1
|
Kerr R, Agrawal S, Maity S, Koppolu B, Jayanthi S, Suresh Kumar G, Gundampati RK, McNabb DS, Zaharoff DA, Kumar TKS. Design of a thrombin resistant human acidic fibroblast growth factor (hFGF1) variant that exhibits enhanced cell proliferation activity. Biochem Biophys Res Commun 2019; 518:191-196. [PMID: 31420170 DOI: 10.1016/j.bbrc.2019.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022]
Abstract
Acidic fibroblast growth factors (FGF1s) are heparin binding proteins that regulate a wide array of key cellular processes and are also candidates for promising biomedical applications. FGF1-based therapeutic applications are currently limited due to their inherent thermal instability and susceptibility to proteases. Using a wide range of biophysical and biochemical techniques, we demonstrate that reversal of charge on a well-conserved positively charged amino acid, R136, in the heparin binding pocket drastically increases the resistance to proteases, thermal stability, and cell proliferation activity of the human acidic fibroblast growth factor (hFGF1). Two-dimensional NMR data suggest that the single point mutations at position-136 (R136G, R136L, R136Q, R136K, and R136E) did not perturb the backbone folding of hFGF1. Results of the differential scanning calorimetry experiments show that of all the designed R136 mutations only the charge reversal mutation, R136E, significantly increases (ΔTm = 7 °C) the thermal stability of the protein. Limited trypsin and thrombin digestion results reveal that the R136E mutation drastically increases the resistance of hFGF1 to the action of the serine proteases. Isothermal titration calorimetry data show that the R136E mutation markedly decreases the heparin binding affinity of hFGF1. Interestingly, despite lower heparin binding affinity, the cell proliferation activity of the R136E variant is more than double of that exhibited by either the wild type or the other R136 variants. The R136E variant due to its increased thermal stability, resistance to proteases, and enhanced cell proliferation activity are expected to provide valuable clues for the development of hFGF1- based therapeutics for the management of chronic diabetic wounds.
Collapse
Affiliation(s)
- Rebecca Kerr
- Department of Chemistry and Biochemistry, University of Arkansas, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Sanhita Maity
- Department of Chemistry and Biochemistry, University of Arkansas, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Bhanuprasanth Koppolu
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill & North Carolina State University, Raleigh, NC, 27695, USA
| | - Srinivas Jayanthi
- Department of Chemistry and Biochemistry, University of Arkansas, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Gayatri Suresh Kumar
- Department of Chemistry and Biochemistry, University of Arkansas, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, University of Arkansas, Fayetteville, AR, 72701, USA
| | - David S McNabb
- Department of Biological Sciences, University of Arkansas, University of Arkansas, Fayetteville, AR, 72701, USA
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill & North Carolina State University, Raleigh, NC, 27695, USA
| | | |
Collapse
|
2
|
Davis JE, Alghanmi A, Gundampati RK, Jayanthi S, Fields E, Armstrong M, Weidling V, Shah V, Agrawal S, Koppolu BP, Zaharoff DA, Kumar TKS. Probing the role of proline -135 on the structure, stability, and cell proliferation activity of human acidic fibroblast growth factor. Arch Biochem Biophys 2018; 654:115-125. [PMID: 30031837 DOI: 10.1016/j.abb.2018.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023]
Abstract
Human acidic fibroblast growth factor 1 (hFGF1) is a protein intricately involved in cell growth and tissue repair. In this study, we investigate the effect(s) of understanding the role of a conserved proline (P135), located in the heparin binding pocket, on the structure, stability, heparin binding affinity, and cell proliferation activity of hFGF1. Substitution of proline-135 with a positively charged lysine (P135K) resulted in partial destabilization of the protein; however, the overall structural integrity of the protein was maintained upon substitution of proline-135 with either a negative charge (P135E) or a polar amino acid (P135Q). Interestingly, upon heparin binding, an increase in thermal stability equivalent to that of wt-hFGF1 was observed when P135 was replaced with a positive (P135K) or a negative charge (P135E), or with a polar amino acid (P135Q). Surprisingly, introduction of negative charge in the heparin-binding pocket at position 135 (P135E) increased hFGF1's affinity for heparin by 3-fold, while the P135K mutation, did not alter the heparin-binding affinity. However, the enhanced heparin-binding affinity of mutant P135E did not translate to an increase in cell proliferation activity. Interestingly, the P135K and P135E double mutations, P135K/R136E and P135/R136E, reduced the heparin binding affinity by ∼3-fold. Furthermore, the cell proliferation activity was increased when the charge reversal mutation R136E was paired with both P135E (P135E/R136E) and P135K (P135K/R136E). Overall, the results of this study suggest that while heparin is useful for stabilizing hFGF1 on the cell surface, this interaction is not mandatory for activation of the FGF receptor.
Collapse
Affiliation(s)
- Julie Eberle Davis
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Arwa Alghanmi
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Srinivas Jayanthi
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ellen Fields
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Monica Armstrong
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Vanessa Weidling
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Varun Shah
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Bhanu Prasanth Koppolu
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC, 27695, USA
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC, 27695, USA
| | | |
Collapse
|
3
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
4
|
Kirov A, Duarte M, Guay J, Karolak M, Yan C, Oxburgh L, Prudovsky I. Transgenic expression of nonclassically secreted FGF suppresses kidney repair. PLoS One 2012; 7:e36485. [PMID: 22606265 PMCID: PMC3351418 DOI: 10.1371/journal.pone.0036485] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/06/2012] [Indexed: 11/22/2022] Open
Abstract
FGF1 is a signal peptide-less nonclassically released growth factor that is involved in angiogenesis, tissue repair, inflammation, and carcinogenesis. The effects of nonclassical FGF export in vivo are not sufficiently studied. We produced transgenic mice expressing FGF1 in endothelial cells (EC), which allowed the detection of FGF1 export to the vasculature, and studied the efficiency of postischemic kidney repair in these animals. Although FGF1 transgenic mice had a normal phenotype with unperturbed kidney structure, they showed a severely inhibited kidney repair after unilateral ischemia/reperfusion. This was manifested by a strong decrease of postischemic kidney size and weight, whereas the undamaged contralateral kidney exhibited an enhanced compensatory size increase. In addition, the postischemic kidneys of transgenic mice were characterized by hyperplasia of interstitial cells, paucity of epithelial tubular structures, increase of the areas occupied by connective tissue, and neutrophil and macrophage infiltration. The continuous treatment of transgenic mice with the cell membrane stabilizer, taurine, inhibited nonclassical FGF1 export and significantly rescued postischemic kidney repair. It was also found that similar to EC, the transgenic expression of FGF1 in monocytes and macrophages suppresses kidney repair. We suggest that nonclassical export may be used as a target for the treatment of pathologies involving signal peptide-less FGFs.
Collapse
Affiliation(s)
- Aleksandr Kirov
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
| | - Maria Duarte
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
| | - Justin Guay
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
| | - Michele Karolak
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
| | - Cong Yan
- Department of Pathology, University of Indiana, Indianapolis, Indiana, United States of America
| | - Leif Oxburgh
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
| | - Igor Prudovsky
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
- * E-mail:
| |
Collapse
|
5
|
Spicer PP, Mikos AG. Fibrin glue as a drug delivery system. J Control Release 2010; 148:49-55. [PMID: 20637815 DOI: 10.1016/j.jconrel.2010.06.025] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/20/2010] [Accepted: 06/29/2010] [Indexed: 11/17/2022]
Abstract
Fibrin glue has been used surgically for decades for hemostasis as well as a sealant. It has also been researched as both a gel for cell delivery and a vehicle for drug delivery. The drug delivery applications for fibrin glue span tissue engineering to chemotherapy and involve several mechanisms for drug matrix interactions and control of release kinetics. Additionally, drugs or factors can be loaded in the gel via impregnation and tethering to the gel through covalent linkages or affinity-based systems. This review highlights recent research of fibrin glue as a drug delivery vehicle.
Collapse
Affiliation(s)
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
6
|
Abstract
Angiogenesis, or the formation of new blood vessels from the preexisting vasculature, is a key component in numerous physiologic and pathologic responses and has broad impact in many medical and surgical specialties. In this review, we discuss the key cellular steps that lead to the neovascularization of tissues and highlight the main molecular mechanisms and mediators in this process. We include discussions on proteolytic enzymes, cell-matrix interactions, and pertinent cell signaling pathways and end with a survey of the mechanisms that lead to the stabilization and maturation of neovasculatures.
Collapse
|
7
|
Pang Y, Wang X, Ucuzian AA, Brey EM, Burgess WH, Jones KJ, Alexander TD, Greisler HP. Local delivery of a collagen-binding FGF-1 chimera to smooth muscle cells in collagen scaffolds for vascular tissue engineering. Biomaterials 2009; 31:878-85. [PMID: 19853908 DOI: 10.1016/j.biomaterials.2009.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/02/2009] [Indexed: 11/17/2022]
Abstract
We investigated the delivery of R136K-CBD (a collagen-binding mutant chimera of fibroblast growth factor-1) with a type I collagen scaffold as the delivery vehicle to smooth muscle cells (SMCs) for vascular tissue engineering. The binding affinity of R136K-CBD to 3-D collagen scaffolds was investigated both in the presence and absence of cells and/or salts. 2-D and 3-D visualization of delivery of R136K-CBD into SMCs were accomplished by combined fluorescent and reflection confocal microscopy. The mitogenic effect of collagen-immobilized R136K-CBD on SMCs in 3-D collagen was studied by Cyquant assay at different time intervals. In the group devoid of salt and cells, no detectable release of R136K-CBD into overlying culture media was found, compared with burst-and-continuous release of R136K and FGF-1 over a 14-day period in all other groups. The release rate of R136K-CBD was 1.7 and 1.6-fold less than R-136K and FGF-1 when media was supplemented with 2m salt (P<0.0001), and 2.6 and 2.5-fold less in cell-populated collagen hydrogels (P<0.0001), respectively. R136K-CBD showed essentially uniform binding to collagen and its distribution was dependent on that of the collagen scaffold. Internalization of R136K-CBD into SMCs was documented by confocal microscopy. 3-D local delivery of collagen-immobilized R136K-CBD increased the proliferation of SMCs in the collagen matrix to significantly greater levels and for a significantly greater duration than R136K or FGF-1, with 2.0 and 2.1-fold more mitogenicity than R136K and FGF-1 respectively (P<0.0001) at day 7. The results suggest that our collagen-binding fusion protein is an effective strategy for growth factor delivery for vascular tissue engineering.
Collapse
MESH Headings
- Animals
- Biocompatible Materials/chemistry
- Biomimetic Materials/chemistry
- Blood Vessels/growth & development
- Cell Culture Techniques/methods
- Cells, Cultured
- Collagen/chemistry
- Crystallization/methods
- Dogs
- Drug Carriers/chemistry
- Fibroblast Growth Factor 1/administration & dosage
- Fibroblast Growth Factor 1/chemistry
- Materials Testing
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Particle Size
- Surface Properties
- Tissue Engineering/methods
Collapse
Affiliation(s)
- Yonggang Pang
- Department of Surgery, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ahmed TAE, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:199-215. [PMID: 18544016 DOI: 10.1089/ten.teb.2007.0435] [Citation(s) in RCA: 624] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tissue engineering combines cell and molecular biology with materials and mechanical engineering to replace damaged or diseased organs and tissues. Fibrin is a critical blood component responsible for hemostasis, which has been used extensively as a biopolymer scaffold in tissue engineering. In this review we summarize the latest developments in organ and tissue regeneration using fibrin as the scaffold material. Commercially available fibrinogen and thrombin are combined to form a fibrin hydrogel. The incorporation of bioactive peptides and growth factors via a heparin-binding delivery system improves the functionality of fibrin as a scaffold. New technologies such as inkjet printing and magnetically influenced self-assembly can alter the geometry of the fibrin structure into appropriate and predictable forms. Fibrin can be prepared from autologous plasma, and is available as glue or as engineered microbeads. Fibrin alone or in combination with other materials has been used as a biological scaffold for stem or primary cells to regenerate adipose tissue, bone, cardiac tissue, cartilage, liver, nervous tissue, ocular tissue, skin, tendons, and ligaments. Thus, fibrin is a versatile biopolymer, which shows a great potential in tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
9
|
Lowndes SA, Sheldon HV, Cai S, Taylor JM, Harris AL. Copper chelator ATN-224 inhibits endothelial function by multiple mechanisms. Microvasc Res 2009; 77:314-26. [PMID: 19323979 DOI: 10.1016/j.mvr.2009.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 12/19/2008] [Accepted: 01/07/2009] [Indexed: 11/29/2022]
Abstract
Copper is required for the proliferation of endothelial cells and copper-lowering therapy reduces tumour growth in animal models. It has been reported that ATN-224, a novel copper chelator, potently inhibits the activity of the copper-dependent enzyme superoxide dismutase 1 (SOD1) in endothelial cells. We performed microarray analysis of gene expression in endothelial cells exposed to ATN-224 which revealed upregulation of stress response genes including heme-oxygenase 1 (HO-1) and differential regulation of several genes previously implicated in angiogenesis including CXCR4, ANGP2, PGES2, RHAMM, ITB4 and AQP1 (p<0.01). These changes were confirmed on qPCR. Treatment of HUVEC with ATN-224 caused increased superoxide levels, phospho-ERK signalling, nuclear NRF1 expression, HO-1 expression and induction of the anti-apoptotic proteins P21, BCL2 and BCLXL. There was also nuclear translocation of SOD1. SOD1 RNA interference replicated the effects of ATN-224 on endothelial cell function but did not cause upregulation of HO-1 or PGES2, suggesting additional mechanisms of action of ATN-224. Downregulation of AQP1, which has been shown to have a role in angiogenesis, was seen with both ATN-224 and SOD1 siRNA. AQP1 expression could be rescued after ATN-224 by added copper. RNA interference to AQP1 inhibited endothelial proliferation and migration, confirming the role of AQP1 in endothelial cell function. Therefore regulation of AQP1 may represent an important action of copper chelation therapy.
Collapse
Affiliation(s)
- Sarah A Lowndes
- Cancer Research UK Department of Medical Oncology, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK
| | | | | | | | | |
Collapse
|
10
|
Duarte M, Kolev V, Kacer D, Mouta-Bellum C, Soldi R, Graziani I, Kirov A, Friesel R, Liaw L, Small D, Verdi J, Maciag T, Prudovsky I. Novel cross-talk between three cardiovascular regulators: thrombin cleavage fragment of Jagged1 induces fibroblast growth factor 1 expression and release. Mol Biol Cell 2008; 19:4863-74. [PMID: 18784255 DOI: 10.1091/mbc.e07-12-1237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Angiogenesis is controlled by several regulatory mechanisms, including the Notch and fibroblast growth factor (FGF) signaling pathways. FGF1, a prototype member of FGF family, lacks a signal peptide and is released through an endoplasmic reticulum-Golgi-independent mechanism. A soluble extracellular domain of the Notch ligand Jagged1 (sJ1) inhibits Notch signaling and induces FGF1 release. Thrombin, a key protease of the blood coagulation cascade and a potent inducer of angiogenesis, stimulates rapid FGF1 release through a mechanism dependent on the major thrombin receptor protease-activated receptor (PAR) 1. This study demonstrates that thrombin cleaves Jagged1 in its extracellular domain. The sJ1 form produced as a result of thrombin cleavage inhibits Notch-mediated CBF1/Suppressor of Hairless [(Su(H)]/Lag-1-dependent transcription and induces FGF1 expression and release. The overexpression of Jagged1 in PAR1 null cells results in a rapid thrombin-induced export of FGF1. These data demonstrate the existence of novel cross-talk between thrombin, FGF, and Notch signaling pathways, which play important roles in vascular formation and remodeling.
Collapse
Affiliation(s)
- Maria Duarte
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hamoudeh M, Kamleh MA, Diab R, Fessi H. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev 2008; 60:1329-46. [PMID: 18562040 DOI: 10.1016/j.addr.2008.04.013] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 04/16/2008] [Indexed: 01/30/2023]
Abstract
The recent developments of nuclear medicine in oncology have involved numerous investigations of novel specific tumor-targeting radiopharmaceuticals as a major area of interest for both cancer imaging and therapy. The current progress in pharmaceutical nanotechnology field has been exploited in the design of tumor-targeting nanoscale and microscale carriers being able to deliver radionuclides in a selective manner to improve the outcome of cancer diagnosis and treatment. These carriers include chiefly, among others, liposomes, microparticles, nanoparticles, micelles, dendrimers and hydrogels. Furthermore, combining the more recent nuclear imaging multimodalities which provide high sensitivity and anatomical resolution such as PET/CT (positron emission tomography/computed tomography) and SPECT/CT (combined single photon emission computed tomography/computed tomography system) with the use of these specific tumor-targeting carriers constitutes a promising rally which will, hopefully in the near future, allow for earlier tumor detection, better treatment planning and more powerful therapy. In this review, we highlight the use, limitations, advantages and possible improvements of different nano- and microcarriers as potential vehicles for radionuclides delivery in cancer nuclear imaging and radiotherapy.
Collapse
Affiliation(s)
- Misara Hamoudeh
- Université de Lyon, 69622, France, Université Lyon1, CNRS, UMR 5007, LAGEP, Pharmacotechnical department, ISPB facuté de Pharmacie
| | | | | | | |
Collapse
|
12
|
Construction and characterization of a thrombin-resistant designer FGF-based collagen binding domain angiogen. Biomaterials 2007; 29:327-36. [PMID: 17950455 DOI: 10.1016/j.biomaterials.2007.09.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 09/23/2007] [Indexed: 11/21/2022]
Abstract
Humans demonstrate limited spontaneous endothelialization of prosthetic bypass grafts. However the local application of growth factors to prosthetic grafts or to injured blood vessels can provide an immediate effect on endothelialization. Novel chimeric proteins combining potent angiogens with extracellular matrix binding domains may localize to exposed matrices and provide sustained activity to promote endothelial regeneration after vascular interventions. We have ligated a thrombin-resistant mutant of fibroblast growth factor (FGF)-1 (R136K) with a collagen binding domain (CBD) in order to direct this growth factor to sites of exposed vascular collagen or selected bioengineered scaffolds. While FGF-1 and R136K are readily attracted to a variety of matrix proteins, R136K-CBD demonstrated selective and avid binding to collagen approximately 4x that of FGF-1 or R136K alone (P<0.05). The molecular stability of R136K-CBD was superior to FGF-1 and R136K. Its chemotactic activity was superior to R136K and FGF-1 (11+/-1% vs. 6+/-2% and 4+/-1%; P<0.01). Its angiogenic activity was similar to R136K and significantly greater than control by day 2 (P<0.01). After day 3, FGF-1-treated endothelial cell's (EC) sprouts had regressed back to levels insignificant compared to the control group (P=0.17), while both R136K and R136K-CBD continued to demonstrate greater sprout lengthening as compared to control (P<0.0002). The mitogenic activity of all growth factors was greater than control groups (20% PBS); in all comparisons (P<0.0001). This dual functioning angiogen provides proof of concept for the application of designer angiogens to matrix binding proteins to intelligently promote endothelial regeneration of selected matrices.
Collapse
|
13
|
Abstract
Neovascularization can be categorized into two general processes: vasculogenesis and angiogenesis. Angiogenesis is the formation of new capillaries from pre-existing vessels, requiring growth factor driven recruitment, migration, proliferation, and differentiation of endothelial cells (ECs). Complex cell-cell and cell-extracellular matrix (ECM) interactions contribute to this process, leading finally to a network of tube-like formations of endothelial cells supported by surrounding mural cells. The study of angiogenesis has broad clinical implications in the fields of peripheral and coronary vascular disease, oncology, hematology, wound healing, dermatology, and ophthalmology, among others. As such, novel, clinically relevant models of angiogenesis in vitro are crucial to the understanding of angiogenic processes. We highlight some of the advances made in the development of these models, and discuss the importance of incorporating the three-dimensional cell-matrix and EC-mural cell interactions into these in vitro assays of angiogenesis. This review also discusses our own 3-D angiogenesis assay and some of the in vitro results from our lab as they relate to therapeutic neovascularization and tissue engineering of vascular grafts.
Collapse
Affiliation(s)
- Areck A Ucuzian
- Department of Surgery, Loyola University Medical Center, 2160 South First Ave, Maywood, Illinois 60153, USA
| | | |
Collapse
|
14
|
Häfeli UO, Pauer GJ, Unnithan J, Prayson RA. Fibrin glue system for adjuvant brachytherapy of brain tumors with 188Re and 186Re-labeled microspheres. Eur J Pharm Biopharm 2007; 65:282-8. [PMID: 17129715 DOI: 10.1016/j.ejpb.2006.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/16/2006] [Accepted: 10/17/2006] [Indexed: 11/25/2022]
Abstract
Brain tumors such as glioblastoma reappear in their original location in almost 50% of cases. To prevent this recurrence, we developed a radiopharmaceutical system that consists of a gel applied immediately after surgical resection of a brain tumor to deliver local radiation booster doses. The gel, which strongly adheres to tissue in the treatment area, consists of fibrin glue containing the beta-emitters rhenium-188 and rhenium-186 in microsphere-bound form. Such microspheres can be prepared by short (2 h or less) neutron activation even in low neutron flux reactors, yielding a mixture of the two beta-emitters rhenium-188 (E(max)=2.1 MeV, half life=17 h) and rhenium-186 (E(max)=1.1 MeV, half life=90.6h). The dosimetry of this rhenium-188/rhenium-186 fibrin glue system was determined using gafchromic film measurements. The treatment efficacy of the radioactive fibrin glue was measured in a 9L-glioblastoma rat model. All animals receiving the non-radioactive fibrin glue died within 17+/-3 days, whereas 60% of the treated animals survived 36 days, the final length of the experiment. Control animals that were treated with the same amount of radioactive fibrin glue, but had not received a previous tumor cell injection, showed no toxic effects over one year. The beta-radiation emitting rhenium-188/rhenium-186-based gel thus provides an effective method of delivering high doses of local radiation to tumor tissue, particularly to wet areas where high adhesive strength and long-term radiation (with or without drug) delivery are needed.
Collapse
Affiliation(s)
- Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|
15
|
Duarte M, Kolev V, Soldi R, Kirov A, Graziani I, Oliveira SM, Kacer D, Friesel R, Maciag T, Prudovsky I. Thrombin induces rapid PAR1-mediated non-classical FGF1 release. Biochem Biophys Res Commun 2006; 350:604-9. [PMID: 17027650 PMCID: PMC1698861 DOI: 10.1016/j.bbrc.2006.09.107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022]
Abstract
Thrombin induces cell proliferation and migration during vascular injury. We report that thrombin rapidly stimulated expression and release of the pro-angiogenic polypeptide fibroblast growth factor 1 (FGF1). Thrombin failed to induce FGF1 release from protease-activated receptor 1 (PAR1) null fibroblasts, indicating that this effect was dependent on PAR1. Similarly to thrombin, FGF1 expression and release were induced by TRAP, a specific oligopeptide agonist of PAR1. These results identify a novel aspect of the crosstalk between FGF and thrombin signaling pathways which both play important roles in tissue repair and angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Igor Prudovsky
- Author for correspondence: Telephone: +1 207-885-8146; Fax: +1 207-885-8179;
| |
Collapse
|
16
|
Brewster L, Brey E, Greisler H. Cardiovascular gene delivery: The good road is awaiting. Adv Drug Deliv Rev 2006; 58:604-29. [PMID: 16769148 PMCID: PMC3337725 DOI: 10.1016/j.addr.2006.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 03/24/2006] [Indexed: 01/13/2023]
Abstract
Atherosclerotic cardiovascular disease is a leading cause of death worldwide. Despite recent improvements in medical, operative, and endovascular treatments, the number of interventions performed annually continues to increase. Unfortunately, the durability of these interventions is limited acutely by thrombotic complications and later by myointimal hyperplasia followed by progression of atherosclerotic disease over time. Despite improving medical management of patients with atherosclerotic disease, these complications appear to be persisting. Cardiovascular gene therapy has the potential to make significant clinical inroads to limit these complications. This article will review the technical aspects of cardiovascular gene therapy; its application for promoting a functional endothelium, smooth muscle cell growth inhibition, therapeutic angiogenesis, tissue engineered vascular conduits, and discuss the current status of various applicable clinical trials.
Collapse
Affiliation(s)
- L.P. Brewster
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - E.M. Brey
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
- Research and Surgical Services, Edward J. Hines Jr. V.A. Hospital, Hines, IL, 60141, USA
| | - H.P. Greisler
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, Maywood, IL, 60153, USA
- Research and Surgical Services, Edward J. Hines Jr. V.A. Hospital, Hines, IL, 60141, USA
- Corresponding author. Loyola University Medical Center, Department of Surgery, 2160 South First Avenue, Maywood, IL, 60153, USA. Tel.: +1 708 216 8541; fax: +1 708 216 6300. (H.P. Greisler)
| |
Collapse
|
17
|
Patel NS, Li JL, Generali D, Poulsom R, Cranston DW, Harris AL. Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res 2005; 65:8690-7. [PMID: 16204037 DOI: 10.1158/0008-5472.can-05-1208] [Citation(s) in RCA: 271] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Notch signaling pathway and the delta-like 4 ligand (DLL4) play key roles in embryonic vascular development. Many of the pathways involved in embryonic vascular development also play important roles in tumor angiogenesis. In this study, we assessed the expression of DLL4 in primary renal cancer and investigated the biological function of DLL4 in primary endothelial cells. Using real-time quantitative PCR and in situ hybridization, we showed that the expression of DLL4 was up-regulated within the vasculature of clear cell-renal cell carcinoma almost 9-fold more than normal kidney and was correlated with the expression of vascular endothelial growth factor (VEGF). The expression of DLL4 in endothelial cells was up-regulated by VEGF and basic fibroblast growth factor synergistically, and by hypoxia through hypoxia-inducible factor 1alpha. Down-regulation of DLL4 expression with RNA interference led to decreased expression of HEY1 and EphrinB2, and the inhibition of endothelial cell proliferation, migration, and network formation, all of which are important processes in tumor angiogenesis. The inhibition of proliferation occurred via the induction of cell cycle arrest in G0-G1 by increased expression of p21 and decreased phosphorylation of retinoblastoma. We conclude that an optimal window of the DLL4 expression is essential for tumor angiogenesis and that selective modulation of the DLL4 expression within human tumors may represent a potential novel antiangiogenic therapy.
Collapse
Affiliation(s)
- Nilay S Patel
- Molecular Oncology Laboratories, Cancer Research UK, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, London. United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Eccles SA, Box C, Court W. Cell migration/invasion assays and their application in cancer drug discovery. BIOTECHNOLOGY ANNUAL REVIEW 2005; 11:391-421. [PMID: 16216785 DOI: 10.1016/s1387-2656(05)11013-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Invasive capacity is the single most important trait that distinguishes benign from malignant lesions. Tumour cells, during intravasation and extravasation of blood and lymphatic channels and when establishing colonies at secondary sites, must move through tissue boundaries that normal adult cells (other than, for example activated leukocytes) do not cross. Similar mechanisms are also utilised by activated endothelial cells during the generation of new blood vessels that enable the sustained growth and dissemination of tumours. It is now increasingly recognised that these processes--cell motility and invasion--might provide a rich source of novel targets for cancer therapy and that appropriate inhibitors may restrain both metastasis and neoangiogenesis. This new paradigm demands screening assays that can rapidly and quantitatively measure cell movement and the ability to traverse physiological barriers. We also need to consider whether simple reductionist in vitro approaches can reliably model the complexity of in vivo tumour invasion/neoangiogenesis. There are both opportunities and challenges ahead in developing a balanced portfolio of assays that will be able to evaluate accurately and finally deliver novel anti-invasive agents with therapeutic potential for clinical use.
Collapse
Affiliation(s)
- Suzanne A Eccles
- Tumour Biology and Metastasis, Cancer Research UK Centre for Cancer Therapeutics, McElwain Laboratories, Institute of Cancer Research, Cotswold Road, Belmont, Sutton, Surrey, SM2 5NG, UK.
| | | | | |
Collapse
|
19
|
Kelpke SS, Zinn KR, Rue LW, Thompson JA. Site-specific delivery of acidic fibroblast growth factor stimulates angiogenic and osteogenic responsesin vivo. ACTA ACUST UNITED AC 2004; 71:316-25. [PMID: 15376268 DOI: 10.1002/jbm.a.30163] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A major clinical problem in orthopedics is the healing of nonunion fractures. Limitations of this bone repair process include insufficient angiogenesis and mineralization. Integrating appropriate biomaterials with site-specific neovascularization and osteogenesis at the wound site has been the focus of several clinically relevant therapeutic strategies. As an extracellular protein, acidic fibroblast growth factor (FGF-1) induces, coordinates, and sustains site-specific molecular responses associated with angiogenesis and osteogenesis. To establish the ability of this growth factor to coordinate bone regenerative process in vivo, site-specific delivery of FGF-1, entrapped in a fibrin/hydroxyapatite composite, was evaluated. Kinetic analysis in vivo revealed the biocomposite was capable of delivering biologically active FGF-1. Release kinetics revealed an initial delivery of 87.5 ng/h of active FGF-1 in the first 20 h, followed by a reduced delivery of 28 ng/h during the next 20 h. In situ immunohistological analyses demonstrated that FGF-1-containing implants induced increased angiogenesis and infiltration of cells expressing osteogenic related markers (i.e., osteopontin, osteocalcin). Collectively, these efforts support that site-specific delivery of active FGF-1 in a fibrin/hydroxyapatite composite is competent to induce not only angiogenesis but also osteogenic cellular responses.
Collapse
Affiliation(s)
- S S Kelpke
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA.
| | | | | | | |
Collapse
|