | - Hanne V. H. Marquart
- Department of Clinical ImmunologyNational University HospitalRigshospitalet, CopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Birgitte Lausen
- Department of Paediatrics and Adolescent Medicine, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Thoas Fioretos
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Axel Hyrenius‐Wittsten
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | | |
Collapse
|
28
|
Montgomery KE, Zupanec S, Yun C, Okada M, Kubaney H, Feehily E, Withycombe JS. A Quality Approach to Blinatumomab Delivery in Pediatric Oncology: A Children's Oncology Group Study. JOURNAL OF PEDIATRIC HEMATOLOGY/ONCOLOGY NURSING 2024; 41:324-335. [PMID: 39245851 PMCID: PMC11612262 DOI: 10.1177/27527530241267303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Background: Blinatumomab is a promising immunotherapy agent that has been shown to improve survival outcomes in children diagnosed with relapsed B-lineage acute lymphoblastic leukemia. Expanded use of blinatumomab in the treatment of childhood cancer is expected; however, clinician perspectives regarding administering this agent in healthcare and home settings have not been explored. Method: Semistructured interviews were conducted with clinicians (N = 13) from pediatric institutions across the United States and Canada. Qualitative data were analyzed using a constant comparative analysis three-stage method. Results: Participants were primarily nurses (92%), female (77%), and had greater than 10 years of pediatric oncology experience. The selective code and overarching theme identified was "A quality approach to blinatumomab delivery in pediatric oncology." Clinicians described detailed processes that were created and implemented to promote a common goal of safe blinatumomab administration across the continuum of care. Clinicians shared how they engaged in planning activities and considered a variety of factors prior to and during blinatumomab administration. Clinicians also expressed a need to reflect and evaluate on previous patient experiences to create new or revise existing processes and workflows. Communication was also central to clinicians' work. Clinicians provided recommendations to assist others with blinatumomab administration and offered suggestions for items that could help with implementing future clinical trials containing similar agents. Discussion: Findings suggest nurses are pivotal to establishing processes which support safe administration of immunotherapies, such as blinatumomab, while also considering patient-specific needs and promoting quality of life.
Collapse
Affiliation(s)
| | - Sue Zupanec
- SickKids, Division of Hematology/Oncology, Toronto, ON, Canada
| | - Christine Yun
- Children's Hospital of Orange County, Hyundai Cancer Institute, Orange, CA, USA
| | - Maki Okada
- Miller Children's & Women's Hospital, Pediatric Hematology/Oncology, Long Beach, CA, USA
| | - Holly Kubaney
- Dell Children's Blood and Cancer Center, Hematology/Oncology, Austin, TX, USA
| | - Erin Feehily
- Clemson University, School of Nursing, Clemson, SC, USA
| | | |
Collapse
|
29
|
Janssens DH, Duran M, Otto DJ, Wu W, Xu Y, Kirkey D, Mullighan CG, Yi JS, Meshinchi S, Sarthy JF, Ahmad K, Henikoff S. KMT2A oncoproteins induce epigenetic resistance to targeted therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.29.573681. [PMID: 38234854 PMCID: PMC10793413 DOI: 10.1101/2023.12.29.573681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Chromosomal translocations involving the Lysine-Methyl-Transferase-2A ( KMT2A ) locus generate potent oncogenic fusion proteins (oncoproteins) that disrupt regulation of developmental gene expression. By profiling the oncoprotein-target sites of 36 broadly representative KMT2A -rearranged leukemia samples, including three samples that underwent a lymphoid-to-myeloid lineage-switching event in response to therapy, we find the genomic enrichment of the oncoprotein is highly variable between samples and subject to dynamic regulation. At high levels of expression, the oncoproteins preferentially activate either an acute lymphoblastic leukemia (ALL) program, enriched for pro-B-cell genes, or an acute myeloid leukemia (AML) program, enriched for hematopoietic-stem-cell genes. The fusion-partner-specific-binding patterns over these gene sets are highly correlated with the prevalence of each mutation in ALL versus AML. In lineage-switching samples the oncoprotein levels are reduced and the oncoproteins preferentially activate granulocyte-monocyte progenitor (GMP) genes. In a sample that lineage switched during treatment with the menin inhibitor revumenib, the oncoprotein and menin are reduced to undetectable levels, but ENL, a transcriptional cofactor of the oncoprotein, persists on numerous oncoprotein-target loci, including genes in the GMP-like lineage-switching program. We propose KMT2A oncoproteins promote lineage-switching events through dynamic chromatin binding and can induce epigenetic lesions, marked by ENL, that support resistance to targeted therapies.
Collapse
|
30
|
Polak R, Zhang ET, Kuo CJ. Cancer organoids 2.0: modelling the complexity of the tumour immune microenvironment. Nat Rev Cancer 2024; 24:523-539. [PMID: 38977835 DOI: 10.1038/s41568-024-00706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 07/10/2024]
Abstract
The development of neoplasia involves a complex and continuous interplay between malignantly transformed cells and the tumour microenvironment (TME). Cancer immunotherapies targeting the immune TME have been increasingly validated in clinical trials but response rates vary substantially between tumour histologies and are often transient, idiosyncratic and confounded by resistance. Faithful experimental models of the patient-specific tumour immune microenvironment, capable of recapitulating tumour biology and immunotherapy effects, would greatly improve patient selection, target identification and definition of resistance mechanisms for immuno-oncology therapeutics. In this Review, we discuss currently available and rapidly evolving 3D tumour organoid models that capture important immune features of the TME. We highlight diverse opportunities for organoid-based investigations of tumour immunity, drug development and precision medicine.
Collapse
Affiliation(s)
- Roel Polak
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa T Zhang
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
31
|
Camiolo G, Mullen CG, Ottersbach K. Mechanistic insights into the developmental origin of pediatric hematologic disorders. Exp Hematol 2024; 136:104583. [PMID: 39059457 DOI: 10.1016/j.exphem.2024.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Embryonic and fetal hematopoietic stem and progenitor cells differ in some key properties from cells that are part of the adult hematopoietic system. These include higher proliferation and self-renewal capacity, different globin gene usage, and differing lineage biases. Although these evolved to cover specific requirements of embryonic development, they can have serious consequences for the pathogenesis of hematologic malignancies that initiate prebirth in fetal blood cells and may result in a particularly aggressive disease that does not respond well to treatments that have been designed for adult leukemias. This indicates that these infant/pediatric leukemias should be considered developmental diseases, where a thorough understanding of their unique biology is essential for designing more effective therapies. In this review, we will highlight some of these unique fetal properties and detail the underlying molecular drivers of these phenotypes. We specifically focus on those that are pertinent to disease pathogenesis and that may therefore reveal disease vulnerabilities. We have also included an extensive description of the origins, phenotypes, and key molecular drivers of the main infant and pediatric leukemias that have a known prenatal origin. Importantly, successes in recent years in generating faithful models of these malignancies in which cellular origins, key drivers, and potential vulnerabilities can be investigated have resulted in uncovering potential, new therapeutic avenues.
Collapse
Affiliation(s)
- Giuseppina Camiolo
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher G Mullen
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Katrin Ottersbach
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
32
|
Kassner J, Abdellatif B, Yamshon S, Monge J, Kaner J. Current landscape of CD3 bispecific antibodies in hematologic malignancies. Trends Cancer 2024; 10:708-732. [PMID: 38987076 DOI: 10.1016/j.trecan.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Over the past 30 years the incorporation of monoclonal antibody (mAb) treatments into the management of hematologic malignancies has led to significant improvements in patient outcomes. The key limitation of mAb treatments is the necessity for target antigen presentation on major histocompatibility complex (MHC) and costimulatory molecules to elicit a cytotoxic immune response. With the advent of bispecific antibodies (BsAbs), these limitations can be overcome through direct stimulation of cytotoxic T cells, thus limiting tumor cell evasion. BsAbs are rapidly being incorporated into treatment regimens for hematologic malignancies, and there are now seven FDA-approved treatments in this class, six of which have been approved in the past year. In this review we describe the function, complications, and clinical trial data available for CD3 BsAbs in the treatment of lymphoma, myeloma, and leukemia.
Collapse
Affiliation(s)
- Joshua Kassner
- Department of Internal Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY, USA; Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Samuel Yamshon
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jorge Monge
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Justin Kaner
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
33
|
Rujkijyanont P, Inaba H. Diagnostic and treatment strategies for pediatric acute lymphoblastic leukemia in low- and middle-income countries. Leukemia 2024; 38:1649-1662. [PMID: 38762553 DOI: 10.1038/s41375-024-02277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
The survival rate of children and adolescents with acute lymphoblastic leukemia (ALL), the most common pediatric cancer, has improved significantly in high-income countries (HICs), serving as an excellent example of how humans can overcome catastrophic diseases. However, the outcomes in children with ALL in low- and middle-income countries (LMICs), where approximately 80% of the global population live, are suboptimal because of limited access to diagnostic procedures, chemotherapeutic agents, supportive care, and financial assistance. Although the implementation of therapeutic strategies in resource-limited countries could theoretically follow the same path of improvement as modeled in HICs, intensification of chemotherapy may simply result in increased toxicities. With the advent of genetic diagnosis, molecular targeted therapy, and immunotherapy, the management of ALL is changing dramatically in HICs. Multidisciplinary collaborations between institutions in LMICs and HICs will provide access to strategies that are suitable for institutions in LMICs, enabling them to minimize toxicities while improving outcomes. This article summarizes important aspects of the diagnosis and treatment of pediatric ALL that were mostly developed in HICs but that can be realistically implemented by institutions in countries with limited resources through resource-adapted multidisciplinary collaborations.
Collapse
Affiliation(s)
- Piya Rujkijyanont
- Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao Hospital and Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Hiroto Inaba
- Leukemia/Lymphoma Division, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
34
|
[Chinese consensus for the bispecific T cell engager in the treatment of acute lymphoblastic leukemia (2024)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:629-636. [PMID: 39231766 PMCID: PMC11388125 DOI: 10.3760/cma.j.cn121090-20240528-00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 09/06/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is one of the most common acute leukemias, with rapid onset and progression. The standardized application of chemotherapy and transplantation have improved the prognosis of patients, while the unmet therapeutic needs still exist. Recently novel immunotherapies including Bispecific T cell Engager develop rapidly, offering more options for ALL treatment and also demanding higher requirements for clinical diagnosis and treatment management. Based on the evidence of domestic and international medical evidence and clinical experience, the expert panel updated Chinese consensus for the Bispeific T cell Engager in the treatment of B-cell acute lymphoblastic leukemia (2022) and formulated this edition of the Chinese expert consensus.
Collapse
|
35
|
Pagliaro L, Chen SJ, Herranz D, Mecucci C, Harrison CJ, Mullighan CG, Zhang M, Chen Z, Boissel N, Winter SS, Roti G. Acute lymphoblastic leukaemia. Nat Rev Dis Primers 2024; 10:41. [PMID: 38871740 DOI: 10.1038/s41572-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nicolas Boissel
- Hôpital Saint-Louis, APHP, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stuart S Winter
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
36
|
Mikhailova E, Popov A, Roumiantseva J, Budanov O, Lagoyko S, Zharikova L, Miakova N, Litvinov D, Khachatryan L, Pshonkin A, Ponomareva N, Boichenko E, Varfolomeeva S, Dinikina J, Novichkova G, Henze G, Karachunskiy A. Blinatumomab as postremission therapy replaces consolidation and substantial parts of maintenance chemotherapy and results in stable MRD negativity in children with newly diagnosed B-lineage ALL. J Immunother Cancer 2024; 12:e008213. [PMID: 38844406 PMCID: PMC11163637 DOI: 10.1136/jitc-2023-008213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
The bispecific T cell-binding antibody blinatumomab (CD19/CD3) is widely and successfully used for the treatment of children with relapsed or refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Here, we report the efficacy of a single course of blinatumomab instead of consolidation chemotherapy to eliminate minimal residual disease (MRD) and maintain stable MRD-negativity in children with primary BCP-ALL.Between February 2020 and November 2022, 177 children with non-high-risk BCP-ALL were enrolled in the ALL-MB 2019 pilot study (NCT04723342). Patients received the usual risk-adapted induction therapy according to the ALL-MB 2015 protocol. Those who achieved a complete remission at the end of induction (EOI) received treatment with blinatumomab immediately after induction at a dose of 5 μg/m2/day for 7 days and 21 days at a dose of 15 μg/m2/day, followed by 12 months of maintenance therapy. MRD was measured using multicolor flow cytometry (MFC) at the EOI, then immediately after blinatumomab treatment, and then four times during maintenance therapy at 3-month intervals.All 177 patients successfully completed induction therapy and achieved a complete hematological remission. In 174 of these, MFC-MRD was measured at the EOI. 143 patients (82.2%) were MFC-MRD negative and the remaining 31 patients had varying degrees of MFC-MRD positivity.MFC-MRD was assessed in all 176 patients who completed the blinatumomab course. With one exception, all patients achieved MFC-MRD negativity after blinatumomab, regardless of the MFC-MRD score at EOI. One adolescent girl with high MFC-MRD positivity at EOI remained MFC-MRD positive. Of 175 patients who had completed 6 months of maintenance therapy, MFC-MRD data were available for 156 children. Of these, 155 (99.4%) were MFC-MRD negative. Only one boy with t(12;21) (p13;q22)/ETV6::RUNX1 became MFC-MRD positive again. The remaining 174 children had completed the entire therapy. MFC-MRD was examined in 154 of them, and 153 were MFC-MRD negative. A girl with hypodiploid BCP-ALL showed a reappearance of MFC-MRD with subsequent relapse.In summary, a single 28-day course of blinatumomab immediately after induction, followed by 12 months of maintenance therapy, is highly effective in achieving MRD-negativity in children with newly diagnosed non-high risk BCP-ALL and maintaining MRD-negative remission at least during the treatment period.
Collapse
Affiliation(s)
- Ekaterina Mikhailova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Julia Roumiantseva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Oleg Budanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Svetlana Lagoyko
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Liudmila Zharikova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Natalia Miakova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Dmitry Litvinov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Lili Khachatryan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Alexey Pshonkin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | | | - Elmira Boichenko
- City Children's Hospital No 1, Saint Petersburg, Russian Federation
| | | | - Julia Dinikina
- Almazov National Medical Research Center, Saint Petersburg, Russian Federation
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Guenter Henze
- Pediatric Hematology and Oncology, Ernst Moritz Arndt University Greifswald Faculty of Medicine, Greifswald, Mecklenburg-Vorpommern, Germany
- Pediatric Hematology and Oncology, Charite Medical Faculty Berlin, Berlin, Berlin, Germany
| | - Alexander Karachunskiy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| |
Collapse
|
37
|
Qin X, Ning W, Liu H, Liu X, Luo W, Xia N. Stepping forward: T-cell redirecting bispecific antibodies in cancer therapy. Acta Pharm Sin B 2024; 14:2361-2377. [PMID: 38828136 PMCID: PMC11143529 DOI: 10.1016/j.apsb.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 02/28/2024] [Indexed: 06/05/2024] Open
Abstract
T cell-redirecting bispecific antibodies are specifically designed to bind to tumor-associated antigens, thereby engaging with CD3 on the T cell receptor. This linkage between tumor cells and T cells actively triggers T cell activation and initiates targeted killing of the identified tumor cells. These antibodies have emerged as one of the most promising avenues within tumor immunotherapy. However, despite success in treating hematological malignancies, significant advancements in solid tumors have yet to be explored. In this review, we aim to address the critical challenges associated with T cell-redirecting bispecific antibodies and explore novel strategies to overcome these obstacles, with the ultimate goal of expanding the application of this therapy to include solid tumors.
Collapse
Affiliation(s)
- Xiaojing Qin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Han Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
38
|
Łobacz M, Mertowska P, Mertowski S, Kozińska A, Kwaśniewski W, Kos M, Grywalska E, Rahnama-Hezavah M. The Bloody Crossroads: Interactions between Periodontitis and Hematologic Diseases. Int J Mol Sci 2024; 25:6115. [PMID: 38892299 PMCID: PMC11173219 DOI: 10.3390/ijms25116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Periodontitis is a common oral condition that can have a significant impact on the overall health of the body. In recent years, attention has been paid to potential relationships between periodontitis and various hematological disorders. This publication aims to present information available in the literature on this relationship, focusing on examples of red blood cell disorders (such as aplastic anemia and sickle cell anemia) and white blood cell disorders (such as cyclic neutropenia, maladaptive trained immunity, clonal hematopoiesis, leukemia, and multiple myeloma). Understanding these associations can help physicians and dentists better diagnose, monitor, and treat patients associated with both groups of conditions, highlighting the need for interdisciplinary care for patients with oral disorders and hematologic diseases.
Collapse
Affiliation(s)
- Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.Ł.); (M.R.-H.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
| | - Aleksandra Kozińska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Staszica 16 Street, 20-081 Lublin, Poland;
| | - Marek Kos
- Department of Public Health, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
| | - Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.Ł.); (M.R.-H.)
| |
Collapse
|
39
|
Lyons KU, Gore L. Bispecific T-cell engagers in childhood B-acute lymphoblastic leukemia. Haematologica 2024; 109:1668-1676. [PMID: 38832422 PMCID: PMC11141658 DOI: 10.3324/haematol.2023.283818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/26/2024] [Indexed: 06/05/2024] Open
Abstract
Immunotherapy has revolutionized treatment for a wide variety of cancers yet its use has been relatively limited in childhood malignancies. With the introduction of bispecific T-cell engagers (BiTE®) and chimeric antigen T-cell receptor technologies, previously refractory patients have attained remission, including molecularly negative states of disease, thus providing the possibility of long-term cure. Blinatumomab is a widely available CD3-CD19 BiTE that has dramatically changed the landscape of therapy for some children with precursor-B acute lymphoblastic leukemias (B-ALL) and lymphoblastic lymphomas. Challenges remain with using BiTE in a broader population although the appeal of now-confirmed reduced toxicity and deeper molecular remissions suggests that this approach will be an essential part of future treatment of childhood B-ALL. Herein, we review some of the pertinent literature covering clinical trials with blinatumomab and address future approaches and combination trials including BiTE.
Collapse
Affiliation(s)
| | - Lia Gore
- Children’s Hospital Colorado
- University of Colorado School of Medicine
- University of Colorado Cancer Center, Aurora, CO, USA
| |
Collapse
|
40
|
Brivio E, Bautista F, Zwaan CM. Naked antibodies and antibody-drug conjugates: targeted therapy for childhood acute lymphoblastic leukemia. Haematologica 2024; 109:1700-1712. [PMID: 38832425 PMCID: PMC11141655 DOI: 10.3324/haematol.2023.283815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 03/15/2024] [Indexed: 06/05/2024] Open
Abstract
The treatment of childhood acute lymphoblastic leukemia (ALL) has reached overall survival rates exceeding 90%. The present and future challenges are to cure the remainder of patients still dying from disease, and to reduce morbidity and mortality in those who can be cured with standard-of-care chemotherapy by replacing toxic chemotherapy elements while retaining cure rates. With the novel therapeutic options introduced in the last years, including immunotherapies and targeted antibodies, the treatment of ALL is undergoing major changes. For B-cell precursor ALL, blinatumomab, an anti-CD19 bispecific antibody, has established its role in the consolidation treatment for both high- and standard-risk first relapse of ALL, in the presence of bone marrow involvement, and may also have an impact on the outcome of high-risk subsets such as infant ALL and Philadelphia chromosome-positive ALL. Inotuzumab ozogamicin, an anti-CD22 drug conjugated antibody, has demonstrated high efficacy in inducing complete remission in relapsed ALL, even in the presence of high tumor burden, but randomized phase III trials are still ongoing. For T-ALL the role of CD38-directed treatment, such as daratumumab, is gaining interest, but randomized data are needed to assess its specific benefit. These antibodies are currently being tested in patients with newly diagnosed ALL and may lead to major changes in the present paradigm of treatment of pediatric ALL. Unlike the past, lessons may be learned from innovations in adult ALL, in which more drastic changes are piloted that may need to be translated to pediatrics.
Collapse
Affiliation(s)
- Erica Brivio
- Princess Máxima Center for Pediatric Oncology, Utrecht
| | | | - C. Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht
- Pediatric Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands
| |
Collapse
|
41
|
Locatelli F. Introduction. Immunotherapy for childhood malignancies: the future is now. Haematologica 2024; 109:1653-1655. [PMID: 38832420 PMCID: PMC11141673 DOI: 10.3324/haematol.2023.284553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/22/2024] [Indexed: 06/05/2024] Open
Affiliation(s)
- Franco Locatelli
- IRCCS, Ospedale Pediatrico Bambino Gesù Rome, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
42
|
Adriaanse FRS, Schneider P, Arentsen-Peters STCJM, da Fonseca AMN, Stutterheim J, Pieters R, Zwaan CM, Stam RW. Distinct Responses to Menin Inhibition and Synergy with DOT1L Inhibition in KMT2A-Rearranged Acute Lymphoblastic and Myeloid Leukemia. Int J Mol Sci 2024; 25:6020. [PMID: 38892207 PMCID: PMC11173273 DOI: 10.3390/ijms25116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Pediatric acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) exhibit favorable survival rates. However, for AML and ALL patients carrying KMT2A gene translocations clinical outcome remains unsatisfactory. Key players in KMT2A-fusion-driven leukemogenesis include menin and DOT1L. Recently, menin inhibitors like revumenib have garnered attention for their potential therapeutic efficacy in treating KMT2A-rearranged acute leukemias. However, resistance to menin inhibition poses challenges, and identifying which patients would benefit from revumenib treatment is crucial. Here, we investigated the in vitro response to revumenib in KMT2A-rearranged ALL and AML. While ALL samples show rapid, dose-dependent induction of leukemic cell death, AML responses are much slower and promote myeloid differentiation. Furthermore, we reveal that acquired resistance to revumenib in KMT2A-rearranged ALL cells can occur either through the acquisition of MEN1 mutations or independently of mutations in MEN1. Finally, we demonstrate significant synergy between revumenib and the DOT1L inhibitor pinometostat in KMT2A-rearranged ALL, suggesting that such drug combinations represent a potent therapeutic strategy for these patients. Collectively, our findings underscore the complexity of resistance mechanisms and advocate for precise patient stratification to optimize the use of menin inhibitors in KMT2A-rearranged acute leukemia.
Collapse
Affiliation(s)
- Fabienne R. S. Adriaanse
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC-Sophia’s Children’s Hospital, 3015 CN Rotterdam, The Netherlands
| | - Pauline Schneider
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | | | - Janine Stutterheim
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Rob Pieters
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - C. Michel Zwaan
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC-Sophia’s Children’s Hospital, 3015 CN Rotterdam, The Netherlands
| | - Ronald W. Stam
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
43
|
Brigitha LJ, Mondelaers V, Liu Y, Albertsen BK, Zalewska-Szewczyk B, Rizzari C, Kotecha RS, Pieters R, Huitema ADR, van der Sluis IM. Pharmacokinetics of PEGasparaginase in Infants with Acute Lymphoblastic Leukemia. Pharm Res 2024; 41:711-720. [PMID: 38538970 DOI: 10.1007/s11095-024-03693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/14/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND PEGasparaginase is known to be a critical drug for treating pediatric acute lymphoblastic leukemia (ALL), however, there is insufficient evidence to determine the optimal dose for infants who are less than one year of age at diagnosis. This international study was conducted to identify the pharmacokinetics of PEGasparaginase in infants with newly diagnosed ALL and gather insight into the clearance and dosing of this population. METHODS Infants with ALL who received treatment with PEGasparaginase were included in our population pharmacokinetic assessment employing non-linear mixed effects modelling (NONMEM). RESULTS 68 infants with ALL, with a total of 388 asparaginase activity samples, were included. PEGasparaginase doses ranging from 400 to 3,663 IU/m2 were administered either intravenously or intramuscularly. A one-compartment model with time-dependent clearance, modeled using a transit model, provided the best fit to the data. Body weight was significantly correlated with clearance and volume of distribution. The final model estimated a half-life of 11.7 days just after administration, which decreased to 1.8 days 14 days after administration. Clearance was 19.5% lower during the post-induction treatment phase compared to induction. CONCLUSION The pharmacokinetics of PEGasparaginase in infants diagnosed under one year of age with ALL is comparable to that of older children (1-18 years). We recommend a PEGasparaginase dosing at 1,500 IU/m2 for infants without dose adaptations according to age, and implementing therapeutic drug monitoring as standard practice.
Collapse
Affiliation(s)
- Leiah J Brigitha
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, Netherlands
- Pediatric Oncology and Hematology, Erasmus MC-Sophia Children's Hospital, Dr. Molewaterplein 40, 3015 GD, Rotterdam, Netherlands
| | - Veerle Mondelaers
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Yiwei Liu
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, USA
| | - Birgitte K Albertsen
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus, Denmark
| | - Beata Zalewska-Szewczyk
- Department of Pediatrics, Medical University of Lodz, Oncology & Hematology, 91-738, Lodz, Poland
| | - Carmelo Rizzari
- Department of Pediatrics, University of Milano-Bicocca, Piazza Dell'Ateneo Nuovo, 1, Milano, Italy
- Fondazione IRCCS San Gerardo Dei Tintori, Via G.B. Pergolesi 33, Monza, Italy
| | - Rishi S Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
- Curtin Medical School, Curtin University, Perth, Australia
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, Netherlands
| | - Alwin D R Huitema
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Inge M van der Sluis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, Netherlands.
| |
Collapse
|
44
|
Kulczycka M, Derlatka K, Tasior J, Sygacz M, Lejman M, Zawitkowska J. Infant Acute Lymphoblastic Leukemia-New Therapeutic Opportunities. Int J Mol Sci 2024; 25:3721. [PMID: 38612531 PMCID: PMC11011884 DOI: 10.3390/ijms25073721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Infant acute lymphoblastic leukemia (Infant ALL) is a kind of pediatric ALL, diagnosed in children under 1 year of age and accounts for less than 5% of pediatric ALL. In the infant ALL group, two subtypes can be distinguished: KMT2A-rearranged ALL, known as a more difficult to cure form and KMT2A- non-rearranged ALL with better survival outcomes. As infants with ALL have lesser treatment outcomes compared to older children, it is pivotal to provide novel treatment approaches. Progress in the development of molecularly targeted therapies and immunotherapy presents exciting opportunities for potential improvement. This comprehensive review synthesizes the current literature on the epidemiology, clinical presentation, molecular genetics, and therapeutic approaches specific to ALL in the infant population.
Collapse
Affiliation(s)
- Marika Kulczycka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (K.D.); (J.T.); (M.S.)
| | - Kamila Derlatka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (K.D.); (J.T.); (M.S.)
| | - Justyna Tasior
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (K.D.); (J.T.); (M.S.)
| | - Maja Sygacz
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (K.D.); (J.T.); (M.S.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
45
|
Tretti Parenzan C, Molin AD, Longo G, Gaffo E, Buratin A, Cani A, Boldrin E, Serafin V, Guglielmelli P, Vannucchi AM, Cazzaniga G, Biondi A, Locatelli F, Meyer LH, Buldini B, te Kronnie G, Bresolin S, Bortoluzzi S. Functional relevance of circRNA aberrant expression in pediatric acute leukemia with KMT2A::AFF1 fusion. Blood Adv 2024; 8:1305-1319. [PMID: 38029383 PMCID: PMC10918493 DOI: 10.1182/bloodadvances.2023011291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
ABSTRACT Circular RNAs (circRNAs) are emerging molecular players in leukemogenesis and promising therapeutic targets. In KMT2A::AFF1 (MLL::AF4)-rearranged leukemia, an aggressive disease compared with other pediatric B-cell precursor (BCP) acute lymphoblastic leukemia (ALL), data about circRNAs are limited. Here, we disclose the circRNA landscape of infant patients with KMT2A::AFF1 translocated BCP-ALL showing dysregulated, mostly ectopically expressed, circRNAs in leukemia cells. Most of these circRNAs, apart from circHIPK3 and circZNF609, previously associated with oncogenic behavior in ALL, are still uncharacterized. An in vitro loss-of-function screening identified an oncogenic role of circFKBP5, circKLHL2, circNR3C1, and circPAN3 in KMT2A::AFF1 ALL, whose silencing affected cell proliferation and apoptosis. Further study in an extended cohort disclosed a significantly correlated expression of these oncogenic circRNAs and their putative involvement in common regulatory networks. Moreover, it showed that circAFF1 upregulation occurs in a subset of cases with HOXA KMT2A::AFF1 ALL. Collectively, functional analyses and patient data reveal oncogenic circRNA upregulation as a relevant mechanism that sustains the malignant cell phenotype in KMT2A::AFF1 ALL.
Collapse
Affiliation(s)
- Caterina Tretti Parenzan
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Women and Child Health Department, Padua University and Hospital, Padua, Italy
| | - Anna Dal Molin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgia Longo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Women and Child Health Department, Padua University and Hospital, Padua, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Enrico Gaffo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Alessia Buratin
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Alice Cani
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Women and Child Health Department, Padua University and Hospital, Padua, Italy
| | - Elena Boldrin
- Department of Biology, University of Padova, Padova, Italy
- Ulm University Medical Center, Department of Pediatric and Adolescent Medicine, Ulm, Germany
| | - Valentina Serafin
- Onco-Hematology, Stem Cell Transplant and Gene Therapy, Istituto di Ricerca Pediatrica Foundation - Città della Speranza, Padua, Italy
| | - Paola Guglielmelli
- Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | | | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy
| | - Lueder H. Meyer
- Ulm University Medical Center, Department of Pediatric and Adolescent Medicine, Ulm, Germany
| | - Barbara Buldini
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Women and Child Health Department, Padua University and Hospital, Padua, Italy
- Onco-Hematology, Stem Cell Transplant and Gene Therapy, Istituto di Ricerca Pediatrica Foundation - Città della Speranza, Padua, Italy
| | | | - Silvia Bresolin
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Women and Child Health Department, Padua University and Hospital, Padua, Italy
- Onco-Hematology, Stem Cell Transplant and Gene Therapy, Istituto di Ricerca Pediatrica Foundation - Città della Speranza, Padua, Italy
| | | |
Collapse
|
46
|
Hodder A, Mishra AK, Enshaei A, Baird S, Elbeshlawi I, Bonney D, Clesham K, Cummins M, Vedi A, Gibson B, George L, Ingham D, Jigoulina G, Lancaster D, Lindsay K, Madni M, Malone A, Mitchell B, Moppett J, Motwani J, Moorman AV, Patrick K, Samrin L, Tewari S, Thakur I, O'Connor D, Samarasinghe S, Vora A. Blinatumomab for First-Line Treatment of Children and Young Persons With B-ALL. J Clin Oncol 2024; 42:907-914. [PMID: 37967307 DOI: 10.1200/jco.23.01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 09/18/2023] [Indexed: 11/17/2023] Open
Abstract
PURPOSE We tested whether blinatumomab (Blina) is effective as a toxicity-sparing alternative to first-line intensive chemotherapy in children and young persons (CYP) with B-ALL who were chemotherapy-intolerant or chemotherapy-resistant. METHODS Data were collected for consecutive CYP (age 1-24 years) with Philadelphia chromosome-positive or Philadelphia chromosome-negative B-ALL who received Blina as first-line therapy. Blina was given as replacement for postremission intensive chemotherapy to patients with chemotherapy intolerance or resistance. Blina responders received further chemotherapy (Blin-CT) or first remission hematopoietic stem-cell transplant (Blin-HSCT) if indicated. Event-free survival (EFS) and overall survival (OS) of the Blin-CT group were compared with those of matched controls treated with standard chemotherapy in the UKALL 2003 trial. Events were defined as death, relapse, or secondary cancer. RESULTS From February 2018 to February 2023, 105 patients were treated, of whom 85 were in the Blin-CT group and 20 were in the Blin-HSCT group. A majority of Blin-CT patients received Blina for chemotherapy intolerance (70 of 85, 82%), and the group had a higher-risk profile than unselected patients with B-ALL. Blina was well tolerated with only one patient having a grade 3/4-related toxicity event, and of the 60 patients who were minimal residual disease-positive pre-Blina, 58 of 60 (97%) responded. At a median follow-up of 22 months, the 2-year outcomes of the 80 matched Blin-CT group patients were similar to those of 192 controls (EFS, 95% [95% CI, 85 to 98] v 90% [95% CI, 65 to 93] and OS, 97% [95% CI, 86 to 99] v 94% [95% CI, 89 to 96]). Of the 20 in the HSCT group, three died because of transplant complications and two relapsed. CONCLUSION Blina is safe and effective in first-line treatment of chemotherapy-intolerant CYP with ALL.
Collapse
Affiliation(s)
- Angus Hodder
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Avijeet K Mishra
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Amir Enshaei
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Susan Baird
- Department of Haematology, Royal Hospital for Sick Children, Edinburgh, United Kingdom
| | - Ismail Elbeshlawi
- Haematology, Oxford University Hospital NHS Trust, Oxford, United Kingdom
| | - Denise Bonney
- Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Katherine Clesham
- Department of Haematology, University College London Hospitals NHS Trust, London, United Kingdom
| | - Michelle Cummins
- Department of Haematology, Bristol Children's Hospital, Bristol, United Kingdom
| | - Aditi Vedi
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Brenda Gibson
- The Royal Hospital for Children, Glasgow, United Kingdom
| | - Lindsay George
- University Hospitals Birmingham, Birmingham, United Kingdom
| | - Danielle Ingham
- Haematology, Leeds Children's Hospital, Leeds, United Kingdom
| | - Galina Jigoulina
- Haematology, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Donna Lancaster
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Katherine Lindsay
- Haematology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Majid Madni
- Nottingham University Hospitals, Nottingham, United Kingdom
| | | | - Bethany Mitchell
- Haematology, Royal Belfast Hospital for Sick Children, Belfast, United Kingdom
| | - John Moppett
- Department of Haematology, Bristol Children's Hospital, Bristol, United Kingdom
| | | | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Katharine Patrick
- Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | - Lamia Samrin
- Great Ormond Street Hospital, London, United Kingdom
| | - Sanjay Tewari
- Haematology, The Royal Marsden, London, United Kingdom
| | - Indu Thakur
- Children's Hospital for Wales, Cardiff, United Kingdom
| | - David O'Connor
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
- Cancer Institute, University College London, London, United Kingdom
| | - Sujith Samarasinghe
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
47
|
He J, Munir F, Catueno S, Connors JS, Gibson A, Robusto L, McCall D, Nunez C, Roth M, Tewari P, Garces S, Cuglievan B, Garcia MB. Biological Markers of High-Risk Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2024; 16:858. [PMID: 38473221 PMCID: PMC10930495 DOI: 10.3390/cancers16050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) has witnessed substantial improvements in prognosis; however, a subset of patients classified as high-risk continues to face higher rates of relapse and increased mortality. While the National Cancer Institute (NCI) criteria have traditionally guided risk stratification based on initial clinical information, recent advances highlight the pivotal role of biological markers in shaping the prognosis of childhood ALL. This review delves into the emerging understanding of high-risk childhood ALL, focusing on molecular, cytogenetic, and immunophenotypic markers. These markers not only contribute to unraveling the underlying mechanisms of the disease, but also shed light on specific clinical patterns that dictate prognosis. The paradigm shift in treatment strategies, exemplified by the success of tyrosine kinase inhibitors in Philadelphia chromosome-positive leukemia, underscores the importance of recognizing and targeting precise risk factors. Through a comprehensive exploration of high-risk childhood ALL characteristics, this review aims to enhance our comprehension of the disease, offering insights into its molecular landscape and clinical intricacies in the hope of contributing to future targeted and tailored therapies.
Collapse
Affiliation(s)
- Jiasen He
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Faryal Munir
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Samanta Catueno
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Jeremy S. Connors
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Lindsay Robusto
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Cesar Nunez
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Michael Roth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Priti Tewari
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Sofia Garces
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Miriam B. Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| |
Collapse
|
48
|
Schewe DM, Vogiatzi F, Münnich IA, Zeller T, Windisch R, Wichmann C, Müller K, Bhat H, Felix E, Mougiakakos D, Bruns H, Lenk L, Valerius T, Humpe A, Peipp M, Kellner C. Enhanced potency of immunotherapy against B-cell precursor acute lymphoblastic leukemia by combination of an Fc-engineered CD19 antibody and CD47 blockade. Hemasphere 2024; 8:e48. [PMID: 38435424 PMCID: PMC10883238 DOI: 10.1002/hem3.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024] Open
Abstract
CD19-directed immunotherapy has become a cornerstone in the therapy of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). CD19-directed cellular and antibody-based therapeutics have entered therapy of primary and relapsed disease and contributed to improved outcomes in relapsed disease and lower therapy toxicity. However, efficacy remains limited in many cases due to a lack of therapy response, short remission phases, or antigen escape. Here, BCP-ALL cell lines, patient-derived xenograft (PDX) samples, human macrophages, and an in vivo transplantation model in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were used to examine the therapeutic potency of a CD19 antibody Fc-engineered for improved effector cell recruitment (CD19-DE) and antibody-dependent cellular phagocytosis (ADCP), in combination with a novel modified CD47 antibody (Hu5F9-IgG2σ). For the in vivo model, only samples refractory to CD19-DE monotherapy were chosen. Hu5F9-IgG2σ enhanced ADCP by CD19-DE in various BCP-ALL cell line models with varying CD19 surface expression and cytogenetic backgrounds, two of which contained the KMT2A-AFF1 fusion. Also, the antibody combination was efficient in inducing ADCP by human macrophages in pediatric PDX samples with and adult samples with and without KMT2A-rearrangement in vitro. In a randomized phase 2-like PDX trial using seven KMT2A-rearranged BCP-ALL samples in NSG mice, the CD19/CD47 antibody combination proved highly efficient. Our findings support that the efficacy of Fc-engineered CD19 antibodies may be substantially enhanced by a combination with CD47 blockade. This suggests that the combination may be a promising therapy option for BCP-ALL, especially in relapsed patients and/or patients refractory to CD19-directed therapy.
Collapse
Affiliation(s)
| | - Fotini Vogiatzi
- Department of Pediatrics, ALL‐BFM Study GroupChristian‐Albrechts University and University Hospital Schleswig‐HolsteinKielGermany
| | - Ira A. Münnich
- Division of Transfusion Medicine, Cell Therapeutics and HaemostaseologyLMU University Hospital, LMU MunichMunichGermany
| | - Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and HaemostaseologyLMU University Hospital, LMU MunichMunichGermany
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and HaemostaseologyLMU University Hospital, LMU MunichMunichGermany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and HaemostaseologyLMU University Hospital, LMU MunichMunichGermany
| | - Kristina Müller
- Department of Pediatrics, ALL‐BFM Study GroupChristian‐Albrechts University and University Hospital Schleswig‐HolsteinKielGermany
| | - Hilal Bhat
- Medical FacultyOtto‐von‐Guericke UniversityMagdeburgGermany
| | - Elisa Felix
- Medical FacultyOtto‐von‐Guericke UniversityMagdeburgGermany
| | | | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and OncologyFriedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Lennart Lenk
- Department of Pediatrics, ALL‐BFM Study GroupChristian‐Albrechts University and University Hospital Schleswig‐HolsteinKielGermany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine IIChristian‐Albrechts University and University Hospital Schleswig‐HolsteinKielGermany
| | - Andreas Humpe
- Division of Transfusion Medicine, Cell Therapeutics and HaemostaseologyLMU University Hospital, LMU MunichMunichGermany
| | - Matthias Peipp
- Division of Antibody‐Based Immunotherapy, Department of Medicine IIChristian‐Albrechts University and University Hospital Schleswig‐HolsteinKielGermany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and HaemostaseologyLMU University Hospital, LMU MunichMunichGermany
| |
Collapse
|
49
|
Graff Z, Burke MJ, Gossai N. Novel therapies for pediatric acute lymphoblastic leukemia. Curr Opin Pediatr 2024; 36:64-70. [PMID: 37991046 DOI: 10.1097/mop.0000000000001316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the current novel therapy landscape in pediatric acute lymphoblastic leukemia (ALL), with a focus on key clinical trials which will shape the future direction of care for these children. RECENT FINDINGS Recent landmark immunotherapy trials in B-ALL have demonstrated significant benefit for children, adolescents, and young adults with relapsed/refractory high-risk leukemia. Due to these successes, current trials are asking the question as to whether immunotherapy can be successfully incorporated upfront. Additionally, therapies targeting novel antigens or molecular pathways are being developed, providing new options for children previously thought to have incurable leukemia. SUMMARY As survival for ALL has relatively plateaued with maximizing intensity through conventional chemotherapy, continued preclinical and clinical study of novel immunotherapeutic and targeted agents is crucial to further improve outcomes in childhood leukemia.
Collapse
Affiliation(s)
- Zachary Graff
- Division of Pediatric Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael J Burke
- Division of Pediatric Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nathan Gossai
- Cancer and Blood Disorders, Children's Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
50
|
Xie X, Zhang J, Wang Y, Shi W, Tang R, Tang Q, Sun S, Wu R, Xu S, Wang M, Liang X, Cui L. Nanomaterials augmented bioeffects of ultrasound in cancer immunotherapy. Mater Today Bio 2024; 24:100926. [PMID: 38179429 PMCID: PMC10765306 DOI: 10.1016/j.mtbio.2023.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Immunotherapy as a milestone in cancer treatment has made great strides in the past decade, but it is still limited by low immune response rates and immune-related adverse events. Utilizing bioeffects of ultrasound to enhance tumor immunotherapy has attracted more and more attention, including sonothermal, sonomechanical, sonodynamic and sonopiezoelectric immunotherapy. Moreover, the emergence of nanomaterials has further improved the efficacy of ultrasound mediated immunotherapy. However, most of the summaries in this field are about a single aspect of the biological effects of ultrasound, which is not comprehensive and complete currently. This review proposes the recent progress of nanomaterials augmented bioeffects of ultrasound in cancer immunotherapy. The concept of immunotherapy and the application of bioeffects of ultrasound in cancer immunotherapy are initially introduced. Then, according to different bioeffects of ultrasound, the representative paradigms of nanomaterial augmented sono-immunotherapy are described, and their mechanisms are discussed. Finally, the challenges and application prospects of nanomaterial augmented ultrasound mediated cancer immunotherapy are discussed in depth, hoping to pave the way for cancer immunotherapy and promote the clinical translation of ultrasound mediated cancer immunotherapy through the reasonable combination of nanomaterials augmented ultrasonic bioeffects.
Collapse
Affiliation(s)
- Xinxin Xie
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Jinxia Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Wanrui Shi
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Rui Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Ruiqi Wu
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Shuyu Xu
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Mengxin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| |
Collapse
|