1
|
Effectiveness of low-intensity pulsed ultrasound on osteoarthritis of the temporomandibular joint: A review. Ann Biomed Eng 2020; 48:2158-2170. [PMID: 32514932 DOI: 10.1007/s10439-020-02540-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/26/2020] [Indexed: 01/15/2023]
Abstract
Loading is indispensable for the growth, development, and maintenance of joint tissues, including mandibular condylar cartilage, but excessive loading or reduced host adaptive capacity can considerably damage the temporomandibular joint (TMJ), leading to temporomandibular joint osteoarthritis (TMJ-OA). TMJ-OA, associated with other pathological conditions and aging processes, is a highly degenerative disease affecting the articular cartilage. Many treatment modalities for TMJ-OA have been developed. Traditional clinical treatment includes mainly nonsurgical options, such as occlusal splints. However, non-invasive therapy does not achieve joint tissue repair and regeneration. Growing evidence suggests that low-intensity pulsed ultrasound (LIPUS) accelerates bone fracture healing and regeneration, as well as having extraordinary effects in terms of soft tissue repair and regeneration. The latter have received much attention, and various studies have been performed to evaluate the potential role of LIPUS in tissue regeneration including that applied to articular cartilage. The present article provides an overview of the status of LIPUS stimulation used to prevent the onset and progression of TMJ-OA and enhance the tissue regeneration of mandibular condylar cartilage. The etiology and management of TMJ-OA are explained briefly, animal models of TMJ-OA are described, and the effectiveness of LIPUS on cell metabolism and tissue regeneration in the TMJ is discussed.
Collapse
|
2
|
Braz MA, Freitas Portella F, Seehaber KA, Bavaresco CS, Rivaldo EG. Association between oxidative stress and temporomandibular joint dysfunction: A narrative review. J Oral Rehabil 2020; 47:536-546. [PMID: 31880832 DOI: 10.1111/joor.12930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/11/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The role of oxidative stress in temporomandibular disorders (TMDs) has been studied using synovial fluid, to evaluate oxidative stress (im)balance and its potential role in the onset and/or progression of the disease. OBJECTIVE This review aimed to evaluate the association between oxidative stress markers and the etiopathogenesis of TMJ dysfunction by means of synovial fluid analysis. METHODS Two independent reviewers searched the electronic databases from inception to March 2019: PubMed/MEDLINE, LILACS, SciELO, EMBASE, TRIPDATABASE, SCOPUS, and Google Scholar. The following key search terms were used: Temporomandibular Joint Disorders OR Temporomandibular Joint Disc OR Temporomandibular Joint Dysfunction Syndrome OR Temporomandibular Joint OR Facial Pain AND Free Radicals OR Oxidative Stress. Data were extracted from the selected articles, including study design, sample profile, TMJ disease reported, diagnostic method, reactive oxygen and nitrogen species evaluated, enzymatic and non-enzymatic antioxidants evaluated, and techniques used to measure free radicals and antioxidants. RESULTS After title and abstract screening of 6974 results, and full-text reading, 19 studies were included. All selected articles were cross-sectional observational studies. Enzymatic and non-enzymatic antioxidant defences appeared to be reduced in these patients, resulting in the establishment of the oxidative stress process. In addition, the studies showed a positive correlation between the severity of the intra-articular TMD and the increase in oxidative damage. CONCLUSION The establishment of oxidative stress, whether by an increase in reactive oxygen/nitrogen species or by a decrease in antioxidant defences, or a combination of both, may be associated with the establishment and maintenance of intra-articular damage.
Collapse
Affiliation(s)
- Marcylene Arruda Braz
- Programa de Pós-Graduação em Odontologia, Universidade Luterana do Brasil, Canoas, Brazil
| | - Fernando Freitas Portella
- Programa de Pós-Graduação em Odontologia, Universidade Luterana do Brasil, Canoas, Brazil.,Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Brazil
| | - Karin Astrid Seehaber
- Programa de Pós-Graduação em Odontologia, Universidade Luterana do Brasil, Canoas, Brazil
| | - Caren Serra Bavaresco
- Programa de Pós-Graduação em Odontologia, Universidade Luterana do Brasil, Canoas, Brazil
| | - Elken Gomes Rivaldo
- Programa de Pós-Graduação em Odontologia, Universidade Luterana do Brasil, Canoas, Brazil
| |
Collapse
|
3
|
Li C, Cai H, Meng Q, Feng Y, Guo H, Fang W, Long X. IL-1β mediating high mobility group box protein-1 expression in condylar chondrocyte during temporomandibular joint inflammation. J Oral Pathol Med 2015; 45:539-45. [PMID: 26671727 DOI: 10.1111/jop.12401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Temporomandibular joint (TMJ) osteoarthritis(OA)characterized with cartilage degen-eration is associated with inflammation. High mobility group box chromosomal protein-1(HMGB-1)is a potent mediator of inflammation and the trigger of OA. The expression of HMGB-1 in TMJ OA was uncovered, but the role of HMGB-1 in TMJ cartilage degeneration is not fully understood. In this study, the regulation of HMGB-1 in TMJ condylar cartilage was revealed. METHODS A complete Freund's adjuvant (CFA)-induced TMJ inflammation animal model was employed and the expression of HMGB-1 was detected at 1st, 2nd, and 6th weeks by immunohistochemistry. TMJ condylar chondrocytes were incubated with IL-1β (10 and 40 ng/ml) at 24, 48, and 72 h, and the translocation and protein level of HMGB-1 were evaluated by immunofluorescence and Western blot. RESULT Nuclear HMGB-1 staining was predominantly located in chondrocytes of both the fibrosis and proliferative zones in healthy TMJ. 1st week and 2nd week after CFA injection, immunoreaction could be detected in the cytoplasms of HMGB-1-positive cells and cartilage matrix especially in hypertrophic zone. At 6th week after CFA injection, cartilage matrix expression was disappeared and the cytoplasm expression of HMGB-1 was very weak in hypertrophic zone. HMGB-1 was translocated from the nucleus to the cytoplasm at 48 h after incubated with IL-1β (10 ng/ml and 40 ng/ml). The protein level of HMGB-1 was increased after stimulation and had a peak at 48 h. CONCLUSION HMGB-1 might be associated with TMJ inflammation and OA. Insight into the role of HMGB-1 in TMJ inflammation is helpful to add the new knowledge into the pathogenesis of TMJ OA.
Collapse
Affiliation(s)
- Cheng Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hengxing Cai
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qinggong Meng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaping Feng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huilin Guo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Fang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Feng Y, Fang W, Li C, Guo H, Li Y, Long X. The expression of high-mobility group box protein-1 in temporomandibular joint osteoarthritis with disc perforation. J Oral Pathol Med 2015; 45:148-52. [PMID: 26082301 DOI: 10.1111/jop.12336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Yaping Feng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Wei Fang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral and Maxillofacial Surgery; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Cheng Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Huilin Guo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Yingjie Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral and Maxillofacial Surgery; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Xing Long
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral and Maxillofacial Surgery; School and Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
5
|
Wang XD, Kou XX, Mao JJ, Gan YH, Zhou YH. Sustained inflammation induces degeneration of the temporomandibular joint. J Dent Res 2012; 91:499-505. [PMID: 22427270 DOI: 10.1177/0022034512441946] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The temporomandibular joint (TMJ) undergoes degenerative changes among patients who suffer from arthritis, and yet the pathogenesis of TMJ osteoarthritis and rheumatoid arthritis is poorly understood. We hypothesized that sustained inflammation in the TMJ induces structural abnormalities, and accordingly characterized the disc and synovium in a novel model with double injections of complete Freund's adjuvant (CFA), using behavioral, morphological, cellular, and molecular assessments. Thirty-five days following double CFA injections in seven-week-old female Sprague-Dawley rats, the disc in the CFA-induced inflammation group demonstrated multiple degenerative changes, including marked thickening, opacity, and deformation. The discs in the CFA group further showed significantly greater wet and net weights, and elevated collagen, aggrecan, and total glycosaminoglycan contents. The synovium in the CFA-induced inflammation group showed marked infiltration of mononucleated cells and accumulated sub-synovial adipose tissue. Both the disc and synovium had significantly higher iNOS and IL-1β mRNA expression than controls (saline injections). These findings are consistent with our hypothesis that sustained TMJ inflammation, even within the presently observed 35 days, may be a predisposing factor for structural abnormalities. Insight into TMJ inflammation and degeneration is anticipated to improve our understanding of the pathogenesis of TMJ arthritis and help design clinically relevant strategies for tissue engineering.
Collapse
Affiliation(s)
- X D Wang
- Department of Orthodontics, Peking University School & Hospital of Stomatology, 22# Zhongguancun South Ave., Beijing, China
| | | | | | | | | |
Collapse
|
6
|
Lee MJ, Han KJ, Kwon HJ, Jung HS, Cho SW. Effects of hyaluronan on carrageenan-induced synovitis in rat TMJ. Anat Cell Biol 2010; 43:125-31. [PMID: 21189993 PMCID: PMC2998788 DOI: 10.5115/acb.2010.43.2.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/28/2010] [Accepted: 05/12/2010] [Indexed: 11/27/2022] Open
Abstract
Nitric oxide is one of many proinflammatory mediators that are involved in temporomandibular joint (TMJ) inflammatory disorder and is synthesized by inducible nitric oxide synthase (iNOS). iNOS is transcriptionally regulated by nuclear factor-κB (NF-κB) in cases of inflammation, proliferation, and apoptosis. It has also been reported that nitric oxide is positively regulated by carrageenan and negatively regulated by hyaluronan in the knee joint. The aim of this study was to histologically evaluate how inflammation and cell proliferation of the synovial membrane are affected by the exogenous administration of carrageenan and hyaluronan in the rat TMJ by investigating iNOS, NF-κB, and anti proliferating cell nuclear antigen (PCNA) immunoreactivity. As results, immunoreactive cells to iNOS, NF-κB, and PCNA were normally localized only in the synovial membrane of wild type TMJs. The numbers of immunoreactive cells were extensively larger in the carrageenan-injected synovial membranes exhibiting excessive folding, and smaller in the hyaluronan-injected synovial membranes showing a few folds. These results indicate that a carrageenan injection induced inflammation and cell proliferation especially in the synovial membrane and that hyaluronan relieved the inflammation by decreasing inflammatory molecules in the synovial membrane.
Collapse
Affiliation(s)
- Min-Jung Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Research Center for Orofacial Hard Tissue Regeneration, Brain Korea 21 Project, Oral Science Research Center, College of Dentistry, Yonsei Center of Biotechnology, Yonsei University, Seoul, Korea
| | | | | | | | | |
Collapse
|
7
|
Cady RJ, Durham PL. Cocoa-enriched diets enhance expression of phosphatases and decrease expression of inflammatory molecules in trigeminal ganglion neurons. Brain Res 2010; 1323:18-32. [PMID: 20138852 DOI: 10.1016/j.brainres.2010.01.081] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 01/22/2010] [Accepted: 01/29/2010] [Indexed: 12/11/2022]
Abstract
Activation of trigeminal nerves and release of neuropeptides that promote inflammation are implicated in the underlying pathology of migraine and temporomandibular joint (TMJ) disorders. The overall response of trigeminal nerves to peripheral inflammatory stimuli involves a balance between enzymes that promote inflammation, kinases, and those that restore homeostasis, phosphatases. The goal of this study was to determine the effects of a cocoa-enriched diet on the expression of key inflammatory proteins in trigeminal ganglion neurons under basal and inflammatory conditions. Rats were fed a control diet or an isocaloric diet enriched in cocoa for 14days prior to an injection of noxious stimuli to cause acute or chronic excitation of trigeminal neurons. In animals fed a cocoa-enriched diet, basal levels of the mitogen-activated kinase (MAP) phosphatases MKP-1 and MKP-3 were elevated in neurons. Importantly, the stimulatory effects of acute or chronic peripheral inflammation on neuronal expression of the MAPK p38 and extracellular signal-regulated kinases (ERK) were significantly repressed in response to cocoa. Similarly, dietary cocoa significantly suppressed basal neuronal expression of calcitonin gene-related peptide (CGRP) as well as stimulated levels of the inducible form of nitric oxide synthase (iNOS), proteins implicated in the underlying pathology of migraine and TMJ disorders. To our knowledge, this is the first evidence that a dietary supplement can cause upregulation of MKP, and that cocoa can prevent inflammatory responses in trigeminal ganglion neurons. Furthermore, our data provide evidence that cocoa contains biologically active compounds that would be beneficial in the treatment of migraine and TMJ disorders.
Collapse
Affiliation(s)
- Ryan J Cady
- Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO 65806, USA
| | | |
Collapse
|
8
|
Morisugi T, Tanaka Y, Kawakami T, Kirita T. Mechanical stretch enhances NF-kappaB-dependent gene expression and poly(ADP-ribose) synthesis in synovial cells. J Biochem 2010; 147:633-44. [PMID: 20053785 DOI: 10.1093/jb/mvp210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Temporomandibular joint disorders (TMD) show complex symptoms associated with inflammation, pain and degeneration of the peripheral tissues including synovium. Although it is believed that excessive mechanical stress on synovium causes development of TMD, the molecular mechanism by which mechanical stress triggers TMD has still remained unclear. In order to examine the effect of mechanical stress on synoviocytes, rabbit synovial cells were cyclically stretched in vitro. The stretch efficiently increased the gene expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and NF-kappaB responsive reporter gene constructs. The interruption of NF-kappaB activating pathway by inhibitors resulted in the abrogation of those expressions, indicating the pivotal role of NF-kappaB in the mechanical stretch-mediated COX-2 and iNOS expressions. In parallel, the stretch remarkably increased NO production and poly(ADP-ribose) (PAR) synthesis, suggesting that excessive amounts of NO causes DNA injury and in turn activates PAR synthesis by poly(ADP-ribose) polymerase (PARP). The inhibition of PAR synthesis by a PARP inhibitor or a radical scavenger enhanced the mechanical stretch-induced gene expressions in a NF-kappaB-independent manner, implying an involvement of PARP in the gene expression. Taken together, these results demonstrate that mechanical stress on synovial cells not only induces gene expressions of COX-2 and iNOS but also affects PAR synthesis.
Collapse
Affiliation(s)
- Toshiaki Morisugi
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Shijio-cho 840, Kashihara, Nara 634-8521, Japan.
| | | | | | | |
Collapse
|
9
|
Vause CV, Durham PL. CGRP stimulation of iNOS and NO release from trigeminal ganglion glial cells involves mitogen-activated protein kinase pathways. J Neurochem 2009; 110:811-21. [PMID: 19457095 DOI: 10.1111/j.1471-4159.2009.06154.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clinical and basic science data support an integral role of calcitonin gene-related peptide (CGRP) in the pathophysiology of temporomandibular joint disorders. Recently, we have shown that CGRP can stimulate the synthesis and release of nitric oxide (NO) from trigeminal ganglion glial cells. The goal of this study was to determine the role of mitogen-activated protein kinase (MAPK) signaling pathways in CGRP regulation of iNOS expression and NO release from cultured trigeminal ganglion glial cells from Sprague-Dawley rats. CGRP treatment for 2 h significantly increased activity of the MAPK reporter genes, Elk, ATF-2, and CHOP. In addition, CGRP increased nuclear staining for the active forms of the MAPKs: extracellular signal-regulated kinase, c-Jun amino-terminal kinase, and p38. This stimulatory event was not observed in cultures pre-treated with the CGRP receptor antagonist peptide CGRP(8-37). Similarly, pre-treatment with selective MAPK inhibitors repressed increases in reporter gene activity as well as CGRP-induced increases in iNOS expression and NO release mediated by MAPKs. In addition, over-expression of MAPK kinase 1 (MEK1), MEK3, MEK6, and MEK kinase significantly increased iNOS expression and NO production in glial cells. Results from our study provide evidence that CGRP binding to its receptor can stimulate iNOS gene expression via activation of MAPK pathways in trigeminal ganglion glial cells.
Collapse
Affiliation(s)
- C V Vause
- Department of Biology, Missouri State University, Springfield, Missouri 65897, USA
| | | |
Collapse
|
10
|
Freeman SE, Patil VV, Durham PL. Nitric oxide-proton stimulation of trigeminal ganglion neurons increases mitogen-activated protein kinase and phosphatase expression in neurons and satellite glial cells. Neuroscience 2008; 157:542-55. [PMID: 18938228 PMCID: PMC2642960 DOI: 10.1016/j.neuroscience.2008.09.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 11/21/2022]
Abstract
Elevated nitric oxide (NO) and proton levels in synovial fluid are implicated in joint pathology. However, signaling pathways stimulated by these molecules that mediate inflammation and pain in the temporomandibular joint (TMJ) have not been investigated. The goal of this study was to determine the effect of NO-proton stimulation of rat trigeminal neurons on the in vivo expression of mitogen-activated protein kinases (MAPKs) and phosphatases (MKPs) in trigeminal ganglion neurons and satellite glial cells. Low levels of the active MAPKs extracellular signal-regulated kinase (ERK), Jun amino-terminal kinase (JNK), and p38 were localized in the cytosol of neurons and satellite glial cells in unstimulated animals. However, increased levels of active ERK and p38, but not JNK, were detected in the cytosol and nucleus of V3 neurons and satellite glial cells 15 min and 2 h following bilateral TMJ injections of an NO donor diluted in pH 5.5 medium. While ERK levels returned to near basal levels 24 h after stimulation, p38 levels remained significantly elevated. In contrast to MKP-2 and MKP-3 levels that were barely detectable in neurons or satellite glial cells, MKP-1 staining was readily observed in satellite glial cells in ganglia from unstimulated animals. However, neuronal and satellite glial cell staining for MKP-1, MKP-2, and MKP-3 was significantly increased in response to NO-protons. Increased active ERK and p38 levels as well as elevated MKP levels were also detected in neurons and satellite glial cells located in V2 and V1 regions of the ganglion. Our data provide evidence that NO-proton stimulation of V3 neurons results in temporal and spatial changes in expression of active ERK and p38 and MKPs in all regions of the ganglion. We propose that in trigeminal ganglia these cellular events, which are involved in peripheral sensitization as well as control of inflammatory and nociceptive responses, may play a role in TMJ pathology.
Collapse
Affiliation(s)
- S E Freeman
- Department of Biology, 225 Temple Hall, Missouri State University, Springfield, MO 65897, USA
| | | | | |
Collapse
|
11
|
Ozaki M, Kaneko S, Soma K. Masseter muscular weakness affects temporomandibular synovitis induced by jaw opening in growing rats. Angle Orthod 2008; 78:819-25. [PMID: 18298201 DOI: 10.2319/072407-342.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 10/01/2007] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To evaluate the influence of impaired masseter function during growth on the development of temporomandibular synovitis. MATERIALS AND METHODS Sixteen 3-week-old male Wistar rats were classified into four groups. The first group served as control; and in the second group, jaw opening was forced for 3 hours when the rats were 9 weeks old. In the third and fourth groups, the masseter muscles were bilaterally resected at 3 weeks of age, and the rats in the fourth group were additionally forced to open their jaw at 9 weeks of age. All rats were sacrificed at 9 weeks. Temporomandibular joint (TMJ) tissue samples were processed for histology, and evaluated for cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions by immunohistochemistry to examine the inflammatory changes in the synovial membrane. RESULTS The control group showed noninflammatory changes. In the jaw-opening group, vascular dilation and weak COX-2 immunoreactivity were induced by jaw opening in the synovium. In the masseter-resection group, the masseter-resected rats exhibited moderate synovial changes while in the resection with opening group, the masseter-resected rats revealed more significant inflammatory changes including synovial hyperplasia, dilated vasculature, fibrin deposits, and intense immunoreactivity for COX-2 and iNOS, all caused by jaw opening. CONCLUSIONS These results suggest that masseter activity in the growth period is an important factor in the induction of temporomandibular synovitis.
Collapse
Affiliation(s)
- Miho Ozaki
- Department of Orofacial Development and Function, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | |
Collapse
|
12
|
Keklikoglu N, Koray M, Kocaelli H, Akinci S. iNOS expression in oral and gastrointestinal tract mucosa. Dig Dis Sci 2008; 53:1437-42. [PMID: 17987386 DOI: 10.1007/s10620-007-0061-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Accepted: 09/27/2007] [Indexed: 12/16/2022]
Abstract
It is known that the overproduction of nitric oxide (NO) by nitric oxide synthase (NOS) occurs during the progression of various inflammatory diseases in intestinal tract. NOS inhibitors or inducible nitric oxide synthase (iNOS) gene expression inhibitors should be considered as potential anti-inflammatory agents, as NO synthesized by iNOS is related to various pathophysiological processes including inflammation. In order to understand the relationship between iNOS and pathological reactions such as the inflammatory process and malign transformation clearly, the existence and amount of constitutive expression should be determined. It is crucial to comprehend the harmful and protective amounts of iNOS expressions in order to clarify the relationship between iNOS and pathological processes. Evidently, only after this inspection is it possible to utilize iNOS as a marker and treatment instrument during the diagnosis and treatment of malign transformation and the inflammatory process.
Collapse
Affiliation(s)
- Nurullah Keklikoglu
- Faculty of Dentistry, Department of Histology and Embryology, Istanbul University, Capa, Istanbul, Turkey.
| | | | | | | |
Collapse
|
13
|
Tanaka E, Detamore M, Mercuri L. Degenerative Disorders of the Temporomandibular Joint: Etiology, Diagnosis, and Treatment. J Dent Res 2008; 87:296-307. [DOI: 10.1177/154405910808700406] [Citation(s) in RCA: 470] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Temporomandibular joint (TMJ) disorders have complex and sometimes controversial etiologies. Also, under similar circumstances, one person’s TMJ may appear to deteriorate, while another’s does not. However, once degenerative changes start in the TMJ, this pathology can be crippling, leading to a variety of morphological and functional deformities. Primarily, TMJ disorders have a non-inflammatory origin. The pathological process is characterized by deterioration and abrasion of articular cartilage and local thickening. These changes are accompanied by the superimposition of secondary inflammatory changes. Therefore, appreciating the pathophysiology of the TMJ degenerative disorders is important to an understanding of the etiology, diagnosis, and treatment of internal derangement and osteoarthrosis of the TMJ. The degenerative changes in the TMJ are believed to result from dysfunctional remodeling, due to a decreased host-adaptive capacity of the articulating surfaces and/or functional overloading of the joint that exceeds the normal adaptive capacity. This paper reviews etiologies that involve biomechanical and biochemical factors associated with functional overloading of the joint and the clinical, radiographic, and biochemical findings important in the diagnosis of TMJ-osteoarthrosis. In addition, non-invasive and invasive modalities utilized in TMJ-osteoarthrosis management, and the possibility of tissue engineering, are discussed.
Collapse
Affiliation(s)
- E. Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, The University of Tokushima Graduate School of Oral Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA; and
- Department of Surgery, Division of Oral and Maxillofacial Surgery, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - M.S. Detamore
- Department of Orthodontics and Dentofacial Orthopedics, The University of Tokushima Graduate School of Oral Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA; and
- Department of Surgery, Division of Oral and Maxillofacial Surgery, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - L.G. Mercuri
- Department of Orthodontics and Dentofacial Orthopedics, The University of Tokushima Graduate School of Oral Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA; and
- Department of Surgery, Division of Oral and Maxillofacial Surgery, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
14
|
Abstract
Multiple dental diseases are characterized by chronic inflammation, due to the production of cytokines, chemokines, and prostanoids by immune and non-immune cells. Membrane-bound receptors provide a link between the extracellular environment and the initiation of intracellular signaling events that activate common signaling components, including p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor (NF)-kappaB. Although ERK pathways regulate cell survival and are responsive to extracellular mitogens, p38 MAPK, JNK, and NF-kappaB are involved in environmental stress responses, including inflammatory stimuli. Over the past decade, significant advances have been made relative to our understanding of the fundamental intracellular signaling mechanisms that govern inflammatory cytokine expression. The p38 MAPK pathway has been shown to play a pivotal role in inflammatory cytokine and chemokine gene regulation at both the transcriptional and the post-transcriptional levels. In this review, we present evidence for the significance of p38 MAPK signaling in diverse dental diseases, including chronic pain, desquamative disorders, and periodontal diseases. Additional information is presented on the molecular mechanisms whereby p38 signaling controls post-transcriptional gene expression in inflammatory states.
Collapse
Affiliation(s)
- C S Patil
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY 14214-3008, USA
| | | |
Collapse
|
15
|
Nagai H, Miyamoto Y, Nakata A, Hatakeyama S, Iwanami Y, Fukuda M. Isolation and characterization of synovial cells from the human temporomandibular joint. J Oral Pathol Med 2006; 35:104-10. [PMID: 16430741 DOI: 10.1111/j.1600-0714.2006.00369.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The synovial tissues with temporomandibular disorders (TMDs) often show chronic inflammatory changes and the synovial cells participate in the pathogenic processes of TMDs. The synovial membrane is composed of a synovial lining layer and a connective sublining layer. The synovial lining layer is made up of two kinds of cells: macrophage-like type A and fibroblastic type B cells. The aim of this study was to isolate and characterize synovial cells from the human temporomandibular joint (TMJ). METHODS Synovial cells were isolated using an explant culture method. Then, we characterized the cultured synovial cells (SGA2 cells) using immunocytochemistry. RESULTS SGA2 cells expressed the fibroblastic markers vimentin and prolyl 4-hydroxylase; they also expressed laminin and heat shock protein 27, all of which are markers of type B cells. However, some cells expressed the macrophage marker CD68. These CD68-positive cells simultaneously expressed laminin. CONCLUSIONS We isolated and cultured synovial type B cells from the human TMJ, and identified the presence of intermediate type synovial lining cells, having the phenotypic properties of both type A and type B cells, among the synovial lining cells.
Collapse
Affiliation(s)
- H Nagai
- Division of Dentistry and Oral Surgery, Akita University Hospital, Akita, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Uğar-Cankal D, Ozmeric N. A multifaceted molecule, nitric oxide in oral and periodontal diseases. Clin Chim Acta 2006; 366:90-100. [PMID: 16387291 DOI: 10.1016/j.cca.2005.10.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/19/2005] [Accepted: 10/20/2005] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) is a molecule with multiple effects on different tissues. NO takes important roles in vasodilatation, bacterial challenge and cytokine stimulation, regulation of mineralized tissue function, neurotransmission, and platelet aggregation, etc. However, under pathological conditions, NO has damaging effects. NO is synthesized by NO synthases (NOS) and inducible isoform of NOS (iNOS) is closely related to the pathophysiological characteristics of inflammatory diseases such as periodontal diseases. The expression of iNOS has been investigated in salivary gland-related diseases, temporomandibular joint disorders and oral cancer as well. The beneficial and damaging effects of NO in diseases related with periodontal, dental and maxillofacial area are discussed in this review. The biological pathways involved with NO and NO inhibitors may be good drug targets to have a role in the future management of patients with diseases in orofacial region.
Collapse
Affiliation(s)
- Dilek Uğar-Cankal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Gazi University, Biskek caddesi 84.sokak 06510 Emek, Ankara, Turkey.
| | | |
Collapse
|
17
|
Nozawa-Inoue K, Suzuki A, Amizuka N, Maeda T. Expression of caveolin-1 in the rat temporomandibular joint. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2006; 288:8-12. [PMID: 16342213 DOI: 10.1002/ar.a.20275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This immunocytochemical study revealed the expression of caveolin-1, a major protein of caveolae, in the rat temporomandibular joint. In the synovial lining layer, immunoreactive products for caveolin-1 were detected on the cell membrane of the fibroblast-like type B cells, as confirmed by immunocytochemistry for heat shock protein 25. The cells in the articular disk, the articular layer, and zone of proliferation of the mandibular condyle also showed intense immunoreactions for caveolin-1.
Collapse
Affiliation(s)
- Kayoko Nozawa-Inoue
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | |
Collapse
|
18
|
Arinci A, Ademoglu E, Aslan A, Mutlu-Turkoglu U, Karabulut AB, Karan A. Molecular correlates of temporomandibular joint disease. ACTA ACUST UNITED AC 2005; 99:666-70. [PMID: 15897851 DOI: 10.1016/j.tripleo.2004.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The relation between disease severity and the known mediators of pain, inflammation, and tissue damage-prostaglandin E 2 (PGE 2 ), leukotriene B 4 (LTB 4 ), malondialdehyde (MDA), nitric oxide (NO), and myeloperoxidase (MPO)-was examined in the synovial fluid of patients with internal derangement (ID) of the temporomandibular joint (TMJ). STUDY DESIGN Thirty-two patients with ID were classified according to Wilkes by clinical and radiological examinations, and TMJ synovial fluid samples were obtained by arthrocentesis. PGE 2 and LTB 4 levels were measured by ELISA kits, MDA levels were determined by a fluorometric method, myeloperoxidase activity was determined by an end-point method, and NO levels were measured by Griess reaction. RESULTS The earliest significant increase was observed in NO levels (stage II) and this elevation persisted in the subsequent stages. The first significant elevation in PGE 2 and LTB 4 levels and MPO activity were observed in stage III. Both PGE 2 and LTB 4 levels were increased in stage III and were correlated with each at this stage and in the subsequent stage. Significant increases in MDA levels were observed only in stage IV. At stage IV there was correlation between MDA and PGE 2 , MDA and LTB 4 , and MDA and MPO. The relation between PGE 2 and MDA was the most powerful one. CONCLUSION Results of this cross-sectional study point out the relation between disease severity and levels of some molecular mediators in synovial fluid of TMJ. Longitudinal studies are needed to explore the role of these molecular mediators in the progression of ID.
Collapse
Affiliation(s)
- Atilla Arinci
- Department of Plastic and Reconstructive Surgery, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | | | | | | | | | | |
Collapse
|
19
|
Seki H, Fukuda M, Iino M, Takahashi T, Yoshioka N. Immunohistochemical localization of cyclooxygenase-1 and -2 in synovial tissues from patients with internal derangement or osteoarthritis of the temporomandibular joint. Int J Oral Maxillofac Surg 2004; 33:687-92. [PMID: 15337183 DOI: 10.1016/j.ijom.2004.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2004] [Indexed: 10/26/2022]
Abstract
This study examined the immunohistochemical expression and localization of cyclooxygenase-1 and -2 (COX-1 and COX-2) in synovial tissues from patients with internal derangement (ID) or osteoarthritis (OA) of the temporomandibular joint (TMJ). Synovial tissues from patients with condylar fractures of the mandible were studied as control. Synovial tissues from 13 TMJs of 10 patients with ID or OA and from 5 TMJs of 4 patients with fractures were examined for COX-1 and COX-2 expression by immunohistochemical staining using two monoclonal antibodies. In addition, whether the COX-2 expression grade correlated with the synovitis score and clinical findings was assessed. COX-2 was expressed in the synovial lining, infiltrating mononuclear cells, fibroblast-like cells, and blood vessels, including CD31-positive endothelial cells, in the synovium of patients with ID or OA. Expression levels of COX-1 in synovial lining cells and endothelial cells were similar in the specimens obtained from the patients with ID or OA and those obtained from the controls. The expression of COX-2 positively correlated with arthroscopic findings of synovitis (p = 0.55, P = 0.023) and with joint pain (p = 0.56, P = 0.021). These results suggest that up-regulation of COX-2 in synovium may play a part in the pathogenesis of synovitis in patients with ID or OA of the TMJ.
Collapse
Affiliation(s)
- H Seki
- Division of Dentistry and Oral Surgery, Akita University School of Medicine, 1-1-1 Hondo, Akita City, Akita 010-8543, Japan.
| | | | | | | | | |
Collapse
|
20
|
Nozawa-Inoue K, Amizuka N, Ikeda N, Suzuki A, Kawano Y, Maeda T. Synovial membrane in the temporomandibular joint--its morphology, function and development. ACTA ACUST UNITED AC 2004; 66:289-306. [PMID: 14692685 DOI: 10.1679/aohc.66.289] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper reviews recent findings of the synovial membrane, in particular the morphology, function and development of synovial lining cells, in the temporomandibular joint (TMJ). Electron microscopic studies have confirmed the synovial membrane in TMJ consists of macrophage-like type A cells and fibroblast-like type B cells identical to those in other systematic joints. The macrophage-like type A cells react with anti-macrophage and macrophage-derived substances including the major histocompatibility class II molecule, and show a drastic increase in their number in the inflamed synovial membrane. In addition, they have the ability to produce substances involved in the progression of TMJ inflammation such as nitric oxide and inducible nitric oxide synthase. Observation of osteopetrotic mice revealed that macrophage-like type A cells in TMJ are derived from monocyte lineage. Immunocytochemistry for 25kDa heat shock protein was able to depict the entire shape of fibroblast-like type B cells including their unique processes. The expression of an estrogen receptor alpha-immunoreaction in the fibroblast-like type B cells may explain the etiology of temporomandibular disorders at a higher frequency in females than in males, suggesting that TMJ is a target tissue for estrogen. Furthermore, fibroblast-like type B cells are equipped with a basement membrane to serve as an adhesion molecule for the fibroblast-like type B cells to keep their epithelial arrangement. A clear understanding of the morphology of the intact synovial membrane will serve to clarify the etiology and development of temporomandibular disorders.
Collapse
Affiliation(s)
- Kayoko Nozawa-Inoue
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | | | | | |
Collapse
|