1
|
Yates AG, Khamhoung A, Gaebel L, Jacob W, Radford-Smith DE, Kiss MG, Huynh P, Gerhardt T, Heiser M, Cohen O, Swirski FK, Anthony DC, Sumowski J, Katz Sand I, McAlpine CS. Myelopoiesis is temporally dynamic and is regulated by lifestyle to modify multiple sclerosis. Nat Commun 2025; 16:3683. [PMID: 40246882 PMCID: PMC12006503 DOI: 10.1038/s41467-025-59074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
Monocytes and neutrophils from the myeloid lineage contribute to multiple sclerosis (MS), but the dynamics of myelopoiesis during MS are unclear. Here we uncover a disease stage-specific relationship between lifestyle, myelopoiesis and neuroinflammation. In mice with relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE), myelopoiesis in the femur, vertebrae and spleen is elevated prior to disease onset and during remission, preceding the peaks of clinical disability and neuroinflammation. In progressive EAE (P-EAE), vertebral myelopoiesis rises steadily throughout disease, while femur and splenic myelopoiesis is elevated early before waning later during disease height. In parallel, sleep disruption or hyperlipidemia and cardiometabolic syndrome augment M-CSF generation and multi-organ myelopoiesis to worsen P-EAE clinical symptoms, neuroinflammation, and spinal cord demyelination, with M-CSF blockade abrogating these symptoms. Lastly, results from a previous trial show that Mediterranean diet restrains myelopoietic activity and myeloid lineage progenitor skewing and improves clinical symptomology of MS. Together, our data suggest that myelopoiesis in MS is dynamic and dependent on disease stage and location, and that lifestyle factors modulate disease by influencing M-CSF-mediated myelopoiesis.
Collapse
Affiliation(s)
- Abi G Yates
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annie Khamhoung
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lena Gaebel
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Walter Jacob
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Máté G Kiss
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pacific Huynh
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teresa Gerhardt
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Merlin Heiser
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oren Cohen
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - James Sumowski
- The Corinne Goldsmith Dickinson Center for Multiple Sclerosis and the Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilana Katz Sand
- The Corinne Goldsmith Dickinson Center for Multiple Sclerosis and the Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Gerhardt T, Huynh P, McAlpine CS. Neuroimmune circuits in the plaque and bone marrow regulate atherosclerosis. Cardiovasc Res 2025; 120:2395-2407. [PMID: 39086175 PMCID: PMC11976727 DOI: 10.1093/cvr/cvae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 06/01/2024] [Indexed: 08/02/2024] Open
Abstract
Atherosclerosis remains the leading cause of death globally. Although its focal pathology is atheroma that develops in arterial walls, atherosclerosis is a systemic disease involving contributions by many organs and tissues. It is now established that the immune system causally contributes to all phases of atherosclerosis. Recent and emerging evidence positions the nervous system as a key modulator of inflammatory processes that underlie atherosclerosis. This neuroimmune cross-talk, we are learning, is bidirectional, and immune-regulated afferent signalling is becoming increasingly recognized in atherosclerosis. Here, we summarize data and concepts that link the immune and nervous systems in atherosclerosis by focusing on two important sites, the arterial vessel and the bone marrow.
Collapse
Affiliation(s)
- Teresa Gerhardt
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friede Springer Center for Cardiovascular Prevention at Charité, Berlin, Germany
| | - Pacific Huynh
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
3
|
Yang L, Yu L, Du X, Cui Y, Du G. Study of PEG-rhG-CSF for the prevention of neutropenia in concurrent chemoradiotherapy for nasopharyngeal carcinoma. PLoS One 2025; 20:e0315001. [PMID: 39813291 PMCID: PMC11734975 DOI: 10.1371/journal.pone.0315001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/04/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND To study the efficacy and safety of Polyethylene glycolated recombinant human granulocyte colony-stimulating factor (PEG-rhG-CSF) in the prevention of neutropenia during concurrent chemoradiotherapy for nasopharyngeal carcinoma (NPC). METHODS This is a single-center, prospective, randomized controlled study conducted from June 1, 2021, to October 31, 2022 on patients diagnosed with locally advanced NPC. Participants were divided into an experimental group and a control group. The experimental group received PEG-rhG-CSF injections post-chemotherapy cycles, whereas the control group received standard care without additional intervention. Outcomes assessed included grade 3/4 neutropenia incidence, blood cell count changes, febrile neutropenia rates, delays or interruptions in chemotherapy/radiotherapy due to hematological toxicity, oral mucositis incidents, and bone pain occurrences, comparing these between both groups. RESULTS 1. 88 patients with locally advanced NPC were included, the incidence of grade 3 neutropenia in the experimental group was lower than that in the control group (P = 0.026); 2. The white blood cell count and neutrophil count in D7, D10, D14, and D21 in the experimental group were higher than those in the control group (P<0.01); 3. The rate of delayed chemotherapy in the experimental group was lower than that in the control group (2.3% vs. 29.5%), P = 0.001; the rate of interruption of radiotherapy in the experimental group was lower than that in the control group (2.3% vs.27.3%), P = 0.003; 4. The incidence of bone pain in the experimental group was 34.1%, of which most were mild bone pain, and no severe bone pain occurred. The leukocyte and neutrophil counts of the patients in the bone pain group were significantly higher than those of the patients in the no bone pain group, P(WBC) = 0.001, P(ANC) = 0.002. CONCLUSIONS The preventive use of PEG-rhG-CSF decreases the incidence of neutropenia in patients undergoing concurrent chemoradiotherapy for NPC, thereby reducing rates of chemotherapy delays and radiotherapy interruptions, with mild adverse reactions that are tolerable by patients.
Collapse
Affiliation(s)
- Lu Yang
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Suining Central Hospital, Suining, Sichuan, China
| | - Lei Yu
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Suining Central Hospital, Suining, Sichuan, China
| | - Xue Du
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yu Cui
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guobo Du
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
4
|
Danielson DT, Muir JM. Educational Case: Essential thrombocythemia. Acad Pathol 2025; 12:100167. [PMID: 40104156 PMCID: PMC11919432 DOI: 10.1016/j.acpath.2025.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 10/01/2024] [Accepted: 01/04/2025] [Indexed: 03/20/2025] Open
Affiliation(s)
- David T Danielson
- Department of Pathology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jeannie M Muir
- Department of Pathology, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
5
|
Cortese M, Hagan T, Rouphael N, Wu SY, Xie X, Kazmin D, Wimmers F, Gupta S, van der Most R, Coccia M, Aranuchalam PS, Nakaya HI, Wang Y, Coyle E, Horiuchi S, Wu H, Bower M, Mehta A, Gunthel C, Bosinger SE, Kotliarov Y, Cheung F, Schwartzberg PL, Germain RN, Tsang J, Li S, Albrecht R, Ueno H, Subramaniam S, Mulligan MJ, Khurana S, Golding H, Pulendran B. System vaccinology analysis of predictors and mechanisms of antibody response durability to multiple vaccines in humans. Nat Immunol 2025; 26:116-130. [PMID: 39747435 DOI: 10.1038/s41590-024-02036-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025]
Abstract
We performed a systems vaccinology analysis to investigate immune responses in humans to an H5N1 influenza vaccine, with and without the AS03 adjuvant, to identify factors influencing antibody response magnitude and durability. Our findings revealed a platelet and adhesion-related blood transcriptional signature on day 7 that predicted the longevity of the antibody response, suggesting a potential role for platelets in modulating antibody response durability. As platelets originate from megakaryocytes, we explored the effect of thrombopoietin (TPO)-mediated megakaryocyte activation on antibody response longevity. We found that TPO administration enhanced the durability of vaccine-induced antibody responses. TPO-activated megakaryocytes also promoted survival of human bone-marrow plasma cells through integrin β1/β2-mediated cell-cell interactions, along with survival factors APRIL and the MIF-CD74 axis. Using machine learning, we developed a classifier based on this platelet-associated signature, which predicted antibody response longevity across six vaccines from seven independent trials, highlighting a conserved mechanism for vaccine durability.
Collapse
Affiliation(s)
- Mario Cortese
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Thomas Hagan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Sheng-Yang Wu
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Xia Xie
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dmitri Kazmin
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Prabhu S Aranuchalam
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Yating Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Elizabeth Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Shu Horiuchi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanchih Wu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Bower
- Hope Clinic of the Emory Vaccine Center, Decatur, GA, USA
| | - Aneesh Mehta
- Hope Clinic of the Emory Vaccine Center, Decatur, GA, USA
| | | | - Steve E Bosinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
- Yerkes Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuri Kotliarov
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
| | - Foo Cheung
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
| | - Pamela L Schwartzberg
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Ronald N Germain
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - John Tsang
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Shuzhao Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Randy Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hideki Ueno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology, Kyoto University, Kyoto, Japan
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Mark J Mulligan
- Division of Infectious Diseases and Immunology, Department of Medicine and NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Florez MA, Thatavarty A, Le DT, Hill HA, Jeong Y, Ho BM, Kus P, Wathan TK, Kain BN, Huang S, Park D, King KY. BST2 facilitates activation of hematopoietic stem cells through ERK signaling. Exp Hematol 2024; 140:104653. [PMID: 39362577 DOI: 10.1016/j.exphem.2024.104653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
The proinflammatory cytokine interferon gamma (IFNγ) is upregulated in a variety of infections and contributes to bone marrow failure through hematopoietic stem cell (HSC) activation and subsequent exhaustion. The cell-surface protein, bone marrow stromal antigen 2 (BST2), is a key mediator of this process, because it is induced upon IFN stimulation and required for IFN-dependent HSC activation. To identify the mechanism by which BST2 promotes IFN-dependent HSC activation, we evaluated its role in niche localization, immune cell function, lipid raft formation, and intracellular signaling. Our studies indicated that knockout (KO) of BST2 in a murine model does not disrupt immune cell responses to IFN-inducing mycobacterial infection. Furthermore, intravital imaging studies indicate that BST2 KO does not disrupt localization of HSCs relative to endothelial or osteoblastic niches in the bone marrow. However, using imaging-based flow cytometry, we found that IFNγ treatment shifts the lipid raft polarity of wild-type (WT) but not Bst2-/- hematopoietic stem and progenitor cells (HSPCs). Furthermore, RNAseq analysis, reverse-phase protein array and western blot analysis of HSPCs indicate that BST2 promotes ERK1/2 phosphorylation during IFNγ-mediated stress. Overall, we find that BST2 facilitates HSC division by promoting cell polarization and ERK activation, thus elucidating a key mechanism of IFN-dependent HSPC activation. These findings inform future approaches in the treatment of cancer and bone marrow failure.
Collapse
Affiliation(s)
- Marcus A Florez
- Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences (GSBS) and Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Apoorva Thatavarty
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Program in Genetics and Genomics, GSBS, and Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
| | - Duy T Le
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Program in Immunology, GSBS, Baylor College of Medicine, Houston, TX
| | - Holly A Hill
- Department of Statistics, School of Engineering, Rice University, Houston, TX
| | - Youngjae Jeong
- Program in Genetics and Genomics, GSBS, and Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
| | - Brian M Ho
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX
| | - Pawel Kus
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Trisha K Wathan
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Bailee N Kain
- Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences (GSBS) and Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
| | - Shixia Huang
- Advanced Technology Cores, Department of Molecular and Cellular Biology, Department of Education, Innovation & Technology, Houston, TX; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX
| | - Dongsu Park
- Program in Genetics and Genomics, GSBS, and Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
| | - Katherine Y King
- Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences (GSBS) and Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Program in Immunology, GSBS, Baylor College of Medicine, Houston, TX; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
7
|
Deng J, Tan Y, Xu Z, Wang H. Advances in hematopoietic stem cells ex vivo expansion associated with bone marrow niche. Ann Hematol 2024; 103:5035-5057. [PMID: 38684510 DOI: 10.1007/s00277-024-05773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Hematopoietic stem cells (HSCs) are an ideal source for the treatment of many hematological diseases and malignancies, as well as diseases of other systems, because of their two important features, self-renewal and multipotential differentiation, which have the ability to rebuild the blood system and immune system of the body. However, so far, the insufficient number of available HSCs, whether from bone marrow (BM), mobilized peripheral blood or umbilical cord blood, is still the main restricting factor for the clinical application. Therefore, strategies to expand HSCs numbers and maintain HSCs functions through ex vivo culture are urgently required. In this review, we outline the basic biology characteristics of HSCs, and focus on the regulatory factors in BM niche affecting the functions of HSCs. Then, we introduce several representative strategies used for HSCs from these three sources ex vivo expansion associated with BM niche. These findings have deepened our understanding of the mechanisms by which HSCs balance self-renewal and differentiation and provided a theoretical basis for the efficient clinical HSCs expansion.
Collapse
Affiliation(s)
- Ju Deng
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Tan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhifang Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
8
|
Thompson GB, Gilchrist AE, Lam VM, Nunes AC, Payan BA, Mora-Boza A, Serrano JF, García AJ, Harley BAC. Gelatin maleimide microgels for hematopoietic progenitor cell encapsulation. J Biomed Mater Res A 2024; 112:2124-2135. [PMID: 38894666 PMCID: PMC11464195 DOI: 10.1002/jbm.a.37765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell-derived signals that help inform stem cell fate. Aspects of the bone marrow microenvironment have been captured in vitro by encapsulating cells within hydrogel matrices that mimic native mechanical and biochemical properties. Hydrogel microparticles, or microgels, are increasingly being used to assemble granular biomaterials for cell culture and noninvasive delivery applications. Here, we report the optimization of a gelatin maleimide hydrogel system to create monodisperse gelatin microgels via a flow-focusing microfluidic process. We report characteristic hydrogel stiffness, stability, and swelling characteristics as well as encapsulation of murine hematopoietic stem and progenitor cells, and mesenchymal stem cells within microgels. Microgels support cell viability, confirming compatibility of the microfluidic encapsulation process with these sensitive bone marrow cell populations. Overall, this work presents a microgel-based gelatin maleimide hydrogel as a foundation for future development of a multicellular artificial bone marrow culture system.
Collapse
Affiliation(s)
- Gunnar B Thompson
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Aidan E Gilchrist
- Department of Biomedical Engineering, University of California, Davis, USA
| | - Vincent M Lam
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Alison C Nunes
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Brittany A Payan
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Ana Mora-Boza
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Julio F Serrano
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- George Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
Ng CM, Bauer RJ. General quasi-equilibrium multivalent binding model to study diverse and complex drug-receptor interactions of biologics. J Pharmacokinet Pharmacodyn 2024; 51:841-857. [PMID: 39153154 DOI: 10.1007/s10928-024-09936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/28/2024] [Indexed: 08/19/2024]
Abstract
Pharmacokinetics and pharmacodynamics of many biologics are influenced by their complex binding to biological receptors. Biologics consist of diverse groups of molecules with different binding kinetics to its receptors including IgG with simple one-to-one drug receptor bindings, bispecific antibody (BsAb) that binds to two different receptors, and antibodies that can bind to six or more identical receptors. As the binding process is typically much faster than elimination (or internalization) and distribution processes, quasi-equilibrium (QE) binding models are commonly used to describe drug-receptor binding kinetics of biologics. However, no general QE modeling framework is available to describe complex binding kinetics for diverse classes of biologics. In this paper, we describe novel approaches of using differential algebraic equations (DAE) to solve three QE multivalent drug-receptor binding (QEMB) models. The first example describes the binding kinetics of three-body equilibria of BsAb that binds to 2 different receptors for trimer formation. The second example models an engineered IgG variant (Multabody) that can bind to 24 identical target receptors. The third example describes an IgG with modified neonatal Fc receptor (FcRn) binding affinity that competes for the same FcRn receptor as endogenous IgG. The model parameter estimates were obtained by fitting the model to all data simultaneously. The models allowed us to study potential roles of cooperative binding on bell-shaped drug exposure-response relationships of BsAb, and concentration-depended distribution of different drug-receptor complexes for Multabody. This DAE-based QEMB model platform can serve as an important tool to better understand complex binding kinetics of diverse classes of biologics.
Collapse
Affiliation(s)
- Chee M Ng
- NewGround Pharmaceutical Consulting LLC, Foster City, CA, USA.
| | | |
Collapse
|
10
|
Kimura H, Onozawa M, Matsukawa T, Goto H, Kondo T, Teshima T. Relative impact of THPO mutation causing hereditary thrombocythemia. Exp Hematol 2024; 134:104208. [PMID: 38548144 DOI: 10.1016/j.exphem.2024.104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/16/2024]
Abstract
Germline mutations of THPO were reported as causes of hereditary thrombocythemia. Six previously reported distinct sites of the mutation were clustered at the 5`-untranslated region or the exon 3 splicing donor site of the THPO gene. Each mutation was identified in an independent pedigree, and the differences between the mutations were not compared. We cloned six distinct THPO mutations (THPO c.-47delG, THPO c.-31G>T, THPO c.13G>A, THPO c.13+1G>A, THPO c.13+2T>C, and THPO c.13+5G>A) and compared the molecular mechanisms that underlie the increased production of THPO protein. At the transcript level, all of the mutations except THPO c.-47delG showed an exon 3 skipping transcript, including two mutations (THPO c.-31G>T and THPO c.13+5G>A) that were distant from the splicing donor site. THPO c.-47delG showed the same full-length transcript as that of the wild-type transcript. At the protein level, all mutations resulted in a higher level of production of thrombopoietin (THPO) protein compared with wild-type THPO. There are only two distinct patterns of mechanisms for increased production of THPO: exon 3 skipping that deleted upstream suppressive open reading frame (ORF)7 and one base deletion that shifted ORF7 to connect to the initial codon of THPO in-frame. The common mechanisms of hereditary thrombocytosis due to THPO mutations are unleashed THPO translations, which are usually suppressed by upstream out-of-frame ORF7.
Collapse
Affiliation(s)
- Hiroyuki Kimura
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan.
| | - Toshihiro Matsukawa
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hideki Goto
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
11
|
Rafelski SM, Theriot JA. Establishing a conceptual framework for holistic cell states and state transitions. Cell 2024; 187:2633-2651. [PMID: 38788687 DOI: 10.1016/j.cell.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Cell states were traditionally defined by how they looked, where they were located, and what functions they performed. In this post-genomic era, the field is largely focused on a molecular view of cell state. Moving forward, we anticipate that the observables used to define cell states will evolve again as single-cell imaging and analytics are advancing at a breakneck pace via the collection of large-scale, systematic cell image datasets and the application of quantitative image-based data science methods. This is, therefore, a key moment in the arc of cell biological research to develop approaches that integrate the spatiotemporal observables of the physical structure and organization of the cell with molecular observables toward the concept of a holistic cell state. In this perspective, we propose a conceptual framework for holistic cell states and state transitions that is data-driven, practical, and useful to enable integrative analyses and modeling across many data types.
Collapse
Affiliation(s)
- Susanne M Rafelski
- Allen Institute for Cell Science, 615 Westlake Avenue N, Seattle, WA 98125, USA.
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
12
|
Bhattarai G, Shrestha SK, Sim HJ, Lee JC, Kook SH. Effects of fine particulate matter on bone marrow-conserved hematopoietic and mesenchymal stem cells: a systematic review. Exp Mol Med 2024; 56:118-128. [PMID: 38200155 PMCID: PMC10834576 DOI: 10.1038/s12276-023-01149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024] Open
Abstract
The harmful effects of fine particulate matter ≤2.5 µm in size (PM2.5) on human health have received considerable attention. However, while the impact of PM2.5 on the respiratory and cardiovascular systems has been well studied, less is known about the effects on stem cells in the bone marrow (BM). With an emphasis on the invasive characteristics of PM2.5, this review examines the current knowledge of the health effects of PM2.5 exposure on BM-residing stem cells. Recent studies have shown that PM2.5 enters the circulation and then travels to distant organs, including the BM, to induce oxidative stress, systemic inflammation and epigenetic changes, resulting in the reduction of BM-residing stem cell survival and function. Understanding the broader health effects of air pollution thus requires an understanding of the invasive characteristics of PM2.5 and its direct influence on stem cells in the BM. As noted in this review, further studies are needed to elucidate the underlying processes by which PM2.5 disturbs the BM microenvironment and inhibits stem cell functionality. Strategies to prevent or ameliorate the negative effects of PM2.5 exposure on BM-residing stem cells and to maintain the regenerative capacity of those cells must also be investigated. By focusing on the complex relationship between PM2.5 and BM-resident stem cells, this review highlights the importance of specific measures directed at safeguarding human health in the face of rising air pollution.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Saroj Kumar Shrestha
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun-Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
13
|
Kimura H, Onozawa M, Hashiguchi J, Hidaka D, Kanaya M, Matsukawa T, Okada H, Kondo T, Matsuno Y, Teshima T. Hereditary thrombocythemia due to splicing donor site mutation of THPO in a Japanese family. Ann Hematol 2024; 103:89-96. [PMID: 37962621 DOI: 10.1007/s00277-023-05523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
Thrombopoietin (THPO) is an essential factor for platelet production. Hereditary thrombocythemia (HT) is caused by a germline mutation of THPO, MPL, or JAK2 and is inherited in an autosomal-dominant manner. We identified a Japanese family with HT due to a point mutation of the splicing donor site of the THPO gene (THPO c.13 + 1G > A). Bone marrow biopsy showed increased megakaryocytes mimicking essential thrombocythemia. One affected family member developed chronic myeloid leukemia. We cloned the mutation and developed mutated and wild type THPO expression vectors. Molecular analysis showed that the mutation causes an exon 3 skipping transcript of THPO that abrogates a suppressive untranslated upstream open reading frame. Although the transcript levels of THPO mRNA were comparable, mutated transcripts were more efficiently translated and THPO protein expression was significantly higher than that of the wild type.
Collapse
Affiliation(s)
- Hiroyuki Kimura
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Japan.
| | - Junichi Hashiguchi
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Japan
| | - Daisuke Hidaka
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Japan
| | - Minoru Kanaya
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Toshihiro Matsukawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Japan
| | - Hiromi Okada
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Japan
| |
Collapse
|
14
|
Ding Y, Koda Y, Shashni B, Takeda N, Zhang X, Tanaka N, Nishikawa Y, Nagasaki Y. An orally deliverable ornithine-based self-assembling polymer nanomedicine ameliorates hyperammonemia in acetaminophen-induced acute liver injury. Acta Biomater 2023; 168:515-528. [PMID: 37433359 DOI: 10.1016/j.actbio.2023.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
l-Ornithine (Orn) is a core amino acid responsible for ammonia detoxification in the body via the hepatic urea cycle. Clinical studies in Orn therapy have focused on interventions for hyperammonemia-associated diseases, such as hepatic encephalopathy (HE), a life-threatening neurological symptom affecting more than 80% of patients with liver cirrhosis. However, its low molecular weight (LMW) causes Orn to diffuse nonspecifically and be rapidly eliminated from the body after oral administration, resulting in unfavorable therapeutic efficacy. Hence, Orn is constantly supplied by intravenous infusion in many clinical settings; however, this treatment inevitably decreases patient compliance and limits its application in long-term management. To improve the performance of Orn, we designed self-assembling polyOrn-based nanoparticles for oral administration through ring-opening polymerization of Orn-N-carboxy anhydride initiated with amino-ended poly(ethylene glycol), followed by acylation of free amino groups in the main chain of the polyOrn segment. The obtained amphiphilic block copolymers, poly(ethylene glycol)-block-polyOrn(acyl) (PEG-block-POrn(acyl)), enabled the formation of stable nanoparticles (NanoOrn(acyl)) in aqueous media. We employed the isobutyryl (iBu) group for acyl derivatization in this study (NanoOrn(iBu)). In the healthy mice, daily oral administration of NanoOrn(iBu) for one week did not induce any abnormalities. In the mice exhibiting acetaminophen (APAP)-induced acute liver injury, oral pretreatment with NanoOrn(iBu) effectively reduced systemic ammonia and transaminases levels compared to the LMW Orn and untreated groups. The results suggest that the application of NanoOrn(iBu) is of significant clinical value with the feasibility of oral delivery and improvement in APAP-induced hepatic pathogenesis. STATEMENT OF SIGNIFICANCE: Liver injury is often accompanied by hyperammonemia, a life-threatening condition characterized by elevated blood ammonia levels. Current clinical treatments for reducing ammonia typically entail the invasive approach of intravenous infusion, involving the administration of l-ornithine (Orn) or a combination of Orn and L-aspartate. This method is employed due to the poor pharmacokinetics associated with these compounds. In our pursuit of enhancing therapy, we have developed an orally administrable nanomedicine based on Orn-based self-assembling nanoparticle (NanoOrn(iBu)), which provides sustained Orn supply to the injured liver. Oral administration of NanoOrn(iBu) to healthy mice did not cause any toxic effects. In a mouse model of acetaminophen-induced acute liver injury, oral administration of NanoOrn(iBu) surpassed Orn in reducing systemic ammonia levels and liver damage, thereby establishing NanoOrn(iBu) as a safe and effective therapeutic option.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yuta Koda
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Babita Shashni
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Naoki Takeda
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
| | - Xuguang Zhang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
| | - Yuji Nishikawa
- Department of Pathology, Asahikawa Medical University, 1 Chome-1-1, Midorigaoka Higashi 2 Jo, Asahikawa, Hokkaido 078-8510, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Radiation, Isotope and Earth System Sciences (CRiES), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
15
|
Han P, Moran CS, Liu C, Griffiths R, Zhou Y, Ivanovski S. Engineered adult stem cells: Current clinical trials status of disease treatment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:33-62. [PMID: 37678978 DOI: 10.1016/bs.pmbts.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Regenerative medicine is an interdisciplinary field involving the process of replacing and regenerating cells/tissues or organs by integrating medicine, science, and engineering principles to enhance the intrinsic regenerative capacity of the host. Recently, engineered adult stem cells have gained attention for their potential use in regenerative medicine by reducing inflammation and modulating the immune system. This chapter introduces adult stem cell engineering and chimeric antigen receptor T cells (CAR T) gene therapy and summarises current engineered stem cell- and extracellular vesicles (EVs)-focused clinical trial studies that provide the basis for the proposal of a personalised medicine approach to diseases diagnosis and treatment.
Collapse
Affiliation(s)
- Pingping Han
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD, Australia
| | - Corey Stephan Moran
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD, Australia
| | - Chun Liu
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD, Australia
| | | | - Yinghong Zhou
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD, Australia.
| | - Sašo Ivanovski
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD, Australia.
| |
Collapse
|
16
|
Li X, Ahirwar DK, Wu XY. Editorial: Myeloid-derived suppressor cells in inflammation and its complications and cancers. Front Immunol 2023; 14:1240415. [PMID: 37533868 PMCID: PMC10392949 DOI: 10.3389/fimmu.2023.1240415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Affiliation(s)
- Xing Li
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India
| | - Xiang-Yuan Wu
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Wang Y, Jin X, Li M, Gao J, Zhao X, Ma J, Shi C, He B, Hu L, Shi J, Liu G, Qu G, Zheng Y, Jiang G. PM 2.5 Increases Systemic Inflammatory Cells and Associated Disease Risks by Inducing NRF2-Dependent Myeloid-Biased Hematopoiesis in Adult Male Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7924-7937. [PMID: 37184982 DOI: 10.1021/acs.est.2c09024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Although PM2.5 (fine particles with aerodynamic diameter <2.5 μm) exposure shows the potential to impact normal hematopoiesis, the detailed alterations in systemic hematopoiesis and the underlying mechanisms remain unclear. For hematopoiesis under steady-state or stress conditions, nuclear factor erythroid 2-related factor 2 (NRF2) is essential for regulating hematopoietic processes to maintain blood homeostasis. Herein, we characterized changes in the populations of hematopoietic stem progenitor cells and committed hematopoietic progenitors in the lungs and bone marrow (BM) of wild-type and Nrf2-/- C57BL/6J male mice. PM2.5-induced NRF2-dependent biased hematopoiesis toward myeloid lineage in the lungs and BM generates excessive numbers of various inflammatory immune cells, including neutrophils, monocytes, and platelets. The increased population of these immune cells in the lungs, BM, and peripheral blood has been associated with observed pulmonary fibrosis and high disease risks in an NRF2-dependent manner. Therefore, although NRF2 is a protective factor against stressors, upon PM2.5 exposure, NRF2 is involved in stress myelopoiesis and enhanced PM2.5 toxicity in pulmonary injury, even leading to systemic inflammation.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Min Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guoliang Liu
- Department of Pulmonary and Critical Care Medicine, National Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- Institute of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
18
|
Lingas EC. Hematological Abnormalities in Cirrhosis: A Narrative Review. Cureus 2023; 15:e39239. [PMID: 37337504 PMCID: PMC10277171 DOI: 10.7759/cureus.39239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/21/2023] Open
Abstract
Liver cirrhosis remains a major public health issue. Liver fibrosis leading to cirrhosis is the terminal stage of various chronic liver diseases. Inflammatory cytokines are involved in the pathogenesis. Patients with cirrhosis often have hematological abnormalities, such as anemia and thrombocytopenia, which have multifactorial etiologies. Anemia in cirrhosis could be related to bleeding leading to iron deficiency anemia or other nutritional anemia such as vitamin B12 and folate deficiency. The pathophysiology of thrombocytopenia in liver cirrhosis has been postulated to range from splenic sequestration to bone marrow suppression from toxic agents, such as alcohol. It often complicates management due to the risk of bleeding with severely low platelets. This review aimed to highlight pathogenesis of liver cirrhosis, hematological abnormalities in liver cirrhosis, and their clinical significance.
Collapse
|
19
|
Yusoff NA, Abd Hamid Z, Budin SB, Taib IS. Linking Benzene, in Utero Carcinogenicity and Fetal Hematopoietic Stem Cell Niches: A Mechanistic Review. Int J Mol Sci 2023; 24:ijms24076335. [PMID: 37047305 PMCID: PMC10094243 DOI: 10.3390/ijms24076335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Previous research reported that prolonged benzene exposure during in utero fetal development causes greater fetal abnormalities than in adult-stage exposure. This phenomenon increases the risk for disease development at the fetal stage, particularly carcinogenesis, which is mainly associated with hematological malignancies. Benzene has been reported to potentially act via multiple modes of action that target the hematopoietic stem cell (HSCs) niche, a complex microenvironment in which HSCs and multilineage hematopoietic stem and progenitor cells (HSPCs) reside. Oxidative stress, chromosomal aberration and epigenetic modification are among the known mechanisms mediating benzene-induced genetic and epigenetic modification in fetal stem cells leading to in utero carcinogenesis. Hence, it is crucial to monitor exposure to carcinogenic benzene via environmental, occupational or lifestyle factors among pregnant women. Benzene is a well-known cause of adult leukemia. However, proof of benzene involvement with childhood leukemia remains scarce despite previously reported research linking incidences of hematological disorders and maternal benzene exposure. Furthermore, accumulating evidence has shown that maternal benzene exposure is able to alter the developmental and functional properties of HSPCs, leading to hematological disorders in fetus and children. Since HSPCs are parental blood cells that regulate hematopoiesis during the fetal and adult stages, benzene exposure that targets HSPCs may induce damage to the population and trigger the development of hematological diseases. Therefore, the mechanism of in utero carcinogenicity by benzene in targeting fetal HSPCs is the primary focus of this review.
Collapse
|
20
|
Aggarwal A, Jennings CL, Manning E, Cameron SJ. Platelets at the Vessel Wall in Non-Thrombotic Disease. Circ Res 2023; 132:775-790. [PMID: 36927182 PMCID: PMC10027394 DOI: 10.1161/circresaha.122.321566] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
Platelets are small, anucleate entities that bud from megakaryocytes in the bone marrow. Among circulating cells, platelets are the most abundant cell, traditionally involved in regulating the balance between thrombosis (the terminal event of platelet activation) and hemostasis (a protective response to tissue injury). Although platelets lack the precise cellular control offered by nucleate cells, they are in fact very dynamic cells, enriched in preformed RNA that allows them the capability of de novo protein synthesis which alters the platelet phenotype and responses in physiological and pathological events. Antiplatelet medications have significantly reduced the morbidity and mortality for patients afflicted with thrombotic diseases, including stroke and myocardial infarction. However, it has become apparent in the last few years that platelets play a critical role beyond thrombosis and hemostasis. For example, platelet-derived proteins by constitutive and regulated exocytosis can be found in the plasma and may educate distant tissue including blood vessels. First, platelets are enriched in inflammatory and anti-inflammatory molecules that may regulate vascular remodeling. Second, platelet-derived microparticles released into the circulation can be acquired by vascular endothelial cells through the process of endocytosis. Third, platelets are highly enriched in mitochondria that may contribute to the local reactive oxygen species pool and remodel phospholipids in the plasma membrane of blood vessels. Lastly, platelets are enriched in proteins and phosphoproteins which can be secreted independent of stimulation by surface receptor agonists in conditions of disturbed blood flow. This so-called biomechanical platelet activation occurs in regions of pathologically narrowed (atherosclerotic) or dilated (aneurysmal) vessels. Emerging evidence suggests platelets may regulate the process of angiogenesis and blood flow to tumors as well as education of distant organs for the purposes of allograft health following transplantation. This review will illustrate the potential of platelets to remodel blood vessels in various diseases with a focus on the aforementioned mechanisms.
Collapse
Affiliation(s)
- Anu Aggarwal
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Courtney L. Jennings
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Emily Manning
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Scott J. Cameron
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Hematology, Taussig Cancer Center, Cleveland, Ohio
| |
Collapse
|
21
|
Thrombocytopenia and PT-INR in patients with anorexia nervosa and severe liver dysfunction. Biopsychosoc Med 2023; 17:9. [PMID: 36890598 PMCID: PMC9996900 DOI: 10.1186/s13030-023-00269-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND We previously reported a case that led us to hypothesize that decreased production of thrombopoietin (TPO) leads to thrombocytopenia in patients with anorexia nervosa (AN) with severe liver dysfunction and that prolonged prothrombin time-international normalized ratio (PT-INR) predicts thrombocytopenia in such cases. To validate this hypothesis, we report another case in which TPO levels were measured. In addition, we examined the association between prolonged PT-INR and thrombocytopenia in such patients. MAIN BODY Similar to the previously reported patient, a patient with AN with severe liver dysfunction showed that TPO levels increased after improvements in liver enzyme levels and PT-INR, followed by recovery of platelet count. In addition, a retrospective study was also conducted to review patients with AN whose liver enzyme levels were > 3 × the upper limit of normal (aspartate aminotransferase > 120 U/L or alanine aminotransferase > 135 U/L). The study included 58 patients and showed a correlation coefficient of -0.486 (95% confidence interval [CI], -0.661 to -0.260; P < 0.001) between maximum PT-INR and minimum platelet count. These patients showed higher PT-INR (β, 0.07; 95% CI, 0.02 to 0.13; P = 0.005) and lower platelet count (β, -5.49; 95% CI, -7.47 to -3.52; P < 0.001) than the 58 matched control patients without severe liver dysfunction, even after adjusting for body mass index. CONCLUSIONS In patients with AN with severe liver dysfunction, prolongation of PT-INR could predict thrombocytopenia, which may be mediated by decreased TPO production due to decreased hepatic synthetic function.
Collapse
|
22
|
Okeke CO, Amilo GI, Manafa PO, Ibeh NC. Inflammation-mediated changes in haemostatic variables of pulmonary tuberculosis patients during treatment. Tuberculosis (Edinb) 2023; 138:102285. [PMID: 36436460 DOI: 10.1016/j.tube.2022.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Tuberculosis (TB) disease is usually marked by inflammation which is closely linked to haemostasis both in health and disease. Close monitoring of haemostatic response to inflammatory changes during treatment is important to improve TB management. Here we studied associations between haemostatic markers and inflammatory cytokines in 60 TB-infected individuals, aged 18-65 years who received anti-TB therapy. They were recruited before commencement of therapy and followed up till completion of therapy after 6-months. The TNF-α, IL-6, IL-2 (pro-inflammatory cytokines) and P-selectin, GP IIb/IIIa, thrombopoietin (haemostatic variables) were significantly increased at 2 month into therapy compared to pre-treatment values and decreased at 6 month into therapy. Also at 6 month into therapy in comparison to 2-month into therapy, there were significant increase in IL-10 and TGF-β (anti-inflammatory cytokines) as well as a significant decline in PF-4. There were significant positive correlations between GP IIb/IIIa and TNF-α, IL-6 and PSEL, IL-6 and TPO, PF4 and TGF-β. Conclusively, the changes in the TNF-α, IL-6, IL-2 aligned with changes in the levels of P-selectin, GP IIb/IIIa, and TPO in the course of TB therapy. This may suggest that the levels of inflammatory cytokines are linked to the levels of these haemostatic variables in TB individuals.
Collapse
Affiliation(s)
- C O Okeke
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus P.M.B. 5001, Anambra State, Nigeria.
| | - G I Amilo
- Department of Haematology, Faculty of Medicine, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus P.M.B. 5001, Anambra State, Nigeria
| | - P O Manafa
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus P.M.B. 5001, Anambra State, Nigeria
| | - N C Ibeh
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus P.M.B. 5001, Anambra State, Nigeria
| |
Collapse
|
23
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
24
|
Wang X, Liu S, Yu J. Multi-lineage Differentiation from Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:159-175. [PMID: 38228964 DOI: 10.1007/978-981-99-7471-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The hematopoietic stem cells (HSCs) have the ability to differentiate and give rise to all mature blood cells. Commitment to differentiation progressively limits the self-renewal potential of the original HSCs by regulating the level of lineage-specific gene expression. In this review, we will summarize the current understanding of the molecular mechanisms underlying HSC differentiation toward erythroid, myeloid, and lymphocyte lineages. Moreover, we will decipher how the single-cell technologies advance the lineage-biased HSC subpopulations and their differentiation potential.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing, China.
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences / Peking Union Medical College, Chengdu, China.
| | - Siqi Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing, China
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing, China.
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences / Peking Union Medical College, Chengdu, China.
| |
Collapse
|
25
|
Nakajima K, Shen Z, Miura M, Nakabayashi H, Kawahara M. Sequential control of myeloid cell proliferation and differentiation by cytokine receptor-based chimeric antigen receptors. PLoS One 2022; 17:e0279409. [PMID: 36574389 PMCID: PMC9794043 DOI: 10.1371/journal.pone.0279409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022] Open
Abstract
As chimeric antigen receptor (CAR)-T cell therapy has been recently applied in clinics, controlling the fate of blood cells is increasingly important for curing blood disorders. In this study, we aim to construct proliferation-inducing and differentiation-inducing CARs (piCAR and diCAR) with two different antigen specificities and express them simultaneously on the cell surface. Since the two antigens are non-cross-reactive and exclusively activate piCAR or diCAR, sequential induction from cell proliferation to differentiation could be controlled by switching the antigens added in the culture medium. To demonstrate this notion, a murine myeloid progenitor cell line 32Dcl3, which proliferates in an IL-3-dependent manner and differentiates into granulocytes when cultured in the presence of G-CSF, is chosen as a model. To mimic the cell fate control of 32Dcl3 cells, IL-3R-based piCAR and G-CSFR-based diCAR are rationally designed and co-expressed in 32Dcl3 cells to evaluate the proliferation- and differentiation-inducing functions. Consequently, the sequential induction from proliferation to differentiation with switching the cytokine from IL-3 to G-CSF is successfully replaced by switching the antigen from one to another in the CARs-co-expressing cells. Thus, piCAR and diCAR may become a platform technology for sequentially controlling proliferation and differentiation of various cell types that need to be produced in cell and gene therapies.
Collapse
Affiliation(s)
- Kyoko Nakajima
- Laboratory of Cell Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Zhongchuzi Shen
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masashi Miura
- Laboratory of Cell Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Hideto Nakabayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masahiro Kawahara
- Laboratory of Cell Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
26
|
Migliaccio AR, Balduini A, Zhan H. Editorial: Megakaryocytes as regulators of tumor microenvironments. Front Oncol 2022; 12:1090658. [PMID: 36505825 PMCID: PMC9732936 DOI: 10.3389/fonc.2022.1090658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Anna Rita Migliaccio
- Center for Integrated Biomedical Research, Campus Bio-medico, Rome, Italy
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, United States
- Medical Service, Northport VA Medical Center, Northport, NY, United States
| |
Collapse
|
27
|
Rix B, Maduro AH, Bridge KS, Grey W. Markers for human haematopoietic stem cells: The disconnect between an identification marker and its function. Front Physiol 2022; 13:1009160. [PMID: 36246104 PMCID: PMC9564379 DOI: 10.3389/fphys.2022.1009160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The haematopoietic system is a classical stem cell hierarchy that maintains all the blood cells in the body. Haematopoietic stem cells (HSCs) are rare, highly potent cells that reside at the apex of this hierarchy and are historically some of the most well studied stem cells in humans and laboratory models, with haematopoiesis being the original system to define functional cell types by cell surface markers. Whilst it is possible to isolate HSCs to near purity, we know very little about the functional activity of markers to purify HSCs. This review will focus on the historical efforts to purify HSCs in humans based on cell surface markers, their putative functions and recent advances in finding functional markers on HSCs.
Collapse
Affiliation(s)
| | | | | | - William Grey
- *Correspondence: Katherine S. Bridge, ; William Grey,
| |
Collapse
|
28
|
Orschell CM, Wu T, Patterson AM. Impact of Age, Sex, and Genetic Diversity in Murine Models of the Hematopoietic Acute Radiation Syndrome (H-ARS) and the Delayed Effects of Acute Radiation Exposure (DEARE). CURRENT STEM CELL REPORTS 2022; 8:139-149. [PMID: 36798890 PMCID: PMC9928166 DOI: 10.1007/s40778-022-00214-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Purpose of review Malicious or accidental radiation exposure increases risk for the hematopoietic acute radiation syndrome (H-ARS) and the delayed effects of acute radiation exposure (DEARE). Radiation medical countermeasure (MCM) development relies on robust animal models reflective of all age groups and both sexes. This review details critical considerations in murine H-ARS and DEARE model development including divergent radiation responses dependent on age, sex, and genetic diversity. Recent findings Radioresistance increases with murine age from pediatrics through geriatrics. Between sexes, radioresistance is higher in male weanlings, pubescent females, and aged males, corresponding with accelerated myelopoiesis. Jackson diversity outbred (JDO) mice resemble non-human primates in radiation response for modeling human diversity. Weanlings and JDO models exhibit less DEARE than other models. Summary Highly characterized age-, sex- and diversity-conscious murine models of H-ARS and DEARE provide powerful and essential tools in MCM development for all radiation victims.
Collapse
Affiliation(s)
| | - Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Andrea M. Patterson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
29
|
Islam A, Cockcroft C, Elshazly S, Ahmed J, Joyce K, Mahfuz H, Islam T, Rashid H, Laher I. Coagulopathy of Dengue and COVID-19: Clinical Considerations. Trop Med Infect Dis 2022; 7:tropicalmed7090210. [PMID: 36136621 PMCID: PMC9500638 DOI: 10.3390/tropicalmed7090210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Thrombocytopenia and platelet dysfunction commonly occur in both dengue and COVID-19 and are related to clinical outcomes. Coagulation and fibrinolytic pathways are activated during an acute dengue infection, and endothelial dysfunction is observed in severe dengue. On the other hand, COVID-19 is characterised by a high prevalence of thrombotic complications, where bleeding is rare and occurs only in advanced stages of critical illness; here thrombin is the central mediator that activates endothelial cells, and elicits a pro-inflammatory reaction followed by platelet aggregation. Serological cross-reactivity may occur between COVID-19 and dengue infection. An important management aspect of COVID-19-induced immunothrombosis associated with thrombocytopenia is anticoagulation with or without aspirin. In contrast, the use of aspirin, nonsteroidal anti-inflammatory drugs and anticoagulants is contraindicated in dengue. Mild to moderate dengue infections are treated with supportive therapy and paracetamol for fever. Severe infection such as dengue haemorrhagic fever and dengue shock syndrome often require escalation to higher levels of support in a critical care facility. The role of therapeutic platelet transfusion is equivocal and should not be routinely used in patients with dengue with thrombocytopaenia and mild bleeding. The use of prophylactic platelet transfusion in dengue fever has strained financial and healthcare systems in endemic areas, together with risks of transfusion-transmitted infections in low- and middle-income countries. There is a clear research gap in the management of dengue with significant bleeding.
Collapse
Affiliation(s)
- Amin Islam
- Department of Haematology, Mid & South Essex University Hospital NHS Foundation Trust, Prittlewell Chase, Westcliff-on-Sea SS0 0RY, UK
- Department of Haematology, Queen Mary University of London, Mile End Road, London E1 3NS, UK
- Correspondence:
| | - Christopher Cockcroft
- Department of Haematology, Mid & South Essex University Hospital NHS Foundation Trust, Prittlewell Chase, Westcliff-on-Sea SS0 0RY, UK
| | - Shereen Elshazly
- Department of Haematology, Mid & South Essex University Hospital NHS Foundation Trust, Prittlewell Chase, Westcliff-on-Sea SS0 0RY, UK
- Adult Haemato-Oncology Unit, Faculty of Medicine, Ainshams University, Cairo 11566, Egypt
| | - Javeed Ahmed
- Department of Microbiology and Virology, Mid & South Essex University Hospital NHS Foundation Trust, Westcliff-on-Sea SS0 0RY, UK
| | - Kevin Joyce
- Department of Haematology, Mid & South Essex University Hospital NHS Foundation Trust, Prittlewell Chase, Westcliff-on-Sea SS0 0RY, UK
| | - Huque Mahfuz
- Department of Haematology and Oncology, Combined Military Hospital, Dhaka 1206, Bangladesh
| | - Tasbirul Islam
- Department of Pulmonology and Critical Care Medicine, Indiana School of Medicine, Lafayette, IN 47907, USA
| | - Harunor Rashid
- National Centre for Immunisation Research and Surveillance, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Westmead, NSW 2145, Australia
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, The University of British Colombia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
30
|
Sun XS, Wang Z, Ren SH, Zhang HL, Liu LJ, Du HB, Liu XW, Liu JF. PEG-rhG-CSF for prophylaxis of neutropenia after chemotherapy in patients with non-small cell lung cancer: A multicenter, prospective, randomized study. Thorac Cancer 2022; 13:2429-2435. [PMID: 35859328 PMCID: PMC9436658 DOI: 10.1111/1759-7714.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/09/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To evaluate the efficacy and safety of pegylated recombinant human granulocyte colony-stimulating factor (PEG-rhG-CSF) in preventing neutropenia during multiple cycles of chemotherapy in patients with non-small cell lung cancer (NSCLC). METHOD In a multicenter, prospective, randomized trial, patients with NSCLC were randomly assigned in a 2:1 ratio to treatment group (PEG-rhG-CSF as primary prophylactic therapy) or control group. Patients in the control group were administered rhG-CSF when white blood cell count was <2.0 × 109 /L or absolute neutrophil count <1.0 × 109 /L. The primary endpoint was the incidence of grade 3/4 neutropenia. Secondary endpoints included the incidence and duration of grade 3/4 neutropenia in each cycle, the incidence of febrile neutropenia (FN), delay rate of chemotherapy, prolonged time of chemotherapy, and safety. RESULTS Between January 2019 and July 2021, 130 patients were enrolled (treatment group: n = 87, control group: n = 43). The incidence of grade 3/4 neutropenia in the treatment group was significantly lower than that in the control group (1.15% vs. 11.63%, p < 0.05). The mean duration of grade 3/4 neutropenia for the treatment and control group was 2.00 and 3.75 days, respectively. There were no statistical differences in the incidence of FN, delay rate of chemotherapy, prolonged time of chemotherapy, and antibiotic use between the two groups (all p > 0.05). Adverse events were reported in 47.13% of patients in the treatment group and 48.84% patients in the control group. CONCLUSIONS Primary prophylactic treatment with PEG-rhG-CSF could reduce the incidence of neutropenia in patients with NSCLC during multiple cycles of chemotherapy, with acceptable safety and tolerability.
Collapse
Affiliation(s)
- Xu-Sheng Sun
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhe Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shu-Hua Ren
- Department of Thoracic Surgery, Tangshan Nanhu Hospital, Tangshan, China
| | - He-Lin Zhang
- Department of Thoracic Surgery, The second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li-Jun Liu
- Department of Thoracic Surgery, Hebei Provincial People's Hospital, Shijiazhuang, China
| | - Hong-Bo Du
- Department of anti-tumour, CSPC Ouyi Pharmaceutical Co. Ltd., Shijiazhuang, China
| | - Xiao-Wei Liu
- Department of anti-tumour, CSPC Ouyi Pharmaceutical Co. Ltd., Shijiazhuang, China
| | - Jun-Feng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
31
|
Warren JT, Di Paola J. Genetics of inherited thrombocytopenias. Blood 2022; 139:3264-3277. [PMID: 35167650 PMCID: PMC9164741 DOI: 10.1182/blood.2020009300] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/04/2022] [Indexed: 01/19/2023] Open
Abstract
The inherited thrombocytopenia syndromes are a group of disorders characterized primarily by quantitative defects in platelet number, though with a variety demonstrating qualitative defects and/or extrahematopoietic findings. Through collaborative international efforts applying next-generation sequencing approaches, the list of genetic syndromes that cause thrombocytopenia has expanded significantly in recent years, now with over 40 genes implicated. In this review, we focus on what is known about the genetic etiology of inherited thrombocytopenia syndromes and how the field has worked to validate new genetic discoveries. We highlight the important role for the clinician in identifying a germline genetic diagnosis and strategies for identifying novel causes through research-based endeavors.
Collapse
Affiliation(s)
- Julia T Warren
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jorge Di Paola
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
32
|
He K, Liu X, Hoffman RD, Shi RZ, Lv GY, Gao JL. G-CSF/GM-CSF-induced hematopoietic dysregulation in the progression of solid tumors. FEBS Open Bio 2022; 12:1268-1285. [PMID: 35612789 PMCID: PMC9249339 DOI: 10.1002/2211-5463.13445] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022] Open
Abstract
There are two types of abnormal hematopoiesis in solid tumor occurrence and treatment: pathological hematopoiesis, and myelosuppression induced by radiotherapy and chemotherapy. In this review, we primarily focus on the abnormal pathological hematopoietic differentiation in cancer induced by tumor-released granulocyte colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF). As key factors in hematopoietic development, G-CSF/GM-CSF are well-known facilitators of myelopoiesis and mobilization of hematopoietic stem cells (HSCs). In addition, these two cytokines can also promote or inhibit tumors, dependent on tumor type. In multiple cancer types, hematopoiesis is greatly enhanced and abnormal lineage differentiation is induced by these two cytokines. Here, dysregulated hematopoiesis induced by G-CSF/GM-CSF in solid tumors and its mechanism are summarized, and the prognostic value of G-CSF/GM-CSF-associated dysregulated hematopoiesis for tumor metastasis is also briefly highlighted.
Collapse
Affiliation(s)
- Kai He
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xi Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Robert D Hoffman
- Yo San University of Traditional Chinese Medicine, Los Angeles, CA, 90066, USA
| | - Rong-Zhen Shi
- Tangqi Branch of Traditional Chinese Medicine Hospital of Yuhang District, Hangzhou, Zhejiang, 311106, China
| | - Gui-Yuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou, Zhejiang, 310053, China
| | - Jian-Li Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou, Zhejiang, 310053, China
| |
Collapse
|
33
|
Bueno-Silva B, Bueno MR, Kawamoto D, Casarin RC, Pingueiro JMS, Alencar SM, Rosalen PL, Mayer MPA. Anti-Inflammatory Effects of (3S)-Vestitol on Peritoneal Macrophages. Pharmaceuticals (Basel) 2022; 15:ph15050553. [PMID: 35631379 PMCID: PMC9145271 DOI: 10.3390/ph15050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
The isoflavone (3S)-vestitol, obtained from red propolis, has exhibited anti-inflammatory, antimicrobial, and anti-caries activity; however, few manuscripts deal with its anti-inflammatory mechanisms in macrophages. The objective is to elucidate the anti-inflammatory mechanisms of (3S)-vestitol on those cells. Peritoneal macrophages of C57BL6 mice, stimulated with lipopolysaccharide, were treated with 0.37 to 0.59 µM of (3S)-vestitol for 48 h. Then, nitric oxide (NO) quantities, macrophages viability, the release of 20 cytokines and the transcription of several genes related to cytokine production and inflammatory response were evaluated. The Tukey–Kramer variance analysis test statistically analyzed the data. (3S)-vestitol 0.55 µM (V55) lowered NO release by 60% without altering cell viability and diminished IL-1β, IL-1α, G-CSF, IL-10 and GM-CSF levels. V55 reduced expression of Icam-1, Wnt5a and Mmp7 (associated to inflammation and tissue destruction in periodontitis) and Scd1, Scd2, Egf1 (correlated to atherosclerosis). V55 increased expression of Socs3 and Dab2 genes (inhibitors of cytokine signaling and NF-κB pathway), Apoe (associated to atherosclerosis control), Igf1 (encoder a protein with analogous effects to insulin) and Fgf10 (fibroblasts growth factor). (3S)-vestitol anti-inflammatory mechanisms involve cytokines and NF-κB pathway inhibition. Moreover, (3S)-vestitol may be a candidate for future in vivo investigations about the treatment/prevention of persistent inflammatory diseases such as atherosclerosis and periodontitis.
Collapse
Affiliation(s)
- Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil;
- Correspondence:
| | - Manuela Rocha Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
| | - Renato C. Casarin
- Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, SP, Brazil; (R.C.C.); (P.L.R.)
| | | | - Severino Matias Alencar
- College of Agriculture “Luiz de Queiroz” (ESALQ/USP), University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Pedro Luiz Rosalen
- Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, SP, Brazil; (R.C.C.); (P.L.R.)
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
| |
Collapse
|
34
|
Shimada IS, Kato Y. Ciliary signaling in stem cells in health and disease: Hedgehog pathway and beyond. Semin Cell Dev Biol 2022; 129:115-125. [PMID: 35466055 DOI: 10.1016/j.semcdb.2022.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
The primary cilium is a hair-like sensory compartment that protrudes from the cellular surface. The primary cilium is enriched in a variety of signaling molecules that regulate cellular activities. Stem cells have primary cilia. They reside in a specialized environment, called the stem cell niche. This niche contains a variety of secreted factors, and some of their receptors are localized in the primary cilia of stem cells. Here, we summarize the current understanding of the function of cilia in compartmentalized signaling in stem cells. We describe how ciliary signaling regulates stem cells and progenitor cells during development, tissue homeostasis and tumorigenesis. We summarize our understanding of cilia regulated signaling -primary involving the hedgehog pathway- in stem cells in diverse settings that include neuroepithelial cells, radial glia, cerebellar granule neuron precursors, hematopoietic stem cells, hair follicle stem cells, bone marrow mesenchymal stem cells and mammary gland stem cells. Overall, our review highlights a variety of roles that ciliary signaling plays in regulating stem cells throughout life.
Collapse
Affiliation(s)
- Issei S Shimada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Azakawasumi, Mizuzho-cho, Mizuho-ku, Nagoya, 467-8601 Aichi, Japan.
| | - Yoichi Kato
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Azakawasumi, Mizuzho-cho, Mizuho-ku, Nagoya, 467-8601 Aichi, Japan.
| |
Collapse
|
35
|
Kandarakov O, Belyavsky A, Semenova E. Bone Marrow Niches of Hematopoietic Stem and Progenitor Cells. Int J Mol Sci 2022; 23:ijms23084462. [PMID: 35457280 PMCID: PMC9032554 DOI: 10.3390/ijms23084462] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
The mammalian hematopoietic system is remarkably efficient in meeting an organism’s vital needs, yet is highly sensitive and exquisitely regulated. Much of the organismal control over hematopoiesis comes from the regulation of hematopoietic stem cells (HSCs) by specific microenvironments called niches in bone marrow (BM), where HSCs reside. The experimental studies of the last two decades using the most sophisticated and advanced techniques have provided important data on the identity of the niche cells controlling HSCs functions and some mechanisms underlying niche-HSC interactions. In this review we discuss various aspects of organization and functioning of the HSC cell niche in bone marrow. In particular, we review the anatomy of BM niches, various cell types composing the niche, niches for more differentiated cells, metabolism of HSCs in relation to the niche, niche aging, leukemic transformation of the niche, and the current state of HSC niche modeling in vitro.
Collapse
|
36
|
Römer P, Heimes D, Pabst A, Becker P, Thiem DGE, Kämmerer PW. Bleeding disorders in implant dentistry: a narrative review and a treatment guide. Int J Implant Dent 2022; 8:20. [PMID: 35429255 PMCID: PMC9013394 DOI: 10.1186/s40729-022-00418-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
Purpose Considering a high prevalence of congenital and especially acquired bleeding disorders, their heterogeneity and the multitude of possible treatments strategies, a review of the scientific data on this topic is needed to implement a treatment guide for healthcare professionals.
Methods A selective literature review was performed via PubMed for articles describing oral surgery / dental implant procedures in patients with congenital and acquired bleeding disorders. Out of the existing literature, potential treatment algorithms were extrapolated. Results In order to assess the susceptibility to bleeding, risk stratification can be used for both congenital and acquired coagulation disorders. This risk stratification, together with an appropriate therapeutic pathway, allows for an adequate and individualized therapy for each patient. A central point is the close interdisciplinary cooperation with specialists. In addition to the discontinuation or replacement of existing treatment modalities, local hemostyptic measures are of primary importance. If local measures are not sufficient, systemically administered substances such as desmopressin and blood products have to be used. Conclusions Despite the limited evidence, a treatment guide could be developed by means of this narrative review to improve safety for patients and practitioners. Prospective randomized controlled trials are needed to allow the implementation of official evidence-based guidelines.
Collapse
|
37
|
Novel insights into residual hematopoiesis from stem cell populations in pediatric B-acute lymphoblastic leukemia. Pediatr Res 2022; 91:1064-1068. [PMID: 34887525 DOI: 10.1038/s41390-021-01885-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/19/2021] [Indexed: 11/08/2022]
|
38
|
Ye B, Sheng Y, Zhang M, Hu Y, Huang H. Early detection and intervention of clonal hematopoiesis for preventing hematological malignancies. Cancer Lett 2022; 538:215691. [DOI: 10.1016/j.canlet.2022.215691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 12/17/2022]
|
39
|
An Analysis of the Serum Metabolomic Profile for the Radiomitigative Effect of the Thrombopoietin Receptor Agonist Romiplostim in Lethally Whole-Body-Irradiated Mice. Metabolites 2022; 12:metabo12020161. [PMID: 35208235 PMCID: PMC8877426 DOI: 10.3390/metabo12020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/04/2022] Open
Abstract
The thrombopoietin receptor agonist romiplostim (RP) was recently approved by the US Food and Drug Administration for improving survival in patients acutely exposed to myelosuppressive doses of radiation. Our previous studies with mice have shown that RP administration after lethal irradiation not only completely rescues irradiated mice but also shows mitigative effects on their hematopoiesis and multiple organ injury, including that of the lung, bone marrow, small intestine, and liver. However, the mechanism by which RP functions as a radiomitigator remains unclear. In the present study, we applied a metabolomics approach, which has the ability to reflect the status of an organism directly and accurately, helping to elucidate the biology of treatment responses. Our results showed that the disruption of several metabolites and pathways in response to total body irradiation was partially corrected by RP administration. Notably, RP-corrected metabolites and pathways have been reported to be indicators of DNA damage and lung, bone marrow, small intestine, and liver injury. Taken together, the present findings suggested that the radiomitigative effect of RP is partially involved in the recovery of organ injury, and the identified metabolites may be a useful biomarker of the survival likelihood following radiation exposure.
Collapse
|
40
|
Groenen AG, La Rose AM, Li M, Bazioti V, Svendsen AF, Kloosterhuis NJ, Ausema A, Pranger A, Heiner-Fokkema MR, Niezen-Koning KE, Houben T, Shiri-Sverdlov R, Westerterp M. Elevated granulocyte-colony stimulating factor and hematopoietic stem cell mobilization in Niemann-Pick type C1 disease. J Lipid Res 2022; 63:100167. [PMID: 35007562 PMCID: PMC8953690 DOI: 10.1016/j.jlr.2021.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a progressive lysosomal storage disorder caused by mutations of the NPC1 gene. While neurodegeneration is the most severe symptom, a large proportion of NPC1 patients also present with splenomegaly, which has been attributed to cholesterol and glycosphingolipid accumulation in late endosomes and lysosomes. However, recent data also reveal an increase in the inflammatory monocyte subset in the Npc1nih mouse model expressing an Npc1 null allele. We evaluated the contribution of hematopoietic cells to splenomegaly in NPC1 disease under conditions of hypercholesterolemia. We transplanted Npc1nih (Npc1 null mutation) or Npc1wt bone marrow (BM) into Ldlr-/- mice and fed these mice a cholesterol-rich Western-type diet. At 9 weeks after BM transplant, on a chow diet, the Npc1 null mutation increased plasma granulocyte-colony stimulating factor (G-CSF) by 2-fold and caused mild neutrophilia. At 18 weeks after BM transplant, including 9 weeks of Western-type diet feeding, the Npc1 mutation increased G-csf mRNA levels by ∼5-fold in splenic monocytes/macrophages accompanied by a ∼4-fold increase in splenic neutrophils compared with controls. We also observed ∼5-fold increased long-term and short-term hematopoietic stem cells (HSCs) in the spleen, and a ∼30-75% decrease of these populations in BM, reflecting HSC mobilization, presumably downstream of elevated G-CSF. In line with these data, four patients with NPC1 disease showed higher plasma G-CSF compared with age-matched and gender-matched healthy controls. In conclusion, we show elevated G-CSF levels and HSC mobilization in the setting of an Npc1 null mutation and propose that this contributes to splenomegaly in patients with NPC1 disease.
Collapse
Affiliation(s)
- Anouk G Groenen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anouk M La Rose
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mengying Li
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Venetia Bazioti
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arthur F Svendsen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albertina Ausema
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alle Pranger
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klary E Niezen-Koning
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tom Houben
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
41
|
Tian H, Huang S, Luo Q, Lin Z, Liu H, Zhang Z, Fong W, Zhao J, Yu F. Akt pathway activation reduces platelet apoptosis and contributes to the increase of platelet counts in solid tumor patients. Platelets 2022; 33:1009-1017. [PMID: 35068286 DOI: 10.1080/09537104.2022.2026908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Platelets counts increase in various cancer patients, which is associated with poor prognosis. However, the cause of high platelet counts in cancer patients is still not fully understood. Here we demonstrated that compared with healthy controls, there were significant differences in platelet parameters, mean platelet volume (MPV), platelet distribution width (PDW), platelet larger cell ratio (P-LCR), and platelet crit (PCT), reflecting platelet volume in breast cancer patients by clinical retrospective analysis. The mitochondrial transmembrane potential (ΔΨm) depolarization and phosphatidylserine (PS) externalization declined, accompanied by reduced expression of pro-apoptotic factors Bak, Bax and apoptotic executor caspase-3, and elevated of anti-apoptotic factor Bcl-xl in various cancer patients' platelets. Notably, the phosphorylation level of Akt and its downstream target Bad increased in platelets from cancer patients. MK2206, the inhibitor of Akt, reduced the phosphorylation level of Akt and Bad, and induced apoptosis of platelets. When platelets from healthy controls cocultured with the cultural supernatant of cancer cells, the phosphorylation level of Akt and Bad in the platelets was elevated and the cultural supernatant of cancer cells could rescue the apoptosis of platelet induced by MK2206. Therefore, in our study the apoptosis of platelets in cancer patients was declined, which exerted an influence on the rise of platelet counts in breast cancer patients. The cross-talking between tumor and platelets could affect platelet apoptosis by regulating Akt signaling pathway in platelets.
Collapse
Affiliation(s)
- Huan Tian
- Department of Breast Surgery, Yat-Sen Breast Tumor Hospital, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Songyin Huang
- Center for Biotherapy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qing Luo
- Department of Breast Surgery, Yat-Sen Breast Tumor Hospital, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhuochen Lin
- Department of Medical Records, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huanhuan Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Plastic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat- Sen University, Guangzhou, China
| | - Zhixian Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Laboratory Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wengcheng Fong
- Department of Breast Surgery, Yat-Sen Breast Tumor Hospital, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinghua Zhao
- Department of Breast Surgery, Yat-Sen Breast Tumor Hospital, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fengyan Yu
- Department of Breast Surgery, Yat-Sen Breast Tumor Hospital, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
42
|
Navrazhina K, Garcet S, Zheng X, Hur HB, Frew JW, Krueger JG. High inflammation in hidradenitis suppurativa extends to perilesional skin and can be subdivided by lipocalin-2 expression. J Allergy Clin Immunol 2022; 149:135-144.e12. [PMID: 34081946 DOI: 10.1016/j.jaci.2021.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease presenting with diverse manifestations ranging from nodules and abscesses to draining tunnels. Whether the underlying inflammation from lesions extends to relatively healthy-appearing adjacent perilesional and distant nonlesional skin has not been systematically evaluated. OBJECTIVE We sought to characterize lesional, perilesional, and nonlesional skin in patients with HS. METHODS Skin biopsy samples were collected under ultrasound guidance from patients with active, untreated moderate-to-severe HS. Site-matched control biopsy samples from healthy volunteers were used for comparison. RESULTS RNA sequencing demonstrated that HS skin clustered separately from healthy control skin, with perilesional and lesion skin clustering together and away from nonlesional skin. Immunohistochemistry analysis identified psoriasiform hyperplasia with keratin 16 positivity in both perilesional and lesional skin, with comparable levels of CD3+, CD11c+, and neutrophil elastase-positive cellular infiltration. There was a marked upregulation of IL-17 signaling in perilesional and lesional skin. HS samples clustered on the basis of expression of lipocalin-2 (LCN2), with samples characterized by high LCN2 expression in the skin exhibiting a differing transcriptomic profile with significantly higher overall inflammation than that of skin characterized by low LCN2 levels. CONCLUSIONS Perilesional HS skin has a transcriptomic and molecular profile comparable to that of lesional skin. HS can be grouped into 2 distinct subtypes based on molecular levels of LCN2 in the skin, with the LCN2-high subtype exhibiting an overall higher inflammatory burden and an upregulation of targetable cytokines. To our knowledge, this is the first study to characterize a unique HS subtype (and a potential endotype) that may guide future therapeutic targets.
Collapse
Affiliation(s)
- Kristina Navrazhina
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY
| | - Sandra Garcet
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY
| | - Xiuzhong Zheng
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY
| | - Hong Beom Hur
- Research Bioinformatics, Center for Clinical and Translational Science, The Rockefeller University, New York, NY
| | - John W Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY.
| |
Collapse
|
43
|
De Zuani M, Frič J. Train the Trainer: Hematopoietic Stem Cell Control of Trained Immunity. Front Immunol 2022; 13:827250. [PMID: 35154147 PMCID: PMC8828730 DOI: 10.3389/fimmu.2022.827250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 01/14/2023] Open
Abstract
Recent evidence shows that innate immune cells, in addition to B and T cells, can retain immunological memory of their encounters and afford long-term resistance against infections in a process known as 'trained immunity'. However, the duration of the unspecific protection observed in vivo is poorly compatible with the average lifespan of innate immune cells, suggesting the involvement of long-lived cells. Accordingly, recent studies demonstrate that hematopoietic stem and progenitor cells (HSPCs) lay at the foundation of trained immunity, retaining immunological memory of infections and giving rise to a "trained" myeloid progeny for a long time. In this review, we discuss the research demonstrating the involvement of HSPCs in the onset of long-lasting trained immunity. We highlight the roles of specific cytokines and Toll-like receptor ligands in influencing HSPC memory phenotypes and the molecular mechanisms underlying trained immunity HSPCs. Finally, we discuss the potential benefits and drawbacks of the long-lasting trained immune responses, and describe the challenges that the field is facing.
Collapse
Affiliation(s)
- Marco De Zuani
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Jan Frič
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- *Correspondence: Jan Frič,
| |
Collapse
|
44
|
Isringhausen S, Mun Y, Kovtonyuk L, Kräutler NJ, Suessbier U, Gomariz A, Spaltro G, Helbling PM, Wong HC, Nagasawa T, Manz MG, Oxenius A, Nombela-Arrieta C. Chronic viral infections persistently alter marrow stroma and impair hematopoietic stem cell fitness. J Exp Med 2021; 218:e20192070. [PMID: 34709350 PMCID: PMC8558839 DOI: 10.1084/jem.20192070] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 08/11/2021] [Accepted: 10/05/2021] [Indexed: 11/04/2022] Open
Abstract
Chronic viral infections are associated with hematopoietic suppression, bone marrow (BM) failure, and hematopoietic stem cell (HSC) exhaustion. However, how persistent viral challenge and inflammatory responses target BM tissues and perturb hematopoietic competence remains poorly understood. Here, we combine functional analyses with advanced 3D microscopy to demonstrate that chronic infection with lymphocytic choriomeningitis virus leads to (1) long-lasting decimation of the BM stromal network of mesenchymal CXCL12-abundant reticular cells, (2) proinflammatory transcriptional remodeling of remaining components of this key niche subset, and (3) durable functional defects and decreased competitive fitness in HSCs. Mechanistically, BM immunopathology is elicited by virus-specific, activated CD8 T cells, which accumulate in the BM via interferon-dependent mechanisms. Combined antibody-mediated inhibition of type I and II IFN pathways completely preempts degeneration of CARc and protects HSCs from chronic dysfunction. Hence, viral infections and ensuing immune reactions durably impact BM homeostasis by persistently decreasing the competitive fitness of HSCs and disrupting essential stromal-derived, hematopoietic-supporting cues.
Collapse
Affiliation(s)
- Stephan Isringhausen
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - YeVin Mun
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Larisa Kovtonyuk
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - Ute Suessbier
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Alvaro Gomariz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Gianluca Spaltro
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Patrick M. Helbling
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Hui Chyn Wong
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Takashi Nagasawa
- Department of Microbiology and Immunology, Osaka University, Osaka, Japan
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Martin KR, Wong HL, Witko-Sarsat V, Wicks IP. G-CSF - A double edge sword in neutrophil mediated immunity. Semin Immunol 2021; 54:101516. [PMID: 34728120 DOI: 10.1016/j.smim.2021.101516] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/23/2021] [Indexed: 11/15/2022]
Abstract
Neutrophils are vital for the innate immune system's control of pathogens and neutrophil deficiency can render the host susceptible to life-threatening infections. Neutrophil responses must also be tightly regulated because excessive production, recruitment or activation of neutrophils can cause tissue damage in both acute and chronic inflammatory diseases. Granulocyte colony stimulating factor (G-CSF) is a key regulator of neutrophil biology, from production, differentiation, and release of neutrophil precursors in the bone marrow (BM) to modulating the function of mature neutrophils outside of the BM, particularly at sites of inflammation. G-CSF acts by binding to its cognate cell surface receptor on target cells, causing the activation of intracellular signalling pathways mediating the proliferation, differentiation, function, and survival of cells in the neutrophil lineage. Studies in humans and mice demonstrate that G-CSF contributes to protecting the host against infection, but conversely, it can play a deleterious role in inflammatory diseases. As such, neutrophils and the G-CSF pathway may provide novel therapeutic targets. This review will focus on understanding the role G-CSF plays in the balance between effective neutrophil mediated host defence versus neutrophil-mediated inflammation and tissue damage in various inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Katherine R Martin
- WEHI, 1G Royal Parade, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Huon L Wong
- WEHI, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | | | - Ian P Wicks
- WEHI, 1G Royal Parade, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
46
|
Xiao W, Zhou K, Yang M, Sun C, Dai L, Gu J, Yan R, Dai K. Carbamazepine Induces Platelet Apoptosis and Thrombocytopenia Through Protein Kinase A. Front Pharmacol 2021; 12:749930. [PMID: 34658890 PMCID: PMC8513130 DOI: 10.3389/fphar.2021.749930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Carbamazepine is extensively used worldwide to treat a wide range of disorders such as epilepsy, peripheral neuralgia and bipolar disorder. Thrombocytopenia and hemorrhage have been identified in multiple carbamazepine-treated patients. However, the underlying mechanism remains poorly understood. Here, we show that platelets undergo apoptosis after carbamazepine treatment. The apoptotic platelets induced by carbamazepine are rapidly removed in vivo, which accounts for thrombocytopenia. We found that carbamazepine treatment attenuates the phosphorylation level of bcl-xl/bcl-2-associated death promoter (BAD), vasodilator-associated stimulated phosphoprotein (VASP) and GPIbβ in platelets, indicating an inhibition effect on protein kinase A (PKA). We further demonstrated that carbamazepine reduced PKA activity through PI3K/Akt/PDE3A signaling pathway. Pharmacological activation of PKA or inhibition of PI3K/Akt/PDE3A protects platelets from apoptosis induced by carbamazepine. Importantly, PDE3A inhibitors or PKA activator ameliorates carbamazepine-mediated thrombocytopenia in vivo. These findings shed light on a possible mechanism of carbamazepine-induced thrombocytopenia, designating PDE3A/PKA as a potential therapeutic target in the treatment of carbamazepine-induced thrombocytopenia.
Collapse
Affiliation(s)
- Weiling Xiao
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China.,Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Kangxi Zhou
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Mengnan Yang
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Chenglin Sun
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Lan Dai
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Jian Gu
- Department of Hematology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Rong Yan
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| |
Collapse
|
47
|
Natakusuma TISD, Mahadewa TGB, Mardhika PE, Maliawan S, Senapathi TGA, Ryalino C. Role of Monocyte-to-lymphocyte Ratio, Mean Platelet Volume-to-Platelet Count Ratio, C-Reactive Protein and Erythrocyte Sedimentation Rate as Predictor of Severity in Secondary Traumatic Brain Injury: A Literature Review. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Secondary traumatic brain injury (TBI) is injury to the brain following primary TBI because of neuroinflammation as consequences of neuronal and glial cell injury which cause release of various inflammation cytokine and chemokine. Biomarker examination to predict the severity of secondary TBI is important to provide appropriate treatment to the patient. This article reviews possibility several common laboratory parameter such as monocyte-to-lymphocyte ratio (MLR), mean platelet volume-to-platelet count (PC) ratio (MPV-PCR), c-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) to predict severity of secondary TBI.
LITERATURE REVIEW: TBI activates microglia which increase infiltration and proliferation of monocyte. Neuroinflammation also increases thrombopoiesis which leads to increase megakaryocytes production. In the other hand, due to disruption of brain blood vessels because of trauma, coagulation cascade is also activated and leads to consumptive coagulopathy. These are reflected as high monocyte count, low PC, and high MPV. Lymphocyte count is reported low in TBI especially in poor outcome patients. CRP is an acute phase reactant that increased in inflammation condition. In TBI, increased production of Interleukin-6 leads to increase CRP production. In head injured patients, ESR level does not increase significantly in the acute phase of inflammation but last longer when compared to CRP.
CONCLUSION: MLR, MPV-PCR, CRP, and ESR could be predictor of severity in secondary TBI.
Collapse
|
48
|
Lazarus HM, Ragsdale CE, Gale RP, Lyman GH. Sargramostim (rhu GM-CSF) as Cancer Therapy (Systematic Review) and An Immunomodulator. A Drug Before Its Time? Front Immunol 2021; 12:706186. [PMID: 34484202 PMCID: PMC8416151 DOI: 10.3389/fimmu.2021.706186] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Sargramostim [recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF)] was approved by US FDA in 1991 to accelerate bone marrow recovery in diverse settings of bone marrow failure and is designated on the list of FDA Essential Medicines, Medical Countermeasures, and Critical Inputs. Other important biological activities including accelerating tissue repair and modulating host immunity to infection and cancer via the innate and adaptive immune systems are reported in pre-clinical models but incompletely studied in humans. OBJECTIVE Assess safety and efficacy of sargramostim in cancer and other diverse experimental and clinical settings. METHODS AND RESULTS We systematically reviewed PubMed, Cochrane and TRIP databases for clinical data on sargramostim in cancer. In a variety of settings, sargramostim after exposure to bone marrow-suppressing agents accelerated hematologic recovery resulting in fewer infections, less therapy-related toxicity and sometimes improved survival. As an immune modulator, sargramostim also enhanced anti-cancer responses in solid cancers when combined with conventional therapies, for example with immune checkpoint inhibitors and monoclonal antibodies. CONCLUSIONS Sargramostim accelerates hematologic recovery in diverse clinical settings and enhances anti-cancer responses with a favorable safety profile. Uses other than in hematologic recovery are less-well studied; more data are needed on immune-enhancing benefits. We envision significantly expanded use of sargramostim in varied immune settings. Sargramostim has the potential to reverse the immune suppression associated with sepsis, trauma, acute respiratory distress syndrome (ARDS) and COVID-19. Further, sargramostim therapy has been promising in the adjuvant setting with vaccines and for anti-microbial-resistant infections and treating autoimmune pulmonary alveolar proteinosis and gastrointestinal, peripheral arterial and neuro-inflammatory diseases. It also may be useful as an adjuvant in anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Hillard M. Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | | | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Gary H. Lyman
- Public Health Sciences and Clinical Research Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
49
|
Mbiandjeu S, Balduini A, Malara A. Megakaryocyte Cytoskeletal Proteins in Platelet Biogenesis and Diseases. Thromb Haemost 2021; 122:666-678. [PMID: 34218430 DOI: 10.1055/s-0041-1731717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Thrombopoiesis governs the formation of blood platelets in bone marrow by converting megakaryocytes into long, branched proplatelets on which individual platelets are assembled. The megakaryocyte cytoskeleton responds to multiple microenvironmental cues, including chemical and mechanical stimuli, sustaining the platelet shedding. During the megakaryocyte's life cycle, cytoskeletal networks organize cell shape and content, connect them physically and biochemically to the bone marrow vascular niche, and enable the release of platelets into the bloodstream. While the basic building blocks of the cytoskeleton have been studied extensively, new sets of cytoskeleton regulators have emerged as critical components of the dynamic protein network that supports platelet production. Understanding how the interaction of individual molecules of the cytoskeleton governs megakaryocyte behavior is essential to improve knowledge of platelet biogenesis and develop new therapeutic strategies for inherited thrombocytopenias caused by alterations in the cytoskeletal genes.
Collapse
Affiliation(s)
- Serge Mbiandjeu
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
50
|
Barreto-Duran E, Mejia-Cruz CC, Jaramillo-Garcia LF, Leal-Garcia E, Barreto-Prieto A, Rodriguez-Pardo VM. 3D Multicellular Spheroid for the Study of Human Hematopoietic Stem Cells: Synergistic Effect Between Oxygen Levels, Mesenchymal Stromal Cells and Endothelial Cells. J Blood Med 2021; 12:517-528. [PMID: 34234608 PMCID: PMC8256312 DOI: 10.2147/jbm.s305319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction The human bone marrow microenvironment is composed of biological, chemical and physical factors that act in a synergistic way to modulate hematopoietic stem cell biology, such as mesenchymal stromal cells (MSCs), endothelial cells (ECs) and low oxygen levels; however, it is difficult to mimic this human microenvironment in vitro. Methods In this work, we developed 3D multicellular spheroid (3D-MS) for the study of human hematopoietic stem cells (HSCs) with some components of perivascular niche. HSCs were isolated from umbilical cord blood, MSCs were isolated from human bone marrow and a microvasculature EC line (CC-2811, Lonza®) was used. For the formation of a 3D structure, a magnetic levitation culture system was used. Cultures were maintained in 21%, 3% and 1% O2 for 15 days. Culture volume, sphericity index and cell viability were determined. Also, human HSC proliferation, phenotype and production of reactive oxygen species were evaluated. Results After 15 days, 3D-MS exhibited viability greater than 80%. Histology results showed structures without necrotic centers, and higher cellular proliferation with 3% O2. An increase in the expression of the CD34 antigen and other hematopoietic antigens were observed to 1% O2 with MSCs plus ECs and low ROS levels. Conclusion These findings suggest that 3D-MS formed by MSCs, ECs and HSCs exposed to low concentrations of oxygen (1–3% O2) modulate human HSC behavior and mimics some features of the perivascular niche, which could reduce the use of animal models and deepen the relationship between the microenvironment of HSC and human hematological diseases development.
Collapse
Affiliation(s)
- Emilia Barreto-Duran
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia (South America)
| | - Claudia Camila Mejia-Cruz
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia (South America)
| | - Luis Fernando Jaramillo-Garcia
- Departamento de Patología, Facultad de Medicina, Pontificia Universidad Javeriana., Hospital Universitario San Ignacio, Bogotá D.C., Colombia (South America)
| | - Efrain Leal-Garcia
- Departamento de Ortopedia y Traumatología, Facultad de Medicina, Pontificia Universidad Javeriana., Hospital Universitario San Ignacio, Bogotá D.C., Colombia (South America)
| | - Alfonso Barreto-Prieto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia (South America)
| | - Viviana Marcela Rodriguez-Pardo
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia (South America)
| |
Collapse
|