1
|
Lorenzetti G, Barsanti L, Birindelli L, Gualtieri P, Legnaioli S. Nomen omen: Euglena gracilis possesses a rhodopsin-based photoreceptor. Photochem Photobiol 2025; 101:350-358. [PMID: 40097350 DOI: 10.1111/php.13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 03/19/2025]
Abstract
The unicellular microalga Euglena gracilis has always been considered the ideal alga to investigate photoreceptive responses and systems, and it has been the subject of hundreds of articles. Moreover, because of its detectable photoreceptor, it has been given a key role in the evolution of photoreception, from single and simple cells to complex visual system of higher organisms. In this article, we report the Raman spectra recorded in vivo on photoreceptors of E. gracilis and Bos taurus retina. The almost perfect superimposability (correlation coefficient r = 0.955) of these spectra states that the Euglena possesses a photoreceptor with the same structural characteristic of a vertebrate photoreceptor, i.e. a stack of membrane layers embedding rhodopsin-like proteins. Raman spectra recorded in vivo on photoreceptors of E. gracilis after hydroxylamine treatment further confirm our findings, which should lead to a reconsideration of most of the scientific literature on algae photoreception and eye evolution.
Collapse
|
2
|
Baria E, Dallari C, Mattii F, Pavone FS, Credi C, Cicchi R, Morrone A, Capitini C, Calamai M. Evaluating pathological levels of intracellular cholesterol through Raman and surface-enhanced Raman spectroscopies. Sci Rep 2024; 14:28566. [PMID: 39557950 PMCID: PMC11574121 DOI: 10.1038/s41598-024-76621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Versatile methods for the quantification of intracellular cholesterol are essential for understanding cellular physiology and for diagnosing disorders linked to cholesterol metabolism. Here we used Raman spectroscopy (RS) and surface-enhanced Raman spectroscopy (SERS) to measure changes in cholesterol after incubating human fibroblasts with increasing concentrations of cholesterol-methyl-β-cyclodextrin. RS and SERS were sensitive and accurate enough to detect high levels of cholesterol in fibroblasts from patients affected by type C Niemann-Pick disease (NPC), a lysosomal storage disorder characterized by the primary accumulation of cholesterol. Moreover, SERS was able to distinguish between fibroblasts from different NPC patients, demonstrating higher accuracy than RS and standard fluorescent labeling of cholesterol with filipin III. We show that the type of gold nanoparticles used as signal enhancer surfaces in our SERS measurements are internalized by the cells and are eventually found in lysosomes, the main site of accumulation of cholesterol in NPC fibroblasts. The higher sensitivity of SERS can thus be attributed to the specific trafficking of our gold nanoparticles into these organelles. Our results indicate that RS and SERS can be used as sensitive and accurate methods for the evaluation of intracellular cholesterol content, allowing for the potential development of an optical detection tool for the ex-vivo screening and monitoring of those diseases characterized by abnormal modification in cholesterol levels.
Collapse
Affiliation(s)
- Enrico Baria
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, 50019, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, 50019, Italy
| | - Caterina Dallari
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, 50019, Italy.
- National Institute of Optics - National Research Council, Sesto Fiorentino, 50019, Italy.
| | - Francesco Mattii
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, 50019, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, 50019, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, 50019, Italy
- National Institute of Optics - National Research Council, Sesto Fiorentino, 50019, Italy
| | - Caterina Credi
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, 50019, Italy
- National Institute of Optics - National Research Council, Sesto Fiorentino, 50019, Italy
| | - Riccardo Cicchi
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, 50019, Italy
- National Institute of Optics - National Research Council, Sesto Fiorentino, 50019, Italy
| | - Amelia Morrone
- Laboratory of Molecular Genetics of Neurometabolic Diseases, Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Claudia Capitini
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, 50019, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, 50019, Italy
| | - Martino Calamai
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, 50019, Italy.
- National Institute of Optics - National Research Council, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
3
|
Motipally SI, Kolson DR, Guan T, Kolandaivelu S. Aberrant lipid accumulation and retinal pigment epithelium dysfunction in PRCD-deficient mice. Exp Eye Res 2024; 246:110016. [PMID: 39098587 PMCID: PMC11388538 DOI: 10.1016/j.exer.2024.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Progressive Rod-Cone Degeneration (PRCD) is an integral membrane protein found in photoreceptor outer segment (OS) disc membranes and its function remains unknown. Mutations in Prcd are implicated in Retinitis pigmentosa (RP) in humans and multiple dog breeds. PRCD-deficient models exhibit decreased levels of cholesterol in the plasma. However, potential changes in the retinal cholesterol remain unexplored. In addition, impaired phagocytosis observed in these animal models points to potential deficits in the retinal pigment epithelium (RPE). Here, using a Prcd-/- murine model we investigated the alterations in the retinal cholesterol levels and impairments in the structural and functional integrity of the RPE. Lipidomic and immunohistochemical analyses show a 5-fold increase in the levels of cholesteryl esters (C.Es) and lipid deposits in the PRCD-deficient retina, respectively, indicating alterations in total retinal cholesterol. Furthermore, the RPE of Prcd-/- mice exhibit a 1.7-fold increase in the expression of lipid transporter gene ATP-binding cassette transporter A1 (Abca1). Longitudinal fundus and spectral domain optical coherence tomography (SD-OCT) examinations showed focal lesions and RPE hyperreflectivity. Strikingly, the RPE of Prcd-/- mice exhibited age-related pathological features such as lipofuscin accumulation, Bruch's membrane (BrM) deposits and drusenoid focal deposits, mirroring an Age-related Macular Degeneration (AMD)-like phenotype. We propose that the extensive lipofuscin accumulation likely impairs lysosomal function, leading to the defective phagocytosis observed in Prcd-/- mice. Our findings support the dysregulation of retinal cholesterol homeostasis in the absence of PRCD. Further, we demonstrate that progressive photoreceptor degeneration in Prcd-/- mice is accompanied by progressive structural and functional deficits in the RPE, which likely exacerbates vision loss over time.
Collapse
Affiliation(s)
- Sree I Motipally
- Department of Neuroscience, Rockefeller Neuroscience Institute, 33 Medical Centre Drive, West Virginia University, Morgantown, WV, 26506, USA; Department of Ophthalmology and Visual Sciences, One Medical Center Drive, ERMA 2nd Floor, West Virginia University, Morgantown, WV, 26505-9193, USA
| | - Douglas R Kolson
- Department of Ophthalmology and Visual Sciences, One Medical Center Drive, ERMA 2nd Floor, West Virginia University, Morgantown, WV, 26505-9193, USA
| | - Tongju Guan
- Department of Ophthalmology and Visual Sciences, One Medical Center Drive, ERMA 2nd Floor, West Virginia University, Morgantown, WV, 26505-9193, USA; Department of Biochemistry and Molecular Medicine, 64 Medical Center Drive, West Virginia University, Morgantown, WV, 26505-9193, USA
| | - Saravanan Kolandaivelu
- Department of Ophthalmology and Visual Sciences, One Medical Center Drive, ERMA 2nd Floor, West Virginia University, Morgantown, WV, 26505-9193, USA; Department of Biochemistry and Molecular Medicine, 64 Medical Center Drive, West Virginia University, Morgantown, WV, 26505-9193, USA.
| |
Collapse
|
4
|
Motipally SI, Kolson DR, Guan T, Kolandaivelu S. Aberrant lipid accumulation and retinal pigmental epithelium dysfunction in PRCD-deficient mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584131. [PMID: 38558979 PMCID: PMC10979840 DOI: 10.1101/2024.03.08.584131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Progressive Rod-Cone Degeneration (PRCD) is an integral membrane protein found in photoreceptor outer segment (OS) disc membranes and its function remains unknown. Mutations in Prcd are implicated in Retinitis pigmentosa (RP) in humans and multiple dog breeds. PRCD-deficient models exhibit decreased levels of cholesterol in the plasma. However, potential changes in the retinal cholesterol remain unexplored. In addition, impaired phagocytosis observed in these animal models points to potential deficits in the retinal pigment epithelium (RPE). Here, using a Prcd -/- murine model we investigated the alterations in the retinal cholesterol levels and impairments in the structural and functional integrity of the RPE. Lipidomic and immunohistochemical analyses show a 5-fold increase in the levels of cholesteryl esters (C.Es) and accumulation of neutral lipids in the PRCD-deficient retina, respectively, indicating alterations in total retinal cholesterol. Longitudinal fundus and spectral domain optical coherence tomography (SD-OCT) examinations showed focal lesions and RPE hyperreflectivity. Strikingly, the RPE of Prcd -/- mice exhibited age-related pathological features such as neutral lipid deposits, lipofuscin accumulation, Bruch's membrane (BrM) thickening and drusenoid focal deposits, mirroring an Age-related Macular Degeneration (AMD)-like phenotype. We propose that the extensive lipofuscin accumulation likely impairs lysosomal function, leading to the defective phagocytosis observed in Prcd -/- mice. Our findings support the dysregulation of retinal cholesterol homeostasis in the absence of PRCD. Further, we demonstrate that progressive photoreceptor degeneration in Prcd -/- mice is accompanied by progressive structural and functional deficits in the RPE, which likely exacerbates vision loss over time.
Collapse
|
5
|
Masek M, Bachmann-Gagescu R. Control of protein and lipid composition of photoreceptor outer segments-Implications for retinal disease. Curr Top Dev Biol 2023; 155:165-225. [PMID: 38043951 DOI: 10.1016/bs.ctdb.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Vision is arguably our most important sense, and its loss brings substantial limitations to daily life for affected individuals. Light is perceived in retinal photoreceptors (PRs), which are highly specialized neurons subdivided into several compartments with distinct functions. The outer segments (OSs) of photoreceptors represent highly specialized primary ciliary compartments hosting the phototransduction cascade, which transforms incoming light into a neuronal signal. Retinal disease can result from various pathomechanisms originating in distinct subcompartments of the PR cell, or in the retinal pigment epithelium which supports the PRs. Dysfunction of primary cilia causes human disorders known as "ciliopathies", in which retinal disease is a common feature. This chapter focuses on PR OSs, discussing the mechanisms controlling their complex structure and composition. A sequence of tightly regulated sorting and trafficking events, both upstream of and within this ciliary compartment, ensures the establishment and maintenance of the adequate proteome and lipidome required for signaling in response to light. We discuss in particular our current understanding of the role of ciliopathy proteins involved in multi-protein complexes at the ciliary transition zone (CC2D2A) or BBSome (BBS1) and how their dysfunction causes retinal disease. While the loss of CC2D2A prevents the fusion of vesicles and delivery of the photopigment rhodopsin to the ciliary base, leading to early OS ultrastructural defects, BBS1 deficiency results in precocious accumulation of cholesterol in mutant OSs and decreased visual function preceding morphological changes. These distinct pathomechanisms underscore the central role of ciliary proteins involved in multiple processes controlling OS protein and lipid composition.
Collapse
Affiliation(s)
- Markus Masek
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; University Research Priority Program AdaBD, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Lebrun A, Fortin H, Fontaine N, Fillion D, Barbier O, Boudreau D. Pushing the Limits of Surface-Enhanced Raman Spectroscopy (SERS) with Deep Learning: Identification of Multiple Species with Closely Related Molecular Structures. APPLIED SPECTROSCOPY 2022; 76:609-619. [PMID: 35081756 PMCID: PMC9082968 DOI: 10.1177/00037028221077119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Raman spectroscopy is a non-destructive and label-free molecular identification technique capable of producing highly specific spectra with various bands correlated to molecular structure. Moreover, the enhanced detection sensitivity offered by surface-enhanced Raman spectroscopy (SERS) allows analyzing mixtures of related chemical species in a relatively short measurement time. Combining SERS with deep learning algorithms allows in some cases to increase detection and classification capabilities even further. The present study evaluates the potential of applying deep learning algorithms to SERS spectroscopy to differentiate and classify different species of bile acids, a large family of molecules with low Raman cross sections and molecular structures that often differ by a single hydroxyl group. Moreover, the study of these molecules is of interest for the medical community since they have distinct pathological roles and are currently viewed as potential markers of gut microbiome imbalances. A convolutional neural network model was developed and used to classify SERS spectra from five bile acid species. The model succeeded in identifying the five analytes despite very similar molecular structures and was found to be reliable even at low analyte concentrations.
Collapse
Affiliation(s)
- Alexis Lebrun
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
- Laboratoire de Pharmacologie Moléculaire, Axe Endocrinologie-Néphrologie, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada
| | - Hubert Fortin
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
| | - Nicolas Fontaine
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
| | - Daniel Fillion
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
| | - Olivier Barbier
- Laboratoire de Pharmacologie Moléculaire, Axe Endocrinologie-Néphrologie, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada
| | - Denis Boudreau
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
| |
Collapse
|
7
|
Deng C, Zhang L, Yosef HK, Yang Y, Jiang J, Yu L, Li N, Schütze K, Zheng M, Ma L, Qi H, Ren L. Single‐cell Raman trapping analysis revealed immunometabolism changes in peritoneal fluid in endometriosis. Scand J Immunol 2021. [DOI: 10.1111/sji.13093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chunyan Deng
- Cytotherapy Laboratory Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen China
| | - Lin Zhang
- Department of Gynecology Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen China
| | | | - Yi Yang
- Department of Gynecology Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen China
| | - Jinxing Jiang
- Cytotherapy Laboratory Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen China
| | - Lina Yu
- Cytotherapy Laboratory Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen China
| | - Ning Li
- Cytotherapy Laboratory Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen China
| | | | | | - Liguo Ma
- Department of Gynecology Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen China
| | - Hui Qi
- Cytotherapy Laboratory Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen China
| | - Lili Ren
- Cytotherapy Laboratory Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen China
| |
Collapse
|
8
|
Blat A, Stepanenko T, Bulat K, Wajda A, Dybas J, Mohaissen T, Alcicek FC, Szczesny-Malysiak E, Malek K, Fedorowicz A, Marzec KM. Spectroscopic Signature of Red Blood Cells in a D-Galactose-Induced Accelerated Aging Model. Int J Mol Sci 2021; 22:2660. [PMID: 33800818 PMCID: PMC7961785 DOI: 10.3390/ijms22052660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
This work presents a semi-quantitative spectroscopic approach, including FTIR-ATR and Raman spectroscopies, for the biochemical analysis of red blood cells (RBCs) supported by the biochemical, morphological and rheological reference techniques. This multi-modal approach provided the description of the RBC alterations at the molecular level in a model of accelerated aging induced by administration of D-galactose (D-gal), in comparison to natural aging. Such an approach allowed to conclude that most age-related biochemical RBC membrane changes (a decrease in lipid unsaturation and the level of phospholipids, or an increase in acyl chain shortening) as well as alterations in the morphological parameters and RBC deformability are well reflected in the D-gal model of accelerated aging. Similarly, as in natural aging, a decrease in LDL level in blood plasma and no changes in the fraction of glucose, creatinine, total cholesterol, HDL, iron, or triglycerides were observed during the course of accelerated aging. Contrary to natural aging, the D-gal model led to an increase in cholesterol esters and the fraction of total esterified lipids in RBC membranes, and evoked significant changes in the secondary structure of the membrane proteins. Moreover, a significant decrease in the phosphorous level of blood plasma was specific for the D-gal model. On the other hand, natural aging induced stronger changes in the secondary structures of the proteins of the RBCs' interior. This work proves that research on the aging mechanism, especially in circulation-related diseases, should employ the D-gal model with caution. Nonetheless, the D-gal model enables to imitate age-related rheological alterations in RBCs, although they are partially derived from different changes observed in the RBC membrane at the molecular level.
Collapse
Affiliation(s)
- Aneta Blat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland;
| | - Tetiana Stepanenko
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland;
| | - Katarzyna Bulat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
| | - Aleksandra Wajda
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Jakub Dybas
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
| | - Tasnim Mohaissen
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Fatih Celal Alcicek
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
| | - Ewa Szczesny-Malysiak
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland;
| | - Andrzej Fedorowicz
- Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Str., 31-531 Krakow, Poland;
| | - Katarzyna M. Marzec
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (A.B.); (T.S.); (K.B.); (A.W.); (J.D.); (T.M.); (F.C.A.); (E.S.-M.)
| |
Collapse
|
9
|
Abstract
PURPOSE To investigate the macular changes over time in eyes containing subretinal drusenoid deposits (also known as pseudodrusen) with no drusen >63 µm. METHODS A consecutive series of patients were examined with color fundus photography, optical coherence tomography, and autofluorescence imaging with fluorescein angiography used as necessary. Exclusionary criteria included macular neovascularization, history of retinal surgery, pseudoxanthoma elasticum, and drusen >63 µm. RESULTS There were 85 eyes of 54 patients. The mean age at baseline was 83.6 (±7.8) years, and there were 17 men. The mean follow-up was 5.0 (±2.9) years. At initial optical coherence tomography examination, 12 eyes had extrafoveal atrophy and 17 eyes had vitelliform deposits, which were yellowish white subretinal collections that showed intense hyperautofluorescence. During follow-up, 11 eyes lost vitelliform material. After the disappearance of small deposits, focal hyperpigmentation remained. Loss of larger deposits was associated with noteworthy sequela; six developed subfoveal atrophy and one macular neovascularization close to regressing vitelliform material. Subfoveal geographic atrophy developed in four other eyes without vitelliform material by extension from areas of extrafoveal atrophy. Macular neovascularization developed in seven eyes over follow-up. The CFH Y402H and ARMS2 A69S allele frequencies were 57% and 48.9%, respectively, which is similar to a group of age-related macular degeneration controls. One patient had a novel PRPH2 mutation, but did not have a vitelliform deposit; the remainder had a normal PRPH2 and BEST1 coding sequences. CONCLUSION Eyes with subretinal drusenoid deposits and no drusen >63 mm have significant risk for the development of both neovascularization and geographic atrophy, the fundamental components of late age-related macular degeneration. An intermediate step in some eyes was the development of a vitelliform deposit, an entity not traditionally associated with age-related macular degeneration, but in these patients, the material seemed to be an important component of the disease pathophysiology. This vitelliform deposit was not associated with genetic markers for pattern dystrophy or Best disease.
Collapse
|
10
|
Sacharz J, Wesełucha-Birczyńska A, Zięba-Palus J, Lewandowski MH, Kowalski R, Palus K, Chrobok Ł, Moskal P, Birczyńska M, Sozańska A. Epileptic rat brain tissue analyzed by 2D correlation Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:581-588. [PMID: 28772144 DOI: 10.1016/j.saa.2017.07.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/07/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Absence epilepsy is the neurological disorder characterized by the pathological spike-and wave discharges present in the electroencephalogram, accompanying a sudden loss of consciousness. Experiments were performed on brain slices obtained from young male WAG/Rij rats (2-3weeks old), so that they were sampled before the appearance of brain-damaging seizures symptoms. Two differing brain areas of the rats' brain tissue were studied: the somatosensory cortex (Sc) and the dorsal lateral geniculate nucleus of the thalamus (DLG). The Raman spectra of the fresh brain scraps, kept during measurements in artificial cerebrospinal fluid, were collected using as an excitation source 442nm, 514.5nm, 785nm and 1064nm laser line. The average spectra were analyzed by 2D correlation method regarding laser line as an external perturbation. In 2D synchronous spectra positive auto-peaks corresponding to the CC stretching and amide I band vibrations show maxima at 1660cm-1 and 1662cm-1 for Sc and DLG, respectively. The prominent auto-peak at 2937cm-1, originated from the CH3 mode in DLG brain area, seems to indicate the importance of methylation, considered to be significant in epileptogenesis. Synchronous and asynchronous correlations peaks, glutamic acid and gamma-aminobutyric acid (GABA), appear in Sc and DLG, respectively. In the 1730-1600cm-1 range occur cross-peaks which appearance might be triggered by glial fibrillary acidic protein (GFAP) activation.
Collapse
Affiliation(s)
- Julia Sacharz
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | | | | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | | | - Katarzyna Palus
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Łukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Paulina Moskal
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Malwina Birczyńska
- The Department of Infectious Diseases, The University Hospital, Kraków, Poland
| | | |
Collapse
|
11
|
|
12
|
Continuous gradient temperature Raman spectroscopy of N-6DPA and DHA from −100 to 20 °C. Chem Phys Lipids 2016; 200:1-10. [DOI: 10.1016/j.chemphyslip.2016.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 01/03/2023]
|
13
|
Albert A, Alexander D, Boesze-Battaglia K. Cholesterol in the rod outer segment: A complex role in a "simple" system. Chem Phys Lipids 2016; 199:94-105. [PMID: 27216754 DOI: 10.1016/j.chemphyslip.2016.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/01/2022]
Abstract
The rod outer segment (ROS) of retinal photoreceptor cells consists of disk membranes surrounded by the plasma membrane. It is a relatively uncomplicated system in which to investigate cholesterol distribution and its functional consequences in biologically relevant membranes. The light sensitive protein, rhodopsin is the major protein in both membranes, but the lipid compositions are significantly different in the disk and plasma membranes. Cholesterol is high in the ROS plasma membrane. Disk membranes are synthesized at the base of the ROS and are also high in cholesterol. However, cholesterol is rapidly depleted as the disks are apically displaced. During this apical displacement the disk phospholipid fatty acyl chains become progressively more unsaturated, which creates an environment unfavorable to cholesterol. Membrane cholesterol has functional consequences. The high cholesterol found in the plasma membrane and in newly synthesized disks inhibits the activation of rhodopsin. As disks are apically displaced and cholesterol is depleted rhodopsin becomes more responsive to light. This effect of cholesterol on rhodopsin activation has been shown in both native and reconstituted membranes. The modulation of activity can be at least partially explained by the effect of cholesterol on bulk lipid properties. Cholesterol decreases the partial free volume of the hydrocarbon region of the bilayer and thereby inhibits rhodopsin conformational changes required for activation. However, cholesterol binds to rhodopsin and may directly affect the protein also. Furthermore, cholesterol stabilizes rhodopsin to thermal denaturation. The membrane must provide an environment that allows rhodopsin conformational changes required for activation while also stabilizing the protein to thermal denaturation. Cholesterol thus plays a complex role in modulating the activity and stability of rhodopsin, which have implications for other G-protein coupled receptors.
Collapse
|
14
|
Affiliation(s)
- Karen A. Antonio
- University of Notre Dame, Department of
Chemistry and Biochemistry, Notre
Dame, Indiana 46556, United States
| | - Zachary D. Schultz
- University of Notre Dame, Department of
Chemistry and Biochemistry, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
15
|
Tucker SC, Honn KV. Emerging targets in lipid-based therapy. Biochem Pharmacol 2013; 85:673-688. [PMID: 23261527 PMCID: PMC4106802 DOI: 10.1016/j.bcp.2012.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
Abstract
The use of prostaglandins and NSAIDS in the clinic has proven that lipid mediators and their associated pathways make attractive therapeutic targets. When contemplating therapies involving lipid pathways, several basic agents come to mind. There are the enzymes and accessory proteins that lead to the metabolism of lipid substrates, provided through diet or through actions of lipases, the subsequent lipid products, and finally the lipid sensors or receptors. There is abundant evidence that molecules along this lipid continuum can serve as prognostic and diagnostic indicators and are in fact viable therapeutic targets. Furthermore, lipids themselves can be used as therapeutics. Despite this, the vernacular dialog pertaining to "biomarkers" does not routinely include mention of lipids, though this is rapidly changing. Collectively these agents are becoming more appreciated for their respective roles in diverse disease processes from cancer to preterm labor and are receiving their due appreciation after decades of ground work in the lipid field. By relating examples of disease processes that result from dysfunction along the lipid continuum, as well as examples of lipid therapies and emerging technologies, this review is meant to inspire further reading and discovery.
Collapse
Affiliation(s)
- Stephanie C Tucker
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| | - Kenneth V Honn
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA; Department of Chemistry, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| |
Collapse
|
16
|
Honsell G, Bonifacio A, De Bortoli M, Penna A, Battocchi C, Ciminiello P, Dell’Aversano C, Fattorusso E, Sosa S, Yasumoto T, Tubaro A. New insights on cytological and metabolic features of Ostreopsis cf. ovata Fukuyo (Dinophyceae): a multidisciplinary approach. PLoS One 2013; 8:e57291. [PMID: 23460837 PMCID: PMC3584116 DOI: 10.1371/journal.pone.0057291] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/20/2013] [Indexed: 11/24/2022] Open
Abstract
The harmful dinoflagellate Ostreopsis cf. ovata has been causing toxic events along the Mediterranean coasts and other temperate and tropical areas, with increasing frequency during the last decade. Despite many studies, important biological features of this species are still poorly known. An integrated study, using different microscopy and molecular techniques, Raman microspectroscopy and high resolution liquid chromatography-mass spectrometry (HR LC-MS), was undertaken to elucidate cytological aspects, and identify main metabolites including toxins. The species was genetically identified as O. cf. ovata, Atlantic-Mediterranean clade. The ultrastructural results show unique features of the mucilage network abundantly produced by this species to colonize benthic substrates, with a new role of trichocysts, never described before. The amorphous polysaccharidic component of mucilage appears to derive from pusule fibrous material and mucocysts. In all stages of growth, the cells show an abundant production of lipids. Different developmental stages of chloroplasts are found in the peripheral cytoplasm and in the centre of cell. In vivo Raman microspectroscopy confirms the presence of the carotenoid peridinin in O. cf. ovata, and detects in several specimen the abundant presence of unsaturated lipids structurally related to docosahexaenoic acid. The HR LC-MS analysis reveals that ovatoxin-a is the predominant toxin, together with decreasing amounts of ovatoxin-b, -d/e, -c and putative palytoxin. Toxins concentration on a per cell basis increases from exponential to senescent phase. The results suggest that benthic blooms of this species are probably related to features such as the ability to create a unique mucilaginous sheath covering the sea bottom, associated with the production of potent toxins as palytoxin-like compounds. In this way, O. cf. ovata may be able to rapidly colonize benthic substrates outcompeting other species.
Collapse
Affiliation(s)
- Giorgio Honsell
- Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy
| | - Alois Bonifacio
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Marco De Bortoli
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Antonella Penna
- Department of Biomolecular Sciences, Laboratory of Environmental Biology, University of Urbino, Pesaro, Italy
| | - Cecilia Battocchi
- Department of Biomolecular Sciences, Laboratory of Environmental Biology, University of Urbino, Pesaro, Italy
| | - Patrizia Ciminiello
- Department of Natural Products Chemistry, University of Naples “Federico II”, Naples, Italy
| | - Carmela Dell’Aversano
- Department of Natural Products Chemistry, University of Naples “Federico II”, Naples, Italy
| | - Ernesto Fattorusso
- Department of Natural Products Chemistry, University of Naples “Federico II”, Naples, Italy
| | - Silvio Sosa
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
17
|
Abstract
Photoreceptors are exquisitely adapted to transform light stimuli into electrical signals that modulate neurotransmitter release. These cells are organized into several compartments including the unique outer segment (OS). Its whole function is to absorb light and transduce this signal into a change of membrane potential. Another compartment is the inner segment where much of metabolism and regulation of membrane potential takes place and that connects the OS and synapse. The synapse is the compartment where changes in membrane potentials are relayed to other neurons in the retina via release of neurotransmitter. The composition of the plasma membrane surrounding these compartments varies to accommodate their specific functions. In this chapter, we discuss the organization of the plasma membrane emphasizing the protein composition of each region as it relates to visual signaling. We also point out examples where mutations in these proteins cause visual impairment.
Collapse
Affiliation(s)
- Sheila A Baker
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|