1
|
Mantilla Valdivieso EF, Ross EM, Raza A, Nguyen L, Hayes BJ, Jonsson NN, James P, Tabor AE. Expression network analysis of bovine skin infested with Rhipicephalus australis identifies pro-inflammatory genes contributing to tick susceptibility. Sci Rep 2024; 14:4419. [PMID: 38388834 PMCID: PMC10884027 DOI: 10.1038/s41598-024-54577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
The skin is the primary feeding site of ticks that infest livestock animals such as cattle. The highly specialised functions of skin at the molecular level may be a factor contributing to variation in susceptibility to tick infestation; but these remain to be well defined. The aim of this study was to investigate the bovine skin transcriptomic profiles of tick-naïve and tick-infested cattle and to uncover the gene expression networks that influence contrasting phenotypes of host resistance to ticks. RNA-Seq data was obtained from skin of Brangus cattle with high (n = 5) and low (n = 6) host resistance at 0 and 12 weeks following artificial tick challenge with Rhipicephalus australis larvae. No differentially expressed genes were detected pre-infestation between high and low resistance groups, but at 12-weeks there were 229 differentially expressed genes (DEGs; FDR < 0.05), of which 212 were the target of at least 1866 transcription factors (TFs) expressed in skin. Regulatory impact factor (RIF) analysis identified 158 significant TFs (P < 0.05) of which GRHL3, and DTX1 were also DEGs in the experiment. Gene term enrichment showed the significant TFs and DEGs were enriched in processes related to immune response and biological pathways related to host response to infectious diseases. Interferon Type 1-stimulated genes, including MX2, ISG15, MX1, OAS2 were upregulated in low host resistance steers after repeated tick challenge, suggesting dysregulated wound healing and chronic inflammatory skin processes contributing to host susceptibility to ticks. The present study provides an assessment of the bovine skin transcriptome before and after repeated tick challenge and shows that the up-regulation of pro-inflammatory genes is a prominent feature in the skin of tick-susceptible animals. In addition, the identification of transcription factors with high regulatory impact provides insights into the potentially meaningful gene-gene interactions involved in the variation of phenotypes of bovine host resistance to ticks.
Collapse
Affiliation(s)
- Emily F Mantilla Valdivieso
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Elizabeth M Ross
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Ali Raza
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Loan Nguyen
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nicholas N Jonsson
- Institute of Biodiversity One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK.
| | - Peter James
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ala E Tabor
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
2
|
Raza A, Schulz BL, Nouwens A, Naseem MN, Kamran M, Mantilla Valdivieso EF, Kerr ED, Constantinoiu C, Jonsson NN, James P, Tabor AE. Application of quantitative proteomics to discover biomarkers for tick resistance in cattle. Front Immunol 2023; 14:1091066. [PMID: 36793724 PMCID: PMC9924087 DOI: 10.3389/fimmu.2023.1091066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Introduction Breeding for tick resistance is a sustainable alternative to control cattle ticks due to widespread resistance to acaricidal drugs and the lack of a protective vaccine. The most accurate method used to characterise the phenotype for tick resistance in field studies is the standard tick count, but this is labour-intensive and can be hazardous to the operator. Efficient genetic selection requires reliable phenotyping or biomarker(s) for accurately identifying tick-resistant cattle. Although breed-specific genes associated with tick resistance have been identified, the mechanisms behind tick resistance have not yet been fully characterised. Methods This study applied quantitative proteomics to examine the differential abundance of serum and skin proteins using samples from naïve tick-resistant and -susceptible Brangus cattle at two-time points following tick exposure. The proteins were digested into peptides, followed by identification and quantification using sequential window acquisition of all theoretical fragment ion mass spectrometry. Results Resistant naïve cattle had a suite of proteins associated with immune response, blood coagulation and wound healing that were significantly (adjusted P < 10- 5) more abundant compared with susceptible naïve cattle. These proteins included complement factors (C3, C4, C4a), alpha-1-acid glycoprotein (AGP), beta-2-glycoprotein-1, keratins (KRT1 & KRT3) and fibrinogens (alpha & beta). The mass spectrometry findings were validated by identifying differences in the relative abundance of selected serum proteins with ELISA. The proteins showing a significantly different abundance in resistant cattle following early and prolonged tick exposures (compared to resistant naïve) were associated with immune response, blood coagulation, homeostasis, and wound healing. In contrast, susceptible cattle developed some of these responses only after prolonged tick exposure. Discussion Resistant cattle were able to transmigrate immune-response related proteins towards the tick bite sites, which may prevent tick feeding. Significantly differentially abundant proteins identified in this research in resistant naïve cattle may provide a rapid and efficient protective response to tick infestation. Physical barrier (skin integrity and wound healing) mechanisms and systemic immune responses were key contributors to resistance. Immune response-related proteins such as C4, C4a, AGP and CGN1 (naïve samples), CD14, GC and AGP (post-infestation) should be further investigated as potential biomarkers for tick resistance.
Collapse
Affiliation(s)
- Ali Raza
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Benjamin L Schulz
- The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, QLD, Australia
| | - Amanda Nouwens
- The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, QLD, Australia
| | - Muhammad Noman Naseem
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Muhammad Kamran
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Emily F Mantilla Valdivieso
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Edward D Kerr
- The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, QLD, Australia
| | - Constantin Constantinoiu
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Nicholas N Jonsson
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Peter James
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Ala E Tabor
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia.,The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, QLD, Australia
| |
Collapse
|
3
|
Bakkes DK, Matloa DE, Mans BJ, Matthee CA. Their young bite better: On- and off-host selection pressure as drivers for evolutionary-developmental modification in Rhipicephalus ticks. ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 70:101189. [PMID: 35785582 DOI: 10.1016/j.asd.2022.101189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/11/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Distinct life stages may experience different selection pressures influencing phenotypic evolution. Morphological evolution is also constrained by early phenotypes, since early development forms the phenotypic basis of later development. This work investigates evolutionary-developmental modification in three life stages and both sexes of 24 Rhipicephalus species using phylogenetic comparative methods for geometric morphometrics of basis capituli (basal mouthpart structure used for host attachment), and scutum or conscutum areas (proxy for overall body size). Findings indicate species using large hosts at early life stages have distinct basis capituli shapes, correlated with host size, enabling attachment to the tough skins of large hosts. Host-truncate species (one- and two-host) generally retain these adaptive features into later life stages, suggesting neoteny is linked to the evolution of host truncation. In contrast, species using small hosts at early life stages have lost these features. Developmental trajectories differ significantly between host-use strategies (niches), and correlate with distinct clades. In two-host and three-host species using large hosts at early life stages, developmental change is heterotopically accelerated (greater cell mass development) before the first off-host period where selection probably favours large individuals able to better resist dehydration when questing (waiting) for less abundant, less active hosts. In other species, development is heterotopically reduced (neotenic), possibly because dehydration risk is bypassed by prolonged host attachment (one-host species - heterotopic neoteny), or is allometrically repatterned possibly by using highly abundant and active hosts (three-host species using small hosts at early life stages - allometric repatterning). These findings highlight complex trade-offs between on- and off-host factors of free-living ectoparasite ecology, which mediate responses to diverse selection pressures varied by life stage and host-use strategy. It is proposed that these trade-offs shape evolutionary-developmental morphology and diversity of Rhipicephalus ticks.
Collapse
Affiliation(s)
- Deon K Bakkes
- Gertrud Theiler Tick Museum, Epidemiology, Parasites and Vectors, Agricultural Research Council, Onderstepoort Veterinary Research, Pretoria, 0110, South Africa; Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Dikeledi E Matloa
- Gertrud Theiler Tick Museum, Epidemiology, Parasites and Vectors, Agricultural Research Council, Onderstepoort Veterinary Research, Pretoria, 0110, South Africa
| | - Ben J Mans
- Gertrud Theiler Tick Museum, Epidemiology, Parasites and Vectors, Agricultural Research Council, Onderstepoort Veterinary Research, Pretoria, 0110, South Africa; Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa; Department of Life and Consumer Sciences, University of South Africa, South Africa
| | - Conrad A Matthee
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
4
|
Mantilla Valdivieso EF, Ross EM, Raza A, Naseem MN, Kamran M, Hayes BJ, Jonsson NN, James P, Tabor AE. Transcriptional changes in the peripheral blood leukocytes from Brangus cattle before and after tick challenge with Rhipicephalus australis. BMC Genomics 2022; 23:454. [PMID: 35725367 PMCID: PMC9208207 DOI: 10.1186/s12864-022-08686-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Background Disease emergence and production loss caused by cattle tick infestations have focused attention on genetic selection strategies to breed beef cattle with increased tick resistance. However, the mechanisms behind host responses to tick infestation have not been fully characterised. Hence, this study examined gene expression profiles of peripheral blood leukocytes from tick-naive Brangus steers (Bos taurus x Bos indicus) at 0, 3, and 12 weeks following artificial tick challenge experiments with Rhipicephalus australis larvae. The aim of the study was to investigate the effect of tick infestation on host leukocyte response to explore genes associated with the expression of high and low host resistance to ticks. Results Animals with high (HR, n = 5) and low (LR, n = 5) host resistance were identified after repeated tick challenge. A total of 3644 unique differentially expressed genes (FDR < 0.05) were identified in the comparison of tick-exposed (both HR and LR) and tick-naive steers for the 3-week and 12-week infestation period. Enrichment analyses showed genes were involved in leukocyte chemotaxis, coagulation, and inflammatory response. The IL-17 signalling, and cytokine-cytokine interactions pathways appeared to be relevant in protection and immunopathology to tick challenge. Comparison of HR and LR phenotypes at timepoints of weeks 0, 3, and 12 showed there were 69, 8, and 4 differentially expressed genes, respectively. Most of these genes were related to immune, tissue remodelling, and angiogenesis functions, suggesting this is relevant in the development of resistance or susceptibility to tick challenge. Conclusions This study showed the effect of tick infestation on Brangus cattle with variable phenotypes of host resistance to R. australis ticks. Steers responded to infestation by expressing leukocyte genes related to chemotaxis, cytokine secretion, and inflammatory response. The altered expression of genes from the bovine MHC complex in highly resistant animals at pre- and post- infestation stages also supports the relevance of this genomic region for disease resilience. Overall, this study offers a resource of leukocyte gene expression data on matched tick-naive and tick-infested steers relevant for the improvement of tick resistance in composite cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08686-3.
Collapse
Affiliation(s)
- Emily F Mantilla Valdivieso
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia.
| | - Elizabeth M Ross
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Ali Raza
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Muhammad Noman Naseem
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Muhammad Kamran
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Ben J Hayes
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Nicholas N Jonsson
- University of Glasgow, Institute of Biodiversity Animal Health and Comparative Medicine, Glasgow, G61 1QH, UK.
| | - Peter James
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Ala E Tabor
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia. .,The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
5
|
Genome variation in tick infestation and cryptic divergence in Tunisian indigenous sheep. BMC Genomics 2022; 23:167. [PMID: 35227193 PMCID: PMC8883713 DOI: 10.1186/s12864-022-08321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ticks are obligate haematophagous ectoparasites considered second to mosquitos as vectors and reservoirs of multiple pathogens of global concern. Individual variation in tick infestation has been reported in indigenous sheep, but its genetic control remains unknown. Results Here, we report 397 genome-wide signatures of selection overlapping 991 genes from the analysis, using ROH, LR-GWAS, XP-EHH, and FST, of 600 K SNP genotype data from 165 Tunisian sheep showing high and low levels of tick infestations and piroplasm infections. We consider 45 signatures that are detected by consensus results of at least two methods as high-confidence selection regions. These spanned 104 genes which included immune system function genes, solute carriers and chemokine receptor. One region spanned STX5, that has been associated with tick resistance in cattle, implicating it as a prime candidate in sheep. We also observed RAB6B and TF in a high confidence candidate region that has been associated with growth traits suggesting natural selection is enhancing growth and developmental stability under tick challenge. The analysis also revealed fine-scale genome structure indicative of cryptic divergence in Tunisian sheep. Conclusions Our findings provide a genomic reference that can enhance the understanding of the genetic architecture of tick resistance and cryptic divergence in indigenous African sheep. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08321-1.
Collapse
|
6
|
Jang J, Kim K, Lee YH, Kim H. Population differentiated copy number variation of Bos taurus, Bos indicus and their African hybrids. BMC Genomics 2021; 22:531. [PMID: 34253178 PMCID: PMC8276479 DOI: 10.1186/s12864-021-07808-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023] Open
Abstract
Background CNV comprises a large proportion in cattle genome and is associated with various traits. However, there were few population-scale comparison studies on cattle CNV. Results Here, autosome-wide CNVs were called by read depth of NGS alignment result and copy number variation regions (CNVRs) defined from 102 Eurasian taurine (EAT) of 14 breeds, 28 Asian indicine (ASI) of 6 breeds, 22 African taurine (AFT) of 2 breeds, and 184 African humped cattle (AFH) of 17 breeds. The copy number of every CNVRs were compared between populations and CNVRs with population differentiated copy numbers were sorted out using the pairwise statistics VST and Kruskal-Wallis test. Three hundred sixty-two of CNVRs were significantly differentiated in both statistics and 313 genes were located on the population differentiated CNVRs. Conclusion For some of these genes, the averages of copy numbers were also different between populations and these may be candidate genes under selection. These include olfactory receptors, pathogen-resistance, parasite-resistance, heat tolerance and productivity related genes. Furthermore, breed- and individual-level comparison was performed using the presence or copy number of the autosomal CNVRs. Our findings were based on identification of CNVs from short Illumina reads of 336 individuals and 39 breeds, which to our knowledge is the largest dataset for this type of analysis and revealed important CNVs that may play a role in cattle adaption to various environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07808-7.
Collapse
Affiliation(s)
- Jisung Jang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Kwondo Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Ho Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea. .,Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea. .,eGnome, Inc, Seoul, South Korea.
| |
Collapse
|
7
|
Thutwa K, van Wyk JB, Dzama K, Scholtz AJ, Cloete SWP. Expression of cytokine genes at tick attachment and control sites of Namaqua Afrikaner, Dorper and South African Mutton Merino sheep. Vet Parasitol 2021; 291:109384. [PMID: 33657515 DOI: 10.1016/j.vetpar.2021.109384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/17/2022]
Abstract
Cytokines are immune response components important in innate immunity and inflammatory response. They are harnessed as part of local immunological responses by animals to combat local infections and/or infestations. This study investigated expression of four selected cytokine genes, namely, interleukin 1 beta (IL-1β), chemokine C-C ligand 2 (CCL2), chemokine C-C ligand 26 (CCL26) and interleukin 8 (IL-8), at tick attachment and control sites in a South African indigenous sheep breed the Namaqua Afrikaner (NA) and two commercial breeds, the Dorper and South African Mutton Merino (SAMM). The NA was previously shown to be more resistant to infestation by ticks than the two commercial breeds. NA ewes expressed IL-1β more at tick attachment sites compared to Dorpers. The NA breed was also more likely to upregulate the expression of the CCL2, CCL26 and IL-8 genes at tick attachment sites compared to control sites than the other breeds. The results of this study gave an indication that cytokines are involved in immune responses to tick challenge and laid a foundation for further studies under controlled challenge conditions.
Collapse
Affiliation(s)
- Ketshephaone Thutwa
- Department of Animal, Wildlife and Grassland Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa; Department of Animal Science, Botswana University of Agriculture and Natural Resources, Private Bag 0027, Gaborone, Botswana
| | - Jacob B van Wyk
- Department of Animal, Wildlife and Grassland Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Kennedy Dzama
- Department of Animal Sciences, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Anna J Scholtz
- Directorate Animal Sciences: Elsenburg, Department of Agriculture, Western Cape Government, Private Bag X1, Elsenburg, 7609, South Africa
| | - Schalk W P Cloete
- Department of Animal Sciences, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa; Directorate Animal Sciences: Elsenburg, Department of Agriculture, Western Cape Government, Private Bag X1, Elsenburg, 7609, South Africa.
| |
Collapse
|
8
|
Huang Y, Li Y, Wang X, Yu J, Cai Y, Zheng Z, Li R, Zhang S, Chen N, Asadollahpour Nanaei H, Hanif Q, Chen Q, Fu W, Li C, Cao X, Zhou G, Liu S, He S, Li W, Chen Y, Chen H, Lei C, Liu M, Jiang Y. An atlas of CNV maps in cattle, goat and sheep. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1747-1764. [PMID: 33486588 DOI: 10.1007/s11427-020-1850-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022]
Abstract
Copy number variation (CNV) is the most prevalent type of genetic structural variation that has been recognized as an important source of phenotypic variation in humans, animals and plants. However, the mechanisms underlying the evolution of CNVs and their function in natural or artificial selection remain unknown. Here, we generated CNV region (CNVR) datasets which were diverged or shared among cattle, goat, and sheep, including 886 individuals from 171 diverse populations. Using 9 environmental factors for genome-wide association study (GWAS), we identified a series of candidate CNVRs, including genes relating to immunity, tick resistance, multi-drug resistance, and muscle development. The number of CNVRs shared between species is significantly higher than expected (P<0.00001), and these CNVRs may be more persist than the single nucleotide polymorphisms (SNPs) shared between species. We also identified genomic regions under long-term balancing selection and uncovered the potential diversity of the selected CNVRs close to the important functional genes. This study provides the evidence that balancing selection might be more common in mammals than previously considered, and might play an important role in the daily activities of these ruminant species.
Collapse
Affiliation(s)
- Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yunjia Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jiantao Yu
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Yudong Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhuqing Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ran Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shunjin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | | | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, 577, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, 45650, Islamabad, Pakistan
| | - Qiuming Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Weiwei Fu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiukai Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guangxian Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shudong Liu
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Sangang He
- Key Laboratory of Genetics Breeding and Reproduction of Grass feeding Livestock, Ministry of Agriculture, Biotechnology Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, 830026, China
| | - Wenrong Li
- Key Laboratory of Genetics Breeding and Reproduction of Grass feeding Livestock, Ministry of Agriculture, Biotechnology Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, 830026, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Mingjun Liu
- Key Laboratory of Genetics Breeding and Reproduction of Grass feeding Livestock, Ministry of Agriculture, Biotechnology Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, 830026, China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
9
|
Robbertse L, Richards SA, Stutzer C, Olivier NA, Leisewitz AL, Crafford JE, Maritz-Olivier C. Temporal analysis of the bovine lymph node transcriptome during cattle tick (Rhipicephalus microplus) infestation. Vaccine 2020; 38:6889-6898. [PMID: 32900540 DOI: 10.1016/j.vaccine.2020.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 11/18/2022]
Abstract
Livestock production is a fundamental source of revenue and nutrition, wherein cattle-farming constitutes one of the major agricultural industries. Vectors and vector-borne diseases constitute one of the major factors that decrease the livelihood of all farming communities, more so in resource-poor communities and developing countries. Understanding the immunological responses during tick infestation in cattle is instrumental in the development of novel and improved tick control strategies, such as vaccines. In this study, gene expression patterns were compared within the lymph nodes of three cattle breeds at different life stages of the cattle tick, Rhipicephalus microplus. For Bonsmara (5/8Bos taurus indicus × 3/8B. t. taurus) cattle specifically, some 183 genes were found to be differentially expressed within the lymph nodes during larval and adult tick feeding, relative to uninfested cattle. Overall, the data provides evidence for a transcriptional regulatory network that is activated during immature tick infestation, but is down-regulated towards basal transcriptional levels when adult ticks are feeding. Specific processes in the lymph nodes of Bonsmara cattle were found to be differentially regulated on a transcriptional level. These include: (1) Leukocyte recruitment to the lymph node via chemokines and chemotaxis, (2) Trans-endothelial and intranodal movement on the reticular network, (3) Active regulation of cellular transcription and translation in the lymph node (including leukocyte associated cellular regulatory networks) and (4) Chemokine receptors regulating the movement of cells out of the lymph node. This work provides a first transcriptome analysis of bovine lymph node responses in tick-infested cattle. Findings show a dynamic immune response to tick infestation for the Bonsmara cattle breed, and that suppression of the maturation of the cattle hosts' immunity is especially evident during the larval feeding stages.
Collapse
Affiliation(s)
- Luïse Robbertse
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Sabine A Richards
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Christian Stutzer
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Nicholas A Olivier
- Department of Plant and Soil Sciences, University of Pretoria, South Africa; ACGT Microarray Facility, University of Pretoria, South Africa
| | - Andrew L Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Jan E Crafford
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Christine Maritz-Olivier
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| |
Collapse
|
10
|
Cavani L, Braz CU, Giglioti R, Okino CH, Gulias-Gomes CC, Caetano AR, Oliveira MCDS, Cardoso FF, de Oliveira HN. Genomic Study of Babesia bovis Infection Level and Its Association With Tick Count in Hereford and Braford Cattle. Front Immunol 2020; 11:1905. [PMID: 33013839 PMCID: PMC7493685 DOI: 10.3389/fimmu.2020.01905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
Bovine babesiosis is a tick-borne disease caused by intraerythrocytic protozoa and leads to substantial economic losses for the livestock industry throughout the world. Babesia bovis is considered the most pathogenic species, which causes bovine babesiosis in Brazil. Genomic data could be used to evaluate the viability of improving resistance against B. bovis infection level (IB) through genomic selection, and, for that, knowledge of genetic parameters is needed. Furthermore, genome-wide association studies (GWAS) could be conducted to provide a better understanding of the genetic basis of the host response to B. bovis infection. No previous work in quantitative genetics of B. bovis infection was found. Thus, the objective of this study was to estimate the genetic correlation between IB and tick count (TC), evaluate predictive ability and applicability of genomic selection, and perform GWAS in Hereford and Braford cattle. The single-step genomic best linear unbiased prediction method was used, which allows the estimation of both breeding values and marker effects. Standard phenotyping was conducted for both traits. IB quantifications from the blood of 1,858 animals were carried using quantitative PCR assays. For TC, one to three subsequent tick counts were performed by manually counting adult female ticks on one side of each animal's body that was naturally exposed to ticks. Animals were genotyped using the Illumina BovineSNP50 panel. The posterior mean of IB heritability, estimated by the Bayesian animal model in a bivariate analysis, was low (0.10), and the estimations of genetic correlation between IB and TC were also low (0.15). The cross-validation genomic prediction accuracy for IB ranged from 0.18 to 0.35 and from 0.29 to 0.32 using k-means and random clustering, respectively, suggesting that genomic predictions could be used as a tool to improve genetics for IB, especially if a larger training population is developed. The top 10 single nucleotide polymorphisms from the GWAS explained 5.04% of total genetic variance for IB, which were located on chromosomes 1, 2, 5, 6, 12, 17, 18, 16, 24, and 26. Some candidate genes participate in immunity system pathways indicating that those genes are involved in resistance to B. bovis in cattle. Although the genetic correlation between IB and TC was weak, some candidate genes for IB were also reported in tick infestation studies, and they were also involved in biological resistance processes. This study contributes to improving genetic knowledge regarding infection by B. bovis in cattle.
Collapse
Affiliation(s)
- Ligia Cavani
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Camila Urbano Braz
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Rodrigo Giglioti
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Pecuária Sudeste, São Carlos, Brazil
| | - Cintia Hiromi Okino
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Pecuária Sudeste, São Carlos, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Low WY, Tearle R, Liu R, Koren S, Rhie A, Bickhart DM, Rosen BD, Kronenberg ZN, Kingan SB, Tseng E, Thibaud-Nissen F, Martin FJ, Billis K, Ghurye J, Hastie AR, Lee J, Pang AWC, Heaton MP, Phillippy AM, Hiendleder S, Smith TPL, Williams JL. Haplotype-resolved genomes provide insights into structural variation and gene content in Angus and Brahman cattle. Nat Commun 2020; 11:2071. [PMID: 32350247 PMCID: PMC7190621 DOI: 10.1038/s41467-020-15848-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Inbred animals were historically chosen for genome analysis to circumvent assembly issues caused by haplotype variation but this resulted in a composite of the two genomes. Here we report a haplotype-aware scaffolding and polishing pipeline which was used to create haplotype-resolved, chromosome-level genome assemblies of Angus (taurine) and Brahman (indicine) cattle subspecies from contigs generated by the trio binning method. These assemblies reveal structural and copy number variants that differentiate the subspecies and that variant detection is sensitive to the specific reference genome chosen. Six genes with immune related functions have additional copies in the indicine compared with taurine lineage and an indicus-specific extra copy of fatty acid desaturase is under positive selection. The haplotyped genomes also enable transcripts to be phased to detect allele-specific expression. This work exemplifies the value of haplotype-resolved genomes to better explore evolutionary and functional variations.
Collapse
Affiliation(s)
- Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Rick Tearle
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Ruijie Liu
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | | | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, ARS USDA, Beltsville, MD, USA
| | - Zev N Kronenberg
- Phase Genomics, 4000 Mason Road, Suite 225, Seattle, WA, 98195, USA
| | | | | | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jay Ghurye
- Center for Bioinformatics and Computational Biology, Lab 3104A, Biomolecular Science Building, University of Maryland, College Park, MD, 20742, USA
| | | | - Joyce Lee
- Bionano Genomics, San Diego, CA, USA
| | | | | | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Stefan Hiendleder
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia.
| | | | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia.
| |
Collapse
|
12
|
Marima JK, Nel CL, Marufu MC, Jonsson NN, Dube B, Dzama K. A genetic and immunological comparison of tick-resistance in beef cattle following artificial infestation with Rhipicephalus ticks. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:569-590. [PMID: 32185559 DOI: 10.1007/s10493-020-00480-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Host resistance to ticks can be explored as a possible approach of combating tick infestations to complement the existing unsustainable tick control methods. Thirty-six beef cattle animals were used, consisting of Angus, Brahman and Nguni breeds, with each breed contributing 12 animals. Half of the animals per breed were artificially challenged with Rhipicephalus microplus and the other half with R. decoloratus unfed larvae per animal. Skin biopsies and blood samples were collected pre-infestation and 12 h post-infestation from the feeding sites of visibly engorging ticks. The success rate of the ticks was high and had an influence even at the early time point. Increased lymphocytes and blood urea nitrogen levels as well as decreased levels of segmented neutrophils were observed in the Angus, which were the opposite of those in the Brahman and Nguni. The increase in cholesterol, which was highest in the Angus and lowest in the Nguni, may be due to altered protein metabolism. The expression profiles of genes TRAF6, TBP, LUM and B2M were significantly different among breeds. Five genes (CCR1, TLR5, TRAF6, TBP, BDA20) had increased or constant expression post-infestation, whereas the expression of CXCL8, IL-10 and TNF-α decreased or remained the same after tick challenge. Genes that showed variation are involved in discouraging long-term supply of blood meal to the tick and those associated with immune responses. The gene LUM is a potential biomarker for tick resistance in cattle. The response to infestation by the breeds was consistent across the tick species.
Collapse
Affiliation(s)
- J K Marima
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - C L Nel
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - M C Marufu
- Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X4, Onderstepoort, 0110, South Africa
| | - N N Jonsson
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, G61 1QH, UK
| | - B Dube
- Department of Animal Breeding and Genetics, Agricultural Research Council - Animal Production, Private Bag X2, Irene, 0062, South Africa
| | - K Dzama
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
13
|
Moré DD, Cardoso FF, Mudadu MA, Malagó-Jr W, Gulias-Gomes CC, Sollero BP, Ibelli AMG, Coutinho LL, Regitano LCA. Network analysis uncovers putative genes affecting resistance to tick infestation in Braford cattle skin. BMC Genomics 2019; 20:998. [PMID: 31856720 PMCID: PMC6923859 DOI: 10.1186/s12864-019-6360-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background Genetic resistance in cattle is considered a suitable way to control tick burden and its consequent losses for livestock production. Exploring tick-resistant (R) and tick-susceptible (S) hosts, we investigated the genetic mechanisms underlying the variation of Braford resistance to tick infestation. Skin biopsies from four-times-artificially infested R (n = 20) and S (n = 19) hosts, obtained before the first and 24 h after the fourth tick infestation were submitted to RNA-Sequencing. Differential gene expression, functional enrichment, and network analysis were performed to identify genetic pathways and transcription factors (TFs) affecting host resistance. Results Intergroup comparisons of hosts before (Rpre vs. Spre) and after (Rpost vs. Spost) tick infestation found 51 differentially expressed genes (DEGs), of which almost all presented high variation (TopDEGs), and 38 were redundant genes. Gene expression was consistently different between R and S hosts, suggesting the existence of specific anti-tick mechanisms. In the intragroup comparisons, Rpost vs. Rpre and Spost vs. Spre, we found more than two thousand DEGs in response to tick infestation in both resistance groups. Redundant and non-redundant TopDEGs with potential anti-tick functions suggested a role in the development of different levels of resistance within the same breed. Leukocyte chemotaxis was over-represented in both hosts, whereas skin degradation and remodeling were only found in TopDEGs from R hosts. Also, these genes indicated the participation of cytokines, such as IL6 and IL22, and the activation of Wingless (WNT)-signaling pathway. A central gene of this pathway, WNT7A, was consistently modulated when hosts were compared. Moreover, the findings based on a genome-wide association study (GWAS) corroborate the prediction of the WNT-signaling pathway as a candidate mechanism of resistance. The regulation of immune response was the most relevant pathway predicted for S hosts. Members of Ap1 and NF-kB families were the most relevant TFs predicted for R and S, respectively. Conclusion This work provides indications of genetic mechanisms presented by Braford cattle with different levels of resistance in response to tick infestation, contributing to the search of candidate genes for tick resistance in bovine.
Collapse
Affiliation(s)
| | - Fernando F Cardoso
- EMBRAPA Pecuária Sul, Bagé, Rio Grande do Sul, Brazil.,Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, Brazil
| | | | | | | | | | | | - Luiz L Coutinho
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | |
Collapse
|
14
|
Liu R, Low WY, Tearle R, Koren S, Ghurye J, Rhie A, Phillippy AM, Rosen BD, Bickhart DM, Smith TPL, Hiendleder S, Williams JL. New insights into mammalian sex chromosome structure and evolution using high-quality sequences from bovine X and Y chromosomes. BMC Genomics 2019; 20:1000. [PMID: 31856728 PMCID: PMC6923926 DOI: 10.1186/s12864-019-6364-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Mammalian X chromosomes are mainly euchromatic with a similar size and structure among species whereas Y chromosomes are smaller, have undergone substantial evolutionary changes and accumulated male specific genes and genes involved in sex determination. The pseudoautosomal region (PAR) is conserved on the X and Y and pair during meiosis. The structure, evolution and function of mammalian sex chromosomes, particularly the Y chromsome, is still poorly understood because few species have high quality sex chromosome assemblies. RESULTS Here we report the first bovine sex chromosome assemblies that include the complete PAR spanning 6.84 Mb and three Y chromosome X-degenerate (X-d) regions. The PAR comprises 31 genes, including genes that are missing from the X chromosome in current cattle, sheep and goat reference genomes. Twenty-nine PAR genes are single-copy genes and two are multi-copy gene families, OBP, which has 3 copies and BDA20, which has 4 copies. The Y chromosome X-d1, 2a and 2b regions contain 11, 2 and 2 gametologs, respectively. CONCLUSIONS The ruminant PAR comprises 31 genes and is similar to the PAR of pig and dog but extends further than those of human and horse. Differences in the pseudoautosomal boundaries are consistent with evolutionary divergence times. A bovidae-specific expansion of members of the lipocalin gene family in the PAR reported here, may affect immune-modulation and anti-inflammatory responses in ruminants. Comparison of the X-d regions of Y chromosomes across species revealed that five of the X-Y gametologs, which are known to be global regulators of gene activity and candidate sexual dimorphism genes, are conserved.
Collapse
Affiliation(s)
- Ruijie Liu
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - Rick Tearle
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Jay Ghurye
- Center for Bioinformatics and Computational Biology, Lab 3104A, Biomolecular Science Building, University of Maryland, College Park, MD, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, ARS USDA, Beltsville, MD, USA
| | - Derek M Bickhart
- Cell Wall Biology and Utilization Laboratory, ARS USDA, Madison, WI, USA
| | | | - Stefan Hiendleder
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia.
| |
Collapse
|
15
|
Armstrong SA, McLean DJ, Bionaz M, Bobe G. A natural bioactive feed additive alters expression of genes involved in inflammation in whole blood of healthy Angus heifers. Innate Immun 2019; 26:285-293. [PMID: 31744342 PMCID: PMC7251791 DOI: 10.1177/1753425919887232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A greater demand for food animal production without antibiotics has created the
common practice of feeding food animals dietary immunomodulatory feed additives
(IFA) throughout their life cycle. However, little is known about the impact of
IFA on cytokine and chemokine signaling in non-stressed, non-pathogen-challenged
food animals during the early feeding period. We evaluated the expression of 82
genes related to cytokine and chemokine signaling in the whole blood of growing
Angus heifers to determine the effect of IFA supplementation on cytokine and
chemokine signaling during the first 28 d of feeding. One gene
(CCL1) was significantly up-regulated and 14 genes (17%)
were significantly down-regulated by IFA feeding during the entire early feeding
period including 5 of 21 (24%) evaluated chemokine and IL receptors
(CCR1, CCR2, IL1R1,
IL10RA, IL10RB). These data when taken
together suggest providing an IFA in the diet of growing beef cattle during the
early feeding period may suppress the inflammatory response through
cytokine–cytokine receptor signaling.
Collapse
Affiliation(s)
- Shelby A Armstrong
- Phibro Animal Health Corporation, Teaneck, NJ, USA.,Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, USA
| | - Gerd Bobe
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
16
|
Estrada-Reyes ZM, Tsukahara Y, Amadeu RR, Goetsch AL, Gipson TA, Sahlu T, Puchala R, Wang Z, Hart SP, Mateescu RG. Signatures of selection for resistance to Haemonchus contortus in sheep and goats. BMC Genomics 2019; 20:735. [PMID: 31615414 PMCID: PMC6792194 DOI: 10.1186/s12864-019-6150-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/29/2019] [Indexed: 11/20/2022] Open
Abstract
Background Gastrointestinal nematode infection (GNI) is the most important disease affecting the small ruminant industry in U.S. The environmental conditions in the southern United States are ideal for the survival of the most pathogenic gastrointestinal nematode, Haemonchus contortus. Host genetic variation for resistance to H. contortus allows selective breeding for increased resistance of animals. This selection process increases the prevalence of particular alleles in sheep and goats and creates unique genetic patterns in the genome of these species. The aim of this study was to identify loci with divergent allelic frequencies in a candidate gene panel of 100 genes using two different approaches (frequentist and Bayesian) to estimate Fst outliers in three different breeds of sheep and goats exposed to H. contortus. Results Our results for sheep populations showed SNPs under selection in C3AR1, CSF3, SOCS2, NOS2, STAT5B, TGFB2 and IL2RA genes using frequentist and Bayesian approaches. For goats, SNPs in CD1D, ITGA9, IL12A, IL13RA1, CD86 and TGFB2 genes were under selection. Common signatures of selection in both species were observed in NOS2, TGFB2 and TLR4 genes. Directional selection was present in all SNPs evaluated in the present study. Conclusions A total of 13 SNPs within 7 genes of our candidate gene panel related to H. contortus exposure were identified under selection in sheep populations. For goats, 11 SNPs within 7 genes were identified under selection. Results from this study support the hypothesis that resistance to H. contortus is likely to be controlled by many loci. Shared signatures of selection related to mechanisms of immune protection against H. contortus infection in sheep and goats could be useful targets in breeding programs aimed to produce resistant animals with low FEC.
Collapse
Affiliation(s)
| | - Yoko Tsukahara
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Rodrigo R Amadeu
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Arthur L Goetsch
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Terry A Gipson
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Tilahun Sahlu
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Richard Puchala
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Zaisen Wang
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Steve P Hart
- American Institute for Goat Research, Langston University, Langston, OK, USA
| | - Raluca G Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Burrow HM, Mans BJ, Cardoso FF, Birkett MA, Kotze AC, Hayes BJ, Mapholi N, Dzama K, Marufu MC, Githaka NW, Djikeng A. Towards a new phenotype for tick resistance in beef and dairy cattle: a review. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an18487] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
About 80% of the world’s cattle are affected by ticks and tick-borne diseases, both of which cause significant production losses. Cattle host resistance to ticks is the most important factor affecting the economics of tick control, but it is largely neglected in tick-control programs due to technical difficulties and costs associated with identifying individual-animal variation in resistance. The present paper reviews the scientific literature to identify factors affecting resistance of cattle to ticks and the biological mechanisms of host tick resistance, to develop alternative phenotype(s) for tick resistance. If new cost-effective phenotype(s) can be developed and validated, then tick resistance of cattle could be genetically improved using genomic selection, and incorporated into breeding objectives to simultaneously improve cattle productive attributes and tick resistance. The phenotype(s) could also be used to improve tick control by using cattle management. On the basis of the present review, it is recommended that three possible phenotypes (haemolytic analysis; measures of skin hypersensitivity reactions; simplified artificial tick infestations) be further developed to determine their practical feasibility for consistently, cost-effectively and reliably measuring cattle tick resistance in thousands of individual animals in commercial and smallholder farmer herds in tropical and subtropical areas globally. During evaluation of these potential new phenotypes, additional measurements should be included to determine the possibility of developing a volatile-based resistance phenotype, to simultaneously improve cattle resistance to both ticks and biting flies. Because the current measurements of volatile chemistry do not satisfy the requirements of a simple, cost-effective phenotype for use in commercial cattle herds, consideration should also be given to inclusion of potentially simpler measures to enable indirect genetic selection for volatile-based resistance to ticks.
Collapse
|
18
|
Cutaneous hypersensitivity reactions against unfed tick larval extract of Rhipicephalus evertsi in South African Mutton Merino, Namaqua Afrikaner and Dorper sheep. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Robbertse L, Richards SA, Clift SJ, Barnard AC, Leisewitz A, Crafford JE, Maritz-Olivier C. Comparison of the differential regulation of T and B-lymphocyte subsets in the skin and lymph nodes amongst three cattle breeds as potential mediators of immune-resistance to Rhipicephalus microplus. Ticks Tick Borne Dis 2018; 9:976-987. [PMID: 29622516 DOI: 10.1016/j.ttbdis.2018.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/02/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
Abstract
Although varying natural resistance to ticks between highly resistant Brahman (Bos taurus indicus), resistant Bonsmara (5/8 B. t. indicus x 3/8 B. t. taurus) and susceptible Holstein-Friesian (B. t. taurus) breeds is documented in skin and blood, little information is available describing draining lymph nodes. To elucidate the cellular dynamics during Rhipicephalus microplus induced immune responses, this study analysed immune factors from these cattle breeds using histology, immunohistochemistry and flow cytometry. Following the collection of skin and lymph node samples before artificial tick infestation, cattle were infested with R. microplus larvae. Subsequent sampling coincided with the tick larvae and adult developmental stages. A significant influx of CD20+ B-lymphocytes in the dermis all cattle breeds was observed while CD3+ T-lymphocytes were significantly increased for more tick resistant breeds. Eosinophil infiltration in germinal centres of lymph nodes was significant for all cattle breeds while tingible body macrophages were significantly increased for adult infested Brahman animals. A negligible fluctuation in CD20+ and CD79α+ B-lymphocyte numbers was present in the lymph node of more resistant cattle breeds, while susceptible animals showed a decrease in B-lymphocytes after infestation, followed by an increase between larvae to adult infested time points. Increased variability of γd T-lymphocyte populations in lymph nodes was correlated with tick susceptibility. In addition, a more stable T helper lymphocyte population was identified in the lymph nodes for the Brahman cattle breed. Results suggest the association of tick susceptibility with differential B-lymphocyte regulation in lymph node tissues, increased variability of WC1+ γδ T-lymphocyte populations in the lymph node as well as a decrease in T helper lymphocytes in the lymph node.
Collapse
Affiliation(s)
- Luïse Robbertse
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Sabine Annette Richards
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Sarah Jane Clift
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Annette-Christi Barnard
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Andrew Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Jan Ernst Crafford
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Christine Maritz-Olivier
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| |
Collapse
|
20
|
Robbertse L, Richards SA, Maritz-Olivier C. Bovine Immune Factors Underlying Tick Resistance: Integration and Future Directions. Front Cell Infect Microbiol 2017; 7:522. [PMID: 29312898 PMCID: PMC5742187 DOI: 10.3389/fcimb.2017.00522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
The mechanisms underlying tick resistance within and between cattle breeds have been studied for decades. Several previous papers on bovine immune parameters contributing to tick resistance discussed findings across DNA, RNA, protein, cellular, and tissue levels. However, the differences between bovine host species, tick species and the experimental layouts were not always taken into account. This review aims to (a) give a comprehensive summary of studies investigating immune marker differences between cattle breeds with varying degrees of tick resistance, and (b) to integrate key findings and suggest hypotheses on likely immune-regulated pathways driving resistance. Experimental issues, which may have skewed conclusions, are highlighted. In future, improved experimental strategies will enable more focused studies to identify and integrate immune markers and/or pathways. Most conclusive thus far is the involvement of histamine, granulocytes and their associated pathways in the tick-resistance mechanism. Interestingly, different immune markers might be involved in the mechanisms within a single host breed in contrast to between breeds. Also, differences are evident at each tick life stage, limiting the level to which datasets can be compared. Future studies to further elucidate immune molecule dynamics across the entire tick life cycle and in-depth investigation of promising markers and pathways on both molecular and cellular level are in dire need to obtain a scientifically sound hypothesis on the drivers of tick resistance.
Collapse
Affiliation(s)
| | | | - Christine Maritz-Olivier
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
21
|
Tabor AE, Ali A, Rehman G, Rocha Garcia G, Zangirolamo AF, Malardo T, Jonsson NN. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses. Front Cell Infect Microbiol 2017; 7:506. [PMID: 29322033 PMCID: PMC5732177 DOI: 10.3389/fcimb.2017.00506] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/22/2017] [Indexed: 01/12/2023] Open
Abstract
Ticks are able to transmit tick-borne infectious agents to vertebrate hosts which cause major constraints to public and livestock health. The costs associated with mortality, relapse, treatments, and decreased production yields are economically significant. Ticks adapted to a hematophagous existence after the vertebrate hemostatic system evolved into a multi-layered defense system against foreign invasion (pathogens and ectoparasites), blood loss, and immune responses. Subsequently, ticks evolved by developing an ability to suppress the vertebrate host immune system with a devastating impact particularly for exotic and crossbred cattle. Host genetics defines the immune responsiveness against ticks and tick-borne pathogens. To gain an insight into the naturally acquired resistant and susceptible cattle breed against ticks, studies have been conducted comparing the incidence of tick infestation on bovine hosts from divergent genetic backgrounds. It is well-documented that purebred and crossbred Bos taurus indicus cattle are more resistant to ticks and tick-borne pathogens compared to purebred European Bos taurus taurus cattle. Genetic studies identifying Quantitative Trait Loci markers using microsatellites and SNPs have been inconsistent with very low percentages relating phenotypic variation with tick infestation. Several skin gene expression and immunological studies have been undertaken using different breeds, different samples (peripheral blood, skin with tick feeding), infestation protocols and geographic environments. Susceptible breeds were commonly found to be associated with the increased expression of toll like receptors, MHC Class II, calcium binding proteins, and complement factors with an increased presence of neutrophils in the skin following tick feeding. Resistant breeds had higher levels of T cells present in the skin prior to tick infestation and thus seem to respond to ticks more efficiently. The skin of resistant breeds also contained higher numbers of eosinophils, mast cells and basophils with up-regulated proteases, cathepsins, keratins, collagens and extracellular matrix proteins in response to feeding ticks. Here we review immunological and molecular determinants that explore the cattle tick Rhipicephalus microplus-host resistance phenomenon as well as contemplating new insights and future directions to study tick resistance and susceptibility, in order to facilitate interventions for tick control.
Collapse
Affiliation(s)
- Ala E Tabor
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.,Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan.,Escola de Enfermagem de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Gustavo Rocha Garcia
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Thiago Malardo
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Nicholas N Jonsson
- Institute of Biodiversity, Animal Health and Comparative Medicine, The University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
22
|
Makina SO, Muchadeyi FC, van Marle-Köster E, Taylor JF, Makgahlela ML, Maiwashe A. Genome-wide scan for selection signatures in six cattle breeds in South Africa. Genet Sel Evol 2015; 47:92. [PMID: 26612660 PMCID: PMC4662009 DOI: 10.1186/s12711-015-0173-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/19/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The detection of selection signatures in breeds of livestock species can contribute to the identification of regions of the genome that are, or have been, functionally important and, as a consequence, have been targeted by selection. METHODS This study used two approaches to detect signatures of selection within and between six cattle breeds in South Africa, including Afrikaner (n = 44), Nguni (n = 54), Drakensberger (n = 47), Bonsmara (n = 44), Angus (n = 31) and Holstein (n = 29). The first approach was based on the detection of genomic regions in which haplotypes have been driven towards complete fixation within breeds. The second approach identified regions of the genome that had very different allele frequencies between populations (F ST). RESULTS AND DISCUSSION Forty-seven candidate genomic regions were identified as harbouring putative signatures of selection using both methods. Twelve of these candidate selected regions were shared among the breeds and ten were validated by previous studies. Thirty-three of these regions were successfully annotated and candidate genes were identified. Among these genes the keratin genes (KRT222, KRT24, KRT25, KRT26, and KRT27) and one heat shock protein gene (HSPB9) on chromosome 19 between 42,896,570 and 42,897,840 bp were detected for the Nguni breed. These genes were previously associated with adaptation to tropical environments in Zebu cattle. In addition, a number of candidate genes associated with the nervous system (WNT5B, FMOD, PRELP, and ATP2B), immune response (CYM, CDC6, and CDK10), production (MTPN, IGFBP4, TGFB1, and AJAP1) and reproductive performance (ADIPOR2, OVOS2, and RBBP8) were also detected as being under selection. CONCLUSIONS The results presented here provide a foundation for detecting mutations that underlie genetic variation of traits that have economic importance for cattle breeds in South Africa.
Collapse
Affiliation(s)
- Sithembile O Makina
- Agricultural Research Council-Animal Production Institute, Private Bag X 2, Irene, 0062, South Africa. .,Department of Animal and Wildlife Sciences, University of Pretoria, Private Bag X 20, Hatfield, 0028, South Africa.
| | - Farai C Muchadeyi
- Agricultural Research Council-Biotechnology Platform, Private Bag X 5, Onderstepoort, 0110, South Africa.
| | - Este van Marle-Köster
- Department of Animal and Wildlife Sciences, University of Pretoria, Private Bag X 20, Hatfield, 0028, South Africa.
| | - Jerry F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Mahlako L Makgahlela
- Agricultural Research Council-Animal Production Institute, Private Bag X 2, Irene, 0062, South Africa.
| | - Azwihangwisi Maiwashe
- Agricultural Research Council-Animal Production Institute, Private Bag X 2, Irene, 0062, South Africa. .,Department of Animal, Wildlife and Grassland Sciences, University of Free State, Bloemfontein, 9300, South Africa.
| |
Collapse
|
23
|
Rodriguez-Valle M, Xu T, Kurscheid S, Lew-Tabor AE. Rhipicephalus microplus serine protease inhibitor family: annotation, expression and functional characterisation assessment. Parasit Vectors 2015; 8:7. [PMID: 25564202 PMCID: PMC4322644 DOI: 10.1186/s13071-014-0605-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/14/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rhipicephalus (Boophilus) microplus evades the host's haemostatic system through a complex protein array secreted into tick saliva. Serine protease inhibitors (serpins) conform an important component of saliva which are represented by a large protease inhibitor family in Ixodidae. These secreted and non-secreted inhibitors modulate diverse and essential proteases involved in different physiological processes. METHODS The identification of R. microplus serpin sequences was performed through a web-based bioinformatics environment called Yabi. The database search was conducted on BmiGi V1, BmiGi V2.1, five SSH libraries, Australian tick transcriptome libraries and RmiTR V1 using bioinformatics methods. Semi quantitative PCR was carried out using different adult tissues and tick development stages. The cDNA of four identified R. microplus serpins were cloned and expressed in Pichia pastoris in order to determine biological targets of these serpins utilising protease inhibition assays. RESULTS A total of four out of twenty-two serpins identified in our analysis are new R. microplus serpins which were named as RmS-19 to RmS-22. The analyses of DNA and predicted amino acid sequences showed high conservation of the R. microplus serpin sequences. The expression data suggested ubiquitous expression of RmS except for RmS-6 and RmS-14 that were expressed only in nymphs and adult female ovaries, respectively. RmS-19, and -20 were expressed in all tissues samples analysed showing their important role in both parasitic and non-parasitic stages of R. microplus development. RmS-21 was not detected in ovaries and RmS-22 was not identified in ovary and nymph samples but were expressed in the rest of the samples analysed. A total of four expressed recombinant serpins showed protease specific inhibition for Chymotrypsin (RmS-1 and RmS-6), Chymotrypsin / Elastase (RmS-3) and Thrombin (RmS-15). CONCLUSION This study constitutes an important contribution and improvement to the knowledge about the physiologic role of R. microplus serpins during the host-tick interaction.
Collapse
Affiliation(s)
- Manuel Rodriguez-Valle
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia Qld, 4072, Australia.
| | - Tao Xu
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia Qld, 4072, Australia.
| | | | - Ala E Lew-Tabor
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia Qld, 4072, Australia. .,Murdoch University, Centre for Comparative Genomics, Perth, Western Australia, 6150, Australia.
| |
Collapse
|
24
|
Jonsson NN, Piper EK, Constantinoiu CC. Host resistance in cattle to infestation with the cattle tick Rhipicephalus microplus. Parasite Immunol 2015; 36:553-9. [PMID: 25313455 DOI: 10.1111/pim.12140] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/18/2014] [Indexed: 01/24/2023]
Abstract
Resistance to Rhipicephalus microplus infestation in cattle has many effector mechanisms, each of which is likely to be modulated by complex, interacting factors. Some of the mechanisms of host resistance and their modulating factors have been identified and quantified, although much remains to be explained. The variation in resistance to tick infestation is most marked between Bos taurus and Bos indicus cattle, taurine cattle given the same exposure carrying between five and 10 times as many ticks as indicine cattle. Tick resistance is mostly manifest against attaching larvae, which attempt to feed often and without success, death occurring mostly within 24 h of finding a host. There is evidence of innate and adaptive immune response to tick infestation, and it appears that the relative importance of each differs between indicine and taurine cattle. There is conflicting information regarding the role of humoral immunity in tick resistance, and recent studies indicate that strong IgG responses to tick antigens are not protective. A strong T-cell-mediated response directed against larval stages, as mounted by indicine cattle, seems to be protective. Variation in the extracellular matrix of skin (epidermal growth factors, collagens and other matrix components such as lumican) also contributes to variation in host resistance.
Collapse
Affiliation(s)
- N N Jonsson
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
25
|
Mapholi NO, Marufu MC, Maiwashe A, Banga CB, Muchenje V, MacNeil MD, Chimonyo M, Dzama K. Towards a genomics approach to tick (Acari: Ixodidae) control in cattle: A review. Ticks Tick Borne Dis 2014; 5:475-83. [DOI: 10.1016/j.ttbdis.2014.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 02/04/2023]
|
26
|
Rhipicephalus microplus lipocalins (LRMs): Genomic identification and analysis of the bovine immune response using in silico predicted B and T cell epitopes. Int J Parasitol 2013; 43:739-52. [DOI: 10.1016/j.ijpara.2013.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/17/2022]
|
27
|
Brannan JL, Holman PJ, Olafson PU, Pruett JH, Riggs PK. Evaluation of methods for the isolation of high quality RNA from bovine and cervine hide biopsies. J Parasitol 2012; 99:19-23. [PMID: 22924936 DOI: 10.1645/ge-3132.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Molecular investigations of the ruminant response to ectoparasites at the parasite-host interface are critically dependent upon the quality of RNA. The complexity of ruminant skin decreases the capacity to obtain high quality RNA from biopsy samples, which directly affects the reliability of data produced by gene expression experiments. Two methods for isolating total RNA from skin were compared and the use of 4M guanidinium isothiocyanate (GITC) during frozen storage of the specimens was evaluated. In addition, the best procedure for RNA isolation from bovine skin punch biopsies was also tested on white-tailed deer skin biopsies. Skin biopsy punches were collected and frozen prior to pulverization for RNA isolation. Total RNA quantity and integrity were determined by spectrophotometry and capillary electrophoresis technology, respectively. Significantly increased total RNA yield (P < 0.05) and higher integrity (P < 0.05) were obtained with a TRI Reagent® isolation method. Freezing and subsequent storage of bovine skin punch biopsies in 4 M GITC did not affect the amount or integrity of total RNA recovered by either RNA isolation method. However, quantity and integrity of total RNA extracted with the TRI Reagent method were again significantly higher than with the alternate technique, confirming it as the superior method. The TRI Reagent isolation method also yielded high quality total RNA from white-tailed deer skin punch biopsies, suggesting the usefulness of this method for obtaining RNA of a quality suitable for gene expression studies in other ruminant species.
Collapse
Affiliation(s)
- Jaime L Brannan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4467, USA
| | | | | | | | | |
Collapse
|
28
|
The RIPK2 gene: a positional candidate for tick burden supported by genetic associations in cattle and immunological response of knockout mouse. Immunogenetics 2012; 64:379-88. [PMID: 22314416 DOI: 10.1007/s00251-012-0601-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/19/2012] [Indexed: 01/01/2023]
Abstract
Ticks and tick-borne diseases have a detrimental impact on livestock production causing estimated losses of around $200 million per year in Australia alone. Host resistance to ticks is heritable, within-breed heritability estimates being around 0.35, and with large differences between breeds. Previously a QTL for tick burden was detected on BTA14 at ~72 Mb distal to the centromere, near the gene receptor-interacting serine-threonine kinase 2 (RIPK2). To identify polymorphisms in this region, we sequenced all exons of the RIPK2 gene, identifying 46 single nucleotide polymorphism (SNP). Using SNP from RIPK2 as well as SNP from the bovine genome sequence, we genotyped two samples, one of 1,122 taurine dairy cattle and one of 761 zebu and zebu composite beef cattle. We confirmed that SNP and haplotypes from this region, including from RIPK2, were associated with tick burden in both dairy and beef cattle. To determine whether RIPK2 influences response to tick salivary gland extract (SGE), an immunisation experiment with tick SGE in a RIPK2 knockout (RIPK2 −/−) mouse strain was conducted. There was a significant (P < 0.05) reduction in IgG production in the RIPK2 −/− mouse in response to the SGE compared to its background strain C57BL/ 6 as well as the outbred CD1 mouse strain. In addition, antibodies generated by RIPK2 −/− mice recognised a different set of antigens within SGE when compared to parental-derived antibodies. In summary, the SNP association with tick burden at BTA14 was confirmed and quantitative and qualitative differences in antibody production were observed between RIPK2 −/− and wild-type mice.
Collapse
|
29
|
Rodriguez-Valle M, Vance M, Moolhuijzen PM, Tao X, Lew-Tabor AE. Differential recognition by tick-resistant cattle of the recombinantly expressed Rhipicephalus microplus serine protease inhibitor-3 (RMS-3). Ticks Tick Borne Dis 2012; 3:159-69. [DOI: 10.1016/j.ttbdis.2012.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/20/2012] [Accepted: 03/24/2012] [Indexed: 11/16/2022]
|
30
|
Bickhart DM, Hou Y, Schroeder SG, Alkan C, Cardone MF, Matukumalli LK, Song J, Schnabel RD, Ventura M, Taylor JF, Garcia JF, Van Tassell CP, Sonstegard TS, Eichler EE, Liu GE. Copy number variation of individual cattle genomes using next-generation sequencing. Genome Res 2012; 22:778-90. [PMID: 22300768 DOI: 10.1101/gr.133967.111] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one Holstein, and one Hereford) and one indicine (Nelore) cattle. Within mapped chromosomal sequence, we identified 1265 CNV regions comprising ~55.6-Mbp sequence--476 of which (~38%) have not previously been reported. We validated this sequence-based CNV call set with array comparative genomic hybridization (aCGH), quantitative PCR (qPCR), and fluorescent in situ hybridization (FISH), achieving a validation rate of 82% and a false positive rate of 8%. We further estimated absolute copy numbers for genomic segments and annotated genes in each individual. Surveys of the top 25 most variable genes revealed that the Nelore individual had the lowest copy numbers in 13 cases (~52%, χ(2) test; P-value <0.05). In contrast, genes related to pathogen- and parasite-resistance, such as CATHL4 and ULBP17, were highly duplicated in the Nelore individual relative to the taurine cattle, while genes involved in lipid transport and metabolism, including APOL3 and FABP2, were highly duplicated in the beef breeds. These CNV regions also harbor genes like BPIFA2A (BSP30A) and WC1, suggesting that some CNVs may be associated with breed-specific differences in adaptation, health, and production traits. By providing the first individualized cattle CNV and segmental duplication maps and genome-wide gene copy number estimates, we enable future CNV studies into highly duplicated regions in the cattle genome.
Collapse
Affiliation(s)
- Derek M Bickhart
- USDA-ARS, ANRI, Bovine Functional Genomics Laboratory, Beltsville, Maryland 20705, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Porto Neto LR, Jonsson NN, D'Occhio MJ, Barendse W. Molecular genetic approaches for identifying the basis of variation in resistance to tick infestation in cattle. Vet Parasitol 2011; 180:165-72. [PMID: 21700395 DOI: 10.1016/j.vetpar.2011.05.048] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 11/16/2022]
Abstract
In recent years there has been renewed interest in the adaptation of cattle to challenging environments, largely driven by advances in genomic methods. The current interest in tick resistance is understandable given the major production and welfare implications of tick infestation in tropical and subtropical zones where around 70% of beef cattle are located. Heritability for tick burden in cattle has been shown to range about 0.30, which is sufficient to result in the success of some programs of selection for tick resistance in cattle. Gene-expression studies strongly indicate that both immune and non-immune mechanisms are associated with tick resistance in cattle. Recent quantitative-trait mapping studies have identified chromosome segments and single nucleotide polymorphisms associated with tick burden, but no causal variant has been identified so far. Most of the genetic markers identified for tick burden explain a relatively small proportion of the variance, which is typical of markers for quantitative traits. This leads to the conclusion that panels of multiple markers for tick resistance rather than a single marker will most likely be developed, possibly involving specific panels for zebu or taurine breeds, which could be used for future selection and breeding programs in cattle.
Collapse
|
32
|
Chan EKF, Nagaraj SH, Reverter A. The evolution of tropical adaptation: comparing taurine and zebu cattle. Anim Genet 2011; 41:467-77. [PMID: 20477791 DOI: 10.1111/j.1365-2052.2010.02053.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Beef cattle breeds consist of three major genetic subdivisions. The taurine group is adapted to temperate environments, and the zebu and Sanga groups are both adapted to tropical environments. With the advent of genotyping and sequencing technologies in agriculture, genome-wide exploration of the genetic basis for the differences in tropical adaptation has only just become possible. In this study, approximately 9000 single nucleotide polymorphism markers were genotyped on 317 animals of a selection of taurine, zebu, and composite breeds to characterize any systematic differences between these groups. We identified 91 intra-breed-class markers; 78 were polymorphic only within the zebu animals, while 13 were polymorphic only in the taurine animals. There were no fixed differences (fixed for alternate alleles between the two breed types) between zebu and taurine animals. We found 14 regions with significantly different allele frequencies between zebu and taurine animals indicative of variable selection pressure or genetic drift. We also found 12 independent regions of differential extended haplotype homozygosity (EHH), indicative of recent selection or rapid fixation of the alternate allele within a short period of time in one of the two breed classes. A preliminary functional genomics analysis of these regions pointed towards signatures of tropical attributes including keratins, heat-shock proteins and heat resistance genes. We anticipate this investigation to be a stepping-stone for future studies to identify genomic regions specific to the two cattle groups, and to subsequently assist in the discrimination between temperate and tropically adapted cattle.
Collapse
Affiliation(s)
- E K F Chan
- Cooperative Research Centre for Beef Genetic Technologies. CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, Qld 4067, Australia
| | | | | |
Collapse
|
33
|
Porto Neto LR, Bunch RJ, Harrison BE, Barendse W. DNA variation in the gene ELTD1 is associated with tick burden in cattle. Anim Genet 2010; 42:50-5. [PMID: 20880337 DOI: 10.1111/j.1365-2052.2010.02120.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ticks and tick-born diseases are major constraints on cattle production in tropical and subtropical regions in the world. Previously, we identified single nucleotide polymorphisms (SNPs) associated with tick resistance on bovine chromosome 3 at approximately 70 Mb. In this study, we genotyped a dairy (n = 1133) and a beef (n = 774) sample to confirm the association of the intronic SNP rs29019303 and its gene (ELTD1) with tick burden. We genotyped 18 additional SNPs in a region of 181 kb and found that rs29019303 was significantly (P < 0.05) associated with tick burden in both samples with the same favourable allele. A second SNP in this same genomic region was also significantly associated with tick burden in each sample. The associations using haplotypes were stronger than for single markers, including a haplotype of nine tag SNPs that was highly significantly (P = 0.0008) associated with tick counts in the dairy animals. This haplotype and two others were significant after Bonferroni correction for multiple testing. The estimated size of the effects was close to 0.9% of the residual variance in both samples tested.
Collapse
Affiliation(s)
- L R Porto Neto
- Cooperative Research Centre for Beef Genetic Technologies, CSIRO Livestock Industries, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | | | | | | |
Collapse
|
34
|
O'Neill CJ, Swain DL, Kadarmideen HN. Evolutionary process of Bos taurus cattle in favourable versus unfavourable environments and its implications for genetic selection. Evol Appl 2010; 3:422-33. [PMID: 25567936 PMCID: PMC3352504 DOI: 10.1111/j.1752-4571.2010.00151.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/01/2010] [Indexed: 11/28/2022] Open
Abstract
The evolutionary processes that have enabled Bos taurus cattle to establish around the globe are at the core to the future success of livestock production. Our study focuses on the history of cattle domestication including the last 60 years of B. taurus breeding programmes in both favourable and unfavourable environments and its consequences on evolution and fitness of cattle. We discuss the emergence of 'production diseases' in temperate production systems and consider the evolutionary genetics of tropical adaptation in cattle and conclude that the Senepol, N'Dama, Adaptaur and Criollo breeds, among others with similar evolutionary trajectories, would possess genes capable of improving the productivity of cattle in challenging environments. Using our own experimental evidence from northern Australia, we review the evolution of the Adaptaur cattle breed which has become resistant to cattle tick. We emphasize that the knowledge of interactions between genotype, environment and management in the livestock systems will be required to generate genotypes for efficient livestock production that are both economically and environmentally sustainable. Livestock producers in the 21st century will have less reliance on infrastructure and veterinary products to alleviate environmental stress and more on the animal's ability to achieve fitness in a given production environment.
Collapse
Affiliation(s)
- Christopher J O'Neill
- Systems Genetics, CSIRO Livestock Industries; and Sustainable Agricultural Flagship Davies Laboratory, Townsville, Qld, Australia
| | - David L Swain
- Centre for Environmental Management, CQUniversity Rockhampton, Qld, Australia
| | - Haja N Kadarmideen
- Systems Genetics, CSIRO Livestock Industries; and Sustainable Agricultural Flagship Davies Laboratory, Townsville, Qld, Australia
| |
Collapse
|
35
|
Haplotypes that include the integrin alpha 11 gene are associated with tick burden in cattle. BMC Genet 2010; 11:55. [PMID: 20565915 PMCID: PMC2905322 DOI: 10.1186/1471-2156-11-55] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 06/21/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infestations on cattle by the ectoparasite Boophilus (Rhipicephalus) microplus (cattle tick) impact negatively on animal production systems. Host resistance to tick infestation has a low to moderate heritability in the range 0.13 - 0.64 in Australia. Previous studies identified a QTL on bovine chromosome 10 (BTA10) linked to tick burden in cattle. RESULTS To confirm these associations, we collected genotypes of 17 SNP from BTA10, including three obtained by sequencing part of the ITGA11 (Integrin alpha 11) gene. Initially, we genotyped 1,055 dairy cattle for the 17 SNP, and then genotyped 557 Brahman and 216 Tropical Composite beef cattle for 11 of the 17 SNP. In total, 7 of the SNP were significantly (P < 0.05) associated with tick burden tested in any of the samples. One SNP, ss161109814, was significantly (P < 0.05) associated with tick burden in both the taurine and the Brahman sample, but the favourable allele was different. Haplotypes for three and for 10 SNP were more significantly (P < 0.001) associated with tick burden than SNP analysed individually. Some of the common haplotypes with the largest sample sizes explained between 1.3% and 1.5% of the residual variance in tick burden. CONCLUSIONS These analyses confirm the location of a QTL affecting tick burden on BTA10 and position it close to the ITGA11 gene. The presence of a significant association in such widely divergent animals suggests that further SNP discovery in this region to detect causal mutations would be warranted.
Collapse
|
36
|
Turner LB, Harrison BE, Bunch RJ, Neto LRP, Li Y, Barendse W. A genome-wide association study of tick burden and milk composition in cattle. ANIMAL PRODUCTION SCIENCE 2010. [DOI: 10.1071/an09135] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To study the genetic basis of tick burden and milk production and their interrelationship, we collected a sample of 1961 cattle with multiple tick counts from northern Australia of which 973 had dairy production data in the Australian Dairy Herd Information Service database. We calculated heritabilities, genetic and phenotypic correlations for these traits and showed a negative relationship between tick counts and milk and milk component yield. Tests of polymorphisms of four genes associated with milk yield, ABCG2, DGAT1, GHR and PRLR, showed no statistically significant effect on tick burden but highly significant associations to milk component yield in these data and we confirmed separate effects for GHR and PRLR on bovine chromosome 20. To begin to identify some of the molecular genetic bases for these traits, we genotyped a sample of 189 of these cattle for 7397 single nucleotide polymorphisms in a genome-wide association study. Although the allele effects for adjusted milk fat and protein yield were highly correlated (r = 0.66), the correlations of allele effects of these milk component yields and tick burden were small (|r| ≤ 0.10). These results agree in general with the phenotypic correlations between tick counts and milk component yield and suggest that selection on markers for tick burden or milk component yield may have no undesirable effect on the other trait.
Collapse
|
37
|
Piper EK, Jackson LA, Bielefeldt-Ohmann H, Gondro C, Lew-Tabor AE, Jonsson NN. Tick-susceptible Bos taurus cattle display an increased cellular response at the site of larval Rhipicephalus (Boophilus) microplus attachment, compared with tick-resistant Bos indicus cattle. Int J Parasitol 2009; 40:431-41. [PMID: 19852965 DOI: 10.1016/j.ijpara.2009.09.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/27/2009] [Accepted: 09/28/2009] [Indexed: 11/19/2022]
Abstract
Cattle demonstrate divergent and heritable phenotypes of resistance and susceptibility to infestation with the cattle tick Rhipicephalus (Boophilus) microplus. Bos indicus cattle are generally more resistant to tick infestation than Bos taurus breeds although large variations in resistance can occur within subspecies and within breed. Increased tick resistance has been previously associated with an intense hypersensitivity response in B. taurus breeds; however, the mechanism by which highly resistant B. indicus cattle acquire and sustain high levels of tick resistance remains to be elucidated. Using the commercially available Affymetrix microarray gene expression platform, together with histological examination of the larval attachment site, this study aimed to describe those processes responsible for high levels of tick resistance in Brahman (B. indicus) cattle that differ from those in low-resistance Holstein-Friesian (B. taurus) cattle. We found that genes involved in inflammatory processes and immune responsiveness to infestation by ticks, although up-regulated in tick-infested Holstein-Friesian cattle, were not up-regulated in Brahman cattle. In contrast, genes encoding constituents of the extracellular matrix were up-regulated in Brahmans. Furthermore, the susceptible Holstein-Friesian animals displayed a much greater cellular inflammatory response at the site of larval R. microplus attachment compared with the tick-resistant Brahman cattle.
Collapse
Affiliation(s)
- Emily K Piper
- Cooperative Research Centre for Beef Genetic Technologies, Armidale 2351, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Carvalho WA, Franzin AM, Abatepaulo ARR, de Oliveira CJF, Moré DD, da Silva JS, Ferreira BR, de Miranda Santos IKF. Modulation of cutaneous inflammation induced by ticks in contrasting phenotypes of infestation in bovines. Vet Parasitol 2009; 167:260-73. [PMID: 19836891 DOI: 10.1016/j.vetpar.2009.09.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tick saliva contains molecules that are inoculated at the site of attachment on their hosts in order to modulate local immune responses and facilitate a successful blood meal. Bovines express heritable, contrasting phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus: breeds of Bos taurus indicus are significantly more resistant than those of Bos taurus taurus. Tick saliva may contain molecules that interfere with adhesion of leukocytes to endothelium and resistant hosts may mount an inflammatory profile that is more efficient to hamper the tick's blood meal. We show in vitro that adhesion of peripheral blood mononuclear cells to monolayers of cytokine-activated bovine umbilical endothelial cells was significantly inhibited by tick saliva. The inflammatory response to bites of adults of R. microplus mounted by genetically resistant and susceptible bovine hosts managed in the same pasture was investigated in vivo. The inflammatory infiltrates and levels of message coding for adhesion molecules were measured in biopsies of tick-bitten and control skin taken when animals of both breeds were exposed to low and high tick infestations. Histological studies reveal that cutaneous reactions of resistant hosts to bites of adult ticks contained significantly more basophils and eosinophils compared with reactions of the susceptible breed. Expression of the adhesion molecules - intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin - was higher in adult-infested skin of susceptible hosts undergoing low infestations compared to resistant hosts; when host was exposed to high infestations expression of these adhesion molecules was down-regulated in both phenotypes of infestations. Expression of leukocyte adhesion glycoprotein-1 (LFA-1) was higher in skin from susceptible hosts undergoing low or high infestations compared to resistant hosts. Conversely, higher levels of E-selectin, which promotes adhesion of memory T cells, were expressed in skin of resistant animals. This finding may explain the resistant host's ability to mount more rapid and efficient secondary responses that limit hematophagy and infestations. The expression profiles observed for adhesion molecules indicate that there are differences in the kinetics of the inflammatory reactions mounted by resistant and susceptible hosts and the balance between tick and host is affected by the number of tick bites a host receives. We show that the contrasting phenotypes of infestations seen in bovines infested with R. microplus are correlated with differences in the cellular and molecular composition of inflammatory infiltrates elicited by bites with adult ticks.
Collapse
Affiliation(s)
- Wanessa Araújo Carvalho
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gene expression in the skin of Bos taurus and Bos indicus cattle infested with the cattle tick, Rhipicephalus (Boophilus) microplus. Vet Immunol Immunopathol 2008; 126:110-9. [DOI: 10.1016/j.vetimm.2008.06.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 06/18/2008] [Accepted: 06/25/2008] [Indexed: 11/30/2022]
|
40
|
Cassar-Malek I, Picard B, Bernard C, Hocquette JF. Application of gene expression studies in livestock production systems: a European perspective. ACTA ACUST UNITED AC 2008. [DOI: 10.1071/ea08018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the context of sustainable agriculture and animal husbandry, understanding animal physiology remains a major challenge in the breeding and production of livestock, especially to develop animal farming systems that respond to the new and diversified consumer demand. Physiological processes depend on the expression of many genes acting in concert. Considerable effort has been expended in recent years on examining the mechanisms controlling gene expression and their regulation by biological and external factors (e.g. genetic determinants, nutritional factors, and animal management). Two main strategies have been developed to identify important genes. The first one has focussed on the expression of candidate genes for key physiological pathways at the level of both the transcripts and proteins. An original strategy has emerged with the advent of genomics that addresses the same issues through the examination of the molecular signatures of all genes and proteins using high-throughput techniques (e.g. transcriptomics and proteomics). In this review, the application of the gene expression studies in livestock production systems is discussed. Some practical examples of genomics applied to livestock production systems (e.g. to optimise animal nutrition, meat quality or animal management) are presented, and their outcomes are considered. In the future, integration of the knowledge gained from these studies will finally result in optimising livestock production systems through detection of desirable animals and their integration into accurate breeding programs or innovative management systems.
Collapse
|