1
|
Su H, Sun J, Li D, Wei J. Local hydrogen bonding environment induces the deprotonation of surface hydroxyl for continuing ammonia decomposition. Phys Chem Chem Phys 2024; 26:16871-16882. [PMID: 38832822 DOI: 10.1039/d3cp06328c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
There is still a paucity of fundamental understanding about the reaction of ammonia decomposition over TiO2, especially the role of water. Herein, FPMD and DFT calculations were used to address this concern. The results reveal that ammonia decomposition in pure ammonia causes the hydroxylation of the surfaces and reduction of the proton acceptor sites, making proton transfer (PT) difficult, increasing the distances between the NH3 and Obr sites and changing the adsorption configurations of NH3, which are not favourable for accepting protons from NH3 dissociation. When water is introduced, the local hydrogen bonding environment, consisting of NH3 and H2O with the H2O dynamically close to the ObrH, promotes the increase of the positive charge of H atoms from 0.133 to 1.47 e, which increases the ObrH bond dipole moment from 1.136 to 1.400 Debye, resulting in the shortening of the H-bond distances between NH3 and ObrH (1.858 vs. 1.945 Å of only NH3) and enlarging the ObrH bonds (0.980 vs. 1.120 Å). This reduces the activation energy barriers of ObrH deprotonation and causes the surfaces to have low hydroxyl coverage from 0.425 to 0.382 eV. Our study reveals the role of water and provides new insights into ammonia decomposition on TiO2.
Collapse
Affiliation(s)
- Hui Su
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jie Sun
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Donghui Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jinjia Wei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Huang Q, Zheng H, Wang X, Fu Q, Gong T, Liu C, Ma H, Ye L, Duan X, Yuan Y. Construction of Oxygen Vacancy-Rich TiO 2 Nanocrystals for Boosting the Ammonolysis of Caprolactam to 6-Aminocapronitrile. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13806-13814. [PMID: 38466904 DOI: 10.1021/acsami.3c19591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Hexamethylene diamine, an important chemical intermediate for polyamides, can be synthesized through the two-step route of caprolactam (CPL) ammonolysis to 6-aminocapronitrile (ACN), followed by hydrogenation. This method has received increasing attention from academia and industry. However, studies on the catalyst structure-performance correlation in CPL ammonolysis are still sporadic. In this work, a series of anatase TiO2 with different oxygen vacancy concentrations was prepared by chemical reduction using NaBH4. The oxygen vacancy on TiO2 surface, presented as Ti3+ sites, substantially enhances the adsorption and activation of NH3, which are demonstrated as the key steps in ammonolysis. Owing to the synergistic effect of Ti3+ and Ti4+ species, the CPL conversion rate and ACN selectivity of 85 and 97%, respectively, are achieved within 250 h. Density functional theory calculations showed that the intermediates on oxygen vacancy-rich TiO2 had a more favorable adsorption energy compared to those on intact TiO2, which is in good agreement with the experimental results.
Collapse
Affiliation(s)
- Qihui Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xia Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qi Fu
- Hubei Three Gorges Laboratory, Hubei Xingfa Chemical Group Co., Ltd., Yichang 443099, China
| | - Tao Gong
- Hubei Three Gorges Laboratory, Hubei Xingfa Chemical Group Co., Ltd., Yichang 443099, China
| | - Chang Liu
- Hubei Three Gorges Laboratory, Hubei Xingfa Chemical Group Co., Ltd., Yichang 443099, China
| | - Huijuan Ma
- Hubei Three Gorges Laboratory, Hubei Xingfa Chemical Group Co., Ltd., Yichang 443099, China
| | - Linmin Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinping Duan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Youzhu Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Kuang Y, Guo H, Ouyang K, Wang X, Li D, Li L. Nano-TiO 2 aggravates immunotoxic effects of chronic ammonia stress in zebrafish (Danio rerio) intestine. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109548. [PMID: 36626958 DOI: 10.1016/j.cbpc.2023.109548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Ammonia and nano-TiO2 are commonly found pollutants in aquatic environments around the world. NH3 has been proved to be absorbed on nano-TiO2 surface, therefore, the biosafety and environmental effects of ammonia and co-occurring nano-TiO2 in aquatic environments has increased considerably in recent years. To explore the potential interactive effects and mechanisms of ammonia and nano-TiO2 on the intestinal immune system, three-month-old female zebrafish were exposed to total ammonia nitrogen (TAN; 0, 3, 30 mg/L) with or without nano-TiO2 (1 mg/L) for 60 d. The results showed that intestinal ammonia levels increased with the increase of TAN exposure concentration in the presence of nano-TiO2. Histopathological analysis demonstrated that both TAN and nano-TiO2 caused cell vacuolation, lymphocyte infiltration and goblet cells hyperplasia in the intestine mucosa. Our study also found that the contents and gene expression levels of lysozyme (lys) and β-defensin (def-β) in the intestine of zebrafish exposed to TAN alone or combined with nano-TiO2 were significantly reduced, suggesting a decline in the intestinal innate immunity of fish. A broad upregulation of TLRs-related genes indicated that TAN and nano-TiO2 could activate TLR4/5-mediated MyD88-dependent pathway, and eventually induce intestinal inflammation. It should be noted that TAN combined with nano-TiO2 had more significant inhibitory effects on the intestinal structure and innate immune responses than TAN alone. Current data suggested that ammonia and nano-TiO2 had a synergistic inhibitory effect on intestinal mucosal immunity, and their associated health risk to aquatic animals and the water ecosystem should not be underestimated.
Collapse
Affiliation(s)
- Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
4
|
Guo H, Kuang Y, Ouyang K, Zhang C, Yang H, Chen S, Tang R, Zhang X, Li D, Li L. Ammonia in the presence of nano titanium dioxide (nano-TiO 2) induces greater oxidative damage in the gill and liver of female zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113458. [PMID: 35367888 DOI: 10.1016/j.ecoenv.2022.113458] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/24/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Water pollution caused by a highly hazardous chemical ammonia and a widespread application nanomaterials-nano titanium dioxide (n-TiO2) in nature water has attracted extensive concern of the world. However, the potential joint effects of the two factors are unknown. Aim to investigate the potential interactive effects of ammonia and n-TiO2 and the behind mechanisms, adult female zebrafish (Danio rerio) were co-exposed for 8 weeks by total ammonia nitrogen (TAN; 0, 3, 30 mg/L) and n-TiO2 (0, 0.1, 1 mg/L) in different combination conditions based on a full-factorial design. The analysis of absorption kinetics confirmed that n-TiO2 could absorb free ammonia (NH3) in aqueous solution and the loss rate of free NH3 increased with the rise of n-TiO2 concentration. Consistent with this, free NH3 concentrations in the gill and liver were higher in the presence of n-TiO2 compared to TAN exposure alone. The increases of MDA and PC concentrations in the gill and liver of fish indicated that TAN and n-TiO2 alone or in combination caused oxidative stress. Simultaneously, the activity and transcription of antioxidant enzymes (T-SOD, CuZn-SOD, Mn-SOD, CAT, GPx and GST) as well as antioxidant GSH contents were extensively inhibited by TAN and n-TiO2 via Nrf2-Keap1 signaling. The significant interactive effects of TAN and n-TiO2 were detected on levels of GSH, GST and gstr1 mRNA in the gill, and on levels of GSH, T-SOD, Mn-SOD, CAT levels as well as gpx1a and keap1 mRNAs in the liver, implying synergistic toxic risk of TAN and n-TiO2. The more severe histopathological alterations and higher IBR analysis in co-treatment groups further proved that the existence of n-TiO2 excavated ammonia-induced toxicity in the gill and liver, especially in liver. In conclusion, ammonia and n-TiO2 have a synergistic toxic risk of fish health because ammonia and n-TiO2 cause oxidative-antioxidative imbalance by inducing ROS overproduction.
Collapse
Affiliation(s)
- Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ce Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Siqi Chen
- Hubei Aquaculture Technology Extension Center (Hubei Aquatic Breeds Introduction and Breeding Center), Wuhan 430060, PR China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Xi Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
5
|
Elasticity of Cross-Linked Titania Nanocrystal Assemblies Probed by AFM-Bulge Tests. NANOMATERIALS 2019; 9:nano9091230. [PMID: 31470667 PMCID: PMC6780250 DOI: 10.3390/nano9091230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 01/22/2023]
Abstract
In order to enable advanced technological applications of nanocrystal composites, e.g., as functional coatings and layers in flexible optics and electronics, it is necessary to understand and control their mechanical properties. The objective of this study was to show how the elasticity of such composites depends on the nanocrystals’ dimensionality. To this end, thin films of titania nanodots (TNDs; diameter: ~3–7 nm), nanorods (TNRs; diameter: ~3.4 nm; length: ~29 nm), and nanoplates (TNPs; thickness: ~6 nm; edge length: ~34 nm) were assembled via layer-by-layer spin-coating. 1,12-dodecanedioic acid (12DAC) was added to cross-link the nanocrystals and to enable regular film deposition. The optical attenuation coefficients of the films were determined by ultraviolet/visible (UV/vis) absorbance measurements, revealing much lower values than those known for titania films prepared via chemical vapor deposition (CVD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed a homogeneous coverage of the substrates on the µm-scale but a highly disordered arrangement of nanocrystals on the nm-scale. X-ray photoelectron spectroscopy (XPS) analyses confirmed the presence of the 12DAC cross-linker after film fabrication. After transferring the films onto silicon substrates featuring circular apertures (diameter: 32–111 µm), freestanding membranes (thickness: 20–42 nm) were obtained and subjected to atomic force microscopy bulge tests (AFM-bulge tests). These measurements revealed increasing elastic moduli with increasing dimensionality of the nanocrystals, i.e., 2.57 ± 0.18 GPa for the TND films, 5.22 ± 0.39 GPa for the TNR films, and 7.21 ± 1.04 GPa for the TNP films.
Collapse
|
6
|
DFT investigation for NH3 adsorption behavior on Fe, Ru, and Os-embedded graphitic carbon nitride: promising candidates for ammonia adsorbent. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01747-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|