1
|
Mathew A, Kulkarni Y. Active matter as the underpinning agency for extraordinary sensitivity of biological membranes to electric fields. Proc Natl Acad Sci U S A 2025; 122:e2427255122. [PMID: 40117314 PMCID: PMC11962423 DOI: 10.1073/pnas.2427255122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
Interaction of electric fields with biological cells is indispensable for many physiological processes. Thermal electrical noise in the cellular environment has long been considered as the minimum threshold for detection of electrical signals by cells. However, there is compelling experimental evidence that the minimum electric field sensed by certain cells and organisms is many orders of magnitude weaker than the thermal electrical noise limit estimated purely under equilibrium considerations. We resolve this discrepancy by proposing a nonequilibrium statistical mechanics model for active electromechanical membranes and hypothesize the role of activity in modulating the minimum electrical field that can be detected by a biological membrane. Active membranes contain proteins that use external energy sources to carry out specific functions and drive the membrane away from equilibrium. The central idea behind our model is that active mechanisms, attributed to different sources, endow the membrane with the ability to sense and respond to electric fields that are deemed undetectable based on equilibrium statistical mechanics. Our model for active membranes is capable of reproducing different experimental data available in the literature by varying the activity. Elucidating how active matter can modulate the sensitivity of cells to electric signals can open avenues for a deeper understanding of physiological and pathological processes.
Collapse
Affiliation(s)
- Anand Mathew
- Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX77204
| | - Yashashree Kulkarni
- Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX77204
| |
Collapse
|
2
|
Chen T, Karedla N, Enderlein J. Measuring sub-nanometer undulations at microsecond temporal resolution with metal- and graphene-induced energy transfer spectroscopy. Nat Commun 2024; 15:1789. [PMID: 38413608 PMCID: PMC10899616 DOI: 10.1038/s41467-024-45822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Out-of-plane fluctuations, also known as stochastic displacements, of biological membranes play a crucial role in regulating many essential life processes within cells and organelles. Despite the availability of various methods for quantifying membrane dynamics, accurately quantifying complex membrane systems with rapid and tiny fluctuations, such as mitochondria, remains a challenge. In this work, we present a methodology that combines metal/graphene-induced energy transfer (MIET/GIET) with fluorescence correlation spectroscopy (FCS) to quantify out-of-plane fluctuations of membranes with simultaneous spatiotemporal resolution of approximately one nanometer and one microsecond. To validate the technique and spatiotemporal resolution, we measure bending undulations of model membranes. Furthermore, we demonstrate the versatility and applicability of MIET/GIET-FCS for studying diverse membrane systems, including the widely studied fluctuating membrane system of human red blood cells, as well as two unexplored membrane systems with tiny fluctuations, a pore-spanning membrane, and mitochondrial inner/outer membranes.
Collapse
Affiliation(s)
- Tao Chen
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
| | - Narain Karedla
- The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 OFA, UK
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7LF, UK
| | - Jörg Enderlein
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Universitätsmedizin Göttingen, Robert-Koch-Str. 40, Göttingen, 37075, Germany.
| |
Collapse
|
3
|
Abbasi A, Netz RR, Naji A. Non-Markovian Modeling of Nonequilibrium Fluctuations and Dissipation in Active Viscoelastic Biomatter. PHYSICAL REVIEW LETTERS 2023; 131:228202. [PMID: 38101355 DOI: 10.1103/physrevlett.131.228202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2023] [Indexed: 12/17/2023]
Abstract
Based on a Hamiltonian that incorporates the elastic coupling between a tracer particle and the embedding active viscoelastic biomatter, we derive a generalized non-Markovian Langevin model for the nonequilibrium mechanical tracer response. Our analytical expressions for the frequency-dependent tracer response function and the tracer positional autocorrelation function agree quantitatively with experimental data for red blood cells and actomyosin networks with and without adenosine triphosphate over the entire frequency range and in particular reproduce the low-frequency violation of the fluctuation-dissipation theorem. The viscoelastic power laws, the elastic constants and effective friction coefficients extracted from the experimental data allow straightforward physical interpretation.
Collapse
Affiliation(s)
- Amir Abbasi
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Ali Naji
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
- Department of Physics, College of Science, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
4
|
Hari AA, Givli S. A new method for the calculation of functional and path integrals. Sci Rep 2023; 13:13852. [PMID: 37620367 PMCID: PMC10449871 DOI: 10.1038/s41598-023-40750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
This paper addresses a disconnect between the pivotal role of functional (path) integrals in modern theories, such as quantum mechanics and statistical thermodynamics, and the currently limited ability to perform the actual calculation. We present a new method for calculating functional integrals, based on a finite-element formulation, which solves all limitations of existing methods. This approach is far more robust, versatile, and powerful than the prevailing methods, thus allowing for more sophisticated computations and the study of problems that could not previously be tackled. Importantly, existing procedures, element libraries and shape functions, which have been developed throughout the years in the context of engineering analysis and partial differential equations, may be directly employed for this purpose.
Collapse
Affiliation(s)
- Amos A Hari
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sefi Givli
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
5
|
Du R, Li L, Ji J, Fan Y. Receptor-Ligand Binding: Effect of Mechanical Factors. Int J Mol Sci 2023; 24:ijms24109062. [PMID: 37240408 DOI: 10.3390/ijms24109062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Gaining insight into the in situ receptor-ligand binding is pivotal for revealing the molecular mechanisms underlying the physiological and pathological processes and will contribute to drug discovery and biomedical application. An important issue involved is how the receptor-ligand binding responds to mechanical stimuli. This review aims to provide an overview of the current understanding of the effect of several representative mechanical factors, such as tension, shear stress, stretch, compression, and substrate stiffness on receptor-ligand binding, wherein the biomedical implications are focused. In addition, we highlight the importance of synergistic development of experimental and computational methods for fully understanding the in situ receptor-ligand binding, and further studies should focus on the coupling effects of these mechanical factors.
Collapse
Affiliation(s)
- Ruotian Du
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
6
|
Lee WS, Enomoto T, Akimoto AM, Yoshida R. Capsule self-oscillating gels showing cell-like nonthermal membrane/shape fluctuations. MATERIALS HORIZONS 2023; 10:1332-1341. [PMID: 36722870 DOI: 10.1039/d2mh01490d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A primary interest in cell membrane and shape fluctuations is establishing experimental models reflecting only nonthermal active contributions. Here we report a millimeter-scaled capsule self-oscillating gel model mirroring the active contribution effect on cell fluctuations. In the capsule self-oscillating gels, the propagating chemical signals during a Belousov-Zhabotinsky (BZ) reaction induce simultaneous local deformations in the various regions, showing cell-like shape fluctuations. The capsule self-oscillating gels do not fluctuate without the BZ reaction, implying that only the active chemical parameter induces the gel fluctuations. The period and amplitude depend on the gel layer thickness and the concentration of the chemical substrate for the BZ reaction. Our results allow for a solid experimental platform showing actively driven cell-like fluctuations, which can potentially contribute to investigating the active parameter effect on cell fluctuations.
Collapse
Affiliation(s)
- Won Seok Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Takafumi Enomoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Aya Mizutani Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
7
|
Fu Y, Zeno WF, Stachowiak JC, Johnson ME. A continuum membrane model can predict curvature sensing by helix insertion. SOFT MATTER 2021; 17:10649-10663. [PMID: 34792524 PMCID: PMC8877990 DOI: 10.1039/d1sm01333e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein domains, such as ENTH (epsin N-terminal homology) and BAR (bin/amphiphysin/rvs), contain amphipathic helices that drive preferential binding to curved membranes. However, predicting how the physical parameters of these domains control this 'curvature sensing' behavior is challenging due to the local membrane deformations generated by the nanoscopic helix on the surface of a large sphere. We here use a deformable continuum model that accounts for the physical properties of the membrane and the helix insertion to predict curvature sensing behavior, with direct validation against multiple experimental datasets. We show that the insertion can be modeled as a local change to the membrane's spontaneous curvature, cins0, producing excellent agreement with the energetics extracted from experiments on ENTH binding to vesicles and cylinders, and of ArfGAP helices to vesicles. For small vesicles with high curvature, the insertion lowers the membrane energy by relieving strain on a membrane that is far from its preferred curvature of zero. For larger vesicles, however, the insertion has the inverse effect, de-stabilizing the membrane by introducing more strain. We formulate here an empirical expression that accurately captures numerically calculated membrane energies as a function of both basic membrane properties (bending modulus κ and radius R) as well as stresses applied by the inserted helix (cins0 and area Ains). We therefore predict how these physical parameters will alter the energetics of helix binding to curved vesicles, which is an essential step in understanding their localization dynamics during membrane remodeling processes.
Collapse
Affiliation(s)
- Yiben Fu
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, USA.
| | - Wade F Zeno
- Mork Family Department of Chemical Engineering and Materials Science, The University of Southern California, Los Angeles, California, 90089, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Margaret E Johnson
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, USA.
| |
Collapse
|
8
|
Frey F, Idema T. More than just a barrier: using physical models to couple membrane shape to cell function. SOFT MATTER 2021; 17:3533-3549. [PMID: 33503097 DOI: 10.1039/d0sm01758b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The correct execution of many cellular processes, such as division and motility, requires the cell to adopt a specific shape. Physically, these shapes are determined by the interplay of the plasma membrane and internal cellular driving factors. While the plasma membrane defines the boundary of the cell, processes inside the cell can result in the generation of forces that deform the membrane. These processes include protein binding, the assembly of protein superstructures, and the growth and contraction of cytoskeletal networks. Due to the complexity of the cell, relating observed membrane deformations back to internal processes is a challenging problem. Here, we review cell shape changes in endocytosis, cell adhesion, cell migration and cell division and discuss how by modeling membrane deformations we can investigate the inner working principles of the cell.
Collapse
Affiliation(s)
- Felix Frey
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| | | |
Collapse
|
9
|
Tapia J, Vera N, Aguilar J, González M, Sánchez SA, Coelho P, Saavedra C, Staforelli J. Correlated flickering of erythrocytes membrane observed with dual time resolved membrane fluctuation spectroscopy under different D-glucose concentrations. Sci Rep 2021; 11:2429. [PMID: 33510337 PMCID: PMC7844050 DOI: 10.1038/s41598-021-82018-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
A correlated human red blood cell membrane fluctuation dependent on D-glucose concentration was found with dual time resolved membrane fluctuation spectroscopy (D-TRMFS). This new technique is a modified version of the dual optical tweezers method that has been adapted to measure the mechanical properties of red blood cells (RBCs) at distant membrane points simultaneously, enabling correlation analysis. Mechanical parameters under different D-glucose concentrations were obtained from direct membrane flickering measurements, complemented with membrane fluidity measurements using Laurdan Generalized Polarization (GP) Microscopy. Our results show an increase in the fluctuation amplitude of the lipid bilayer, and a decline in tension value, bending modulus and fluidity as D-glucose concentration increases. Metabolic mechanisms are proposed as explanations for the results.
Collapse
Affiliation(s)
- J Tapia
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile
| | - N Vera
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile
| | - Joao Aguilar
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - M González
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - S A Sánchez
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - P Coelho
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, 4080871, Concepción, Chile
| | - C Saavedra
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile
| | - J Staforelli
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
10
|
Large-scale simulation of biomembranes incorporating realistic kinetics into coarse-grained models. Nat Commun 2020; 11:2951. [PMID: 32528158 PMCID: PMC7289815 DOI: 10.1038/s41467-020-16424-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Biomembranes are two-dimensional assemblies of phospholipids that are only a few nanometres thick, but form micrometre-sized structures vital to cellular function. Explicit molecular modelling of biologically relevant membrane systems is computationally expensive due to the large number of solvent particles and slow membrane kinetics. Coarse-grained solvent-free membrane models offer efficient sampling but sacrifice realistic kinetics, thereby limiting the ability to predict pathways and mechanisms of membrane processes. Here, we present a framework for integrating coarse-grained membrane models with continuum-based hydrodynamics. This framework facilitates efficient simulation of large biomembrane systems with large timesteps, while achieving realistic equilibrium and non-equilibrium kinetics. It helps to bridge between the nanometer/nanosecond spatiotemporal resolutions of coarse-grained models and biologically relevant time- and lengthscales. As a demonstration, we investigate fluctuations of red blood cells, with varying cytoplasmic viscosities, in 150-milliseconds-long trajectories, and compare kinetic properties against single-cell experimental observations.
Collapse
|
11
|
Takatori SC, Sahu A. Active Contact Forces Drive Nonequilibrium Fluctuations in Membrane Vesicles. PHYSICAL REVIEW LETTERS 2020; 124:158102. [PMID: 32357050 DOI: 10.1103/physrevlett.124.158102] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/20/2020] [Indexed: 05/24/2023]
Abstract
We analyze the nonequilibrium shape fluctuations of giant unilamellar vesicles encapsulating motile bacteria. Owing to bacteria-membrane collisions, we experimentally observe a significant increase in the magnitude of membrane fluctuations at low wave numbers, compared to the well-known thermal fluctuation spectrum. We interrogate these results by numerically simulating membrane height fluctuations via a modified Langevin equation, which includes bacteria-membrane contact forces. Taking advantage of the lengthscale and timescale separation of these contact forces and thermal noise, we further corroborate our results with an approximate theoretical solution to the dynamical membrane equations. Our theory and simulations demonstrate excellent agreement with nonequilibrium fluctuations observed in experiments. Moreover, our theory reveals that the fluctuation-dissipation theorem is not broken by the bacteria; rather, membrane fluctuations can be decomposed into thermal and active components.
Collapse
Affiliation(s)
- Sho C Takatori
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Amaresh Sahu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| |
Collapse
|
12
|
Wu XT, Xiao W, Cao RY, Yang X, Pan F, Sun LW, Fan YB. Spontaneous cellular vibratory motions of osteocytes are regulated by ATP and spectrin network. Bone 2019; 128:112056. [PMID: 31376534 DOI: 10.1016/j.bone.2019.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 01/23/2023]
Abstract
Vibration at high frequency has been demonstrated to be anabolic for bone and embedded osteocytes. The response of osteocytes to vibration is frequency-dependent, but the mechanism remains unclear. Our previous computational study using an osteocyte finite element model has predicted a resonance effect involving in the frequency-dependent response of osteocytes to vibration. However, the cellular spontaneous vibratory motion of osteocytes has not been confirmed. In the present study, the cellular vibratory motions (CVM) of osteocytes were recorded by a custom-built digital holographic microscopy and quantitatively analyzed. The roles of ATP and spectrin network in the CVM of osteocytes were studied. Results showed the MLO-Y4 osteocytes displayed dynamic vibratory motions with an amplitude of ~80 nm, which is relied both on the ATP content and spectrin network. Spectrum analysis showed several frequency peaks in CVM of MLO-Y4 osteocytes at 30 Hz, 39 Hz, 83 Hz and 89 Hz. These peak frequencies are close to the commonly used effective frequencies in animal training and in-vitro cell experiments, and show a correlation with the computational predictions of the osteocyte finite element model. These results implicate that osteocytes are dynamic and the cellular dynamic motion is involved in the cellular mechanotransduction of vibration.
Collapse
Affiliation(s)
- Xin-Tong Wu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100083, China
| | - Wen Xiao
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100083, China
| | - Run-Yu Cao
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100083, China
| | - Xiao Yang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Feng Pan
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100083, China
| | - Lian-Wen Sun
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Yu-Bo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| |
Collapse
|
13
|
Sadhu RK, Chatterjee S. Interplay between surface and bending energy helps membrane protrusion formation. Phys Rev E 2019; 100:020401. [PMID: 31574594 DOI: 10.1103/physreve.100.020401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 01/14/2023]
Abstract
We consider a one-dimensional elastic membrane, which is pushed by growing filaments. The filaments tend to grow by creating local protrusions in the membrane and this process has surface energy and bending energy costs. Although it is expected that with increasing surface tension and bending rigidity, it should become more difficult to create a protrusion, we find that for a fixed bending rigidity, as the surface tension increases, protrusions are more easily formed. This effect also gives rise to nontrivial dependence of membrane velocity on the surface tension, characterized by a dip and a peak. We explain this unusual phenomenon by studying in detail the interplay of the surface and the bending energy and show that this interplay is responsible for a qualitative shape change of the membrane, which gives rise to the above effect.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Sakuntala Chatterjee
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
14
|
Statistical Mechanics of an Elastically Pinned Membrane: Equilibrium Dynamics and Power Spectrum. Biophys J 2019; 117:542-552. [PMID: 31349987 DOI: 10.1016/j.bpj.2019.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 11/21/2022] Open
Abstract
In biological settings, membranes typically interact locally with other membranes: the extracellular matrix in the exterior or internal cellular structures such as the cytoskeleton, locally pinning the membrane. Characterizing the dynamical properties of such interactions presents a difficult task. Significant progress has been achieved through simulations and experiments, yet analytical progress in modeling pinned membranes has been impeded by the complexity of governing equations. Here, we circumvent these difficulties by calculating analytically the time-dependent Green's function of the operator governing the dynamics of an elastically pinned membrane in a hydrodynamic surrounding and subject to external forces. This enables us to calculate the equilibrium power spectral density for an overdamped membrane pinned by an elastic, permanently attached spring subject to thermal excitations. By considering the effects of the finite experimental resolution on the measured spectra, we show that the elasticity of the pinning can be extracted from the experimentally measured spectrum. Membrane fluctuations can thus be used as a tool to probe mechanical properties of the underlying structures. Such a tool may be particularly relevant in the context of cell mechanics, in which the elasticity of the membrane's attachment to the cytoskeleton could be measured.
Collapse
|
15
|
Gandhi JG, Koch DL, Paszek MJ. Equilibrium Modeling of the Mechanics and Structure of the Cancer Glycocalyx. Biophys J 2019; 116:694-708. [PMID: 30736980 PMCID: PMC6382957 DOI: 10.1016/j.bpj.2018.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
The glycocalyx is a thick coat of proteins and carbohydrates on the outer surface of all eukaryotic cells. Overproduction of large, flexible or rod-like biopolymers, including hyaluronic acid and mucins, in the glycocalyx strongly correlates with the aggression of many cancer types. However, theoretical frameworks to predict the effects of these changes on cancer cell adhesion and other biophysical processes remain limited. Here, we propose a detailed modeling framework for the glycocalyx incorporating important physical effects of biopolymer flexibility, excluded volume, counterion mobility, and coupled membrane deformations. Because mucin and hyaluronic biopolymers are proposed to extend and rigidify depending on the extent of their decoration with side chains, we propose and consider two limiting cases for the structural elements of the glycocalyx: stiff beams and flexible chains. Simulations predict the mechanical response of the glycocalyx to compressive loads, which are imposed on cells residing in the highly confined spaces of the solid tumor or invaded tissues. Notably, the shape of the mechanical response transitions from hyperbolic to sigmoidal for more rod-like glycocalyx elements. These mechanical responses, along with the corresponding equilibrium protein organizations and membrane topographies, are summarized to aid in hypothesis generation and the evaluation of future experimental measurements. Overall, the modeling framework developed provides a theoretical basis for understanding the physical biology of the glycocalyx in human health.
Collapse
Affiliation(s)
- Jay G Gandhi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | - Donald L Koch
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | - Matthew J Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York.
| |
Collapse
|
16
|
Janeš JA, Stumpf H, Schmidt D, Seifert U, Smith AS. Statistical Mechanics of an Elastically Pinned Membrane: Static Profile and Correlations. Biophys J 2018; 116:283-295. [PMID: 30598285 DOI: 10.1016/j.bpj.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
The relation between thermal fluctuations and the mechanical response of a free membrane has been explored in great detail, both theoretically and experimentally. However, understanding this relationship for membranes locally pinned by proteins is significantly more challenging. Given that the coupling of the membrane to the cell cytoskeleton, to the extracellular matrix, and to other internal structures is crucial for the regulation of a number of cellular processes, understanding the role of the pinning is of great interest. In this manuscript, we consider a single protein (elastic spring of a finite rest length) pinning a membrane modeled in the Monge gauge. First, we determine the Green's function for the system and complement this approach by the calculation of the mode-coupling coefficients for the plane wave expansion and the orthonormal fluctuation modes, in turn building a set of tools for numerical and analytic studies of a pinned membrane. Furthermore, we explore static correlations of the free and the pinned membrane, as well as the membrane shape, showing that all three are mutually interdependent and have an identical long-range behavior characterized by the correlation length. Interestingly, the latter displays a nonmonotonic behavior as a function of membrane tension. Importantly, exploiting these relations allows for the experimental determination of the elastic parameters of the pinning. Last but not least, we calculate the interaction potential between two pinning sites and show that even in the absence of the membrane deformation, the pinnings will be subject to an attractive force because of changes in membrane fluctuations.
Collapse
Affiliation(s)
- Josip Augustin Janeš
- PULS Group, Institut für Theoretische Physik and Cluster of Excellence, Engineering of Advanced Materials, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; Institut Ruđer Bošković, Zagreb, Croatia
| | - Henning Stumpf
- PULS Group, Institut für Theoretische Physik and Cluster of Excellence, Engineering of Advanced Materials, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Schmidt
- PULS Group, Institut für Theoretische Physik and Cluster of Excellence, Engineering of Advanced Materials, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart, Germany
| | - Ana-Sunčana Smith
- PULS Group, Institut für Theoretische Physik and Cluster of Excellence, Engineering of Advanced Materials, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; Institut Ruđer Bošković, Zagreb, Croatia.
| |
Collapse
|
17
|
Bernheim-Groswasser A, Gov NS, Safran SA, Tzlil S. Living Matter: Mesoscopic Active Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707028. [PMID: 30256463 DOI: 10.1002/adma.201707028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/27/2018] [Indexed: 06/08/2023]
Abstract
An introduction to the physical properties of living active matter at the mesoscopic scale (tens of nanometers to micrometers) and their unique features compared with "dead," nonactive matter is presented. This field of research is increasingly denoted as "biological physics" where physics includes chemical physics, soft matter physics, hydrodynamics, mechanics, and the related engineering sciences. The focus is on the emergent properties of these systems and their collective behavior, which results in active self-organization and how they relate to cellular-level biological function. These include locomotion (cell motility and migration) forces that give rise to cell division, the growth and form of cellular assemblies in development, the beating of heart cells, and the effects of mechanical perturbations such as shear flow (in the bloodstream) or adhesion to other cells or tissues. An introduction to the fundamental concepts and theory with selected experimental examples related to the authors' own research is presented, including red-blood-cell membrane fluctuations, motion of the nucleus within an egg cell, self-contracting acto-myosin gels, and structure and beating of heart cells (cardiomyocytes), including how they can be driven by an oscillating, mechanical probe.
Collapse
Affiliation(s)
- Anne Bernheim-Groswasser
- Department of Chemical Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Samuel A Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shelly Tzlil
- Department of Mechanical Engineering, Technion, Haifa, 3200003, Israel
| |
Collapse
|
18
|
Gnesotto FS, Mura F, Gladrow J, Broedersz CP. Broken detailed balance and non-equilibrium dynamics in living systems: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:066601. [PMID: 29504517 DOI: 10.1088/1361-6633/aab3ed] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.
Collapse
Affiliation(s)
- F S Gnesotto
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | | | | | | |
Collapse
|
19
|
Yu H, Yang Y, Yang Y, Zhang F, Wang S, Tao N. Tracking fast cellular membrane dynamics with sub-nm accuracy in the normal direction. NANOSCALE 2018; 10:5133-5139. [PMID: 29488990 PMCID: PMC5854544 DOI: 10.1039/c7nr09483c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cellular membranes are important biomaterials with highly dynamic structures. Membrane dynamics plays an important role in numerous cellular processes, but precise tracking it is challenging due to the lack of tools with a highly sensitive and fast detection capability. Here we demonstrate a broad bandwidth optical imaging technique to measure cellular membrane displacements in the normal direction at sub-nm level detection limits and 20 μs temporal resolution (1 Hz-50 kHz). This capability allows us to study the intrinsic cellular membrane dynamics over a broad temporal and spatial spectrum. We measured the nanometer-scale stochastic fluctuations of the plasma membrane of HEK-293 cells, and found them to be highly dependent on the cytoskeletal structure of the cells. By analyzing the fluctuations, we further determine the mechanical properties of the cellular membranes. We anticipate that the method will contribute to the understanding of the basic cellular processes, and applications, such as mechanical phenotyping of cells at the single-cell level.
Collapse
Affiliation(s)
- Hui Yu
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuting Yang
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yunze Yang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Fenni Zhang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
20
|
Gladrow J, Broedersz CP, Schmidt CF. Nonequilibrium dynamics of probe filaments in actin-myosin networks. Phys Rev E 2017; 96:022408. [PMID: 28950472 DOI: 10.1103/physreve.96.022408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Active dynamic processes of cells are largely driven by the cytoskeleton, a complex and adaptable semiflexible polymer network, motorized by mechanoenzymes. Small dimensions, confined geometries, and hierarchical structures make it challenging to probe dynamics and mechanical response of such networks. Embedded semiflexible probe polymers can serve as nonperturbing multiscale probes to detect force distributions in active polymer networks. We show here that motor-induced forces transmitted to the probe polymers are reflected in nonequilibrium bending dynamics, which we analyze in terms of spatial eigenmodes of an elastic beam under steady-state conditions. We demonstrate how these active forces induce correlations among the mode amplitudes, which furthermore break time-reversal symmetry. This leads to a breaking of detailed balance in this mode space. We derive analytical predictions for the magnitude of resulting probability currents in mode space in the white-noise limit of motor activity. We relate the structure of these currents to the spatial profile of motor-induced forces along the probe polymers and provide a general relation for observable currents on two-dimensional hyperplanes.
Collapse
Affiliation(s)
- J Gladrow
- Third Institute of Physics, University of Göttingen, 37077 Göttingen, Germany
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, England, United Kingdom
| | - C P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - C F Schmidt
- Third Institute of Physics, University of Göttingen, 37077 Göttingen, Germany
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
21
|
Rodríguez-García R, López-Montero I, Mell M, Egea G, Gov NS, Monroy F. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells. Biophys J 2016; 108:2794-806. [PMID: 26083919 DOI: 10.1016/j.bpj.2015.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022] Open
Abstract
Erythrocytes are flexible cells specialized in the systemic transport of oxygen in vertebrates. This physiological function is connected to their outstanding ability to deform in passing through narrow capillaries. In recent years, there has been an influx of experimental evidence of enhanced cell-shape fluctuations related to metabolically driven activity of the erythroid membrane skeleton. However, no direct observation of the active cytoskeleton forces has yet been reported to our knowledge. Here, we show experimental evidence of the presence of temporally correlated forces superposed over the thermal fluctuations of the erythrocyte membrane. These forces are ATP-dependent and drive enhanced flickering motions in human erythrocytes. Theoretical analyses provide support for a direct force exerted on the membrane by the cytoskeleton nodes as pulses of well-defined average duration. In addition, such metabolically regulated active forces cause global membrane softening, a mechanical attribute related to the functional erythroid deformability.
Collapse
Affiliation(s)
- Ruddi Rodríguez-García
- Department of Physical Chemistry, Universidad Complutense. Ciudad Universitaria, Madrid, Spain
| | - Iván López-Montero
- Department of Physical Chemistry, Universidad Complutense. Ciudad Universitaria, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (i+12), Madrid, Spain
| | - Michael Mell
- Department of Physical Chemistry, Universidad Complutense. Ciudad Universitaria, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (i+12), Madrid, Spain
| | - Gustavo Egea
- Departament of Cell Biology, Immunology and Neurosciences, University of Barcelona School of Medicine and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Nanociències i Nanotecnologia (IN(2)UB), Barcelona, Spain
| | - Nir S Gov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Francisco Monroy
- Department of Physical Chemistry, Universidad Complutense. Ciudad Universitaria, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (i+12), Madrid, Spain.
| |
Collapse
|
22
|
Kanazawa K, Sano TG, Sagawa T, Hayakawa H. Minimal model of stochastic athermal systems: origin of non-Gaussian noise. PHYSICAL REVIEW LETTERS 2015; 114:090601. [PMID: 25793791 DOI: 10.1103/physrevlett.114.090601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Indexed: 06/04/2023]
Abstract
For a wide class of stochastic athermal systems, we derive Langevin-like equations driven by non-Gaussian noise, starting from master equations and developing a new asymptotic expansion. We found an explicit condition whereby the non-Gaussian properties of the athermal noise become dominant for tracer particles associated with both thermal and athermal environments. Furthermore, we derive an inverse formula to infer microscopic properties of the athermal bath from the statistics of the tracer particle. We apply our formulation to a granular motor under viscous friction and analytically obtain the angular velocity distribution function. Our theory demonstrates that the non-Gaussian Langevin equation is the minimal model of athermal systems.
Collapse
Affiliation(s)
- Kiyoshi Kanazawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomohiko G Sano
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takahiro Sagawa
- Department of Basic Science, The University of Tokyo, Komaba, Meguro-ku 153-8902, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
23
|
Reusch T, Mai DD, Osterhoff M, Khakhulin D, Wulff M, Salditt T. Nonequilibrium collective dynamics in photoexcited lipid multilayers by time resolved diffuse x-ray scattering. PHYSICAL REVIEW LETTERS 2013; 111:268101. [PMID: 24483815 DOI: 10.1103/physrevlett.111.268101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Indexed: 06/03/2023]
Abstract
We study the nonequilibrium shape fluctuations in fluorescence labeled phospholipid multibilayers composed of the model lipid DOPC and the well-known lipid dye Texas red, driven out of equilibrium by short laser pulses. The temporal evolution of the lipid bilayer undulations after excitation was recorded by time resolved x-ray diffraction. Already at moderate peak intensities (Pp≤10(5) W/cm2), pulsed laser illumination leads to significant changes of the undulation modes in a well-defined lateral wavelength band. The observed phenomena evolve on nano- to microsecond time scales after optical excitation, and can be described in terms of a modulation instability in the lipid multilamellar stack.
Collapse
Affiliation(s)
- T Reusch
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - D D Mai
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - M Osterhoff
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - D Khakhulin
- European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, 38000 Grenoble, France
| | - M Wulff
- European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, 38000 Grenoble, France
| | - T Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
24
|
Huang MJ, Kapral R, Mikhailov AS, Chen HY. Coarse-grain simulations of active molecular machines in lipid bilayers. J Chem Phys 2013; 138:195101. [PMID: 23697442 DOI: 10.1063/1.4803507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A coarse-grain method for simulations of the dynamics of active protein inclusions in lipid bilayers is described. It combines the previously proposed hybrid simulations of bilayers [M.-J. Huang, R. Kapral, A. S. Mikhailov, and H.-Y. Chen, J. Chem. Phys. 137, 055101 (2012)], based on molecular dynamics for the lipids and multi-particle collision dynamics for the solvent, with an elastic-network description of active proteins. The method is implemented for a model molecular machine which performs active conformational motions induced by ligand binding and its release after reaction. The situation characteristic for peripheral membrane proteins is considered. Statistical investigations of the effects of single active or passive inclusions on the shape of the membrane are carried out. The results show that the peripheral machine produces asymmetric perturbations of the thickness of two leaflets of the membrane. It also produces a local saddle in the midplane height of the bilayer. Analysis of the power spectrum of the fluctuations of the membrane midplane shows that the conformational motion of the machine perturbs these membrane fluctuations. The hydrodynamic lipid flows induced by cyclic conformational changes in the machine are analyzed. It is shown that such flows are long-ranged and should provide an additional important mechanism for interactions between active inclusions in biological membranes.
Collapse
Affiliation(s)
- Mu-Jie Huang
- Department of Physics, National Central University, Jhongli 32001, Taiwan
| | | | | | | |
Collapse
|
25
|
Shock I, Barbul A, Girshovitz P, Nevo U, Korenstein R, Shaked NT. Optical phase nanoscopy in red blood cells using low-coherence spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:101509. [PMID: 23223985 DOI: 10.1117/1.jbo.17.10.101509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We propose a low-coherence spectral-domain phase microscopy (SDPM) system for accurate quantitative phase measurements in red blood cells (RBCs) for the prognosis and monitoring of disease conditions that affect the visco-elastic properties of RBCs. Using the system, we performed time-recordings of cell membrane fluctuations, and compared the nano-scale fluctuation dynamics of healthy and glutaraldehyde-treated RBCs. Glutaraldehyde-treated RBCs possess lower amplitudes of fluctuations, reflecting an increased membrane stiffness. To demonstrate the ability of our system to measure fluctuations of lower amplitudes than those measured by the commonly used holographic phase microscopy techniques, we also constructed wide-field digital interferometry (WFDI) system and compared the performances of both systems. Due to its common-path geometry, the optical-path-delay stability of SDPM was found to be less than 0.3 nm in liquid environment, at least three times better than WFDI under the same conditions. In addition, due to the compactness of SDPM and its inexpensive and robust design, the system possesses a high potential for clinical applications.
Collapse
Affiliation(s)
- Itay Shock
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
26
|
Wang B, Kuo J, Bae SC, Granick S. When Brownian diffusion is not Gaussian. NATURE MATERIALS 2012; 11:481-5. [PMID: 22614505 DOI: 10.1038/nmat3308] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Affiliation(s)
- Bo Wang
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
27
|
Loubet B, Seifert U, Lomholt MA. Effective tension and fluctuations in active membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:031913. [PMID: 22587129 DOI: 10.1103/physreve.85.031913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Indexed: 05/31/2023]
Abstract
We calculate the fluctuation spectrum of the shape of a lipid vesicle or cell exposed to a nonthermal source of noise. In particular, we take constraints on the membrane area and the volume of fluid that it encapsulates into account when obtaining expressions for the dependency of the membrane tension on the noise. We then investigate three possible origins of the nonthermal noise taken from the literature: A direct force, which models an external medium pushing on the membrane, a curvature force, which models a fluctuating spontaneous curvature, and a permeation force coming from an active transport of fluid through the membrane. For the direct force and curvature force cases, we compare our results to existing experiments on active membranes.
Collapse
Affiliation(s)
- Bastien Loubet
- Department of Physics, MEMPHYS-Center for Biomembrane Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | | | | |
Collapse
|
28
|
Nolte DD, An R, Turek J, Jeong K. Holographic tissue dynamics spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:087004. [PMID: 21895331 DOI: 10.1117/1.3615970] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tissue dynamics spectroscopy uses digital holography as a coherence gate to extract depth-resolved quasi-elastic dynamic light scattering from inside multicellular tumor spheroids. The temporal speckle contrast provides endogenous dynamical images of proliferating and hypoxic or necrotic tissues. Fluctuation spectroscopy similar to diffusing wave spectroscopy is performed on the dynamic speckle to generate tissue-response spectrograms that track time-resolved changes in intracellular motility in response to environmental perturbations. The spectrograms consist of several frequency bands that range from 0.005 to 5 Hz. The fluctuation spectral density and temporal autocorrelations show the signature of constrained anomalous diffusion, but with large fluctuation amplitudes caused by active processes far from equilibrium. Differences in the tissue-response spectrograms between the proliferating outer shell and the hypoxic inner core differentiate normal from starved conditions. The differential spectrograms provide an initial library of tissue-response signatures to environmental conditions of temperature, osmolarity, pH, and serum growth factors.
Collapse
Affiliation(s)
- David D Nolte
- Purdue University, Department of Physics, West Lafayette, Indiana 47907, USA.
| | | | | | | |
Collapse
|
29
|
Continuum simulations of biomembrane dynamics and the importance of hydrodynamic effects. Q Rev Biophys 2011; 44:391-432. [PMID: 21729348 DOI: 10.1017/s0033583511000047] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Traditional particle-based simulation strategies are impractical for the study of lipid bilayers and biological membranes over the longest length and time scales (microns, seconds and longer) relevant to cellular biology. Continuum-based models developed within the frameworks of elasticity theory, fluid dynamics and statistical mechanics provide a framework for studying membrane biophysics over a range of mesoscopic to macroscopic length and time regimes, but the application of such ideas to simulation studies has occurred only relatively recently. We review some of our efforts in this direction with emphasis on the dynamics in model membrane systems. Several examples are presented that highlight the prominent role of hydrodynamics in membrane dynamics and we argue that careful consideration of fluid dynamics is key to understanding membrane biophysics at the cellular scale.
Collapse
|
30
|
Chandramohanadas R, Park Y, Lui L, Li A, Quinn D, Liew K, Diez-Silva M, Sung Y, Dao M, Lim CT, Preiser PR, Suresh S. Biophysics of malarial parasite exit from infected erythrocytes. PLoS One 2011; 6:e20869. [PMID: 21698115 PMCID: PMC3117855 DOI: 10.1371/journal.pone.0020869] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/11/2011] [Indexed: 11/26/2022] Open
Abstract
Upon infection and development within human erythrocytes, P. falciparum induces alterations to the infected RBC morphology and bio-mechanical properties to eventually rupture the host cells through parasitic and host derived proteases of cysteine and serine families. We used previously reported broad-spectrum inhibitors (E64d, EGTA-AM and chymostatin) to inhibit these proteases and impede rupture to analyze mechanical signatures associated with parasite escape. Treatment of late-stage iRBCs with E64d and EGTA-AM prevented rupture, resulted in no major RBC cytoskeletal reconfiguration but altered schizont morphology followed by dramatic re-distribution of three-dimensional refractive index (3D-RI) within the iRBC. These phenotypes demonstrated several-fold increased iRBC membrane flickering. In contrast, chymostatin treatment showed no 3D-RI changes and caused elevated fluctuations solely within the parasitophorous vacuole. We show that E64d and EGTA-AM supported PV breakdown and the resulting elevated fluctuations followed non-Gaussian pattern that resulted from direct merozoite impingement against the iRBC membrane. Optical trapping experiments highlighted reduced deformability of the iRBC membranes upon rupture-arrest, more specifically in the treatments that facilitated PV breakdown. Taken together, our experiments provide novel mechanistic interpretations on the role of parasitophorous vacuole in maintaining the spherical schizont morphology, the impact of PV breakdown on iRBC membrane fluctuations leading to eventual parasite escape and the evolution of membrane stiffness properties of host cells in which merozoites were irreversibly trapped, recourse to protease inhibitors. These findings provide a comprehensive, previously unavailable, body of information on the combined effects of biochemical and biophysical factors on parasite egress from iRBCs.
Collapse
Affiliation(s)
| | - YongKeun Park
- George R. Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Lena Lui
- Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Ang Li
- Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - David Quinn
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kingsley Liew
- Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Monica Diez-Silva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Yongjin Sung
- George R. Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | | | | | - Subra Suresh
- Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
31
|
Ben-Isaac E, Park Y, Popescu G, Brown FLH, Gov NS, Shokef Y. Effective temperature of red-blood-cell membrane fluctuations. PHYSICAL REVIEW LETTERS 2011; 106:238103. [PMID: 21770546 DOI: 10.1103/physrevlett.106.238103] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Indexed: 05/31/2023]
Abstract
Biologically driven nonequilibrium fluctuations are often characterized by their non-Gaussianity or by an "effective temperature", which is frequency dependent and higher than the ambient temperature. We address these two measures theoretically by examining a randomly kicked particle, with a variable number of kicking motors, and show how these two indicators of nonequilibrium behavior can contradict. Our results are compared with new experiments on shape fluctuations of red-blood cell membranes, and demonstrate how the physical nature of the motors in this system can be revealed using these global measures of nonequilibrium.
Collapse
Affiliation(s)
- Eyal Ben-Isaac
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
32
|
Wang R, Ding H, Mir M, Tangella K, Popescu G. Effective 3D viscoelasticity of red blood cells measured by diffraction phase microscopy. BIOMEDICAL OPTICS EXPRESS 2011; 2:485-90. [PMID: 21412454 PMCID: PMC3047354 DOI: 10.1364/boe.2.000485] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/07/2011] [Accepted: 01/29/2011] [Indexed: 05/05/2023]
Abstract
We present optical measurements of nanoscale red blood cell fluctuations obtained by highly sensitive quantitative phase imaging. These spatio-temporal fluctuations are modeled in terms of the bulk viscoelastic response of the cell. Relating the displacement distribution to the storage and loss moduli of the bulk has the advantage of incorporating all geometric and cortical effects into a single effective medium behavior. The results on normal cells indicate that the viscous modulus is much larger than the elastic one throughout the entire frequency range covered by the measurement, indicating fluid behavior.
Collapse
Affiliation(s)
- Ru Wang
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana. IL 61801, USA
| | - Huafeng Ding
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana. IL 61801, USA
| | - Mustafa Mir
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana. IL 61801, USA
| | - Krishnarao Tangella
- Department of Pathology, Christie Clinic and University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana. IL 61801, USA
| |
Collapse
|
33
|
Cifra M, Fields JZ, Farhadi A. Electromagnetic cellular interactions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:223-46. [PMID: 20674588 DOI: 10.1016/j.pbiomolbio.2010.07.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 07/21/2010] [Indexed: 12/14/2022]
Abstract
Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating.
Collapse
Affiliation(s)
- Michal Cifra
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | |
Collapse
|
34
|
Abstract
The remarkable deformability of the human red blood cell (RBC) results from the coupled dynamic response of the phospholipid bilayer and the spectrin molecular network. Here we present quantitative connections between spectrin morphology and membrane fluctuations of human RBCs by using dynamic full-field laser interferometry techniques. We present conclusive evidence that the presence of adenosine 5'-triphosphate (ATP) facilitates non-equilibrium dynamic fluctuations in the RBC membrane that are highly correlated with the biconcave shape of RBCs. Spatial analysis of the fluctuations reveals that these non-equilibrium membrane vibrations are enhanced at the scale of spectrin mesh size. Our results indicate that the dynamic remodeling of the coupled membranes powered by ATP results in non-equilibrium membrane fluctuations manifesting from both metabolic and thermal energies and also maintains the biconcave shape of RBCs.
Collapse
|
35
|
Ayton GS, Voth GA. Multiscale simulation of protein mediated membrane remodeling. Semin Cell Dev Biol 2009; 21:357-62. [PMID: 19922811 DOI: 10.1016/j.semcdb.2009.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 11/09/2009] [Indexed: 11/29/2022]
Abstract
Proteins interacting with membranes can result in substantial membrane deformations and curvatures. This effect is known in its broadest terms as membrane remodeling. This review article will survey current multiscale simulation methodologies that have been employed to examine protein mediated membrane remodeling.
Collapse
Affiliation(s)
- Gary S Ayton
- Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| | | |
Collapse
|
36
|
Ayton GS, Voth GA. Systematic multiscale simulation of membrane protein systems. Curr Opin Struct Biol 2009; 19:138-44. [PMID: 19362465 DOI: 10.1016/j.sbi.2009.03.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 02/26/2009] [Accepted: 03/03/2009] [Indexed: 02/06/2023]
Abstract
Current multiscale simulation approaches for membrane protein systems vary depending on their degree of connection to the underlying molecular scale interactions. Various approaches have been developed that include such information into coarse-grained models of both the membrane and the proteins. By contrast, other approaches employ parameterizations obtained from experimental data. Mesoscopic models operate at larger scales and have also been employed to examine membrane remodeling, protein inclusions, and ion channel gating. When bridged together such that molecular-level information is propagated between the different scales, a systematic multiscale methodology for membrane protein systems can be achieved.
Collapse
Affiliation(s)
- Gary S Ayton
- Center for Biological Modeling and Simulation, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, USA.
| | | |
Collapse
|
37
|
Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc Natl Acad Sci U S A 2008; 105:13730-5. [PMID: 18772382 DOI: 10.1073/pnas.0806100105] [Citation(s) in RCA: 369] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parasitization by malaria-inducing Plasmodium falciparum leads to structural, biochemical, and mechanical modifications to the host red blood cells (RBCs). To study these modifications, we investigate two intrinsic indicators: the refractive index and membrane fluctuations in P. falciparum-invaded human RBCs (Pf-RBCs). We report experimental connections between these intrinsic indicators and pathological states. By employing two noninvasive optical techniques, tomographic phase microscopy and diffraction phase microscopy, we extract three-dimensional maps of refractive index and nanoscale cell membrane fluctuations in isolated RBCs. Our systematic experiments cover all intraerythrocytic stages of parasite development under physiological and febrile temperatures. These findings offer potential, and sufficiently general, avenues for identifying, through cell membrane dynamics, pathological states that cause or accompany human diseases.
Collapse
|
38
|
Rhinow D, Hampp NA. Light- and pH-Dependent Conformational Changes in Protein Structure Induce Strong Bending of Purple Membranes—Active Membranes Studied by Cryo-SEM. J Phys Chem B 2008; 112:13116-20. [DOI: 10.1021/jp803510t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Rhinow
- Department of Chemistry, University of Marburg, and Material Sciences Center, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | - Norbert A. Hampp
- Department of Chemistry, University of Marburg, and Material Sciences Center, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| |
Collapse
|
39
|
Affiliation(s)
- Frank L.H. Brown
- Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, California 93106;
| |
Collapse
|
40
|
Abstract
A filopodium is a cytoplasmic projection, exquisitely built and regulated, which extends from the leading edge of the migrating cell, exploring the cell's neighborhood. Commonly, filopodia grow and retract after their initiation, exhibiting rich dynamical behaviors. We model the growth of a filopodium based on a stochastic description which incorporates mechanical, physical, and biochemical components. Our model provides a full stochastic treatment of the actin monomer diffusion and polymerization of each individual actin filament under stress of the fluctuating membrane. We investigated the length distribution of individual filaments in a growing filopodium and studied how it depends on various physical parameters. The distribution of filament lengths turned out to be narrow, which we explained by the negative feedback created by the membrane load and monomeric G-actin gradient. We also discovered that filopodial growth is strongly diminished upon increasing retrograde flow, suggesting that regulating the retrograde flow rate would be a highly efficient way to control filopodial extension dynamics. The filopodial length increases as the membrane fluctuations decrease, which we attributed to the unequal loading of the membrane force among individual filaments, which, in turn, results in larger average polymerization rates. We also observed significant diffusional noise of G-actin monomers, which leads to smaller G-actin flux along the filopodial tube compared with the prediction using the diffusion equation. Overall, partial cancellation of these two fluctuation effects allows a simple mean field model to rationalize most of our simulation results. However, fast fluctuations significantly renormalize the mean field model parameters. The biological significance of our filopodial model and avenues for future development are also discussed.
Collapse
|
41
|
Ayton GS, Izvekov S, Noid W, Voth GA. Chapter 7 Multiscale Simulation of Membranes and Membrane Proteins: Connecting Molecular Interactions to Mesoscopic Behavior. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00007-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
Auth T, Safran SA, Gov NS. Fluctuations of coupled fluid and solid membranes with application to red blood cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:051910. [PMID: 18233690 DOI: 10.1103/physreve.76.051910] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 08/01/2007] [Indexed: 05/21/2023]
Abstract
The fluctuation spectra and the intermembrane interaction of two membranes at a fixed average distance are investigated. Each membrane can either be a fluid or a solid membrane, and in isolation, its fluctuations are described by a bare or a wave-vector-dependent bending modulus, respectively. The membranes interact via their excluded-volume interaction; the average distance is maintained by an external, homogeneous pressure. For strong coupling, the fluctuations can be described by a single, effective membrane that combines the elastic properties. For weak coupling, the fluctuations of the individual, noninteracting membranes are recovered. The case of a composite membrane consisting of one fluid and one solid membrane can serve as a microscopic model for the plasma membrane and cytoskeleton of the red blood cell. We find that, despite the complex microstructure of bilayers and cytoskeletons in a real cell, the fluctuations with wavelengths lambda greater, similar 400 nm are well described by the fluctuations of a single, polymerized membrane (provided that there are no inhomogeneities of the microstructure). The model is applied to the fluctuation data of discocytes ("normal" red blood cells), a stomatocyte, and an echinocyte. The elastic parameters of the membrane and an effective temperature that quantifies active, metabolically driven fluctuations are extracted from the experiments.
Collapse
Affiliation(s)
- Thorsten Auth
- Weizmann Institute of Science, Department of Materials and Interfaces, P.O. Box 26, Rehovot 76100, Israel
| | | | | |
Collapse
|
43
|
Popescu G, Park Y, Dasari RR, Badizadegan K, Feld MS. Coherence properties of red blood cell membrane motions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:031902. [PMID: 17930266 DOI: 10.1103/physreve.76.031902] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 04/30/2007] [Indexed: 05/15/2023]
Abstract
We use a highly sensitive, noncontact, optical interferometric technique to quantify the red blood cell membrane fluctuations at the nanometer and millisecond scales. The results reveal significant properties of both temporal and spatial coherence associated with the membrane dynamics. We show that these correlations can be accounted for by the viscoelastic properties of the cell membrane. From this measurement, we extract the loss and storage moduli associated with the membrane and find a crossover frequency at which the buffer viscosity seems to become dominant.
Collapse
Affiliation(s)
- Gabriel Popescu
- G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | |
Collapse
|
44
|
Abstract
We present a position Langevin equation for overdamped particle motion on rough two-dimensional surfaces. A Brownian dynamics algorithm is suggested to evolve this equation numerically, allowing for the prediction of effective (projected) diffusion coefficients over corrugated surfaces. In the case of static surface roughness, we find that a simple area-scaling prediction for the projected diffusion coefficient leads to seemingly quantitative agreement with numerical results. To study the effect of dynamic surface evolution on the diffusive process, we consider particle diffusion over a thermally fluctuating elastic membrane. Surface fluctuation has the effect of increasing the effective diffusivity toward a limiting annealed-surface value discussed previously. We argue that protein motion over cell surfaces spans a variety of physical regimes, making it impossible to identify a single approximation scheme appropriate to all measurements of interest.
Collapse
Affiliation(s)
- Ali Naji
- Department of Physics, University of California, Santa Barbara, California 93106-9530, USA
| | | |
Collapse
|
45
|
Giahi A, El Alaoui Faris M, Bassereau P, Salditt T. Active membranes studied by X-ray scattering. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2007; 23:431-7. [PMID: 17712523 DOI: 10.1140/epje/i2007-10203-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 07/05/2007] [Indexed: 05/16/2023]
Abstract
In view of recent theories of "active" membranes, we have studied multilamellar phospholipid membrane stacks with reconstituted transmembrane protein bacteriorhodopsin (BR) under different illumination conditions by X-ray scattering. The light-active protein is considered as an active constituent which drives the system out of equilibrium and is predicted to change the collective fluctuation properties of the membranes. Using X-ray reflectivity, X-ray non-specular (diffuse) scattering, and grazing incidence scattering, we find no detectable change in the scattering curves when changing the illumination condition. In particular the intermembrane spacing d remains constant, after eliminating hydration-related artifacts by design of a suitable sample environment. The absence of any observable non-equilibrium effects in the experimental window is discussed in view of the relevant parameters and recent theories.
Collapse
Affiliation(s)
- A Giahi
- Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37073, Göttingen, Germany.
| | | | | | | |
Collapse
|
46
|
Ayton GS, Blood PD, Voth GA. Membrane remodeling from N-BAR domain interactions: insights from multi-scale simulation. Biophys J 2007; 92:3595-602. [PMID: 17325001 PMCID: PMC1853153 DOI: 10.1529/biophysj.106.101709] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Liposome remodeling processes (e.g., vesiculation and tubulation) due to N-BAR domain interactions with the lipid bilayer are explored with a multi-scale simulation approach. Results from atomistic-level molecular dynamics simulations of membrane binding to the concave face of N-BAR domains are used along with discretized mesoscopic field-theoretic simulations to examine how the spontaneous curvature fields generated by N-BAR domains result in membrane remodeling. It is found that tubulation can be generated by anisotropic N-BAR spontaneous curvature fields, whereas vesiculation is only observed with isotropic N-BAR spontaneous curvature fields at high density. The results of the multi-scale simulations provide insight into recent experimental observations.
Collapse
Affiliation(s)
- Gary S Ayton
- Center for Biophysical Modeling and Simulation, University of Utah, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
47
|
Reister-Gottfried E, Leitenberger SM, Seifert U. Hybrid simulations of lateral diffusion in fluctuating membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:011908. [PMID: 17358185 DOI: 10.1103/physreve.75.011908] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Indexed: 05/14/2023]
Abstract
In this paper we introduce a method to simulate lateral diffusion of inclusions in a fluctuating membrane. The regarded systems are governed by two dynamic processes: the height fluctuations of the membrane and the diffusion of the inclusion along the membrane. While membrane fluctuations can be expressed in terms of a dynamic equation which follows from the Helfrich Hamiltonian, the dynamics of the diffusing particle is described by a Langevin or Smoluchowski equation. In the latter equations, the curvature of the surface needs to be accounted for, which makes particle diffusion a function of membrane fluctuations. In our scheme these coupled dynamic equations, the membrane equation and the Langevin equation for the particle, are numerically integrated to simulate diffusion in a membrane. The simulations are used to study the ratio of the diffusion coefficient projected on a flat plane and the intramembrane diffusion coefficient for the case of free diffusion. We compare our results with recent analytical results that employ a preaveraging approximation and analyze the validity of this approximation. A detailed simulation study of the relevant correlation functions reveals a surprisingly large range where the approximation is applicable.
Collapse
|
48
|
Pelling AE, Veraitch FS, Pui-Kei Chu C, Nicholls BM, Hemsley AL, Mason C, Horton MA. Mapping correlated membrane pulsations and fluctuations in human cells. J Mol Recognit 2007; 20:467-75. [PMID: 17712774 DOI: 10.1002/jmr.832] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cell membrane and cytoskeleton are dynamic structures that are strongly influenced by the thermo-mechanical background in addition to biologically driven mechanical processes. We used atomic force microscopy (AFM) to measure the local membrane motion of human foreskin fibroblasts (HFFs) which were found to be governed by random and non-random correlated mechanical processes. Interphase cells displayed distinct membrane pulsations in which the membrane was observed to slowly contract upwards followed by a recovery to its initial position. These pulsations occurred one to three times per minute with variable amplitudes (20-100 pN) separated by periods of random baseline fluctuations with amplitudes of <20 pN. Cells were exposed to actin and microtubule (MT) destabilizing drugs and induced into early apoptosis. Mechanical pulsations (20-80 pN) were not prevented by actin or MT depolymerization but were prevented in early apoptotic cells which only displayed small amplitude baseline fluctuations (<20 pN). Correlation analysis revealed that the cell membrane motion is largely random; however several non-random processes, with time constants varying between approximately 2 and 35 s are present. Results were compared to measured cardiomyocyte motion which was well defined and highly correlated. Employing automated positioning of the AFM tip, interphase HFF correlation time constants were also mapped over a 10 microm2 area above the nucleus providing some insights into the spatial variability of membrane correlations. Here, we are able to show that membrane pulsations and fluctuations can be linked to physiological state and cytoskeletal dynamics through distinct sets of correlation time constants in human cells.
Collapse
Affiliation(s)
- Andrew E Pelling
- The London Centre for Nanotechnology, Centre for Nanomedicine, University College London, 17-19 Gordon Street, London WC1H 0AH, UK.
| | | | | | | | | | | | | |
Collapse
|
49
|
Lin LCL, Groves JT, Brown FLH. Analysis of shape, fluctuations, and dynamics in intermembrane junctions. Biophys J 2006; 91:3600-6. [PMID: 16920837 PMCID: PMC1630473 DOI: 10.1529/biophysj.106.091843] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A dynamic-elastic model for weakly adhered intermembrane junctions is presented. Helfrich membrane energetics coupled to hydrodynamic modes of the surrounding solvent reproduce the average shape, fluctuations, and dynamics of these junctions as measured experimentally. Comparison between numerical results and experimental data provides the first direct measure of surface tension in these systems (0.01-0.06 dyn/cm). The measurements suggest bilayer-bilayer adhesion energetics as the dominant source of surface tension in the experimental systems.
Collapse
Affiliation(s)
- Lawrence C-L Lin
- Department of Physics, and Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | | | | |
Collapse
|
50
|
Lomholt MA. Fluctuation spectrum of quasispherical membranes with force-dipole activity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:061914. [PMID: 16906871 DOI: 10.1103/physreve.73.061914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 03/19/2006] [Indexed: 05/11/2023]
Abstract
The fluctuation spectrum of a quasispherical vesicle with active membrane proteins is calculated. The activity of the proteins is modeled as the proteins pushing on their surroundings giving rise to nonlocal force distributions. Both the contributions from the thermal fluctuations of the active protein densities and the temporal noise in the individual active force distributions of the proteins are taken into account. The noise in the individual force distributions is found to become significant at short wavelengths.
Collapse
Affiliation(s)
- Michael A Lomholt
- NORDITA--Nordic Institute for Theoretical Physics, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|