1
|
Conner A, Kim LM, Fagan PA, Harding DP, Wheeler SE. Stacking Interactions of Druglike Heterocycles with Nucleobases. J Chem Inf Model 2025; 65:3502-3516. [PMID: 40146533 PMCID: PMC12004538 DOI: 10.1021/acs.jcim.4c02420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
Stacking interactions contribute significantly to the interaction of small molecules with RNA, and harnessing the power of these interactions will likely prove important in the development of RNA-targeting inhibitors. To this end, we present a comprehensive computational analysis of stacking interactions between a set of 54 druglike heterocycles and the natural nucleobases. We first show that heterocycle choice can tune the strength of stacking interactions with nucleobases over a large range and that heterocycles favor stacked geometries that cluster around a discrete set of stacking loci characteristic of each nucleobase. Symmetry-adapted perturbation theory results indicate that the strengths of these interactions are modulated primarily by electrostatic and dispersion effects. Based on this, we present a multivariate predictive model of the maximum strength of stacking interactions between a given heterocycle and nucleobase that depends on molecular descriptors derived from the electrostatic potential. These descriptors can be readily computed using density functional theory or predicted directly from atom connectivity (e.g., SMILES). This model is used to predict the maximum possible stacking interactions of a set of 1854 druglike heterocycles with the natural nucleobases. Finally, we show that trivial modifications of standard (fixed-charge) molecular mechanics force fields reduce errors in predicted stacking interaction energies from around 2 kcal/mol to below 1 kcal/mol, providing a pragmatic means of predicting more reliable stacking interaction energies using existing computational workflows. We also analyze the stacking interactions between ribocil and a bacterial riboswitch, showing that two of the three aromatic heterocyclic components engage in near-optimal stacking interactions with binding site nucleobases.
Collapse
Affiliation(s)
| | | | - Patrick A. Fagan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Drew P. Harding
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Steven E. Wheeler
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Hoffman MP, Xantheas SS. Competition between Hydrogen and Chalcogen Bonding in Homodimers of Chalcogen Hydrides (H 2X) 2, X = O, S, Se, Te. J Am Chem Soc 2025; 147:11152-11171. [PMID: 40116453 DOI: 10.1021/jacs.4c17428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
The structural and chemical bonding motifs manifested by the competition between hydrogen and chalcogen bonding in the homodimers of chalcogen hydrides (H2X)2, where X = O, S, Se, Te have been characterized using high-level electronic structure calculations and analysis of the electron density based on Quasi-atomic orbital (QUAO) and the Symmetry-adapted perturbation theory (SAPT) methods. The QUAO analysis clearly identifies a three-center interaction responsible for either hydrogen or chalcogen bonds: in the former, the σ-bond connecting the donor and hydrogen atom participating in the hydrogen bond interacts with the lone pair on the nucleophile acceptor via the hydrogen atom, while in the latter this same σ-bond interacts with the nucleophile lone pair via the donor chalcogen. The number of minimum energy structures increase dramatically from one for (H2O)2, three for (H2S)2, four for (H2Se)2, and finally six for (H2Te)2. The emergence of the chalcogen-bonded arrangements appears for (H2S)2 with their subsequent energetic stabilization over the hydrogen-bonded minima manifesting in (H2Se)2 and (H2Te)2. In particular, one of the (H2S)2 , two of the (H2Se)2, and three of the (H2Te)2 dimers are chalcogen bonded. Induction plays a small but important role in stabilizing hydrogen over chalcogen-bonded structures, while dispersion is more important for chalcogen bonds.
Collapse
Affiliation(s)
- Maxwell P Hoffman
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sotiris S Xantheas
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS J7-10, Richland, Washington 99352, United States
- Computational and Theoretical Chemistry Institute (CTCI), Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
3
|
Henrichsmeyer J, Thelen M, Fink RF. What is the Exchange Repulsion Energy? Insight by Partitioning into Physically Meaningful Contributions. Chemphyschem 2025; 26:e202400887. [PMID: 39571090 DOI: 10.1002/cphc.202400887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/30/2024] [Indexed: 12/20/2024]
Abstract
It is shown that the exchange repulsion energy, Exr, can be rationalized by partitioning the respective energy expression for two systems with Hartree-Fock orbitals into physically meaningful contributions. A division of Exr into a positive kinetic and a negative potential part is possible, but these contributions correlate only poorly with the actual exchange repulsion energy. A more meaningful partitioning is derived, where all kinetic energy contributions are collected in a term that vanishes for exact Hartree-Fock orbitals due to their stationarity conditions. The remaining terms can be distinguished into an exchange integral contribution as well as contributions to the repulsion energy with two, three and four orbital indices. The forms, relationships and absolute sizes of these terms suggest an intuitive partitioning of the exchange repulsion energy into Molecular Orbital Pair Contributions to the Exchange repulsion energy (MOPCE). Insight into the analytic form and quantitative size of these contributions is provided by considering the3 Σ u + ( 1 σ g 1 σ u ) ${^3 \Sigma _u^+ (1\sigma _g 1\sigma _u )}$ state of the H2 molecule, the water dimer, as well as an argon atom interacting with Cl2 and N2.
Collapse
Affiliation(s)
- Johannes Henrichsmeyer
- Institute of Physical and Theoretical Chemistry, Auf der Morgenstelle 18, University of Tübingen, D-72076, Tübingen, Germany
| | - Michael Thelen
- Institute of Physical and Theoretical Chemistry, Auf der Morgenstelle 18, University of Tübingen, D-72076, Tübingen, Germany
| | - Reinhold F Fink
- Institute of Physical and Theoretical Chemistry, Auf der Morgenstelle 18, University of Tübingen, D-72076, Tübingen, Germany
| |
Collapse
|
4
|
Bovolenta GM, Vogt-Geisse S. Methyl formate synthesis via S N Acyl esterification on interstellar ice mantles. J Mol Model 2025; 31:104. [PMID: 40019560 DOI: 10.1007/s00894-025-06310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
CONTEXT Methyl formate (MF) has been detected in several interstellar environments, but whether or not the formation of this molecule takes place in the gas phase or on the ices of interstellar grains is still unclear. In this study, we explore the synthesis of methyl formate through the nucleophilic acyl substitution (SN Acyl) reaction between methanol (CH3 OH) and formic acid (HCOOH) on amorphous solid water, which is the main component of interstellar ice mantles. METHODS Using density functional theory (DFT), we model MF formation by sampling HCOOH in different catalytic sites on the water clusters with CH3 OH, and vice versa, for initial reactant configurations. We select the initial binding modes from the binding energy distributions of both reactant species. We assess the energy and synchronicity of the reaction by analyzing the reaction mechanisms through intrinsic reaction coordinate (IRC) energy, reaction force, and reaction electronic flux profiles. Using Wiberg bond order derivatives, we identify reaction events linked to hidden transition states that are encountered along the reaction coordinate.
Collapse
Affiliation(s)
- Giulia M Bovolenta
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
- Atomistic Simulations, Italian Institute of Technology, Genova, 16152, Italy.
| | - Stefan Vogt-Geisse
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
5
|
Sylvanus AG, Jones GM, Custelcean R, Vogiatzis KD. In Silico Screening of CO 2-Dipeptide Interactions for Bioinspired Carbon Capture. Chemphyschem 2025; 26:e202400498. [PMID: 39607812 DOI: 10.1002/cphc.202400498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
Carbon capture, sequestration and utilization offers a viable solution for reducing the total amount of atmospheric CO2 concentrations. On an industrial scale, amine-based solvents are extensively employed for CO2 capture through chemisorption. Nevertheless, this method is marked by the high cost associated with solvent regeneration, high vapor pressure, and the corrosive and toxic attributes of by-products, such as nitrosamines. An alternative approach is the biomimicry of sustainable materials that have strong affinity and selectivity for CO2. Bioinspired approaches, such as those based on naturally occurring amino acids, have been proposed for direct air capture methodologies. In this study, we present a database consisting of 960 dipeptide molecular structures, composed of the 20 naturally occurring amino acids. Those structures were analyzed with a novel computational workflow presented in this work that considers certain interaction sites that determine CO2 affinity. Density functional theory (DFT) and symmetry-adapted perturbation theory (SAPT) computations were performed for the calculation of CO2 interaction energies, which allowed to limit our search space to 400 unique dipeptide structures. Using this computational workflow, we provide statistical insights into dipeptides and their affinity for CO2 binding, as well as design principles that can further enhance CO2 capture through cooperative binding.
Collapse
Affiliation(s)
- Amarachi G Sylvanus
- Department of Chemistry, University of Tennessee, 37996, Knoxville, Tennessee, United States
| | - Grier M Jones
- Department of Chemistry, University of Tennessee, 37996, Knoxville, Tennessee, United States
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, 37830-6119, Oak Ridge, Tennessee, United States
| | | |
Collapse
|
6
|
Skurski P, Brzeski J. Carbonless DNA. Phys Chem Chem Phys 2025; 27:2343-2362. [PMID: 39801399 DOI: 10.1039/d4cp04410j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Carbonless DNA was designed by replacing all carbon atoms in the standard DNA building blocks with boron and nitrogen, ensuring isoelectronicity. Electronic structure quantum chemistry methods (DFT(ωB97XD)/aug-cc-pVDZ) were employed to study both the individual building blocks and the larger carbon-free DNA fragments. The reliability of the results was validated by comparing selected structures and binding energies using more accurate methods such as MP2, CCSD, and SAPT2+3(CCD)δMP2. Carbonless analogs of DNA components, including cytosine, thymine, guanine, adenine, and deoxyribose, were investigated, showing strong resemblance to the carbon-based versions in terms of spatial structure, polarity, and molecular interaction capabilities. Complementary base pairs of the carbonless analogs exhibited a similar number and length of hydrogen bonds as those found in their carbon-containing counterparts, with binding energies for A-T and G-C analogs remaining comparable. Carbonless DNA fragments containing two and six base pairs were studied, revealing double-helix structures analogous to natural DNA. Structural parameters such as fragment size, hydrogen bond lengths, and rise per base pair were consistent with those observed in unmodified DNA. Docking simulations with a 12 base pair fragment and netropsin as a ligand indicated a slight shift in binding preference for the carbonless DNA through the minor groove, with an approximate 25% increase in binding affinity compared to natural DNA.
Collapse
Affiliation(s)
- Piotr Skurski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
- QSAR Lab Ltd., Trzy Lipy 3, 80-172, Poland
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jakub Brzeski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
- QSAR Lab Ltd., Trzy Lipy 3, 80-172, Poland
| |
Collapse
|
7
|
Veljković IS, Malinić M, Veljković DŽ. Evidence of strong O-H⋯C interactions involving apical pyramidane carbon atoms as hydrogen atom acceptors. Phys Chem Chem Phys 2025; 27:2563-2569. [PMID: 39807035 DOI: 10.1039/d4cp03809f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Using high-level quantum chemical calculations, we predicted a strong O-H⋯C interaction between the apical carbon atoms of pyramidane and its derivatives and water molecules. Analysis of calculated electrostatic potential maps showed that there are areas of strong negative potential above apical carbon atoms in all studied structures. The results of quantum chemical calculations showed that the O-H⋯C interaction between the hydrogen atom of water and the apical carbon atom of pyramidane derivatives with four -CH3 substituents is unexpectedly strong, ΔECCSD(T)/CBS = -7.43 kcal mol-1. The strong hydrogen bonds were also predicted in the case of unsubstituted pyramidane (ΔECCSD(T)/CBS = -6.41 kcal mol-1) and pyramidane with four -OH substituents (ΔECCSD(T)/CBS = -5.87 kcal mol-1). Although there are not many crystal structures of pyramidane-like molecules, we extracted examples of pyramidal-shaped molecules with apical carbon atoms from the Cambridge Structural Database and analyzed their hydrogen-bonding patterns. Analysis of crystal structures confirmed the existence of short non-covalent contacts between apical carbon atoms and neighboring hydrogen atoms.
Collapse
Affiliation(s)
- Ivana S Veljković
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Miroslavka Malinić
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, Belgrade, Serbia.
| | - Dušan Ž Veljković
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, Belgrade, Serbia.
| |
Collapse
|
8
|
Pierini A, Migliorati V, Gómez-Urbano JL, Balducci A, Brutti S, Bodo E. Simulations of γ-Valerolactone Solvents and Electrolytes for Lithium Batteries Using Polarizable Molecular Dynamics. Molecules 2025; 30:230. [PMID: 39860100 PMCID: PMC11768070 DOI: 10.3390/molecules30020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
In this paper, we present a molecular dynamics study of the structural and dynamical properties of γ-valerolactone (GVL) both as a standalone solvent and in electrolyte formulations for electrochemistry applications. This study involves developing a new parameterization of a polarizable forcefield and applying it to simulate pure GVL and selected salt solutions. The forcefield was validated with experimental bulk data and quantum mechanical calculations, with excellent agreement obtained in both cases. Specifically, two 1M electrolyte solutions of lithium bis(fluorosulfonyl)imide and lithium bis(oxalate)borate in GVL were simulated, focusing on their ionic transport and highlighting ion solvation structure. Ion pairing in the electrolytes was also investigated through enhanced sampling molecular dynamics, obtaining a detailed picture of the ion dynamics in the GVL solution.
Collapse
Affiliation(s)
- Adriano Pierini
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (V.M.); (S.B.)
| | - Valentina Migliorati
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (V.M.); (S.B.)
| | - Juan Luis Gómez-Urbano
- Institute for Technical Chemistry and Environmental Chemistry, Friedrich-Schiller University, Philosophenweg 7a, 07743 Jena, Germany; (J.L.G.-U.); (A.B.)
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller University, Philosophenweg 7a, 07743 Jena, Germany
| | - Andrea Balducci
- Institute for Technical Chemistry and Environmental Chemistry, Friedrich-Schiller University, Philosophenweg 7a, 07743 Jena, Germany; (J.L.G.-U.); (A.B.)
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller University, Philosophenweg 7a, 07743 Jena, Germany
| | - Sergio Brutti
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (V.M.); (S.B.)
- CNR-ISC—Consiglio Nazionale Delle Ricerche, Istituto dei Sistemi Complessi, 00185 Rome, Italy
- GISEL—Centro di Riferimento Nazionale per i Sistemi di Accumulo Elettrochimico di Energia, 50121 Florence, Italy
| | - Enrico Bodo
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (V.M.); (S.B.)
| |
Collapse
|
9
|
Milovavnović MR, Zarić SD. How Flexible Is the Hydrogen Sulfide Molecule Structure? Influence of Hydrogen Sulfide Molecule Geometry on Its Hydrogen Bonds. Chempluschem 2025; 90:e202400511. [PMID: 39305482 DOI: 10.1002/cplu.202400511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Indexed: 11/21/2024]
Abstract
The geometry of hydrogen sulfide was studied by calculating potential energy surface (PES) with over 1800 configurations. The calculations were performed at very accurate CCSD(T)/aug-cc-pvz5 level. The most stable geometry on the PES has bond angle (H-S-H) of 92.40° and bond length (S-H) of 1.338 Å. The PES shows that hydrogen sulfide is a quite flexible molecule. Namely, it can change the bonding angle (H-S-H) in the range of 15.6° (from 84.6° to 100.2°) and the bond lengths (S-H) in the range of 0.082 Å (from 1.299 Å to 1.381 Å) with an energy increase of only 1.0 kcal/mol. An influence of hydrogen sulfide geometry on its hydrogen bonds was studied on several hydrogen sulfide/hydrogen sulfide and water/hydrogen sulfide dimers. It showed that the change of hydrogen sulfide geometry does not influence the strength of hydrogen bond. Fully optimized geometries in gas and water solution phases revealed structural differences of both monomers and dimers in gas phase and water phase. SAPT analysis of the optimized dimer geometries showed that in all the dimers electrostatic is the most dominant contribution, while, in the dimers with hydrogen sulfide, the influence of dispersion contribution becomes quite pronounced.
Collapse
Affiliation(s)
- Milan R Milovavnović
- Innovative Centre of the Faculty of Chemistry, Studentski trg 12-16, Belgrade, 11000, Serbia
| | - Snežana D Zarić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia
| |
Collapse
|
10
|
Lao KU. Canonical coupled cluster binding benchmark for nanoscale noncovalent complexes at the hundred-atom scale. J Chem Phys 2024; 161:234103. [PMID: 39679503 DOI: 10.1063/5.0242359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
In this study, we introduce two datasets for nanoscale noncovalent binding, featuring complexes at the hundred-atom scale, benchmarked using coupled cluster with single, double, and perturbative triple [CCSD(T)] excitations extrapolated to the complete basis set (CBS) limit. The first dataset, L14, comprises 14 complexes with canonical CCSD(T)/CBS benchmarks, extending the applicability of CCSD(T)/CBS binding benchmarks to systems as large as 113 atoms. The second dataset, vL11, consists of 11 even larger complexes, evaluated using the local CCSD(T)/CBS method with stringent thresholds, covering systems up to 174 atoms. We compare binding energies obtained from local CCSD(T) and fixed-node diffusion Monte Carlo (FN-DMC), which have previously shown discrepancies exceeding the chemical accuracy threshold of 1 kcal/mol in large complexes, with the new canonical CCSD(T)/CBS results. While local CCSD(T)/CBS agrees with canonical CCSD(T)/CBS within binding uncertainties, FN-DMC consistently underestimates binding energies in π-π complexes by over 1 kcal/mol. Potential sources of error in canonical CCSD(T)/CBS are discussed, and we argue that the observed discrepancies are unlikely to originate from CCSD(T) itself. Instead, the fixed-node approximation in FN-DMC warrants further investigation to elucidate these binding discrepancies. Using these datasets as reference, we evaluate the performance of various electronic structure methods, semi-empirical approaches, and machine learning potentials for nanoscale complexes. Based on computational accuracy and stability across system sizes, we recommend MP2+aiD(CCD), PBE0+D4, and ωB97X-3c as reliable methods for investigating noncovalent interactions in nanoscale complexes, maintaining their promising performance observed in smaller systems.
Collapse
Affiliation(s)
- Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| |
Collapse
|
11
|
Ennis A, Cochrane CS, Dome PA, Jeong P, Yu J, Lee H, Williams CS, Ha Y, Yang W, Zhou P, Hong J. Design and Evaluation of Pyridinyl Sulfonyl Piperazine LpxH Inhibitors with Potent Antibiotic Activity Against Enterobacterales. JACS AU 2024; 4:4383-4393. [PMID: 39610720 PMCID: PMC11600146 DOI: 10.1021/jacsau.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/06/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Enterobacterales, a large order of Gram-negative bacteria, including Escherichia coli and Klebsiella pneumoniae, are major causes of urinary tract and gastrointestinal infections, pneumonia, and other diseases in healthcare settings and communities. ESBL-producing Enterobacterales and carbapenem-resistant Enterobacterales can break down commonly used antibiotics, with some strains being resistant to all available antibiotics. This public health threat necessitates the development of novel antibiotics, ideally targeting new pathways in these bacteria. Gram-negative bacteria possess an outer membrane enriched with lipid A, a saccharolipid that serves as the membrane anchor of lipopolysaccharides and the active component of the bacterial endotoxin, causing septic shock. The biosynthesis of lipid A is crucial for the viability of Gram-negative bacteria, and as an essential enzyme in this process, LpxH has emerged as a promising target for developing novel antibiotics against multidrug-resistant Gram-negative pathogens. Here, we report the development of pyridinyl sulfonyl piperazine LpxH inhibitors. Among them, ortho-substituted pyridinyl compounds significantly boost LpxH inhibition and antibiotic activity over the original phenyl series. Structural and QM/MM analyses reveal that these improved activities are primarily due to the enhanced interaction between F141 of the LpxH insertion lid and the pyridinyl group. Incorporation of the N-methyl-N-phenyl-methanesulfonamide moiety into the pyridinyl sulfonyl piperazine backbone results in JH-LPH-106 and JH-LPH-107, both of which exhibit potent antibiotic activity against wild-type Enterobacterales such as K. pneumoniae and E. coli. JH-LPH-107 exhibits a low rate of spontaneous resistance and a high safety window in vitro, rendering it an excellent lead for further clinical development.
Collapse
Affiliation(s)
- Amanda
F. Ennis
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - C. Skyler Cochrane
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department
of Biochemistry, Duke University School
of Medicine, Durham, North Carolina 27710, United States
| | - Patrick A. Dome
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Pyeonghwa Jeong
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jincheng Yu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Hyejin Lee
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Carly S. Williams
- Department
of Biochemistry, Duke University School
of Medicine, Durham, North Carolina 27710, United States
| | - Yang Ha
- Berkeley
Center for Structural Biology, Molecular Biophysics and Integrated
Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Weitao Yang
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Pei Zhou
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department
of Biochemistry, Duke University School
of Medicine, Durham, North Carolina 27710, United States
| | - Jiyong Hong
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department
of Pharmacology and Cancer Biology, Duke
University School of Medicine, Durham, North Carolina 27710, United States
| |
Collapse
|
12
|
Martín-Fernández C, Elguero J, Alkorta I. Beryllium as a Base: Complexes of Be(CO) 3 with HX (X=F, Cl, Br, CN, NC, CCH, OH). Chemphyschem 2024; 25:e202400608. [PMID: 38950128 DOI: 10.1002/cphc.202400608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Beryllium chemistry is typically governed by its electron deficient character, but in some compounds it can act as a base. In order to understand better the unusual basicity of Be, we have systematically explored the complexes of one such compound, Be(CO)3, towards several hydrogen bond donors HX (X=F, Cl, Br, CN, NC, CCH, OH). For all complexes we find three different minima, two hydrogen bonded minima (to the Be or O atoms), and one weak beryllium bonded minimum. Further characterization of the interactions using a topological analysis of the electron density and Symmetry Adapted Perturbation Theory (SAPT) provide insight into the nature of these interactions. Overall these results highlight the capability of certain beryllium compounds to act as either a weak Lewis acid or, unconventionally, a Lewis base whose basicity towards hydrogen bonding is comparable to that of π systems.
Collapse
Affiliation(s)
| | - José Elguero
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006, Madrid, Spain
| |
Collapse
|
13
|
Krzemińska A, Biczysko M, Pernal K, Hapka M. Anisole-Water and Anisole-Ammonia Complexes in Ground and Excited (S 1) States: A Multiconfigurational Symmetry-Adapted Perturbation Theory (SAPT) Study. J Phys Chem A 2024; 128:8816-8824. [PMID: 39352939 PMCID: PMC11480881 DOI: 10.1021/acs.jpca.4c04928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Binary complexes of anisole have long been considered paradigm systems for studying microsolvation in both the ground and electronically excited states. We report a symmetry-adapted perturbation theory (SAPT) analysis of intermolecular interactions in anisole-water and anisole-ammonia complexes within the framework of the multireference SAPT(CAS) method. Upon the S1 ← S0 electronic transition, the hydrogen bond in the anisole-water dimer is weakened, which SAPT(CAS) shows to be determined by changes in the electrostatic energy. As a result, the water complex becomes less stable in the relaxed S1 state despite decreased Pauli repulsion. Stronger binding of the anisole-ammonia complex following electronic excitation is more nuanced and results from counteracting shifts in the repulsive (exchange) and attractive (electrostatic, induction and dispersion) forces. In particular, we show that the formation of additional binding N-H···π contacts in the relaxed S1 geometry is possible due to reduced Pauli repulsion in the excited state. The SAPT(CAS) interaction energies have been validated against the coupled cluster (CC) results and experimentally determined shifts of the S1 ← S0 anisole band. While for the hydrogen-bonded anisole-water dimer SAPT(CAS) and CC shifts are in excellent agreement, for ammonia SAPT(CAS) is only qualitatively correct.
Collapse
Affiliation(s)
- Agnieszka Krzemińska
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | - Malgorzata Biczysko
- Faculty
of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Katarzyna Pernal
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | - Michał Hapka
- Faculty
of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
14
|
López-Sánchez R, Laurents DV, Mompeán M. Hydrogen bonding patterns and cooperativity in polyproline II helical bundles. Commun Chem 2024; 7:191. [PMID: 39215165 PMCID: PMC11364801 DOI: 10.1038/s42004-024-01268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Hydrogen bond cooperativity (HBC) plays an important role in stabilizing protein assemblies built by α-helices and β-sheets, the most common secondary structures. However, whether HBC exists in other types of protein secondary structures such as polyproline II (PPII) helices remains unexplored. This is intriguing, since PPII systems as assembling blocks are continuously emerging across multiple fields. Here, using a combination of computational chemistry tools and molecular modeling corroborated by experimental observables, we characterize the distinct H-bonding patterns present in PPII helical bundles and establish that HBC stabilizes intermolecular PPII helices as seen in other protein assemblies such as amyloid fibrils. In addition to cooperative interactions in canonical CO···HN H-bonds, we show that analogous interactions in non-canonical CO···HαCα H-bonds are relevant in Gly-rich PPII bundles, thus compensating for the inability of glycine residues to create hydrophobic cores. Our results provide a mechanistic explanation for the assembly of these bundles.
Collapse
Affiliation(s)
| | | | - Miguel Mompeán
- Instituto de Química Física "Blas Cabrera" - CSIC, Madrid, Spain.
| |
Collapse
|
15
|
Cao W, Hu Z, Sun H, Wang XB. Photoelectron Spectroscopy and Computational Study on Microsolvated [B 10H 10] 2- Clusters and Comparisons to Their [B 12H 12] 2- Analogues. J Phys Chem A 2024; 128:6981-6988. [PMID: 39112434 DOI: 10.1021/acs.jpca.4c04772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Microhydrated closo-boranes have attracted great interest due to their superchaotropic activity related to the well-known Hofmeister effect and important applications in biomedical and battery fields. In this work, we report a combined negative ion photoelectron spectroscopy and quantum chemical investigation on hydrated closo-decaborate clusters [B10H10]2-·nH2O (n = 1-7) with a direct comparison to their analogues [B12H12]2-·nH2O and free water clusters. A single H2O molecule is found to be sufficient to stabilize the intrinsically unstable [B10H10]2- dianion. The first two water molecules strongly interact with the solute forming B-H···H-O dihydrogen bonds while additional water molecules show substantially reduced binding energies. Unlike [B12H12]2-·nH2O possessing a highly structured water network with the attached H2O molecules arranged in a unified pattern by maximizing B-H···H-O dihydrogen bonding, distinct structural arrangements of the water clusters within [B10H10]2-·nH2O are achieved with the water cluster networks from trimer to heptamer resembling free water clusters. Such a distinct difference arises from the variations in size, symmetry, and charge distributions between these two dianions. The present finding again confirms the structural diversity of hydrogen-bonding networks in microhydrated closo-boranes and enriches our understanding of aqueous borate chemistry.
Collapse
Affiliation(s)
- Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
16
|
Deng Z, Liu C, Li Z, Zhang Y. An efficient method by combining different basis sets and SAPT levels. J Comput Chem 2024; 45:1936-1944. [PMID: 38703182 DOI: 10.1002/jcc.27386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
In symmetry-adapted perturbation theory (SAPT), accurate calculations on non-covalent interaction (NCI) for large complexes with more than 50 atoms are time-consuming using large basis sets. More efficient ones with smaller basis sets usually result in poor prediction in terms of dispersion and overall energies. In this study, we propose two composite methods with baseline calculated at SAPT2/aug-cc-pVDZ and SAPT2/aug-cc-pVTZ with dispersion term corrected at SAPT2+ level using bond functions and smaller basis set with δ MP2 corrections respectively. Benchmark results on representative NCI data sets, such as S22, S66, and so forth, show significant improvements on the accuracy compared to the original SAPT Silver standard and comparable to SAPT Gold standard in some cases with much less computational cost.
Collapse
Affiliation(s)
- Zhihao Deng
- Beijing StoneWise Technology Co Ltd., Beijing, China
| | - Chang Liu
- Beijing StoneWise Technology Co Ltd., Beijing, China
| | - Zhongwei Li
- Yantai Gogetter Technology Co Ltd., Yantai, China
| | | |
Collapse
|
17
|
Jiang Y, Cao W, Hu Z, Yue Z, Bai C, Li R, Liu Z, Wang XB, Peng P. A comprehensive study on three typical photoacid generators using photoelectron spectroscopy and ab initio calculations. J Chem Phys 2024; 161:054311. [PMID: 39105554 DOI: 10.1063/5.0218918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Conducting a comprehensive molecular-level evaluation of a photoacid generator (PAG) and its subsequent impact on lithography performance can facilitate the rational design of a promising 193 nm photoresist tailored to specific requirements. In this study, we integrated spectroscopy and computational techniques to meticulously investigate the pivotal factors of three prototypical PAG anions, p-toluenesulfonate (pTS-), 2-(trifluoromethyl)benzene-1-sulfonate (TFMBS-), and triflate (TF-), in the lithography process. Our findings reveal a significant redshift in the absorption spectra caused by specific PAG anions, attributed to their involvement in electronic transition processes, thereby enhancing the transparency of the standard PAG cation, triphenylsulfonium (TPS+), particularly at ∼193 nm. Furthermore, the electronic stability of PAG anions can be enhanced by solvent effects with varying degrees of strength. We observed the lowest vertical detachment energy of 6.6 eV of pTS- in PGMEA solution based on the polarizable continuum model, which prevents anion loss at 193 nm lithography. In addition, our findings indicate gas-phase proton affinity values of 316.4 kcal/mol for pTS-, 308.1 kcal/mol for TFMBS-, and 303.2 kcal/mol for TF-, which suggest the increasing acidity strength, yet even the weakest acid pTS- is still stronger than strong acid HBr. The photolysis of TPS+-based PAG, TPS+·pTS-, generated an excited state leading to homolysis bond cleavage with the lowest reaction energy of 83 kcal/mol. Overall, the PAG anion pTS- displayed moderate acidity, possessed the lowest photolysis reaction energy, and demonstrated an appropriate redshift. These properties collectively render it a promising candidate for an effective acid producer.
Collapse
Affiliation(s)
- Yanrong Jiang
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Zhongyao Yue
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Chunyuan Bai
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Ruxin Li
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Zhi Liu
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Peng Peng
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
18
|
Gregory KP, Wanless EJ, Webber GB, Craig VSJ, Page AJ. A first-principles alternative to empirical solvent parameters. Phys Chem Chem Phys 2024; 26:20750-20759. [PMID: 38988220 DOI: 10.1039/d4cp01975j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The use of solvents is ubiquitous in chemistry. Empirical parameters, such as the Kamlet-Taft parameters and Gutmann donor/acceptor numbers, have long been used to predict and quantify the effects solvents have on chemical phenomena. Collectively however, such parameters are unsatisfactory, since each describes ultimately the same non-covalent solute-solvent and solute-solute interactions in completely disparate ways. Here we hypothesise that empirical solvent parameters are essentially proxy measures of the electrostatic terms that dominate solvent-solute interactions. On the basis of this hypothesis, we develop a new fundamental descriptor of these interactions, , and show that it is a self-consistent, probe-free, first principles alternative to established empirical solvent parameters.
Collapse
Affiliation(s)
- Kasimir P Gregory
- Discipline of Chemistry, College of Engineering, Science & Environment, University of Newcastle, Callaghan 2308, Australia.
- Research School of Materials Physics, Research School of Physics, Australian National University, ACT 0200, Australia
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Erica J Wanless
- Discipline of Chemistry, College of Engineering, Science & Environment, University of Newcastle, Callaghan 2308, Australia.
| | - Grant B Webber
- Discipline of Chemical Engineering, College of Engineering, Science & Environment, University of Newcastle, Callaghan 2308, Australia
| | - Vincent S J Craig
- Research School of Materials Physics, Research School of Physics, Australian National University, ACT 0200, Australia
| | - Alister J Page
- Discipline of Chemistry, College of Engineering, Science & Environment, University of Newcastle, Callaghan 2308, Australia.
| |
Collapse
|
19
|
Tarek Ibrahim M, Wait E, Ren P. Quantum Mechanics Characterization of Non-Covalent Interaction in Nucleotide Fragments. Molecules 2024; 29:3258. [PMID: 39064837 PMCID: PMC11279843 DOI: 10.3390/molecules29143258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Accurate calculation of non-covalent interaction energies in nucleotides is crucial for understanding the driving forces governing nucleic acid structure and function, as well as developing advanced molecular mechanics forcefields or machine learning potentials tailored to nucleic acids. Here, we dissect the nucleotides' structure into three main constituents: nucleobases (A, G, C, T, and U), sugar moieties (ribose and deoxyribose), and phosphate group. The interactions among these fragments and between fragments and water were analyzed. Different quantum mechanical methods were compared for their accuracy in capturing the interaction energy. The non-covalent interaction energy was decomposed into electrostatics, exchange-repulsion, dispersion, and induction using two ab initio methods: Symmetry-Adapted Perturbation Theory (SAPT) and Absolutely Localized Molecular Orbitals (ALMO). These calculations provide a benchmark for different QM methods, in addition to providing a valuable understanding of the roles of various intermolecular forces in hydrogen bonding and aromatic stacking. With SAPT, a higher theory level and/or larger basis set did not necessarily give more accuracy. It is hard to know which combination would be best for a given system. In contrast, ALMO EDA2 did not show dependence on theory level or basis set; additionally, it is faster.
Collapse
Affiliation(s)
- Mayar Tarek Ibrahim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Elizabeth Wait
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX 78712, USA;
| |
Collapse
|
20
|
Bovolenta GM, Silva-Vera G, Bovino S, Molpeceres G, Kästner J, Vogt-Geisse S. In-depth exploration of catalytic sites on amorphous solid water: I. The astrosynthesis of aminomethanol. Phys Chem Chem Phys 2024; 26:18692-18706. [PMID: 38922674 DOI: 10.1039/d4cp01865f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Chemical processes taking place on ice-grain mantles are pivotal to the complex chemistry of interstellar environments. In this study, we conducted a comprehensive analysis of the catalytic effects of an amorphous solid water (ASW) surface on the reaction between ammonia (NH3) and formaldehyde (H2CO) to form aminomethanol (NH2CH2OH) using density functional theory. We identified potential catalytic sites based on the binding energy distribution of NH3 and H2CO reactants, on a set-of-clusters surface model composed of 22 water molecules and found a total of 14 reaction paths. Our results indicate that the catalytic sites can be categorized into four groups, depending on the interactions of the carbonyl oxygen and the amino group with the ice surface in the reactant complex. A detailed analysis of the reaction mechanism using Intrinsic Reaction Coordinate and reaction force analysis, revealed three distinct chemical events for this reaction: formation of the C-N bond, breaking of the N-H bond, and formation of the O-H hydroxyl bond. Depending on the type of catalytic site, these events can occur within a single, concerted, albeit asynchronous, step, or can be isolated in a step-wise mechanism, with the lowest overall transition state energy observed at 1.3 kcal mol-1. A key requirement for the low-energy mechanism is the presence of a pair of dangling OH bonds on the surface, found at 5% of the potential catalytic sites on an ASW porous surface.
Collapse
Affiliation(s)
- Giulia M Bovolenta
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
- Atomistic Simulations, Italian Institute of Technology, 16152 Genova, Italy
| | - Gabriela Silva-Vera
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| | - Stefano Bovino
- Chemistry Department, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
- INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
- Departamento de Astronomía, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio Universitario, Concepción, Chile
| | - German Molpeceres
- Departamento de Astrofísica Molecular Instituto de Física Fundamental (IFF-CSIC), Madrid, Spain
| | - Johannes Kästner
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Stefan Vogt-Geisse
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
21
|
Nikitin A, Wang F. Simulation of Linear and Cyclic Alkanes with Second-Order Møller-Plesset Perturbation Theory through Adaptive Force Matching. J Chem Theory Comput 2024; 20:5241-5249. [PMID: 38848512 PMCID: PMC11209940 DOI: 10.1021/acs.jctc.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Predicting ensemble properties, such as density and heat of vaporization, of small hydrocarbons is challenging due to the dispersion-dominated weak interactions between these molecules. With the adaptive force matching (AFM) method, the bonded and short-range nonbonded interactions are fitted to second-order Møller-Plesset perturbation theory (MP2) references computed with the def2-TZVP basis set. The dispersion is modeled using symmetry adapted perturbation theory (SAPT) at MP4 accuracy using the def2-TZVPD basis set. A new charge matrix decomposition technique is described to obtain partial charges in AFM. Although the models developed do not have any empirical parameters, several properties of the resulting models are compared with experiments as validations. The density, heat of vaporization, pressure dependence of density, diffusion constants, and surface tensions all show quantitative agreement with experiments. Although the density shows a very small systematic error, which could be due to missing three-body dispersion, the heat of vaporization agrees with experiments of within 0.5%. The paper shows that AFM can be used as a reliable tool to enable simulations at post-Hartree-Fock quality at the cost of molecular mechanics force fields.
Collapse
Affiliation(s)
- Alexei Nikitin
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Feng Wang
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
22
|
Rocca D, Cortes CL, Gonthier JF, Ollitrault PJ, Parrish RM, Anselmetti GL, Degroote M, Moll N, Santagati R, Streif M. Reducing the Runtime of Fault-Tolerant Quantum Simulations in Chemistry through Symmetry-Compressed Double Factorization. J Chem Theory Comput 2024; 20:4639-4653. [PMID: 38788209 PMCID: PMC11403611 DOI: 10.1021/acs.jctc.4c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Quantum phase estimation based on qubitization is the state-of-the-art fault-tolerant quantum algorithm for computing ground-state energies in chemical applications. In this context, the 1-norm of the Hamiltonian plays a fundamental role in determining the total number of required iterations and also the overall computational cost. In this work, we introduce the symmetry-compressed double factorization (SCDF) approach, which combines a CDF of the Hamiltonian with the symmetry shift technique, significantly reducing the 1-norm value. The effectiveness of this approach is demonstrated numerically by considering various benchmark systems, including the FeMoco molecule, cytochrome P450, and hydrogen chains of different sizes. To compare the efficiency of SCDF to other methods in absolute terms, we estimate Toffoli gate requirements, which dominate the execution time on fault-tolerant quantum computers. For the systems considered here, SCDF leads to a sizable reduction of the Toffoli gate count in comparison to other variants of DF or even tensor hypercontraction, which is usually regarded as the most efficient approach for qubitization.
Collapse
Affiliation(s)
- Dario Rocca
- QC Ware Corporation, Palo Alto, California 94306, United States
| | | | | | | | | | | | - Matthias Degroote
- Quantum Lab, Boehringer Ingelheim, 55218 Ingelheim am Rhein, Germany
| | - Nikolaj Moll
- Quantum Lab, Boehringer Ingelheim, 55218 Ingelheim am Rhein, Germany
| | | | - Michael Streif
- Quantum Lab, Boehringer Ingelheim, 55218 Ingelheim am Rhein, Germany
| |
Collapse
|
23
|
Takemasa Y, Nozaki K. Hexakispyrazolylethane: New Strategy for Stabilization of Hexaarylethane. Chemistry 2023:e202303575. [PMID: 38095099 DOI: 10.1002/chem.202303575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Indexed: 01/25/2024]
Abstract
Hexakis(4-trimethylsilylpyrazol-1-yl)ethane was synthesized by the oxidative dimerization of tris(4-trimethylsilylpyrazol-1-yl)methane. Single-crystal X-ray structural analysis of hexakis(4-trimethylsilylpyrazol-1-yl)ethane showed that the ethane C-C bond (1.623(4) Å) is shorter than that in hexaphenylethane (1.67(3) Å). In solution, hexakis(4-trimethylsilylpyrazol-1-yl)ethane existed as a single species, contrastive that conventional hexaphenylethanes can keep the central C-C bond only by the aid of additional bridges between the two triarylmethyl units. Theoretical calculations indicated that the tris(pyrazol-1-yl)methyl radical, which is anticipated to be under equilibrium with hexakis(pyrazol-1-yl)ethane, is less stable than trityl radicals due to lack of delocalization of the radicals. Furthermore, introduction of pyrazole groups allowed additional bridging between the two triarylmethyl moieties through metal coordination to the adjacent N atoms: hexakis(4-trimethylsilylpyrazol-1-yl)ethane exhibited unique coordination to three Ag atoms affording a hexaarylethane analog bearing three N-Ag-N bridges.
Collapse
Affiliation(s)
- Yuta Takemasa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
24
|
Rock CA, Tschumper GS. Insight into the Binding of Argon to Cyclic Water Clusters from Symmetry-Adapted Perturbation Theory. Int J Mol Sci 2023; 24:17480. [PMID: 38139311 PMCID: PMC10744083 DOI: 10.3390/ijms242417480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
This work systematically examines the interactions between a single argon atom and the edges and faces of cyclic H2O clusters containing three-five water molecules (Ar(H2O)n=3-5). Full geometry optimizations and subsequent harmonic vibrational frequency computations were performed using MP2 with a triple-ζ correlation consistent basis set augmented with diffuse functions on the heavy atoms (cc-pVTZ for H and aug-cc-pVTZ for O and Ar; denoted as haTZ). Optimized structures and harmonic vibrational frequencies were also obtained with the two-body-many-body (2b:Mb) and three-body-many-body (3b:Mb) techniques; here, high-level CCSD(T) computations capture up through the two-body or three-body contributions from the many-body expansion, respectively, while less demanding MP2 computations recover all higher-order contributions. Five unique stationary points have been identified in which Ar binds to the cyclic water trimer, along with four for (H2O)4 and three for (H2O)5. To the best of our knowledge, eleven of these twelve structures have been characterized here for the first time. Ar consistently binds more strongly to the faces than the edges of the cyclic (H2O)n clusters, by as much as a factor of two. The 3b:Mb electronic energies computed with the haTZ basis set indicate that Ar binds to the faces of the water clusters by at least 3 kJ mol-1 and by nearly 6 kJ mol-1 for one Ar(H2O)5 complex. An analysis of the interaction energies for the different binding motifs based on symmetry-adapted perturbation theory (SAPT) indicates that dispersion interactions are primarily responsible for the observed trends. The binding of a single Ar atom to a face of these cyclic water clusters can induce perturbations to the harmonic vibrational frequencies on the order of 5 cm-1 for some hydrogen-bonded OH stretching frequencies.
Collapse
Affiliation(s)
| | - Gregory S. Tschumper
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| |
Collapse
|
25
|
Phan Dang CT, Tam NM, Huynh TN, Trung NT. Revisiting conventional noncovalent interactions towards a complete understanding: from tetrel to pnicogen, chalcogen, and halogen bond. RSC Adv 2023; 13:31507-31517. [PMID: 37901266 PMCID: PMC10606978 DOI: 10.1039/d3ra06078k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
Typical noncovalent interactions, including tetrel (TtB), pnicogen (PniB), chalcogen (ChalB), and halogen bonds (HalB), were systematically re-investigated by modeling the N⋯Z interactions (Z = Si, P, S, Cl) between NH3 - as a nucleophilic, and SiF4, PF3, SF2, and ClF - as electrophilic components, employing highly reliable ab initio methods. The characteristics of N⋯Z interactions when Z goes from Si to Cl, were examined through their changes in stability, vibrational spectroscopy, electron density, and natural orbital analyses. The binding energies of these complexes at CCSD(T)/CBS indicate that NH3 tends to hold tightly most with ClF (-34.7 kJ mol-1) and SiF4 (-23.7 kJ mol-1) to form N⋯Cl HalB and N⋯Si TtB, respectively. Remarkably, the interaction energies obtained from various approaches imply that the strength of these noncovalent interactions follows the order: N⋯Si TtB > N⋯Cl HalB > N⋯S ChalB > N⋯P PniB, that differs the order of their corresponding complex stability. The conventional N⋯Z noncovalent interactions are characterized by the local vibrational frequencies of 351, 126, 167, and 261 cm-1 for TtB, PniB, ChalB, and HalB, respectively. The SAPT2+(3)dMP2 calculations demonstrate that the primary force controlling their strength retains the electrostatic term. Accompanied by the stronger strength of N⋯Si TtB and N⋯Cl HalB, the AIM and NBO results state that they are partly covalent in nature with amounts of 18.57% and 27.53%, respectively. Among various analysis approaches, the force constant of the local N⋯Z stretching vibration is shown to be most accurate in describing the noncovalent interactions.
Collapse
Affiliation(s)
- Cam-Tu Phan Dang
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| | - Nguyen Minh Tam
- Faculty of Basic Sciences, University of Phan Thiet 225 Nguyen Thong Phan Thiet City Binh Thuan Vietnam
| | - Thanh-Nam Huynh
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen 76344 Germany
| | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modelling (LCCM), Quy Nhon University Quy Nhon City 590000 Vietnam
| |
Collapse
|
26
|
Jiang Y, Hu Z, Zhong C, Yang Y, Wang XB, Sun Z, Sun H, Liu Z, Peng P. Locking water molecules via ternary O-H⋯O intramolecular hydrogen bonds in perhydroxylated closo-dodecaborate. Phys Chem Chem Phys 2023; 25:25810-25817. [PMID: 37724455 DOI: 10.1039/d3cp03555g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
A multitude of applications related to perhydroxylated closo-dodecaborate B12(OH)122- in the condensed phase are inseparable from the fundamental mechanisms underlying the high water orientation selectivity based on the base B12(OH)122-. Herein, we directly compare the structural evolution of water clusters, ranging from monomer to hexamer, oriented by functional groups in the bases B12H122-, B12H11OH2- and B12(OH)122- using multiple theoretical methods. A significant revelation is made regarding B12(OH)122-: each additional water molecule is locked into the intramolecular hydrogen bond B-O-H ternary ring in an embedded form. This new pattern of water cluster growth suggests that B-(H-O)⋯H-O interactions prevail over the competition from water-hydrogen bonds (O⋯H-O), distinguishing it from the behavior observed in B12H122- and B12H11OH2- bases, in which competition arises from a mixed competing model involving dihydrogen bonds (B-H⋯H-O), conventional hydrogen bonds (B-(H-O)⋯H-O) and water hydrogen bonds (O⋯H-O). Through aqueous solvation and ab initio molecular dynamics analysis, we further demonstrate the largest water clusters in the first hydrated shell with exceptional thermodynamic stability around B12(OH)122-. These findings provide a solid scientific foundation for the design of boron cluster chemistry incorporating hydroxyl-group-modified borate salts with potential implications for various applications.
Collapse
Affiliation(s)
- Yanrong Jiang
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China.
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.
| | - Cheng Zhong
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yan Yang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China.
| | - Zhi Liu
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China.
| | - Peng Peng
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
27
|
West AML, Dominelli‐Whiteley N, Smolyar IV, Nichol GS, Cockroft SL. Experimental Quantification of Halogen⋅⋅⋅Arene van der Waals Contacts. Angew Chem Int Ed Engl 2023; 62:e202309682. [PMID: 37470309 PMCID: PMC10953438 DOI: 10.1002/anie.202309682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Crystallographic and computational studies suggest the occurrence of favourable interactions between polarizable arenes and halogen atoms. However, the systematic experimental quantification of halogen⋅⋅⋅arene interactions in solution has been hindered by the large variance in the steric demands of the halogens. Here we have synthesized molecular balances to quantify halogen⋅⋅⋅arene contacts in 17 solvents and solvent mixtures using 1 H NMR spectroscopy. Calculations indicate that favourable halogen⋅⋅⋅arene interactions arise from London dispersion in the gas phase. In contrast, comparison of our experimental measurements with partitioned SAPT0 energies indicate that dispersion is sufficiently attenuated by the solvent that the halogen⋅⋅⋅arene interaction trend was instead aligned with increasing exchange repulsion as the halogen increased in size (ΔGX ⋅⋅⋅Ph =0 to +1.5 kJ mol-1 ). Halogen⋅⋅⋅arene contacts were slightly less disfavoured in solvents with higher solvophobicities and lower polarizabilities, but strikingly, were always less favoured than CH3 ⋅⋅⋅arene contacts (ΔGMe ⋅⋅⋅Ph =0 to -1.4 kJ mol-1 ).
Collapse
Affiliation(s)
- Andrew M. L. West
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Nicholas Dominelli‐Whiteley
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Ivan V. Smolyar
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Gary S. Nichol
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Scott L. Cockroft
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| |
Collapse
|
28
|
Togo T, Tram L, Denton LG, ElHilali-Pollard X, Gu J, Jiang J, Liu C, Zhao Y, Zhao Y, Zheng Y, Zheng Y, Yang J, Fan P, Arkin MR, Härmä H, Sun D, Canan SS, Wheeler SE, Renslo AR. Systematic Study of Heteroarene Stacking Using a Congeneric Set of Molecular Glues for Procaspase-6. J Med Chem 2023; 66:9784-9796. [PMID: 37406165 PMCID: PMC10388292 DOI: 10.1021/acs.jmedchem.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Indexed: 07/07/2023]
Abstract
Heteroaromatic stacking interactions are important in drug binding, supramolecular chemistry, and materials science, making protein-ligand model systems of these interactions of considerable interest. Here we studied 30 congeneric ligands that each present a distinct heteroarene for stacking between tyrosine residues at the dimer interface of procaspase-6. Complex X-ray crystal structures of 10 analogs showed that stacking geometries were well conserved, while high-accuracy computations showed that heteroarene stacking energy was well correlated with predicted overall ligand binding energies. Empirically determined KD values in this system thus provide a useful measure of heteroarene stacking with tyrosine. Stacking energies are discussed in the context of torsional strain, the number and positioning of heteroatoms, tautomeric state, and coaxial orientation of heteroarene in the stack. Overall, this study provides an extensive data set of empirical and high-level computed binding energies in a versatile new protein-ligand system amenable to studies of other intermolecular interactions.
Collapse
Affiliation(s)
- Takaya Togo
- Department
of Pharmaceutical Chemistry, University
of California, 600 16th Street, San Francisco, California 94143, United States
| | - Linh Tram
- Department
of Pharmaceutical Chemistry, University
of California, 600 16th Street, San Francisco, California 94143, United States
| | - Laura G. Denton
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Xochina ElHilali-Pollard
- Department
of Pharmaceutical Chemistry, University
of California, 600 16th Street, San Francisco, California 94143, United States
| | - Jun Gu
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Jinglei Jiang
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Chenglei Liu
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Yan Zhao
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Yanlong Zhao
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Yinzhe Zheng
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Yunping Zheng
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Jingjing Yang
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Panpan Fan
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry, University
of California, 600 16th Street, San Francisco, California 94143, United States
| | - Harri Härmä
- Department
of Chemistry, University of Turku, 20500 Turku, Finland
| | - Deqian Sun
- Departments
of Chemistry and Biology, Viva Biotech, Pu Dong New Area, 201203 Shanghai, China
| | - Stacie S. Canan
- Departments of Chemistry
and Structural Biology, Elgia Therapeutics, La Jolla, California 92037, United States
| | - Steven E. Wheeler
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Adam R. Renslo
- Department
of Pharmaceutical Chemistry, University
of California, 600 16th Street, San Francisco, California 94143, United States
| |
Collapse
|
29
|
Yu F, Xu G. Noncovalent Interactions in Hydrated Nitrosonium Ion Clusters Mediated by Hydrogen-Bonded Water Networks. J Phys Chem A 2023. [PMID: 37245158 DOI: 10.1021/acs.jpca.3c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
As important species in the D region of the ionosphere, hydrated nitrosonium ion clusters [NO+(H2O)n] are also archetypal and concise models to illustrate effects of different solvent shells. We have investigated noncovalent interactions in NO+(H2O)3 and NO+(H2O)4 isomers with high levels of ab initio and symmetry-adapted perturbation theory (SAPT) methods. On the basis of our computations, the exchange energies become much more repulsive, whereas the induction energies are significantly more attractive for the noncovalent interactions of NO+ with hydrogen-bonded water chains. Combined with analyses of the electron densities for the NO+(H2O)3 and NO+(H2O)4 isomers, we propose that the counteracting effect of the exchange and induction energies could be deemed as an index for the tendency to form the HO-NO covalent bond. Moreover, we have also found that the third-order induction terms are very important to evaluate reasonable charge transfer energies with the SAPT computations.
Collapse
Affiliation(s)
- Feng Yu
- Department of Physics, School of Freshmen, Xi'an Technological University, No. 4 Jinhua North Road, Xi'an 710032, Shaanxi, China
| | - Guohua Xu
- School of Sciences, Xi'an Technological University, No. 4 Jinhua North Road, Xi'an 710032, Shaanxi, China
| |
Collapse
|
30
|
Sohail U, Ullah F, Binti Zainal Arfan NH, Abdul Hamid MHS, Mahmood T, Sheikh NS, Ayub K. Transition Metal Sensing with Nitrogenated Holey Graphene: A First-Principles Investigation. Molecules 2023; 28:molecules28104060. [PMID: 37241800 DOI: 10.3390/molecules28104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The toxicity of transition metals, including copper(II), manganese(II), iron(II), zinc(II), hexavalent chromium, and cobalt(II), at elevated concentrations presents a significant threat to living organisms. Thus, the development of efficient sensors capable of detecting these metals is of utmost importance. This study explores the utilization of two-dimensional nitrogenated holey graphene (C2N) nanosheet as a sensor for toxic transition metals. The C2N nanosheet's periodic shape and standard pore size render it well suited for adsorbing transition metals. The interaction energies between transition metals and C2N nanosheets were calculated in both gas and solvent phases and were found to primarily result from physisorption, except for manganese and iron which exhibited chemisorption. To assess the interactions, we employed NCI, SAPT0, and QTAIM analyses, as well as FMO and NBO analysis, to examine the electronic properties of the TM@C2N system. Our results indicated that the adsorption of copper and chromium significantly reduced the HOMO-LUMO energy gap of C2N and significantly increased its electrical conductivity, confirming the high sensitivity of C2N towards copper and chromium. The sensitivity test further confirmed the superior sensitivity and selectivity of C2N towards copper. These findings offer valuable insight into the design and development of sensors for the detection of toxic transition metals.
Collapse
Affiliation(s)
- Uroosa Sohail
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Faizan Ullah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | | | | | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Department of Chemistry, College of Science, University of Bahrain, Isa Town 32038, Bahrain
| | - Nadeem S Sheikh
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
31
|
Bandyopadhyay P, Sadhukhan M. Modeling coarse-grained van der Waals interactions using dipole-coupled anisotropic quantum Drude oscillators. J Comput Chem 2023; 44:1164-1173. [PMID: 36645104 DOI: 10.1002/jcc.27073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/17/2023]
Abstract
The Quantum Drude Oscillator (QDO) model is a promising candidate for accurately calculating the van der Waals (vdW) interaction. Anisotropic QDO models have recently been used to represent quantum fluctuations of molecular fragments rather than that of single atoms. While this model promises accurate calculation of vdW energy, there is significant room for improvements, such as incorporating a proper fragmentation method, higher-order dispersion corrections, and so forth. The present work attempts to gauge dipole-dipole interactions' ability without fragmentation. A suitable anisotropic damping function is also introduced to work with anisotropic QDO. This revised model accurately predicts the binding energies of vdW complexes for most of the systems considered. This work indicates the limit of dipole approximation for an anisotropic QDO-based model.
Collapse
Affiliation(s)
| | - Mainak Sadhukhan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
32
|
Michalczyk M, Wojtkowiak K, Panek JJ, Jezierska A, Zierkiewicz W. Static and Dynamical Quantum Studies of CX 3-AlX 2 and CSiX 3-BX 2 (X = F, Cl, Br) Complexes with Hydrocyanic Acid: Unusual Behavior of Strong π-Hole at Triel Center. Int J Mol Sci 2023; 24:ijms24097881. [PMID: 37175586 PMCID: PMC10177972 DOI: 10.3390/ijms24097881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
The set of TX3-TrX2 (T = C, Si, Ge; Tr = B, Al, Ga; X = F, Cl, Br) molecules offers a rather unique opportunity to study both σ-hole and π-hole dimerization on the tetrel and triel ends, respectively. According to the molecular electrostatic potential (MEP) distribution, the π-hole extrema (acidic sites) were more intense than their σ-hole counterparts. The molecules owning the most (CX3-AlX2) and least (SiX3-BX2) intense π-holes were chosen to evaluate their capacities to attract one and two HCN molecules (Lewis bases). We discovered that the energetic characteristics of π-hole dimers severely conflict with the monomers MEP pattern since the weakest π-hole monomer forms a dimer characterized by interaction energy compared to those created by the monomers with noticeably greater power in the π-hole region. This outcome is due to the deformation of the weakest π-hole donor. Furthermore, the MEP analysis for monomers in the geometry of respective dimers revealed a "residual π-hole" site that was able to drive second ligand attachment, giving rise to the two "unusual trimers" examined further by the NCI and QTAIM analyses. Apart from them, the π-hole/π-hole and σ-hole/π-hole trimers have also been obtained throughout this study and described using energetic and geometric parameters. The SAPT approach revealed details of the bonding in one of the "unusual trimers". Finally, Born-Oppenheimer Molecular Dynamics (BOMD) simulations were carried out to investigate the time evolution of the interatomic distances of the studied complexes as well as their stability.
Collapse
Affiliation(s)
- Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Jarosław J Panek
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
33
|
Yamada Y, Kawao T, Urayoshi S, Nakayama K, Nibu Y. Isomer Stability Dependence of Hydrogen-Bonded Benzoxazole Clusters on Solvent Molecules. J Phys Chem A 2023; 127:2536-2544. [PMID: 36919254 DOI: 10.1021/acs.jpca.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The structures of hydrogen-bonded benzoxazole clusters with methanol and ammonia, BO-(CH3OH)n (n = 1-3) and BO-(NH3)n (n = 1, 2), in a supersonic jet have been investigated by measuring the S1-S0 electronic spectra and isomer-selected vibrational spectra with the aid of quantum chemical calculations. Similar to BO-(H2O)1, two isomers of BO-(NH3)1 were observed, which form two types of hydrogen bond networks starting from the CH bond at the 2-/7-position to the nitrogen atom of BO (C2HN/C7HN). The relative stability of these isomers strongly depends on solvent molecules. Natural bond orbital analysis reveals that the OH···N hydrogen bond is dominant in BO-(H2O)1 and that intermolecular interaction between the CH group and the nitrogen atom of ammonia, especially C2H···N, is significantly enhanced, resulting in a more stable C2HN isomer. Symmetry-adapted perturbation theory calculations indicate that the dispersion interaction between the methyl group of methanol and π electron cloud on the BO ring is responsible for the extreme stability of the C7HN of BO-(CH3OH)1. Furthermore, using time-dependent density functional theory calculations, the isomer tendency of the electronic transition shifts from the monomer origin is reproduced and it is proposed that the significant blue shift in C2HN is due to the shortened C2H bond length upon electronic excitation.
Collapse
Affiliation(s)
- Yuji Yamada
- Department of Chemistry, Graduate School of Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Tomoya Kawao
- Department of Chemistry, Graduate School of Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Saeka Urayoshi
- Department of Chemistry, Graduate School of Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kyojun Nakayama
- Department of Chemistry, Graduate School of Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yoshinori Nibu
- Department of Chemistry, Graduate School of Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
34
|
Kojasoy V, Tantillo DJ. Importance of Noncovalent Interactions Involving Sulfur Atoms in Thiopeptide Antibiotics─Glycothiohexide α and Nocathiacin I. J Phys Chem A 2023; 127:2081-2090. [PMID: 36855831 DOI: 10.1021/acs.jpca.2c07600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Noncovalent interactions involving sulfur atoms play essential roles in protein structure and function by significantly contributing to protein stability, folding, and biological activity. Sulfur is a highly polarizable atom that can participate in many types of noncovalent interactions including hydrogen bonding, sulfur-π interactions, and S-lone pair interactions, but the impact of these sulfur-based interactions on molecular recognition and drug design is still often underappreciated. Here, we examine, using quantum chemical calculations, the roles of sulfur-based noncovalent interactions in complex naturally occurring molecules representative of thiopeptide antibiotics: glycothiohexide α and its close structural analogue nocathiacin I. While donor-acceptor orbital interactions make only very small contributions, electrostatic and dispersion contributions are predicted to be significant in many cases. In pursuit of understanding the magnitudes and nature of these noncovalent interactions, we made potential structural modifications that could significantly expand the chemical space of effective thiopeptide antibiotics.
Collapse
Affiliation(s)
- Volga Kojasoy
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| |
Collapse
|
35
|
The Ultrashort Spike-Ring Interaction in Substituted Iron Maiden Molecules. Molecules 2023; 28:molecules28052244. [PMID: 36903489 PMCID: PMC10004599 DOI: 10.3390/molecules28052244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The in forms of molecular iron maidens are known for their unique ultrashort interaction between the apical hydrogen atom or its small substituent and the surface of the benzene ring. It is generally believed that this forced ultrashort X⋯π contact is associated with high steric hindrance, which is responsible for specific properties of iron maiden molecules. The main aim of this article is to investigate the influence of significant charge enrichment or depletion of the benzene ring on the characteristics of the ultrashort C-X⋯π contact in iron maiden molecules. For this purpose, three strongly electron-donating (-NH2) or strongly electron-withdrawing (-CN) groups were inserted into the benzene ring of in-[34,10][7]metacyclophane and its halogenated (X = F, Cl, Br) derivatives. It is shown that, despite such extremely electron-donating or electron-accepting properties, the considered iron maiden molecules surprisingly reveal quite high resistance to changes in electronic properties.
Collapse
|
36
|
Jiang Y, Cai Z, Yuan Q, Cao W, Hu Z, Sun H, Wang XB, Sun Z. Highly Structured Water Networks in Microhydrated Dodecaborate Clusters. J Phys Chem Lett 2022; 13:11787-11794. [PMID: 36516831 DOI: 10.1021/acs.jpclett.2c03537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report a combined photoelectron spectroscopy and theoretical investigation of a series of size-selected hydrated closo-dodecaborate clusters B12X122-·nH2O (X = H, F, or I; n = 1-6). Distinct structural arrangements of water clusters from monomer to hexamer can be achieved by using different B12X122- bases, illustrating the evident solute specificity. Because B-H···H-O dihydrogen bonds are stronger than O···H-O hydrogen bonds in water, the added water molecules are arranged in a unified binding mode by forming highly structured water networks manipulated by B12H122-. As a comparison, the hydrated B12F122- clusters display similar water evolution for n values of 1 and 2 but different binding modes for larger clusters, while water networks in B12I122- share similarities with the free water clusters. This finding provides a consistent picture of the structural diversity of hydrogen bonding networks in microhydrated dodecaborates and a molecular-level understanding of microsolvation dynamics in aqueous borate chemistry.
Collapse
Affiliation(s)
- Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Zhaojie Cai
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
37
|
Mráziková K, Kruse H, Mlýnský V, Auffinger P, Šponer J. Multiscale Modeling of Phosphate···π Contacts in RNA U-Turns Exposes Differences between Quantum-Chemical and AMBER Force Field Descriptions. J Chem Inf Model 2022; 62:6182-6200. [PMID: 36454943 DOI: 10.1021/acs.jcim.2c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Phosphate···π, also called anion···π, contacts occur between nucleobases and anionic phosphate oxygens (OP2) in r(GNRA) and r(UNNN) U-turn motifs (N = A,G,C,U; R = A,G). These contacts were investigated using state-of-the-art quantum-chemical methods (QM) to characterize their physicochemical properties and to serve as a reference to evaluate AMBER force field (AFF) performance. We found that phosphate···π interaction energies calculated with the AFF for dimethyl phosphate···nucleobase model systems are less stabilizing in comparison with double-hybrid DFT and that minimum contact distances are larger for all nucleobases. These distance stretches are also observed in large-scale AFF vs QM/MM computations and classical molecular dynamics (MD) simulations on several r(gcGNRAgc) tetraloop hairpins when compared to experimental data extracted from X-ray/cryo-EM structures (res. ≤ 2.5 Å) using the WebFR3D bioinformatic tool. MD simulations further revealed shifted OP2/nucleobase positions. We propose that discrepancies between the QM and AFF result from a combination of missing polarization in the AFF combined with too large AFF Lennard-Jones (LJ) radii of nucleobase carbon atoms in addition to an exaggerated short-range repulsion of the r-12 LJ repulsive term. We compared these results with earlier data gathered on lone pair···π contacts in CpG Z-steps occurring in r(UNCG) tetraloops. In both instances, charge transfer calculations do not support any significant n → π* donation effects. We also investigated thiophosphate···π contacts that showed reduced stabilizing interaction energies when compared to phosphate···π contacts. Thus, we challenge suggestions that the experimentally observed enhanced thermodynamic stability of phosphorothioated r(GNRA) tetraloops can be explained by larger London dispersion.
Collapse
Affiliation(s)
- Klaudia Mráziková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00Brno, Czech Republic
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65Brno, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65Brno, Czech Republic
| | - Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg67084, France
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65Brno, Czech Republic
| |
Collapse
|
38
|
Complexes of carbon dioxide with methanol and its monohalogen-substituted: Beyond the tetrel bond. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Luo J, Dai H, Zeng C, Wu D, Cao M. A Theoretical Study of the Halogen Bond between Heteronuclear Halogen and Benzene. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228078. [PMID: 36432179 PMCID: PMC9692316 DOI: 10.3390/molecules27228078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Halogen bonds play an important role in many fields, such as biological systems, drug design and crystal engineering. In this work, the structural characteristics of the halogen bond between heteronuclear halogen XD (ClF, BrCl, IBr, ICl, BrF and IF) and benzene were studied using density functional theory. The structures of the complexes between heteronuclear halogen and benzene have Cs symmetry. The interaction energies of the complexes between heteronuclear halogen XD (ClF, BrCl, IBr, ICl, BrF and IF) and benzene range from -27.80 to -37.18 kJ/mol, increasing with the increases in the polarity between the atoms of X and D, and are proportional to the angles of a between the Z axis and the covalent bond of heteronuclear halogen. The electron density (ρ) and corresponding Laplacian (∇2ρ) values indicate that the interaction of the heteronuclear halogen and benzene is a typical long-range weak interaction similar to a hydrogen bond. Independent gradient model analysis suggests that the van der Waals is the main interaction between the complexes of heteronuclear halogen and benzene. Symmetry-adapted perturbation theory analysis suggests that the electrostatic interaction is the dominant part in the complexes of C6H6⋯ClF, C6H6⋯ICl, C6H6⋯BrF and C6H6⋯IF, and the dispersion interaction is the main part in the complexes of C6H6⋯BrCl, C6H6⋯IBr.
Collapse
|
40
|
Tikhonov DS, Scutelnic V, Sharapa DI, Krotova AA, Dmitrieva AV, Obenchain DA, Schnell M. Structures of the (Imidazole)nH+ ... Ar (n=1,2,3) complexes determined from IR spectroscopy and quantum chemical calculations. Struct Chem 2022. [DOI: 10.1007/s11224-022-02053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractHere, we present new cryogenic infrared spectra of the (Imidazole)$$_{n}\mathrm{H}^{+}$$
n
H
+
(n=1,2,3) ions. The data was obtained using helium tagging infrared predissociation spectroscopy. The new results were compared with the data obtained by Gerardi et al. (Chem. Phys. Lett. 501:172–178, 2011) using the same technique but with argon as a tag. Comparison of the two experiments, assisted by theoretical calculations, allowed us to evaluate the preferable attachment positions of argon to the (Imidazole)$$_{n}\mathrm{H}^{+}$$
n
H
+
frame. Argon attaches to nitrogen-bonded hydrogen in the case of the (Imidazole)H$$^+$$
+
ion, while in (Imidazole)$$_{2}\mathrm{H}^{+}$$
2
H
+
and (Imidazole)$$_{3}\mathrm{H}^{+}$$
3
H
+
the preferred docking sites for the argon are in the center of the complex. This conclusion is supported by analyzing the spectral features attributed to the N–H stretching vibrations. Symmetry adapted perturbation theory (SAPT) analysis of the non-covalent forces between argon and the (Imidazole)$$_{n}\mathrm{H}^{+}$$
n
H
+
(n=1,2,3) frame revealed that this switch of docking preference with increasing complex size is caused by an interplay between induction and dispersion interactions.
Collapse
|
41
|
Ibrahim MA, Saeed RR, Shehata MN, Mohamed EE, Soliman ME, Al-Fahemi JH, El-Mageed HA, Ahmed MN, Shawky AM, Moussa NA. Unexplored σ-hole and π-hole interactions in (X2CY)2 complexes (X = F, Cl; Y = O, S). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Chandra Mallojjala S, Sarkar R, Karugu RW, Manna MS, Ray S, Mukherjee S, Hirschi JS. Mechanism and Origin of Remote Stereocontrol in the Organocatalytic Enantioselective Formal C(sp 2)–H Alkylation Using Nitroalkanes as Alkylating Agents. J Am Chem Soc 2022; 144:17399-17406. [PMID: 36108139 DOI: 10.1021/jacs.2c02941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Experimental 13C kinetic isotope effects (KIEs) and density functional theory (DFT) calculations are used to evaluate the mechanism and origin of enantioselectivity in the formal C(sp2)-H alkylative desymmetrization of cyclopentene-1,3-diones using nitroalkanes as the alkylating agent. An unusual combination of an inverse (∼0.980) and a normal (∼1.033) KIE is observed on the bond-forming carbon atoms of the cyclopentene-1,3-dione and nitroalkane, respectively. These data provide strong support for a mechanism involving reversible carbon-carbon bond formation followed by rate- and enantioselectivity-determining nitro group elimination. The theoretical free-energy profile and the predicted KIEs indicate that this elimination event occurs via an E1cB pathway. The origin of remote stereocontrol is evaluated by distortion-interaction and SAPT0 analyses of the E1cB transition states leading to both enantiomers.
Collapse
Affiliation(s)
| | - Rahul Sarkar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rachael W. Karugu
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Madhu Sudan Manna
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sayan Ray
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jennifer S. Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| |
Collapse
|
43
|
Milovanović MR, Stanković IM, Živković JM, Ninković DB, Hall MB, Zarić SD. Water: new aspect of hydrogen bonding in the solid state. IUCRJ 2022; 9:639-647. [PMID: 36071797 PMCID: PMC9438494 DOI: 10.1107/s2052252522006728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
All water-water contacts in the crystal structures from the Cambridge Structural Database with d OO ≤ 4.0 Å have been found. These contacts were analysed on the basis of their geometries and interaction energies from CCSD(T)/CBS calculations. The results show 6729 attractive water-water contacts, of which 4717 are classical hydrogen bonds (d OH ≤ 3.0 Å and α ≥ 120°) with most being stronger than -3.3 kcal mol-1. Beyond the region of these hydrogen bonds, there is a large number of attractive interactions (2062). The majority are antiparallel dipolar interactions, where the O-H bonds of two water molecules lying in parallel planes are oriented antiparallel to each other. Developing geometric criteria for these antiparallel dipoles (β1, β2 ≥ 160°, 80 ≤ α ≤ 140° and T HOHO > 40°) yielded 1282 attractive contacts. The interaction energies of these antiparallel oriented water molecules are up to -4.7 kcal mol-1, while most of the contacts have interaction energies in the range -0.9 to -2.1 kcal mol-1. This study suggests that the geometric criteria for defining attractive water-water interactions should be broader than the classical hydrogen-bonding criteria, a change that may reveal undiscovered and unappreciated interactions controlling molecular structure and chemistry.
Collapse
Affiliation(s)
- Milan R. Milovanović
- Innovation Center of the Faculty of Chemistry, Studentski trg 12-16, Belgrade 11000, Serbia
| | - Ivana M. Stanković
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade, 11000 Serbia
| | - Jelena M. Živković
- Innovation Center of the Faculty of Chemistry, Studentski trg 12-16, Belgrade 11000, Serbia
| | - Dragan B. Ninković
- Innovation Center of the Faculty of Chemistry, Studentski trg 12-16, Belgrade 11000, Serbia
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Snežana D. Zarić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade 11000, Serbia
| |
Collapse
|
44
|
Villot C, Ballesteros F, Wang D, Lao KU. Coupled Cluster Benchmarking of Large Noncovalent Complexes in L7 and S12L as Well as the C 60 Dimer, DNA-Ellipticine, and HIV-Indinavir. J Phys Chem A 2022; 126:4326-4341. [PMID: 35766331 DOI: 10.1021/acs.jpca.2c01421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we report the benchmark binding energies of the seven complexes within the L7 data set, six host-guest complexes from the S12L data set, a C60 dimer, the DNA-ellipticine intercalation complex, and the largest system of the study, the HIV-indinavir system, which contained 343 atoms or 139 heavy atoms. The high-quality values reported were obtained via a focal point method that relies on the canonical form of second-order Møller-Plesset theory and the domain-based local pair natural orbital scheme for the coupled cluster with single double and perturbative triple excitations [DLPNO-CCSD(T)] extrapolated to the complete basis set (CBS) limit. The results in this work not only corroborate but also improve upon some previous benchmark values for large noncovalent complexes albeit at a relatively steep cost. Although local CCSD(T) and the largely successful fixed-node diffusion Monte Carlo (FN-DMC) have been shown to generally agree for small- to medium-size systems, a discrepancy in their reported binding energy values arises for large complexes, where the magnitude of the disagreement is a definite cause for concern. For example, the largest deviation in the L7 data set was 2.8 kcal/mol (∼10%) on the low end in C3GC. Such a deviation only grows worse in the S12L set, which showed a difference of up to 10.4 kcal/mol (∼25%) by a conservative estimation in buckycatcher-C60. The DNA-ellipticine complex also generated a disagreement of 4.4 kcal/mol (∼10%) between both state-of-the-art methods. The disagreement between local CCSD(T) and FN-DMC in large noncovalent complexes shows that it is urgently needed to have the canonical CCSD(T), the Monte Carlo CCSD(T), or the full configuration interaction quantum Monte Carlo approaches available to large systems on the hundred-atom scale to solve this dilemma. In addition, the performances of cheaper popular computational methods were assessed for the studied complexes with respect to DLPNO-CCSD(T)/CBS. r2SCAN-3c, B97M-V, and PBE0+D4 work well in large noncovalent complexes in this work, and GFN2-xTB performs well in π-π stacking complexes. B97M-V is the most reliable computationally efficient approach to predicting noncovalent interactions for large complexes, being the only one to have binding errors within the so-called 1 kcal/mol "chemical accuracy". The benchmark interaction energies of these host-guest complexes, molecular materials, and biological systems with electronic and medicinal implications provide crucial reference data for the improvement of current and future lower-cost methods.
Collapse
Affiliation(s)
- Corentin Villot
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 United States
| | - Francisco Ballesteros
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 United States
| | - Danyang Wang
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 United States
| | - Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 United States
| |
Collapse
|
45
|
Yu F. Origin of the Microsolvation Effect on the Central Barriers of S N2 Reactions. J Phys Chem A 2022; 126:4342-4348. [PMID: 35785958 DOI: 10.1021/acs.jpca.2c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have quantitatively analyzed the microsolvation effect on the central barriers of microsolvated bimolecular nucleophilic substitution (SN2) reactions by means of a two-step energy decomposition procedure. According to the first energy decompositions, an obvious increase in the central barrier for a microsolvated SN2 reaction against its unsolvated counterpart can be mainly ascribed to the fact that the interaction between the solute and the conjunct solvent becomes less attractive from the reactant complex to the transition state. On the basis of the second energy decompositions with symmetry-adapted perturbation theory, this less attractive interaction in the transition state is primarily due to the interplay of the changes in the electrostatic, exchange, and induction components. However, the contribution of the change for the dispersion component is relatively small. A distinct linear correlation has also been observed between the changes of the total interaction energies and those of the corresponding electrostatic components for the microsolvated SN2 reactions studied in this work. Moreover, the two-step energy decomposition procedure employed in this work is expected to be extensively applied to the gas phase reactions mediated by molecules or clusters.
Collapse
Affiliation(s)
- Feng Yu
- Department of Physics, School of Freshmen, Xi'an Technological University, No. 4 Jinhua North Road, Xi'an, Shaanxi 710032, China
| |
Collapse
|
46
|
Sohail U, Ullah F, Mahmood T, Muhammad S, Ayub K. Adsorption of Industrial Gases (CH 4, CO 2, and CO) on Olympicene: A DFT and CCSD(T) Investigation. ACS OMEGA 2022; 7:18852-18860. [PMID: 35694488 PMCID: PMC9178626 DOI: 10.1021/acsomega.2c01796] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 05/20/2023]
Abstract
Olympicene C19H12, an organic semiconductor, is investigated as an adsorption material for toxic industrial gas molecules such as CH4, CO2, and CO. A deep insight of complexation of CH4, CO2, and CO with olympicene (analyte@OLY) was obtained by interaction energy, symmetry-adopted perturbation theory (SAPT2+), quantum theory of atoms in molecules (QTAIM), density of states (DOS), noncovalent interaction (NCI), and frontier molecular orbital and natural bond orbital analysis. Domain-based local pair natural orbital coupled cluster theory single-point energy calculations were performed using the cc-pVTZ basis set in combination with corresponding auxiliary cc-pVTZ/JK and cc-pVTZ/C basis sets. For all property calculations of doped olympicene complexes, the ωB97M-V functional was employed. The stability trend for interaction energies is CO2@OLY > CH4@OLY > CO@OLY. QTAIM and NCI analysis confirmed the presence of NCIs, where the dispersion factor (in CH4@OLY) has the highest contribution, as revealed from SAPT2+. The chemical sensitivity of the system was evidenced by the origination of new energy states in DOS spectra. The recovery time for the analyte@OLY complex was calculated at 300 K, and an excellent recovery response was observed. All results evidently indicated weak interactions of the olympicene surface with CH4, CO2, and CO.
Collapse
Affiliation(s)
- Uroosa Sohail
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Faizan Ullah
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Tariq Mahmood
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Department
of Chemistry, College of Science, University
of Bahrain, P.O. Box
32038, Barhrain 1051, Bahrain
| | - Shabbir Muhammad
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Khurshid Ayub
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- . Phone: +92-992-383591. Fax: +92-992-383441
| |
Collapse
|
47
|
External Electric Field Effect on the Strength of σ-Hole Interactions: A Theoretical Perspective in Like⋯Like Carbon-Containing Complexes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092963. [PMID: 35566307 PMCID: PMC9104924 DOI: 10.3390/molecules27092963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
For the first time, σ-hole interactions within like⋯like carbon-containing complexes were investigated, in both the absence and presence of the external electric field (EEF). The effects of the directionality and strength of the utilized EEF were thoroughly unveiled in the (F-C-F3)2, (F-C-H3)2, and (H-C-F3)2 complexes. In the absence of the EEF, favorable interaction energies, with negative values, are denoted for the (F-C-F3)2 and (H-C-F3)2 complexes, whereas the (F-C-H3)2 complex exhibits unfavorable interactions. Remarkably, the strength of the applied EEF exhibits a prominent role in turning the repulsive forces within the latter complex into attractive ones. The symmetrical nature of the considered like⋯like carbon-containing complexes eradicated the effect of directionality of the EEF. The quantum theory of atoms in molecules (QTAIM), and the noncovalent interaction (NCI) index, ensured the occurrence of the attractive forces, and also outlined the substantial contributions of the three coplanar atoms to the total strength of the studied complexes. Symmetry-adapted perturbation theory (SAPT) results show the dispersion-driven nature of the interactions.
Collapse
|
48
|
Hill JG, Legon AC. Radial Potential Energy Functions of Linear Halogen-Bonded Complexes YX···ClF (YX = FB, OC, SC, N 2) and the Effects of Substituting X by Second-Row Analogues: Mulliken Inner and Outer Complexes. J Phys Chem A 2022; 126:2511-2521. [PMID: 35426668 PMCID: PMC9097511 DOI: 10.1021/acs.jpca.2c01205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Energies
of linear, halogen-bonded complexes in the isoelectronic
series YX···ClF (YX = FB, OC, or N2) are
calculated at several levels of theory as a function of the intermolecular
distance r(X···Cl) to yield radial
potential energy functions. When YX = OC, a secondary minimum is observed
corresponding to lengthened and shortened distances r(ClF) and r(CCl), respectively, relative to the
primary minimum, suggesting a significant contribution from the Mulliken
inner complex structure [O=C–Cl]+···F–. A conventional weak, halogen-bond complex OC···ClF
occurs at the primary minimum. For YX = FB, the primary minimum corresponds
to the inner complex [F=B–Cl]+···F–, while the outer complex FB···ClF is
at the secondary minimum. The effects on the potential energy function
of systematic substitution of Y and X by second-row congeners and
of reversing the order of X and Y are also investigated. Symmetry-adapted
perturbation theory and natural population analyses are applied to
further understand the nature of the various halogen-bond interactions.
Collapse
Affiliation(s)
- J Grant Hill
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Anthony C Legon
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
49
|
Ibrahim MAA, Moussa NAM, Saad SMA, Ahmed MN, Shawky AM, Soliman MES, Mekhemer GAH, Rady ASSM. σ-Hole and LP-Hole Interactions of Pnicogen···Pnicogen Homodimers under the External Electric Field Effect: A Quantum Mechanical Study. ACS OMEGA 2022; 7:11264-11275. [PMID: 35415328 PMCID: PMC8992284 DOI: 10.1021/acsomega.2c00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
σ-Hole and lone-pair (lp)-hole interactions within σ-hole···σ-hole, σ-hole···lp-hole, and lp-hole···lp-hole configurations were comparatively investigated on the pnicogen···pnicogen homodimers (PCl3)2, for the first time, under field-free conditions and the influence of the external electric field (EEF). The electrostatic potential calculations emphasized the impressive versatility of the examined PCl3 monomers to participate in σ-hole and lp-hole pnicogen interactions. Crucially, the sizes of σ-hole and lp-hole were enlarged under the influence of the positively directed EEF and decreased in the case of reverse direction. Interestingly, the energetic quantities unveiled more favorability of the σ-hole···lp-hole configuration of the pnicogen···pnicogen homodimers, with significant negative interaction energies, than σ-hole···σ-hole and lp-hole···lp-hole configurations. Quantum theory of atoms in molecules and noncovalent interaction index analyses were adopted to elucidate the nature and origin of the considered interactions, ensuring their closed shell nature and the occurrence of attractive forces within the studied homodimers. Symmetry-adapted perturbation theory-based energy decomposition analysis alluded to the dispersion force as the main physical component beyond the occurrence of the examined interactions. The obtained findings would be considered as a fundamental underpinning for forthcoming studies pertinent to chemistry, materials science, and crystal engineering.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Nayra A. M. Moussa
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Sherif M. A. Saad
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Muhammad Naeem Ahmed
- Department
of Chemistry, The University of Azad Jammu
and Kashmir, Muzaffarabad 13100, Pakistan
| | - Ahmed M. Shawky
- Science
and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mahmoud E. S. Soliman
- Molecular
Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Gamal A. H. Mekhemer
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Al-shimaa S. M. Rady
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
50
|
Wojtkowiak K, Jezierska A, Panek JJ. Revealing Intra- and Intermolecular Interactions Determining Physico-Chemical Features of Selected Quinolone Carboxylic Acid Derivatives. Molecules 2022; 27:2299. [PMID: 35408698 PMCID: PMC9000753 DOI: 10.3390/molecules27072299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
The intra- and intermolecular interactions of selected quinolone carboxylic acid derivatives were studied in monomers, dimers and crystals. The investigated compounds are well-recognized as medicines or as bases for further studies in drug design. We employed density functional theory (DFT) in its classical formulation to develop gas-phase and solvent reaction field (PCM) models describing geometric, energetic and electronic structure parameters for monomers and dimers. The electronic structure was investigated based on the atoms in molecules (AIM) and natural bond orbital (NBO) theories. Special attention was devoted to the intramolecular hydrogen bonds (HB) present in the investigated compounds. The characterization of energy components was performed using symmetry-adapted perturbation theory (SAPT). Finally, the time-evolution methods of Car-Parrinello molecular dynamics (CPMD) and path integral molecular dynamics (PIMD) were employed to describe the hydrogen bond dynamics as well as the spectroscopic signatures. The vibrational features of the O-H stretching were studied using Fourier transformation of the autocorrelation function of atomic velocity. The inclusion of quantum nuclear effects provided an accurate depiction of the bridged proton delocalization. The CPMD and PIMD simulations were carried out in the gas and crystalline phases. It was found that the polar environment enhances the strength of the intramolecular hydrogen bonds. The SAPT analysis revealed that the dispersive forces are decisive factors in the intermolecular interactions. In the electronic ground state, the proton-transfer phenomena are not favourable. The CPMD results showed generally that the bridged proton is localized at the donor side, with possible proton-sharing events in the solid-phase simulation of stronger hydrogen bridges. However, the PIMD enabled the quantitative estimation of the quantum effects inclusion-the proton position was moved towards the bridge midpoint, but no qualitative changes were detected. It was found that the interatomic distance between the donor and acceptor atoms was shortened and that the bridged proton was strongly delocalized.
Collapse
Affiliation(s)
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland;
| | - Jarosław J. Panek
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland;
| |
Collapse
|