1
|
Guo F, Wang L, Chen Y, Zhu H, Dai X, Zhang X. Nicotinamide Mononucleotide improves oocyte maturation of mice with type 1 diabetes. Nutr Diabetes 2024; 14:23. [PMID: 38653987 DOI: 10.1038/s41387-024-00280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The number of patients with type 1 diabetes rises rapidly around the world in recent years. Maternal diabetes has a detrimental effect on reproductive outcomes due to decreased oocyte quality. However, the strategies to improve the oocyte quality and artificial reproductive technology (ART) efficiency of infertile females suffering from diabetes have not been fully studied. In this study, we aimed to examine the effects of nicotinamide mononucleotide (NMN) on oocyte maturation of mouse with type 1 diabetes mouse and explore the underlying mechanisms of NMN's effect. METHODS Streptozotocin (STZ) was used to establish the mouse models with type 1 diabetes. The successful establishment of the models was confirmed by the results of body weight test, fasting blood glucose test and haematoxylin and eosin (H&E) staining. The in vitro maturation (IVM) rate of oocytes from diabetic mice was examined. Immunofluorescence staining (IF) was performed to examine the reactive oxygen species (ROS) level, spindle/chromosome structure, mitochondrial function, actin dynamics, DNA damage and histone modification of oocytes, which are potential factors affecting the oocyte quality. The quantitative reverse transcription PCR (RT-qPCR) was used to detect the mRNA levels of Sod1, Opa1, Mfn2, Drp1, Sirt1 and Sirt3 in oocytes. RESULTS The NMN supplementation increased the oocyte maturation rate of the mice with diabetes. Furthermore, NMN supplementation improved the oocyte quality by rescuing the actin dynamics, reversing meiotic defects, improving the mitochondrial function, reducing ROS level, suppressing DNA damage and restoring changes in histone modifications of oocytes collected from the mice with diabetes. CONCLUSION NMN could improve the maturation rate and quality of oocytes in STZ-induced diabetic mice, which provides a significant clue for the treatment of infertility of the patients with diabetes.
Collapse
Affiliation(s)
- Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Haibo Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
- Center of Reproductive Medicine & Center of Prenatal Diagnosis, First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Zhang W, Wu F. Effects of adverse fertility-related factors on mitochondrial DNA in the oocyte: a comprehensive review. Reprod Biol Endocrinol 2023; 21:27. [PMID: 36932444 PMCID: PMC10021953 DOI: 10.1186/s12958-023-01078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
The decline of oocyte quality has profound impacts on fertilization, implantation, embryonic development, and the genetic quality of future generations. One factor that is often ignored but is involved in the decline of oocyte quality is mitochondrial DNA (mtDNA) abnormalities. Abnormalities in mtDNA affect the energy production of mitochondria, the dynamic balance of the mitochondrial network, and the pathogenesis of mtDNA diseases in offspring. In this review, we have detailed the characteristics of mtDNA in oocytes and the maternal inheritance of mtDNA. Next, we summarized the mtDNA abnormalities in oocytes derived from aging, diabetes, obesity, and assisted reproductive technology (ART) in an attempt to further elucidate the possible mechanisms underlying the decline in oocyte health. Because multiple infertility factors are often involved when an individual is infertile, a comprehensive understanding of the individual effects of each infertility-related factor on mtDNA is necessary. Herein, we consider the influence of infertility-related factors on the mtDNA of the oocyte as a collective perspective for the first time, providing a supplementary angle and reference for multi-directional improvement strategies of oocyte quality in the future. In addition, we highlight the importance of studying ART-derived mitochondrial abnormalities during every ART procedure.
Collapse
Affiliation(s)
- Wenying Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Fuju Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
3
|
Ofosu J, Qazi IH, Fang Y, Zhou G. Use of melatonin in sperm cryopreservation of farm animals: A brief review. Anim Reprod Sci 2021; 233:106850. [PMID: 34537566 DOI: 10.1016/j.anireprosci.2021.106850] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022]
Abstract
Melatonin (MT) is a potent antioxidant with useful applications in several fields. Due to the capacity to scavenge free radicals and enhance cellular endogenous antioxidant defenses, MT is widely used in sperm cryopreservation to protect against oxidative stress-induced damage in frozen-thawed sperm. In this article, there is a review of positive effects of MT supplementation in cryopreservation of sperm from domestic ruminants and swine. There is direct or indirect scavenging of free radicals, preventing lipid peroxidation (LPO), and reducing oxidative stress, therefore, protecting membrane and DNA integrity, enhancing post-thaw antioxidant and enzymatic functions to maintain mitochondrial functions and activity, and regulating ATP production and utilization leading to maintenance of sperm quality, motility, and viability. In addition, MT reportedly inhibits sperm apoptosis, potentially by enhancing sperm viability and modulating abundances of mRNA transcripts.
Collapse
Affiliation(s)
- Jones Ofosu
- College of Animal Science and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Izhar Hyder Qazi
- College of Animal Science and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Sindh, Pakistan
| | - Yi Fang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guangbin Zhou
- College of Animal Science and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Paccola CC, Souza GS, Freitas IMM, Souza JC, Martins LL, Vendramini V, Miraglia SM. Does maternal exposure to nicotine affect the oocyte quality and reproductive capacity in adult offspring? Toxicol Appl Pharmacol 2021; 426:115638. [PMID: 34242569 DOI: 10.1016/j.taap.2021.115638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/05/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022]
Abstract
Gonadal development begins in the intrauterine phase and females from most species are born with an established oocyte reserve. Exposure to drugs during gestation can compromise the offspring health, also affecting the gametes quality. Nicotine, the main component of cigarettes, is an oxidant agent capable of altering the fertility in men and women. As female gametes are susceptible to oxidative stress, this drug can damage the oolemma and affect oocyte maturation, induce errors during chromosomal segregation and DNA fragmentation. Oocyte mitochondria are particularly susceptible to injuries, contributing to the oocyte quality loss and embryonic development disruption. Thus, considering the high number of women who smoke during pregnancy, while significant events are occurring in the embryo for future fertility of offspring, we seek to verify the quality of the oocytes from adult rats exposed to nicotine during intrauterine phase and breastfeeding. Pregnant Wistar rats received nicotine by osmotic mini-pumps and the female progenies were evaluated in adulthood for oocyte quality (viability, lipid peroxidation, generation of reactive oxygen species and mitochondrial integrity) and reproductive capacity. Embryos (3dpc) and fetuses (20dpc) generated by these rats were also evaluated. The results showed that the dose of 2 mg/kg/day of nicotine through placenta and breast milk does not affect the number of oocytes and the fertility capacity of adult rats. However, it causes some morphological alterations in oocytes, mitochondrial changes, embryonic fragmentation and disruption of fetal development. The malformations in fetuses generated from these gametes can also indicate the occurrence of epigenetic modifications.
Collapse
Affiliation(s)
- C C Paccola
- Developmental Biology Laboratory, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil.
| | - G S Souza
- Developmental Biology Laboratory, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - I M M Freitas
- Developmental Biology Laboratory, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - J C Souza
- Developmental Biology Laboratory, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - L L Martins
- Developmental Biology Laboratory, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - V Vendramini
- Developmental Biology Laboratory, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - S M Miraglia
- Developmental Biology Laboratory, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
5
|
Fathi M, Salama A, El-Shahat KH, El-Sherbiny HR, Abdelnaby EA. Effect of melatonin supplementation during IVM of dromedary camel oocytes (Camelus dromedarius) on their maturation, fertilization, and developmental rates in vitro. Theriogenology 2021; 172:187-192. [PMID: 34218101 DOI: 10.1016/j.theriogenology.2021.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 01/01/2023]
Abstract
The positive impact of melatonin on in vitro embryo production (IVEP) has been reported in many domestic species; however, no studies have been carried out in camelids. We aimed to evaluate the effects of melatonin supplementation in maturation media on in vitro maturation, fertilization, and preimplantation embryo development of dromedary camel oocytes (experiment 1). We also evaluated the concentrations of total antioxidant capacity (TAC), and malondialdehyde (MDA) in the IVM spent medium in relation to melatonin supplementation. Cumulus oocyte complexes (COCs) were cultured in in vitro maturation media (IVM) supplemented with either 0.0, 25.0, 50.0 or 75.0 μM of melatonin for 30 h. Matured oocytes were then fertilized in vitro with epididymal camel spermatozoa. Following IVF, the resulting embryos were cultured in vitro for seven days. The percentage of maturation, fertilization, cleavage, and embryo developmental rates (morula and blastocyst) was recorded (experiment 1). TAC and MDA levels in the IVM spent maturation media were also evaluated at 30 h post-IVM (experiment 2). The results showed that supplementation of IVM media with 25 μM melatonin significantly improved oocyte nuclear maturation, fertilization (18 h post-insemination; pi), cleavage (day 3 pi), morula (day 5 pi) and blastocyst (day 7 pi) rates as compared with the controls and other melatonin-supplemented groups. Furthermore, the TAC in the IVM spent media was significantly increased (P < 0.05) in 25 μM melatonin supplemented groups than those supplemented with 0.0, 50.0, 75.0 μM melatonin. However, the concentration of MDA was significantly lower (P < 0.05) in IVM media supplemented with 25.0 μM of melatonin when compared with the control and other treatment groups. In conclusion, supplementation of IVM medium with 25 μM of melatonin could enhance the in vitro developmental capacity of dromedary camel oocytes.
Collapse
Affiliation(s)
- Mohamed Fathi
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ali Salama
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - K H El-Shahat
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - H R El-Sherbiny
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Elshymaa A Abdelnaby
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Sánchez-Calabuig MJ, Fernández-González R, Hamdi M, Smits K, López-Cardona AP, Serres C, Macías-García B, Gutiérrez-Adán A. A high glucose concentration during early stages of in vitro equine embryo development alters expression of genes involved in glucose metabolism. Equine Vet J 2020; 53:787-795. [PMID: 32881040 DOI: 10.1111/evj.13342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 07/17/2020] [Accepted: 08/27/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Equine embryos exhibit an unusual pattern of glucose tolerance in vitro and are currently cultured in hyperglycaemic conditions. OBJECTIVE Our main objective was to analyse the effect of different glucose concentrations on in vitro-produced equine embryo development and quality. STUDY DESIGN Experiments comparing in vitro and in vivo produced embryos. METHODS Oocytes (n = 641) were collected from post-mortem ovaries, matured in vitro and fertilised by intracytoplasmic sperm injection (ICSI). Embryo culture was divided from Day 0 to Day 4 and from Day 4 to Day 9 in three groups: 5-10 (5 and 10 mmol/L glucose respectively; n = 87); 5-17 (5 and 17.5 mmol/L; n = 66); and 10-17 (10 and 17.5 mmol/L; n = 117). A control group of 20 in vivo produced blastocysts was included. Cleavage and blastocyst rates were evaluated and embryos were snap-frozen for analysis of the relative mRNA expression of genes related to mitochondrial function, DNA methylation, apoptosis, glucose transport and metabolism. RESULTS No differences were observed in the cleavage or blastocyst rates among in vitro groups. Under high glucose conditions in vitro (10-17 group), BAX/BCL2 was higher, and PFKP, LDHA and COX2 were overexpressed compared to all other groups. The two groups with 5 mmol/L glucose concentration during the first culture stage (5-10 and 5-17) displayed similar patterns which differed to the 10-17 group. MAIN LIMITATIONS Conclusions related to embryo quality are based on gene expression patterns. Transfer of in vitro-produced embryos would reveal whether the observed differences improve embryo developmental competence. CONCLUSIONS Five mM glucose during the first days of culture seems to be preferable to avoid over-activation of embryonic glycolytic pathways. Further studies are necessary to determine whether this improves embryo developmental competence.
Collapse
Affiliation(s)
- María J Sánchez-Calabuig
- Department of Animal Medicine and Surgery, Faculty of Veterinary Science, University Complutense of Madrid, Madrid, Spain.,Department of Animal Reproduction, INIA, Madrid, Spain
| | | | - Meriem Hamdi
- Department of Animal Reproduction, INIA, Madrid, Spain
| | - Katrien Smits
- Department of Obstetrics, Reproduction and Herd Health, Ghent University, Ghent, Belgium
| | - Angela P López-Cardona
- Department of Animal Reproduction, INIA, Madrid, Spain.,Grupo de Investigación (GI) - Biogénesis, Universidad de Antioquia, Medellín, Colombia
| | - Consuelo Serres
- Department of Animal Medicine and Surgery, Faculty of Veterinary Science, University Complutense of Madrid, Madrid, Spain
| | - Beatriz Macías-García
- Animal Medicine Department, Faculty of Veterinary Sciences, University of Extremadura, Cáceres, Spain.,Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), Research Institute of Biotechnology in Livestock and Cynegetic (INBIO G+C), University of Extremadura, Cáceres, Spain
| | | |
Collapse
|
7
|
Hosseinzadeh Shirzeyli M, Amidi F, Shamsara M, Nazarian H, Eini F, Hosseinzadeh Shirzeyli F, Majidi Zolbin M, Ghaffari Novin M, Daliri Joupari M. Exposing Mouse Oocytes to MitoQ During In Vitro Maturation Improves Maturation and Developmental Competence. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 18:e2454. [PMID: 33850943 PMCID: PMC8035425 DOI: 10.30498/ijb.2020.154641.2454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background and Purpose: Mitochondrion is the main indicator of oocyte quality and one of the components of oocyte, which is sensitive to oxidative damage during the maturation process. Mitoquinone mesylate (MitoQ) is a strong antioxidant targeting mitochondria as well as anti-apoptotic agent. However, the effect of MitoQ on the quality of oocytes during in vitro maturation (IVM) is still unknown. Objectives: This study investigated the possible effects of MitoQ on maturation and developmental competency in mice oocytes. Materials and Methods: The oocytes were collected at germinal vesicle stage from 6-8-week old female NMRI mice and then cultured in TCM-199 medium supplemented with 0, 0.01, 0.02 and 0.04 µM MitoQ. The sham group was treated with DMSO (0.01% v.v). Then intracellular Glutathione (GSH), reactive oxygen species (ROS) levels, mitochondria membrane potential (ΔΨm), as well as in vitro fertilization (IVF) rate in the 18-20 h matured oocytes and metaphase II (MII) oocytes (in vivo-control), were assessed. Results: The results showed that between three dose of MitoQ, the 0.02 µM significantly increased nuclear maturation rate, GSH level, fertilization rate and blastulation (92.6, 231.7, 90.19 and 81.66%, respectively) than the in vitro-control (71.14, 152, 78.84 and 73.50%, respectively) and more comparable to that of the in vivo matured oocytes (100, 243.5, 92.10 and 83%, respectively). Also, the mitochondria membrane potential in the 0.02 µM MitoQ was significantly higher compared with those in the other groups (4.4). However, the intracellular ROS level in 0.02 µM MitoQ was significantly decreased (38.72%) compared to in vitro-control (82.2%) and was similar to the in vivo-control (33.5%). Conclusion: The results indicated that supplementation of IVM medium with MitoQ (specially 0.02 µM) enhance maturation and fertilization rate. In conclusion, MitoQ might be considered as a novel component that could be added to IVM media.
Collapse
Affiliation(s)
| | - Fardin Amidi
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shamsara
- Department of Animal and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hamid Nazarian
- Department of Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Eini
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farhad Hosseinzadeh Shirzeyli
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Cellular and Molecular Biology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Daliri Joupari
- Department of Animal and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
8
|
Harvey AJ. Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction 2020; 157:R159-R179. [PMID: 30870807 DOI: 10.1530/rep-18-0431] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022]
Abstract
Mitochondria, originally of bacterial origin, are highly dynamic organelles that have evolved a symbiotic relationship within eukaryotic cells. Mitochondria undergo dynamic, stage-specific restructuring and redistribution during oocyte maturation and preimplantation embryo development, necessary to support key developmental events. Mitochondria also fulfil a wide range of functions beyond ATP synthesis, including the production of intracellular reactive oxygen species and calcium regulation, and are active participants in the regulation of signal transduction pathways. Communication between not only mitochondria and the nucleus, but also with other organelles, is emerging as a critical function which regulates preimplantation development. Significantly, perturbations and deficits in mitochondrial function manifest not only as reduced quality and/or poor oocyte and embryo development but contribute to post-implantation failure, long-term cell function and adult disease. A growing body of evidence indicates that altered availability of metabolic co-factors modulate the activity of epigenetic modifiers, such that oocyte and embryo mitochondrial activity and dynamics have the capacity to establish long-lasting alterations to the epigenetic landscape. It is proposed that preimplantation embryo development may represent a sensitive window during which epigenetic regulation by mitochondria is likely to have significant short- and long-term effects on embryo, and offspring, health. Hence, mitochondrial integrity, communication and metabolism are critical links between the environment, the epigenome and the regulation of embryo development.
Collapse
Affiliation(s)
- Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Yang Y, An C, Yao Y, Cao Z, Gu T, Xu Q, Chen G. Intron polymorphisms of MAGI-1 and ACSF2 and effects on their expression in different goose breeds. Gene 2019; 701:82-88. [PMID: 30902784 DOI: 10.1016/j.gene.2019.02.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
The goose is one of the most important waterfowl, having lowing laying rate. Previous studies have shown the SNPs in the introns of MAGI-1 (Record-106975) and ACSF2 (Record-106582) significantly associated with egg production in geese. However, the mechanism of those SNPs influencing egg production remains unclear. In this study, the three goose breeds (Yangzhou geese, Zhedong white geese, and Carlos geese) with obviously different egg production were selected, and the allele frequency distribution and functions of those SNPs were investigated. The results suggested that the allele frequency distribution of ACSF2 was significantly different among the three goose breeds (χc2 = 92.377, Pc = 2.29 × 10-22), with the C allele appearing at frequencies of 0.29 in the Yangzhou geese and 0.94 in the Carlos geese. In contrast, the allele frequencies of MAGI-1 were not significantly different among the different goose breeds. Quantitative Reverse Transcription PCR (qRT-PCR) showed that the expression of MAGI-1 with the AG genotype individuals was significantly higher than those of the AA and GG genotype. For ACSF2, the CC genotype had significantly higher expression than both the AC genotype and the AA genotype. The luciferase reporter analysis revealed that the site-directed mutation ACSF2 (A>C) significantly drove the expression activity. Further analysis suggested that the mutation altered the binding site of the transcription factor BARHL2. Binding of BARHL2 to the ACSF2 intron was confirmed by electrophoretic mobility shift assay (EMSA) analysis. Thus, our findings revealed the A>C mutation of ACSF2 (Record-106582) could promote the expression by regulating the binding of BARHL2, resulting in differences in egg performance, which provided molecular insights into the effect of the polymorphism in ACSF2 on egg performance in geese.
Collapse
Affiliation(s)
- Yaozong Yang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chen An
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Yao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhengfeng Cao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tiantian Gu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
10
|
Abstract
Thyroid hormones (THs) have been shown to improve in vitro embryo production in cattle by increasing blastocyst formation rate, and the average cell number of blastocysts and by significantly decreasing apoptosis rate. To better understand those genetic aspects that may underlie enhanced early embryo development in the presence of THs, we characterized the bovine embryonic transcriptome at the blastocyst stage, and examined differential gene expression profiles using a bovine-specific microarray. We found that 1212 genes were differentially expressed in TH-treated embryos when compared with non-treated controls (>1.5-fold at P < 0.05). In addition 23 and eight genes were expressed uniquely in control and treated embryos, respectively. The expression of genes specifically associated with metabolism, mitochondrial function, cell differentiation and development were elevated. However, TH-related genes, including those encoding TH receptors and deiodinases, were not differentially expressed in treated embryos. Furthermore, the over-expression of 52 X-chromosome linked genes in treated embryos suggested a delay or escape from X-inactivation. This study highlights the significant impact of THs on differential gene expression in the early embryo; the identification of TH-responsive genes provides an insight into those regulatory pathways activated during development.
Collapse
|
11
|
Steffann J, Monnot S, Bonnefont JP. mtDNA mutations variously impact mtDNA maintenance throughout the human embryofetal development. Clin Genet 2015; 88:416-24. [PMID: 25523230 DOI: 10.1111/cge.12557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 12/31/2022]
Abstract
Mitochondria are the largest generator of ATP in the cell. It is therefore expected that energy-requiring processes such as oocyte maturation, early embryonic or fetal development, would be adversely impacted in case of mitochondrial deficiency. Human mitochondrial DNA (mtDNA) mutations constitute a spontaneous model of mitochondrial failure and offer the opportunity to study the consequences of energetic defects over fertility and embryofetal development. This review provides an update on the mtDNA metabolism in the early preimplantation embryo, and compiles data showing the impact of mtDNA mutations over mtDNA segregation. Despite convincing evidences about the essential role of mitochondria in oogenesis and preimplantation development, no correlation between the presence of a mtDNA mutation and fertilization failure, impaired oocyte quality, or embryofetal development arrest was found. In some cases, mutant cells might upregulate their mitochondrial content to overcome the bioenergetic defects induced by mtDNA mutations, and might escape negative selection. Finally we discuss some of the clinical consequences of these observations.
Collapse
Affiliation(s)
- J Steffann
- Université Paris-Descartes, Sorbonne Paris Cité, Institut Imagine and INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
| | - S Monnot
- Université Paris-Descartes, Sorbonne Paris Cité, Institut Imagine and INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
| | - J-P Bonnefont
- Université Paris-Descartes, Sorbonne Paris Cité, Institut Imagine and INSERM U1163, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
12
|
Lagutina I, Fulka H, Lazzari G, Galli C. Interspecies somatic cell nuclear transfer: advancements and problems. Cell Reprogram 2013; 15:374-84. [PMID: 24033141 DOI: 10.1089/cell.2013.0036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Embryologists working with livestock species were the pioneers in the field of reprogramming by somatic cell nuclear transfer (SCNT). Without the "Dolly experiment," the field of cellular reprogramming would have been slow and induced plutipotent cells (iPSCs) would not have been conceived. The major drive of the work in mammalian cloning was the interest of the breeding industry to propagate superior genotypes. Soon it was realized that the properties of oocytes could be used also to clone endangered mammalian species or to reprogram the genomes of unrelated species through what is known as interspecies (i) SCNT, using easily available oocytes of livestock species. iSCNT for cloning animals works only for species that can interbreed, and experiments with taxonomically distant species have not been successful in obtaining live births or deriving embryonic stem cell (ESC) lines to be used for regenerative medicine. There are controversial reports in the literature, but in most cases these experiments have underlined some of the cellular and molecular mechanisms that are incomplete during cell nucleus reprogramming, including the failure to organize nucleoli, silence somatic cell genes, activate the embryonic genome, and resume mitochondrial replication and function, thus indicating nucleus-cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Irina Lagutina
- 1 Avantea, Laboratorio di Tecnologie della Riproduzione , Cremona, 26100, Italy
| | | | | | | |
Collapse
|
13
|
Ge H, Tollner TL, Hu Z, Da M, Li X, Guan H, Shan D, Lu J, Huang C, Dong Q. Impaired mitochondrial function in murine oocytes is associated with controlled ovarian hyperstimulation and in vitro maturation. Reprod Fertil Dev 2013; 24:945-52. [PMID: 22935155 DOI: 10.1071/rd11212] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/29/2011] [Indexed: 11/23/2022] Open
Abstract
The present study was designed to determine whether controlled ovarian hyperstimulation (COH) and in vitro maturation (IVM), two common clinical procedures in human IVF treatment, have an impact on mitochondrial DNA (mtDNA) copy number and mitochondrial function in oocytes. Matured mouse oocytes recovered following COH, IVM and natural cycles (NC), which simulated those treatments in human clinic IVF treatment. The copies of mtDNA, the activity of mitochondria as determined by inner mitochondrial membrane potential and oocyte adenosine trisphosphate (ATP) content, pattern of mitochondrial distribution, reactive oxygen species (ROS) levels and the integrity of the cytoskeleton were evaluated in oocytes. Significant differences were detected between COH and NC groups in all measures, except the pattern of mitochondrial distribution and ROS levels. There were also significant differences detected between IVM and NC treatment groups in the copies of mitochondrial DNA, the level of ROS and the integrity of the cytoskeleton in oocytes. In conclusion, the results of this investigation indicate that non-physiological COH and IVM treatments inhibit mtDNA replication, alter mitochondrial function and increase the percentage of abnormal cytoskeleton and ROS production. Damage related to the mitochondria may partly explain the low efficiency of IVF and high rate of embryonic loss associated with these clinical procedures.
Collapse
Affiliation(s)
- Hongshan Ge
- Reproductive Health Center, Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang Province, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Takeo S, Goto H, Kuwayama T, Monji Y, Iwata H. Effect of maternal age on the ratio of cleavage and mitochondrial DNA copy number in early developmental stage bovine embryos. J Reprod Dev 2012; 59:174-9. [PMID: 23269452 PMCID: PMC3934204 DOI: 10.1262/jrd.2012-148] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Age-associated deterioration in both the quality and quantity of mitochondria occurs in older women. The main aim of this study was to examine the effect of age on mitochondrial DNA copy number (mtDNA number) in early developmental stage bovine embryos as well as the dynamics of mtDNA number during early embryo development. Real-time PCR was used to determine mtDNA number. In vitro-produced embryos 48 h after insemination derived from Japanese black cows, ranging in age from 25 to 209 months were categorized based on their cleavage status. There was an overall negative relationship between the age of the cow and cleavage status, to the extent that the ratio of embryos cleaved over the 4-cell stage was greater in younger cows. The mtDNA number did not differ among the cleaved status of embryos. In the next experiment, oocytes collected from each donor cow were divided into 2 groups containing 10 oocytes each, in order to compare the mtDNA number of mature oocytes and early developmental stage embryos within individuals. Upon comparing the mtDNA number between oocytes at the M2 stage and early developmental stage 48 h post insemination, mtDNA number was found to decrease in most cows, but was found to increase in some cows. In conclusion, age affects the cleaving ability of oocytes, and very old cows (> 180 months) tend to have lower mtDNA numbers in their oocytes. The change in mtDNA number during early development varied among individual cows, although overall, it showed a tendency to decrease.
Collapse
Affiliation(s)
- Shun Takeo
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | | | | | | | | |
Collapse
|
15
|
Harvey AJ, Mao S, Lalancette C, Krawetz SA, Brenner CA. Transcriptional differences between rhesus embryonic stem cells generated from in vitro and in vivo derived embryos. PLoS One 2012; 7:e43239. [PMID: 23028448 PMCID: PMC3445581 DOI: 10.1371/journal.pone.0043239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/18/2012] [Indexed: 01/16/2023] Open
Abstract
Numerous studies have focused on the transcriptional signatures that underlie the maintenance of embryonic stem cell (ESC) pluripotency. However, it remains unclear whether ESC retain transcriptional aberrations seen in in vitro cultured embryos. Here we report the first global transcriptional profile comparison between ESC generated from either in vitro cultured or in vivo derived primate embryos by microarray analysis. Genes involved in pluripotency, oxygen regulation and the cell cycle were downregulated in rhesus ESC generated from in vitro cultured embryos (in vitro ESC). Significantly, several gene differences are similarly downregulated in preimplantation embryos cultured in vitro, which have been associated with long term developmental consequences and disease predisposition. This data indicates that prior to derivation, embryo quality may influence the molecular signature of ESC lines, and may differentially impact the physiology of cells prior to or following differentiation.
Collapse
Affiliation(s)
- Alexandra J Harvey
- Department of Physiology, Wayne State University, Detroit, Michigan, United States of America.
| | | | | | | | | |
Collapse
|
16
|
Harvey A, Gibson T, Lonergan T, Brenner C. Dynamic regulation of mitochondrial function in preimplantation embryos and embryonic stem cells. Mitochondrion 2010; 11:829-38. [PMID: 21168533 DOI: 10.1016/j.mito.2010.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 12/06/2010] [Accepted: 12/09/2010] [Indexed: 01/14/2023]
Abstract
Mitochondrial function is dependent upon regulation of biogenesis and dynamics. A number of studies have documented the importance of these organelles in both preimplantation embryos and embryonic stem cells (ESCs), however it remains unclear how mitochondria respond to their immediate microenvironment through modulation of morphology and movement, or whether perturbations in these processes will have a significant impact following differentiation/implantation. Here we review existing literature on two key aspects of nuclear-mitochondrial cross-talk and the dynamic processes involved in mediating mitochondrial function through regulation of mitochondrial biogenesis, morphology and movement, with particular emphasis on embryos and ESCs.
Collapse
Affiliation(s)
- Alexandra Harvey
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
17
|
Chiaratti MR, Ferreira CR, Meirelles FV, Méo SC, Perecin F, Smith LC, Ferraz ML, de Sá Filho MF, Gimenes LU, Baruselli PS, Gasparrini B, Garcia JM. Xenooplasmic transfer between buffalo and bovine enables development of homoplasmic offspring. Cell Reprogram 2010; 12:231-6. [PMID: 20698765 DOI: 10.1089/cell.2009.0076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Nuclear-mitochondrial incompatibilities may be responsible for the development failure reported in embryos and fetuses produced by interspecies somatic cell nuclear transfer (iSCNT). Herein we performed xenooplasmic transfer (XOT) by introducing 10 to 15% of buffalo ooplasm into bovine zygotes to assess its effect on the persistence of buffalo mitochondrial DNA (mtDNA). Blastocyst rates were not compromised by XOT in comparison to both in vitro fertilized embryos and embryos produced by transfer of bovine ooplasm into bovine zygotes. Moreover, offspring were born after transfer of XOT embryos to recipient cows. Buffalo mtDNA introduced in zygotes was still present at the blastocyst stage (8.3 vs. 9.3%, p = 0.11), indicating unaltered heteroplasmy during early development. Nonetheless, no vestige of buffalo mtDNA was found in offspring, indicating a drift to homoplasmy during later stages of development. In conclusion, we show that the buffalo mtDNA introduced by XOT into a bovine zygote do not compromise embryo development. On the other hand, buffalo mtDNA was not inherited by offspring indicating a possible failure in the process of interspecies mtDNA replication.
Collapse
|
18
|
Eichenlaub-Ritter U, Wieczorek M, Lüke S, Seidel T. Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion 2010; 11:783-96. [PMID: 20817047 DOI: 10.1016/j.mito.2010.08.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 12/26/2022]
Abstract
Mammalian oocytes are long-lived cells in the human body. They initiate meiosis already in the embryonic ovary, arrest meiotically for long periods in dictyate stage, and resume meiosis only after extensive growth and a surge of luteinizing hormone which mediates signaling events that overcome meiotic arrest. Few mitochondria are initially present in the primordial germ cells while there are mitogenesis and structural and functional differentiation and stage-specific formation of functionally diverse domains of mitochondria during oogenesis. Mitochondria are most prominent cell organelles in oocytes and their activities appear essential for normal spindle formation and chromosome segregation, and they are one of the most important maternal contributions to early embryogenesis. Dysfunctional mitochondria are discussed as major factor in predisposition to chromosomal nondisjunction during first and second meiotic division and mitotic errors in embryos, and in reduced quality and developmental potential of aged oocytes and embryos. Several lines of evidence suggest that damage by oxidative stress/reactive oxygen species in dependence of age, altered antioxidative defence and/or altered environment and bi-directional signaling between oocyte and the somatic cells in the follicle contribute to reduced quality of oocytes and blocked or aberrant development of embryos after fertilization. The review provides an overview of mitogenesis during oogenesis and some recent data on oxidative defence systems in mammalian oocytes, and on age-related changes as well as novel approaches to study redox regulation in mitochondria and ooplasm. The latter may provide new insights into age-, environment- and cryopreservation-induced stress and mitochondrial dysfunction in oocytes and embryos.
Collapse
Affiliation(s)
- U Eichenlaub-Ritter
- University of Bielefeld, Faculty of Biology, Gene Technology/Microbiology, Bielefeld, Germany.
| | | | | | | |
Collapse
|
19
|
Liu S, Li Y, Feng HL, Yan JH, Li M, Ma SY, Chen ZJ. Dynamic modulation of cytoskeleton during in vitro maturation in human oocytes. Am J Obstet Gynecol 2010; 203:151.e1-7. [PMID: 20579967 DOI: 10.1016/j.ajog.2010.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 01/08/2010] [Accepted: 05/05/2010] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the role of cytoskeleton in several important dynamic events during in vitro maturation of human oocytes. STUDY DESIGN Human germinal vesicle stage oocytes were divided randomly into control and study groups. After cultured for 24 hours, chromatin state and position, spindle formation and migration, cortical granules, and mitochondria distribution were evaluated. RESULTS In colchicine group, spindles did not form. Cortical granules migrated to the cortex but mitochondria maintained the peripheral distribution pattern in most of the oocytes. In cytochalasin B group, the migration of spindle and chromosomes to the cortex was prohibited. Microfilaments disruption influenced cortical granules migration but not redistribution of mitochondria. CONCLUSION Meiosis progression could not go beyond metaphase I stage when microtubule or microfilament polymerization was prohibited in human oocytes. The migration of cortical granules to the cortex and redistribution of mitochondria to the inner cytoplasm were mediated by microfilaments and microtubules, respectively.
Collapse
Affiliation(s)
- Shan Liu
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Key Laboratory of Reproductive Medicine, Shandong Province, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Lagutina I, Fulka H, Brevini TAL, Antonini S, Brunetti D, Colleoni S, Gandolfi F, Lazzari G, Fulka J, Galli C. Development, embryonic genome activity and mitochondrial characteristics of bovine-pig inter-family nuclear transfer embryos. Reproduction 2010; 140:273-85. [PMID: 20530093 DOI: 10.1530/rep-09-0578] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The best results of inter-species somatic cell nuclear transfer (iSCNT) in mammals were obtained using closely related species that can hybridise naturally. However, in the last years, many reports describing blastocyst development following iSCNT between species with distant taxonomical relations (inter-classes, inter-order and inter-family) have been published. This indicates that embryonic genome activation (EGA) in xeno-cytoplasm is possible, albeit very rarely. Using a bovine-pig (inter-family) iSCNT model, we studied the basic characteristics of EGA: expression and activity of RNA polymerase II (RNA Pol II), formation of nucleoli (as an indicator of RNA polymerase I (RNA Pol I) activity), expression of the key pluripotency gene NANOG and alteration of mitochondrial mass. In control embryos (obtained by IVF or iSCNT), EGA was characterised by RNA Pol II accumulation and massive production of poly-adenylated transcripts (detected with oligo dT probes) in blastomere nuclei, and formation of nucleoli as a result of RNA Pol I activity. Conversely, iSCNT embryos were characterised by the absence of accumulation and low activity of RNA Pol II and inability to form active mature nucleoli. Moreover, in iSCNT embryos, NANOG was not expressed, and mitochondria mass was significantly lower than in intra-species embryos. Finally, the complete developmental block at the 16-25-cell stage for pig-bovine iSCNT embryos and at the four-cell stage for bovine-pig iSCNT embryos strongly suggests that EGA is not taking place in iSCNT embryos. Thus, our experiments clearly demonstrate poor nucleus-cytoplasm compatibility between these animal species.
Collapse
Affiliation(s)
- Irina Lagutina
- Laboratorio di Tecnologie della Riproduzione, Avantea srl, Via Porcellasco 7/f, Cremona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chiaratti MR, Bressan FF, Ferreira CR, Caetano AR, Smith LC, Vercesi AE, Meirelles FV. Embryo Mitochondrial DNA Depletion Is Reversed During Early Embryogenesis in Cattle1. Biol Reprod 2010; 82:76-85. [DOI: 10.1095/biolreprod.109.077776] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
22
|
Liu S, Li Y, Gao X, Yan JH, Chen ZJ. Changes in the distribution of mitochondria before and after in vitro maturation of human oocytes and the effect of in vitro maturation on mitochondria distribution. Fertil Steril 2009; 93:1550-5. [PMID: 19423101 DOI: 10.1016/j.fertnstert.2009.03.050] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/03/2009] [Accepted: 03/10/2009] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To clarify the relationship between oocyte maturation and mitochondria distribution and assess the effects of in vitro maturation (IVM) on the distribution of mitochondria in human oocytes. DESIGN Prospective randomized trial. SETTING Hospital-based IVF center. PATIENT(S) One hundred fifty-eight patients undergoing intracytoplasmic sperm injection (ICSI) treatment for male factors or combined with oviduct infertility and fifteen patients undergoing controlled ovarian hyperstimulation followed by coitus or IUI. INTERVENTION(S) Of all the 284 immature oocytes, 140 were fixed directly. The others were prepared for IVM before they were fixed. All the 21 oocytes matured in vivo were fixed directly and stained for mitochondria. Both immature and mature oocytes were stained by Mito Tracker Green FM. The distribution of mitochondria was observed using a confocal laser scanning microscope. MAIN OUTCOME MEASURE(S) Mitochondrial distribution. RESULT(S) Three mitochondria distribution patterns were identified: peripheral, semiperipheral, and evenly diffused. A peripheral distribution of mitochondria was presented by 64.1% (50/78) of the germinal vesicle (GV) oocytes; 45.2% (28/62) of the meiosis I oocytes maintained the peripheral distribution; and 38.7% (24/62) presented a diffused status. After IVM, 75.5% (80/106) of the oocytes displayed an evenly diffused type of distribution. The mitochondria were more abundant in the inner cytoplasm than in the peripheral region in most of the oocytes matured in vivo. CONCLUSION(S) There are obvious changes in the distribution of mitochondria in human oocytes before and after maturation. Distribution of mitochondria in oocytes matured in vitro is slightly different from that of oocytes matured in vivo. The results may partially explain the reduced developmental potential of oocytes matured in vitro compared with those matured in vivo.
Collapse
Affiliation(s)
- Shan Liu
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Key Laboratory of Reproductive Medicine, Shandong Province, Jinan 250021, People's Republic of China
| | | | | | | | | |
Collapse
|