1
|
Yang S, Wang X, Gao H, Yuan S. Motile cilia: Key developmental and functional roles in reproductive systems. Andrology 2025. [PMID: 39895399 DOI: 10.1111/andr.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Cilia are specialized microtubule-based organelles that extend from the cell surface and are classified into non-motile and motile types. The assembly and function of cilia are regulated by a complex molecular network that enables motile cilia to generate fluid flow across epithelial surfaces through coordinated beating. These motile cilia are found in the respiratory, nervous, and reproductive systems. In males, motile cilia are found in the efferent ducts and facilitate the transport of sperm from the testis to the epididymis. In females, they are mainly found in the oviducts, where they help to transport, nourish and fertilize eggs, and are also present in the endometrial epithelium. MATERIAL-METHODS This review compares the common factors that affect motile cilia in both male and female reproductive tracts, discusses the origin and development of multiciliated cell and cilia within the efferent ducts and oviducts, and enumerates the infertility or related reproductive diseases that may arise due to motile cilia defects. RESULTS-DISCUSSION In males, motile cilia in the efferent ducts create turbulence through their beating, which keeps semen suspended and prevents ductal obstruction. In females, motile cilia are distributed on the epithelia of the oviducts and the endometrium. Specifically, motile cilia in the infundibulum of the oviduct aid in capturing oocytes, while cilia in the isthmus region have been found to bind to sperm heads, facilitating the formation of the sperm reservoir. Several common factors, such as miR-34b/c and miR-449, TAp73, Gemc1, and estrogen, etc., have been shown to play crucial regulatory roles in motile cilia within the efferent ducts and oviducts, thereby further influencing fertility outcomes. CONCLUSIONS Pathogenic mutations that disrupt ciliary function can impair ciliogenesis or alter the structure of sperm flagella, potentially resulting in infertility. Consequently, motile cilia in both the male and female reproductive tracts are crucial for fertility. There are still numerous unresolved mysteries surrounding these cilia that merit further investigation by researchers, as they hold great significance for the clinical diagnosis and treatment of infertility and related reproductive disorders.
Collapse
Affiliation(s)
- Shiyu Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Gao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| |
Collapse
|
2
|
Lindemann CB, Lesich KA. The mechanics of cilia and flagella: What we know and what we need to know. Cytoskeleton (Hoboken) 2024; 81:648-668. [PMID: 38780123 DOI: 10.1002/cm.21879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
In this review, we provide a condensed overview of what is currently known about the mechanical functioning of the flagellar/ciliary axoneme. We also present a list of 10 specific areas where our current knowledge is incomplete and explain the benefits of further experimental investigation. Many of the physical parameters of the axoneme and its component parts have not been determined. This limits our ability to understand how the axoneme structure contributes to its functioning in several regards. It restricts our ability to understand how the mechanics of the structure contribute to the regulation of motor function. It also confines our ability to understand the three-dimensional workings of the axoneme and how various beating modes are accomplished. Lastly, it prevents accurate computational modeling of the axoneme in three-dimensions.
Collapse
Affiliation(s)
- Charles B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Kathleen A Lesich
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
3
|
Tani Y, Yanagisawa H, Yagi T, Kikkawa M. Structure and function of FAP47 in the central pair apparatus of Chlamydomonas flagella. Cytoskeleton (Hoboken) 2024; 81:669-680. [PMID: 38899546 DOI: 10.1002/cm.21882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Motile cilia have a so-called "9 + 2" structure, which consists of nine doublet microtubules and a central pair apparatus. The central pair apparatus (CA) is thought to interact mechanically with radial spokes and to control the flagellar beating. Recently, the components of the CA have been identified by proteomic and genomic analyses. Still, the mechanism of how the CA contributes to ciliary motility has much to be revealed. Here, we focused on one CA component with a large molecular weight: FAP47, and its relationship with two other CA components with large molecular weight: HYDIN, and CPC1. The analyses of motility of the Chlamydomonas mutants revealed that in contrast to cpc1 or hydin, which swam more slowly than the wild type, fap47 cells displayed wild-type swimming velocity and flagellar beat frequency, yet interestingly, fap47 cells have phototaxis defects and swim straighter than the wild-type cells. Furthermore, the double mutant fap47cpc1 and fap47hydin showed significantly slower swimming than cpc1 and hydin cells, and the motility defect of fap47cpc1 was rescued to the cpc1 level with GFP-tagged FAP47, indicating that the lack of FAP47 makes the motility defect of cpc1 worse. Cryo-electron tomography demonstrated that the fap47 lacks a part of the C1-C2 bridge of CA. Taken together, these observations indicate that FAP47 maintains the structural stiffness of the CA, which is important for flagellar regulation.
Collapse
Affiliation(s)
- Yuma Tani
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiki Yagi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Salve BG, Kurian AM, Vijay N. Concurrent loss of ciliary genes WDR93 and CFAP46 in phylogenetically distant birds. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230801. [PMID: 37621660 PMCID: PMC10445033 DOI: 10.1098/rsos.230801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
The respiratory system is the primary route of infection for many contagious pathogens. Mucociliary clearance of inhaled pathogens is an important innate defence mechanism sustained by the rhythmic movement of epithelial cilia. To counter host defences, viral pathogens target epithelial cells and cilia. For instance, the avian influenza virus that targets ciliated cells modulates the expression of WDR93, a central ciliary apparatus C1d projection component. Lineage-specific prevalence of such host defence genes results in differential susceptibility. In this study, the comparative analysis of approximately 500 vertebrate genomes from seven taxonomic classes spanning 73 orders confirms the widespread conservation of WDR93 across these different vertebrate groups. However, we established loss of the WDR93 in landfowl, geese and other phylogenetically independent bird species due to gene-disrupting changes. The lack of WDR93 transcripts in species with gene loss in contrast to its expression in species with an intact gene confirms gene loss. Notably, species with WDR93 loss have concurrently lost another C1d component, CFAP46, through large segmental deletions. Understanding the consequences of such gene loss may provide insight into their role in host-pathogen interactions and benefit global pathogen surveillance efforts by prioritizing species missing host defence genes and identifying putative zoonotic reservoirs.
Collapse
Affiliation(s)
- Buddhabhushan Girish Salve
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Amia Miriam Kurian
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| |
Collapse
|
5
|
Ciliary central apparatus structure reveals mechanisms of microtubule patterning. Nat Struct Mol Biol 2022; 29:483-492. [PMID: 35578023 PMCID: PMC9930914 DOI: 10.1038/s41594-022-00770-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/30/2022] [Indexed: 02/05/2023]
Abstract
A pair of extensively modified microtubules form the central apparatus (CA) of the axoneme of most motile cilia, where they regulate ciliary motility. The external surfaces of both CA microtubules are patterned asymmetrically with large protein complexes that repeat every 16 or 32 nm. The composition of these projections and the mechanisms that establish asymmetry and longitudinal periodicity are unknown. Here, by determining cryo-EM structures of the CA microtubules, we identify 48 different CA-associated proteins, which in turn reveal mechanisms for asymmetric and periodic protein binding to microtubules. We identify arc-MIPs, a novel class of microtubule inner protein, that bind laterally across protofilaments and remodel tubulin structure and lattice contacts. The binding mechanisms utilized by CA proteins may be generalizable to other microtubule-associated proteins. These structures establish a foundation to elucidate the contributions of individual CA proteins to ciliary motility and ciliopathies.
Collapse
|
6
|
Han L, Rao Q, Yang R, Wang Y, Chai P, Xiong Y, Zhang K. Cryo-EM structure of an active central apparatus. Nat Struct Mol Biol 2022; 29:472-482. [PMID: 35578022 PMCID: PMC9113940 DOI: 10.1038/s41594-022-00769-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/30/2022] [Indexed: 12/13/2022]
Abstract
Accurately regulated ciliary beating in time and space is critical for diverse cellular activities, which impact the survival and development of nearly all eukaryotic species. An essential beating regulator is the conserved central apparatus (CA) of motile cilia, composed of a pair of microtubules (C1 and C2) associated with hundreds of protein subunits per repeating unit. It is largely unclear how the CA plays its regulatory roles in ciliary motility. Here, we present high-resolution structures of Chlamydomonas reinhardtii CA by cryo-electron microscopy (cryo-EM) and its dynamic conformational behavior at multiple scales. The structures show how functionally related projection proteins of CA are clustered onto a spring-shaped scaffold of armadillo-repeat proteins, facilitated by elongated rachis-like proteins. The two halves of the CA are brought together by elastic chain-like bridge proteins to achieve coordinated activities. We captured an array of kinesin-like protein (KLP1) in two different stepping states, which are actively correlated with beating wave propagation of cilia. These findings establish a structural framework for understanding the role of the CA in cilia.
Collapse
Affiliation(s)
- Long Han
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Qinhui Rao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Renbin Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Center for Molecular Microscopy, Frederick National Laboratory for Cancer Research, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Yue Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Leemans B, Stout TAE, De Schauwer C, Heras S, Nelis H, Hoogewijs M, Van Soom A, Gadella BM. Update on mammalian sperm capacitation: how much does the horse differ from other species? Reproduction 2020; 157:R181-R197. [PMID: 30721132 DOI: 10.1530/rep-18-0541] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022]
Abstract
In contrast to various other mammalian species, conventional in vitro fertilization (IVF) with horse gametes is not reliably successful. In particular, stallion spermatozoa fails to penetrate the zona pellucida, most likely due to incomplete activation of stallion spermatozoa (capacitation) under in vitro conditions. In other mammalian species, specific capacitation triggers have been described; unfortunately, none of these is able to induce full capacitation in stallion spermatozoa. Nevertheless, knowledge of capacitation pathways and their molecular triggers might improve our understanding of capacitation-related events observed in stallion sperm. When sperm cells are exposed to appropriate capacitation triggers, several molecular and biochemical changes should be induced in the sperm plasma membrane and cytoplasm. At the level of the sperm plasma membrane, (1) an increase in membrane fluidity, (2) cholesterol depletion and (3) lipid raft aggregation should occur consecutively; the cytoplasmic changes consist of protein tyrosine phosphorylation and elevated pH, cAMP and Ca2+ concentrations. These capacitation-related events enable the switch from progressive to hyperactivated motility of the sperm cells, and the induction of the acrosome reaction. These final capacitation triggers are indispensable for sperm cells to migrate through the viscous oviductal environment, penetrate the cumulus cells and zona pellucida and, finally, fuse with the oolemma. This review will focus on molecular aspects of sperm capacitation and known triggers in various mammalian species. Similarities and differences with the horse will be highlighted to improve our understanding of equine sperm capacitation/fertilizing events.
Collapse
Affiliation(s)
- Bart Leemans
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Tom A E Stout
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Catharina De Schauwer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Sonia Heras
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hilde Nelis
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Maarten Hoogewijs
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Bart M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Dutcher SK. Asymmetries in the cilia of Chlamydomonas. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190153. [PMID: 31884924 PMCID: PMC7017335 DOI: 10.1098/rstb.2019.0153] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 01/10/2023] Open
Abstract
The generation of ciliary waveforms requires the spatial and temporal regulation of dyneins. This review catalogues many of the asymmetric structures and proteins in the cilia of Chlamydomonas, a unicellular alga with two cilia that are used for motility in liquid medium. These asymmetries, which have been identified through mutant analysis, cryo-EM tomography and proteomics, provide a wealth of information to use for modelling how waveforms are generated and propagated. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Susan K. Dutcher
- Department of Genetics, Washington University in St Louis, Saint Louis, MO, USA
| |
Collapse
|
9
|
Fu G, Zhao L, Dymek E, Hou Y, Song K, Phan N, Shang Z, Smith EF, Witman GB, Nicastro D. Structural organization of the C1a-e-c supercomplex within the ciliary central apparatus. J Cell Biol 2019; 218:4236-4251. [PMID: 31672705 PMCID: PMC6891083 DOI: 10.1083/jcb.201906006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
Fu et al. use a WT versus mutant comparison and cryo-electron tomography of Chlamydomonas flagella to identify central apparatus (CA) subunits and visualize their location in the native 3D CA structure. This study provides a better understanding of the CA and how it regulates ciliary motility. Nearly all motile cilia contain a central apparatus (CA) composed of two connected singlet microtubules with attached projections that play crucial roles in regulating ciliary motility. Defects in CA assembly usually result in motility-impaired or paralyzed cilia, which in humans causes disease. Despite their importance, the protein composition and functions of the CA projections are largely unknown. Here, we integrated biochemical and genetic approaches with cryo-electron tomography to compare the CA of wild-type Chlamydomonas with CA mutants. We identified a large (>2 MD) complex, the C1a-e-c supercomplex, that requires the PF16 protein for assembly and contains the CA components FAP76, FAP81, FAP92, and FAP216. We localized these subunits within the supercomplex using nanogold labeling and show that loss of any one of them results in impaired ciliary motility. These data provide insight into the subunit organization and 3D structure of the CA, which is a prerequisite for understanding the molecular mechanisms by which the CA regulates ciliary beating.
Collapse
Affiliation(s)
- Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lei Zhao
- Department of Radiology, Division of Cell Biology and Imaging, University of Massachusetts Medical School, Worcester, MA
| | - Erin Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH
| | - Yuqing Hou
- Department of Radiology, Division of Cell Biology and Imaging, University of Massachusetts Medical School, Worcester, MA
| | - Kangkang Song
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nhan Phan
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhiguo Shang
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - George B Witman
- Department of Radiology, Division of Cell Biology and Imaging, University of Massachusetts Medical School, Worcester, MA
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
10
|
Osinka A, Poprzeczko M, Zielinska MM, Fabczak H, Joachimiak E, Wloga D. Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes. Cells 2019; 8:cells8070730. [PMID: 31319499 PMCID: PMC6678824 DOI: 10.3390/cells8070730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Cilia are highly evolutionarily conserved, microtubule-based cell protrusions present in eukaryotic organisms from protists to humans, with the exception of fungi and higher plants. Cilia can be broadly divided into non-motile sensory cilia, called primary cilia, and motile cilia, which are locomotory organelles. The skeleton (axoneme) of primary cilia is formed by nine outer doublet microtubules distributed on the cilium circumference. In contrast, the skeleton of motile cilia is more complex: in addition to outer doublets, it is composed of two central microtubules and several diverse multi-protein complexes that are distributed periodically along both types of microtubules. For many years, researchers have endeavored to fully characterize the protein composition of ciliary macro-complexes and the molecular basis of signal transduction between these complexes. Genetic and biochemical analyses have suggested that several hundreds of proteins could be involved in the assembly and function of motile cilia. Within the last several years, the combined efforts of researchers using cryo-electron tomography, genetic and biochemical approaches, and diverse model organisms have significantly advanced our knowledge of the ciliary structure and protein composition. Here, we summarize the recent progress in the identification of the subunits of ciliary complexes, their precise intraciliary localization determined by cryo-electron tomography data, and the role of newly identified proteins in cilia.
Collapse
Affiliation(s)
- Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Magdalena M Zielinska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
11
|
Saggiorato G, Alvarez L, Jikeli JF, Kaupp UB, Gompper G, Elgeti J. Human sperm steer with second harmonics of the flagellar beat. Nat Commun 2017; 8:1415. [PMID: 29123094 PMCID: PMC5680276 DOI: 10.1038/s41467-017-01462-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/20/2017] [Indexed: 12/21/2022] Open
Abstract
Sperm are propelled by bending waves traveling along their flagellum. For steering in gradients of sensory cues, sperm adjust the flagellar waveform. Symmetric and asymmetric waveforms result in straight and curved swimming paths, respectively. Two mechanisms causing spatially asymmetric waveforms have been proposed: an average flagellar curvature and buckling. We image flagella of human sperm tethered with the head to a surface. The waveform is characterized by a fundamental beat frequency and its second harmonic. The superposition of harmonics breaks the beat symmetry temporally rather than spatially. As a result, sperm rotate around the tethering point. The rotation velocity is determined by the second-harmonic amplitude and phase. Stimulation with the female sex hormone progesterone enhances the second-harmonic contribution and, thereby, modulates sperm rotation. Higher beat frequency components exist in other flagellated cells; therefore, this steering mechanism might be widespread and could inspire the design of synthetic microswimmers.
Collapse
Affiliation(s)
- Guglielmo Saggiorato
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (CAESAR), 53175, Bonn, Germany
| | - Luis Alvarez
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (CAESAR), 53175, Bonn, Germany.
| | - Jan F Jikeli
- Laboratoire de Physique Théorique et Modèles Statistiques, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
- Biophysical Imaging, Institute of Innate Immunity, University Hospital Bonn, 53127, Bonn, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (CAESAR), 53175, Bonn, Germany
| | - Gerhard Gompper
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jens Elgeti
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
12
|
Oda T. Three-dimensional structural labeling microscopy of cilia and flagella. Microscopy (Oxf) 2017; 66:234-244. [PMID: 28541401 DOI: 10.1093/jmicro/dfx018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/13/2017] [Indexed: 06/07/2023] Open
Abstract
Locating a molecule within a cell using protein-tagging and immunofluorescence is a fundamental technique in cell biology, whereas in three-dimensional electron microscopy, locating a subunit within a macromolecular complex remains challenging. Recently, we developed a new structural labeling method for cryo-electron tomography by taking advantage of the biotin-streptavidin system, and have intensively used this method to locate a number of proteins and protein domains in cilia and flagella. In this review, we summarize our findings on the three-dimensional architecture of the axoneme, especially the importance of coiled-coil proteins. In addition, we provide an overview of the technical aspects of our structural labeling method.
Collapse
Affiliation(s)
- Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
13
|
Viswanadha R, Sale WS, Porter ME. Ciliary Motility: Regulation of Axonemal Dynein Motors. Cold Spring Harb Perspect Biol 2017; 9:9/8/a018325. [PMID: 28765157 DOI: 10.1101/cshperspect.a018325] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ciliary motility is crucial for the development and health of many organisms. Motility depends on the coordinated activity of multiple dynein motors arranged in a precise pattern on the outer doublet microtubules. Although significant progress has been made in elucidating the composition and organization of the dyneins, a comprehensive understanding of dynein regulation is lacking. Here, we focus on two conserved signaling complexes located at the base of the radial spokes. These include the I1/f inner dynein arm associated with radial spoke 1 and the calmodulin- and spoke-associated complex and the nexin-dynein regulatory complex associated with radial spoke 2. Current research is focused on understanding how these two axonemal hubs coordinate and regulate the dynein motors and ciliary motility.
Collapse
Affiliation(s)
- Rasagnya Viswanadha
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
14
|
Alvarez L. The tailored sperm cell. JOURNAL OF PLANT RESEARCH 2017; 130:455-464. [PMID: 28357612 PMCID: PMC5406480 DOI: 10.1007/s10265-017-0936-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 05/28/2023]
Abstract
Sperm are ubiquitous and yet unique. Genes involved in sexual reproduction are more divergent than most genes expressed in non-reproductive tissues. It has been argued that sperm have been altered during evolution more than any somatic cell. Profound variations are found at the level of morphology, motility, search strategy for the egg, and the underlying signalling mechanisms. Sperm evolutionary adaptation may have arisen from sperm competition (sperm from rival males compete within the female's body to fertilize eggs), cryptic female choice (the female's ability to choose among different stored sperm), social cues tuning sperm quality or from the site of fertilization (internal vs. external fertilization), to name a few. Unquestionably, sperm represent an invaluable source for the exploration of biological diversity at the level of signalling, motility, and evolution. Despite the richness in sperm variations, only a few model systems for signalling and motility have been studied in detail. Using fast kinetic techniques, electrophysiological recordings, and optogenetics, the molecular players and the sequence of signalling events of sperm from a few marine invertebrates, mammals, and fish are being elucidated. Furthermore, recent technological advances allow studying sperm motility with unprecedented precision; these studies provide new insights into flagellar motility and navigation in three dimensions (3D). The scope of this review is to highlight variations in motile sperm across species, and discuss the great promise that 3D imaging techniques offer into unravelling sperm mysteries.
Collapse
Affiliation(s)
- Luis Alvarez
- Center of Advanced European Studies and Research (caesar). Institute affiliated with the Max Planck Society, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
15
|
Loreng TD, Smith EF. The Central Apparatus of Cilia and Eukaryotic Flagella. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028118. [PMID: 27770014 DOI: 10.1101/cshperspect.a028118] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The motile cilium is a complex organelle that is typically comprised of a 9+2 microtubule skeleton; nine doublet microtubules surrounding a pair of central singlet microtubules. Like the doublet microtubules, the central microtubules form a scaffold for the assembly of protein complexes forming an intricate network of interconnected projections. The central microtubules and associated structures are collectively referred to as the central apparatus (CA). Studies using a variety of experimental approaches and model organisms have led to the discovery of a number of highly conserved protein complexes, unprecedented high-resolution views of projection structure, and new insights into regulation of dynein-driven microtubule sliding. Here, we review recent progress in defining mechanisms for the assembly and function of the CA and include possible implications for the importance of the CA in human health.
Collapse
Affiliation(s)
- Thomas D Loreng
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
16
|
Yoke H, Shingyoji C. Effects of external strain on the regulation of microtubule sliding induced by outer arm dynein of sea urchin sperm flagella. J Exp Biol 2017; 220:1122-1134. [DOI: 10.1242/jeb.147942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022]
Abstract
Oscillatory bending movement of eukaryotic flagella is powered by orchestrated activity of dynein motor proteins that hydrolyze ATP and produce microtubule sliding. Although the ATP concentration within a flagellum is kept uniform at a few mmol l−1 level, sliding activities of dyneins are dynamically coordinated along the flagellum in accordance with the phase of bending waves. Thus, at the organellar level the dynein not only generates force for bending but also modulates its motile activity by responding to bending of the flagellum. Single molecule analyses have suggested that dynein at the molecular level, even if isolated from the axoneme, could alter the modes of motility in response to mechanical strain. However, it still remains unknown whether the coordinated activities of multiple dyneins can be modulated directly by mechanical signals. Here, we studied the effects of externally applied strain on the sliding movement of microtubules interacted with ensemble of dynein molecules adsorbed on a glass surface. We found that by bending the microtubules with a glass microneedle, three modes of motility that have not been previously characterized without bending can be induced: those were, stoppage, backward sliding and dissociation. Modification in sliding velocities was also induced by imposed bending. These results suggest that the activities of dyneins interacted with a microtubule can be modified and coordinated through external strain in a quite flexible manner and that such regulatory mechanism may be the basis of flagellar oscillation.
Collapse
Affiliation(s)
- Hiroshi Yoke
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Chikako Shingyoji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Senatore A, Raiss H, Le P. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora. Front Physiol 2016; 7:481. [PMID: 27867359 PMCID: PMC5095125 DOI: 10.3389/fphys.2016.00481] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/07/2016] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it.
Collapse
Affiliation(s)
- Adriano Senatore
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Hamad Raiss
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Phuong Le
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| |
Collapse
|
18
|
Bragina EE, Arifulin EA, Senchenkov EP. Genetically determined and functional human sperm motility decrease. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416050027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Shingyoji C, Nakano I, Inoue Y, Higuchi H. Dynein arms are strain-dependent direction-switching force generators. Cytoskeleton (Hoboken) 2015; 72:388-401. [DOI: 10.1002/cm.21232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Chikako Shingyoji
- Department of Biological Sciences; The University of Tokyo; Hongo Tokyo Japan
| | - Izumi Nakano
- Department of Biological Sciences; The University of Tokyo; Hongo Tokyo Japan
| | - Yuichi Inoue
- Department of Biological Sciences; The University of Tokyo; Hongo Tokyo Japan
| | - Hideo Higuchi
- Department of Physics, Graduate School of Science; The University of Tokyo; Hongo Tokyo Japan
| |
Collapse
|
20
|
Bayly PV, Wilson KS. Equations of interdoublet separation during flagella motion reveal mechanisms of wave propagation and instability. Biophys J 2015; 107:1756-72. [PMID: 25296329 DOI: 10.1016/j.bpj.2014.07.064] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/13/2014] [Accepted: 07/22/2014] [Indexed: 12/17/2022] Open
Abstract
The motion of flagella and cilia arises from the coordinated activity of dynein motor protein molecules arrayed along microtubule doublets that span the length of axoneme (the flagellar cytoskeleton). Dynein activity causes relative sliding between the doublets, which generates propulsive bending of the flagellum. The mechanism of dynein coordination remains incompletely understood, although it has been the focus of many studies, both theoretical and experimental. In one leading hypothesis, known as the geometric clutch (GC) model, local dynein activity is thought to be controlled by interdoublet separation. The GC model has been implemented as a numerical simulation in which the behavior of a discrete set of rigid links in viscous fluid, driven by active elements, was approximated using a simplified time-marching scheme. A continuum mechanical model and associated partial differential equations of the GC model have remained lacking. Such equations would provide insight into the underlying biophysics, enable mathematical analysis of the behavior, and facilitate rigorous comparison to other models. In this article, the equations of motion for the flagellum and its doublets are derived from mechanical equilibrium principles and simple constitutive models. These equations are analyzed to reveal mechanisms of wave propagation and instability in the GC model. With parameter values in the range expected for Chlamydomonas flagella, solutions to the fully nonlinear equations closely resemble observed waveforms. These results support the ability of the GC hypothesis to explain dynein coordination in flagella and provide a mathematical foundation for comparison to other leading models.
Collapse
|
21
|
Inaba K. Calcium sensors of ciliary outer arm dynein: functions and phylogenetic considerations for eukaryotic evolution. Cilia 2015; 4:6. [PMID: 25932323 PMCID: PMC4415241 DOI: 10.1186/s13630-015-0015-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/23/2015] [Indexed: 12/31/2022] Open
Abstract
The motility of eukaryotic cilia and flagella is modulated in response to several extracellular stimuli. Ca(2+) is the most critical intracellular factor for these changes in motility, directly acting on the axonemes and altering flagellar asymmetry. Calaxin is an opisthokont-specific neuronal calcium sensor protein first described in the sperm of the ascidian Ciona intestinalis. It binds to a heavy chain of two-headed outer arm dynein in a Ca(2+)-dependent manner and regulates 'asymmetric' wave propagation at high concentrations of Ca(2+). A Ca(2+)-binding subunit of outer arm dynein in Chlamydomonas reinhardtii, the light chain 4 (LC4), which is a Ca(2+)-sensor phylogenetically different from calaxin, shows Ca(2+)-dependent binding to a heavy chain of three-headed outer arm dynein. However, LC4 appears to participate in 'symmetric' wave propagation at high concentrations of Ca(2+). LC4-type dynein light chain is present in bikonts, except for some subclasses of the Excavata. Thus, flagellar asymmetry-symmetry conversion in response to Ca(2+) concentration represents a 'mirror image' relationship between Ciona and Chlamydomonas. Phylogenetic analyses indicate the duplication, divergence, and loss of heavy chain and Ca(2+)-sensors of outer arm dynein among excavate species. These features imply a divergence point with respect to Ca(2+)-dependent regulation of outer arm dynein in cilia and flagella during the evolution of eukaryotic supergroups.
Collapse
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025 Japan
| |
Collapse
|
22
|
Coutton C, Escoffier J, Martinez G, Arnoult C, Ray PF. Teratozoospermia: spotlight on the main genetic actors in the human. Hum Reprod Update 2015; 21:455-85. [PMID: 25888788 DOI: 10.1093/humupd/dmv020] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Male infertility affects >20 million men worldwide and represents a major health concern. Although multifactorial, male infertility has a strong genetic basis which has so far not been extensively studied. Recent studies of consanguineous families and of small cohorts of phenotypically homogeneous patients have however allowed the identification of a number of autosomal recessive causes of teratozoospermia. Homozygous mutations of aurora kinase C (AURKC) were first described to be responsible for most cases of macrozoospermia. Other genes defects have later been identified in spermatogenesis associated 16 (SPATA16) and dpy-19-like 2 (DPY19L2) in patients with globozoospermia and more recently in dynein, axonemal, heavy chain 1 (DNAH1) in a heterogeneous group of patients presenting with flagellar abnormalities previously described as dysplasia of the fibrous sheath or short/stump tail syndromes, which we propose to call multiple morphological abnormalities of the flagella (MMAF). METHODS A comprehensive review of the scientific literature available in PubMed/Medline was conducted for studies on human genetics, experimental models and physiopathology related to teratozoospermia in particular globozoospermia, large headed spermatozoa and flagellar abnormalities. The search included all articles with an English abstract available online before September 2014. RESULTS Molecular studies of numerous unrelated patients with globozoospermia and large-headed spermatozoa confirmed that mutations in DPY19L2 and AURKC are mainly responsible for their respective pathological phenotype. In globozoospermia, the deletion of the totality of the DPY19L2 gene represents ∼ 81% of the pathological alleles but point mutations affecting the protein function have also been described. In macrozoospermia only two recurrent mutations were identified in AURKC, accounting for almost all the pathological alleles, raising the possibility of a putative positive selection of heterozygous individuals. The recent identification of DNAH1 mutations in a proportion of patients with MMAF is promising but emphasizes that this phenotype is genetically heterogeneous. Moreover, the identification of mutations in a dynein strengthens the emerging point of view that MMAF may be a phenotypic variation of the classical forms of primary ciliary dyskinesia. Based on data from human and animal models, the MMAF phenotype seems to be favored by defects directly or indirectly affecting the central pair of axonemal microtubules of the sperm flagella. CONCLUSIONS The studies described here provide valuable information regarding the genetic and molecular defects causing infertility, to improve our understanding of the physiopathology of teratozoospermia while giving a detailed characterization of specific features of spermatogenesis. Furthermore, these findings have a significant influence on the diagnostic strategy for teratozoospermic patients allowing the clinician to provide the patient with informed genetic counseling, to adopt the best course of treatment and to develop personalized medicine directly targeting the defective gene products.
Collapse
Affiliation(s)
- Charles Coutton
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France CHU de Grenoble, UF de Génétique Chromosomique, Grenoble, F-38000, France
| | - Jessica Escoffier
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France Departments of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Guillaume Martinez
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France CHU de Grenoble, UF de Biochimie et Génétique Moléculaire, Grenoble, F-38000, France
| |
Collapse
|
23
|
Abstract
Motile cilia and flagella rapidly propagate bending waves and produce water flow over the cell surface. Their function is important for the physiology and development of various organisms including humans. The movement is based on the sliding between outer doublet microtubules driven by axonemal dyneins, and is regulated by various axonemal components and environmental factors. For studies aiming to elucidate the mechanism of cilia/flagella movement and regulation, Chlamydomonas is an invaluable model organism that offers a variety of mutants. This chapter introduces standard methods for studying Chlamydomonas flagellar motility including analysis of swimming paths, measurements of swimming speed and beat frequency, motility reactivation in demembranated cells (cell models), and observation of microtubule sliding in disintegrating axonemes. Most methods may be easily applied to other organisms with slight modifications of the medium conditions.
Collapse
Affiliation(s)
| | - Ritsu Kamiya
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
24
|
Nakazawa Y, Ariyoshi T, Noga A, Kamiya R, Hirono M. Space-dependent formation of central pair microtubules and their interactions with radial spokes. PLoS One 2014; 9:e110513. [PMID: 25333940 PMCID: PMC4204893 DOI: 10.1371/journal.pone.0110513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 09/20/2014] [Indexed: 02/01/2023] Open
Abstract
Cilia and flagella contain nine outer doublet microtubules and a pair of central microtubules. The central pair of microtubules (CP) is important for cilia/flagella beating, as clearly shown by primary ciliary dyskinesia resulting from the loss of the CP. The CP is thought to regulate axonemal dyneins through interaction with radial spokes (RSs). However, the nature of the CP-RS interaction is poorly understood. Here we examine the appearance of CPs in the axonemes of a Chlamydomonas mutant, bld12, which produces axonemes with 8 to 11 outer-doublets. Most of its 8-doublet axonemes lack CPs. However, in the double mutant of bld12 and pf14, a mutant lacking the RS, most 8-doublet axonemes contain the CP. Thus formation of the CP apparently depends on the internal space limited by the outer doublets and RSs. In 10- or 11-doublet axonemes, only 3–5 RSs are attached to the CP and the doublet arrangement is distorted most likely because the RSs attached to the CP pull the outer doublets toward the axonemal center. The CP orientation in the axonemes varies in double mutants formed between bld12 and mutants lacking particular CP projections. The mutant bld12 thus provides the first direct and visual information about the CP-RS interaction, as well as about the mechanism of CP formation.
Collapse
Affiliation(s)
- Yuki Nakazawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tetsuro Ariyoshi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akira Noga
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ritsu Kamiya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Masafumi Hirono
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
25
|
Varner DD, Gibb Z, Aitken RJ. Stallion fertility: a focus on the spermatozoon. Equine Vet J 2014; 47:16-24. [PMID: 24943233 DOI: 10.1111/evj.12308] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/03/2014] [Indexed: 11/30/2022]
Abstract
Stallion fertility is a vast subject, with a wide array of permutations that can impact reproductive performance in either positive or negative ways. This review is intended to address a mere segment of the male fertility issue, but the very essence of the male contribution to fertilisation, that of the spermatozoon. Spermatozoal ultrastructure and form-to-function are detailed and spermatozoal metabolism is discussed, with specific reference to distinctive characteristics of stallion spermatozoa. Lastly, methods for assessment of spermatozoal function are considered, with emphasis on spermatozoal motility, the acrosome reaction and spermatozoon-oocyte interactions. Closing comments address the need for development and standardisation of molecular-based assays for use with spermatozoa of stallions whose subfertility cannot be explained with conventional tests.
Collapse
Affiliation(s)
- D D Varner
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, USA
| | | | | |
Collapse
|
26
|
Oda T, Yanagisawa H, Yagi T, Kikkawa M. Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity. ACTA ACUST UNITED AC 2014; 204:807-19. [PMID: 24590175 PMCID: PMC3941055 DOI: 10.1083/jcb.201312014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nonspecific intermolecular collision between the central pair apparatus and radial spokes underlies a mechanosensing mechanism that regulates dynein activity in Chlamydomonas flagella. Cilia/flagella are conserved organelles that generate fluid flow in eukaryotes. The bending motion of flagella requires concerted activity of dynein motors. Although it has been reported that the central pair apparatus (CP) and radial spokes (RSs) are important for flagellar motility, the molecular mechanism underlying CP- and RS-mediated dynein regulation has not been identified. In this paper, we identified nonspecific intermolecular collision between CP and RS as one of the regulatory mechanisms for flagellar motility. By combining cryoelectron tomography and motility analyses of Chlamydomonasreinhardtii flagella, we show that binding of streptavidin to RS heads paralyzed flagella. Moreover, the motility defect in a CP projection mutant could be rescued by the addition of exogenous protein tags on RS heads. Genetic experiments demonstrated that outer dynein arms are the major downstream effectors of CP- and RS-mediated regulation of flagellar motility. These results suggest that mechanosignaling between CP and RS regulates dynein activity in eukaryotic flagella.
Collapse
Affiliation(s)
- Toshiyuki Oda
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
27
|
Mencarelli C, Mercati D, Dallai R, Lupetti P. Ultrastructure of the sperm axoneme and molecular analysis of axonemal dynein in Ephemeroptera (Insecta). Cytoskeleton (Hoboken) 2014; 71:328-39. [PMID: 24668829 DOI: 10.1002/cm.21175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/13/2014] [Accepted: 03/20/2014] [Indexed: 12/20/2022]
Abstract
The Ephemeroptera sperm axoneme is devoid of outer dynein arms (ODA) and exhibits a pronounced modification of the central pair complex (CPC), which is substituted by the central sheath (CS): a tubular element of unknown molecular composition. We performed a detailed ultrastructural analysis of sperm axonemes in the genera Cloeon and Ecdyonurus using quick-freeze, deep-etch electron microscopy, showing that the loss of the conventional CPC is not only concomitant with the loss of ODA, but also with a substantial modification in the longitudinal distribution of both radial spokes (RS) and inner dynein arms (IDA). Such structures are no longer distributed following the alternation of different repeats as in the 9 + 2 axoneme, but instead share a 32 nm longitudinal repeat: a multiple of the 8 nm repeat observed along the CS wall. Differently from the conventional CPC, the CS and the surrounding RS possess a ninefold symmetry, coherently with the three-dimensional pattern of motility observed in Cloeon free spermatozoa. Biochemical analyses revealed that ultrastructural modifications are concomitant with a reduced complexity of the IDA heavy chain complement. We propose that these structural and molecular modifications might be related to the relief from the evolutionary constraints imposed by the CPC on the basal 9 + 9 + 2 axoneme and could also represent the minimal set compatible with flagellar beating and progressive motility mechanically regulated as suggested by the geometric clutch hypothesis. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caterina Mencarelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena, Italy
| | | | | | | |
Collapse
|
28
|
Werner-Peterson R, Sloboda RD. Methylation of Structural Components of the Axoneme Occurs During Flagellar Disassembly. Biochemistry 2013; 52:8501-9. [DOI: 10.1021/bi4011623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rita Werner-Peterson
- Department
of Biological
Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Roger D. Sloboda
- Department
of Biological
Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
29
|
Oda T, Yagi T, Yanagisawa H, Kikkawa M. Identification of the Outer-Inner Dynein Linker as a Hub Controller for Axonemal Dynein Activities. Curr Biol 2013; 23:656-64. [DOI: 10.1016/j.cub.2013.03.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
|
30
|
Carbajal-González BI, Heuser T, Fu X, Lin J, Smith BW, Mitchell DR, Nicastro D. Conserved structural motifs in the central pair complex of eukaryotic flagella. Cytoskeleton (Hoboken) 2013; 70:101-120. [PMID: 23281266 PMCID: PMC3914236 DOI: 10.1002/cm.21094] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/19/2012] [Accepted: 11/21/2012] [Indexed: 11/11/2022]
Abstract
Cilia and flagella are conserved hair-like appendages of eukaryotic cells that function as sensing and motility generating organelles. Motility is driven by thousands of axonemal dyneins that require precise regulation. One essential motility regulator is the central pair complex (CPC) and many CPC defects cause paralysis of cilia/flagella. Several human diseases, such as immotile cilia syndrome, show CPC abnormalities, but little is known about the detailed three-dimensional (3D) structure and function of the CPC. The CPC is located in the center of typical [9+2] cilia/flagella and is composed of two singlet microtubules (MTs), each with a set of associated projections that extend toward the surrounding nine doublet MTs. Using cryo-electron tomography coupled with subtomogram averaging, we visualized and compared the 3D structures of the CPC in both the green alga Chlamydomonas and the sea urchin Strongylocentrotus at the highest resolution published to date. Despite the evolutionary distance between these species, their CPCs exhibit remarkable structural conservation. We identified several new projections, including those that form the elusive sheath, and show that the bridge has a more complex architecture than previously thought. Organism-specific differences include the presence of MT inner proteins in Chlamydomonas, but not Strongylocentrotus, and different overall outlines of the highly connected projection network, which forms a round-shaped cylinder in algae, but is more oval in sea urchin. These differences could be adaptations to the mechanical requirements of the rotating CPC in Chlamydomonas, compared to the Strongylocentrotus CPC which has a fixed orientation.
Collapse
Affiliation(s)
| | - Thomas Heuser
- Biology Department, Rosenstiel Center, MS029, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Xiaofeng Fu
- Biology Department, Rosenstiel Center, MS029, Brandeis University, 415 South Street, Waltham, MA 02454, USA
- Howard Hughes Medical Institute, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Jianfeng Lin
- Biology Department, Rosenstiel Center, MS029, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Brandon W. Smith
- Department of Cell and Developmental Biology, Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - David R. Mitchell
- Department of Cell and Developmental Biology, Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Daniela Nicastro
- Biology Department, Rosenstiel Center, MS029, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
31
|
Affiliation(s)
- Regina M Turner
- Department of Clinical Studies, Center for Animal Transgenesis, Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, Kennett Square, USA
| |
Collapse
|
32
|
DiPetrillo CG, Smith EF. Methods for analysis of calcium/calmodulin signaling in cilia and flagella. Methods Enzymol 2013; 524:37-57. [PMID: 23498733 DOI: 10.1016/b978-0-12-397945-2.00003-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The axonemal microtubules of cilia/flagella act as a scaffold for assembly of the protein complexes that ultimately regulate dynein activity to control the size and shape of ciliary bends. Despite our general understanding of the contribution of microtubule sliding to ciliary and flagellar motility, many questions regarding the regulation of dynein remain unanswered. For example, we know that the second messenger calcium plays an important role in modulating dynein activity in response to extracellular cues, but it remains unclear how calcium-binding proteins anchored to the axoneme contribute to this regulation. Recent work has focused on determining the identity and specific functions of these axonemal calcium-binding proteins. Here, we review our current knowledge of calcium-mediated motility and highlight key experiments that have substantially aided our understanding of calcium signaling within the axoneme.
Collapse
Affiliation(s)
- Christen G DiPetrillo
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
33
|
Muto K, Kubota HY. Ultrastructure and motility of the spermatozoa ofPolypedates leucomystax(Amphibia, Anura, Rhacophoridae). Cytoskeleton (Hoboken) 2012; 70:121-33. [DOI: 10.1002/cm.21092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 10/22/2012] [Accepted: 10/25/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Kohei Muto
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
34
|
Lin J, Heuser T, Song K, Fu X, Nicastro D. One of the nine doublet microtubules of eukaryotic flagella exhibits unique and partially conserved structures. PLoS One 2012; 7:e46494. [PMID: 23071579 PMCID: PMC3468612 DOI: 10.1371/journal.pone.0046494] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/05/2012] [Indexed: 12/26/2022] Open
Abstract
The axonemal core of motile cilia and flagella consists of nine doublet microtubules surrounding two central single microtubules. Attached to the doublets are thousands of dynein motors that produce sliding between neighboring doublets, which in turn causes flagellar bending. Although many structural features of the axoneme have been described, structures that are unique to specific doublets remain largely uncharacterized. These doublet-specific structures introduce asymmetry into the axoneme and are likely important for the spatial control of local microtubule sliding. Here, we used cryo-electron tomography and doublet-specific averaging to determine the 3D structures of individual doublets in the flagella of two evolutionarily distant organisms, the protist Chlamydomonas and the sea urchin Strongylocentrotus. We demonstrate that, in both organisms, one of the nine doublets exhibits unique structural features. Some of these features are highly conserved, such as the inter-doublet link i-SUB5-6, which connects this doublet to its neighbor with a periodicity of 96 nm. We also show that the previously described inter-doublet links attached to this doublet, the o-SUB5-6 in Strongylocentrotus and the proximal 1–2 bridge in Chlamydomonas, are likely not homologous features. The presence of inter-doublet links and reduction of dynein arms indicate that inter-doublet sliding of this unique doublet against its neighbor is limited, providing a rigid plane perpendicular to the flagellar bending plane. These doublet-specific features and the non-sliding nature of these connected doublets suggest a structural basis for the asymmetric distribution of dynein activity and inter-doublet sliding, resulting in quasi-planar waveforms typical of 9+2 cilia and flagella.
Collapse
Affiliation(s)
- Jianfeng Lin
- Biology Department, Rosenstiel Center, Brandeis University, Waltham, Massachusetts, United States of America
| | | | | | | | | |
Collapse
|
35
|
Anomalies in the motion dynamics of long-flagella mutants of Chlamydomonas reinhardtii. J Biol Phys 2012; 39:1-14. [PMID: 23860831 DOI: 10.1007/s10867-012-9282-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/06/2012] [Indexed: 10/27/2022] Open
Abstract
Chlamydomonas reinhardtii has long been used as a model organism in studies of cell motility and flagellar dynamics. The motility of the well-conserved '9+2' axoneme in its flagella remains a subject of immense curiosity. Using high-speed videography and morphological analyses, we have characterized long-flagella mutants (lf1, lf2-1, lf2-5, lf3-2, and lf4) of C. reinhardtii for biophysical parameters such as swimming velocities, waveforms, beat frequencies, and swimming trajectories. These mutants are aberrant in proteins involved in the regulation of flagellar length and bring about a phenotypic increase in this length. Our results reveal that the flagellar beat frequency and swimming velocity are negatively correlated with the length of the flagella. When compared to the wild-type, any increase in the flagellar length reduces both the swimming velocities (by 26-57%) and beat frequencies (by 8-16%). We demonstrate that with no apparent aberrations/ultrastructural deformities in the mutant axonemes, it is this increased length that has a critical role to play in the motion dynamics of C. reinhardtii cells, and, provided there are no significant changes in their flagellar proteome, any increase in this length compromises the swimming velocity either by reduction of the beat frequency or by an alteration in the waveform of the flagella.
Collapse
|
36
|
Cryoelectron tomography reveals doublet-specific structures and unique interactions in the I1 dynein. Proc Natl Acad Sci U S A 2012; 109:E2067-76. [PMID: 22733763 DOI: 10.1073/pnas.1120690109] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cilia and flagella are highly conserved motile and sensory organelles in eukaryotes, and defects in ciliary assembly and motility cause many ciliopathies. The two-headed I1 inner arm dynein is a critical regulator of ciliary and flagellar beating. To understand I1 architecture and function better, we analyzed the 3D structure and composition of the I1 dynein in Chlamydomonas axonemes by cryoelectron tomography and subtomogram averaging. Our data revealed several connections from the I1 dynein to neighboring structures that are likely to be important for assembly and/or regulation, including a tether linking one I1 motor domain to the doublet microtubule and doublet-specific differences potentially contributing to the asymmetrical distribution of dynein activity required for ciliary beating. We also imaged three I1 mutants and analyzed their polypeptide composition using 2D gel-based proteomics. Structural and biochemical comparisons revealed the likely location of the regulatory IC138 phosphoprotein and its associated subcomplex. Overall, our studies demonstrate that I1 dynein is connected to multiple structures within the axoneme, and therefore ideally positioned to integrate signals that regulate ciliary motility.
Collapse
|
37
|
Goduti DJ, Smith EF. Analyses of functional domains within the PF6 protein of the central apparatus reveal a role for PF6 sub-complex members in regulating flagellar beat frequency. Cytoskeleton (Hoboken) 2012; 69:179-94. [PMID: 22278927 DOI: 10.1002/cm.21010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 01/17/2023]
Abstract
Numerous studies have indicated that each of the seven projections associated with the central pair of microtubules plays a distinct role in regulating eukaryotic ciliary/flagellar motility. Mutants which lack specific projections have distinct motility phenotypes. For example, Chlamydomonas pf6 mutants lack the C1a projection and have twitchy, non-beating flagella. The C1a projection is a complex of proteins including PF6, C1a-86, C1a-34, C1a-32, C1a-18, and calmodulin. To define functional domains within PF6 and to potentially assign functions to specific C1a components, we generated deletion constructs of the PF6 gene and tested for their ability to assemble and rescue motility upon transformation of mutant pf6 cells. Our results demonstrate that domains near the carboxyl-terminus of PF6 are essential for motility and/or assembly of the projection. The amino terminal half of PF6 is not required for C1a assembly; however, this region is important for stability of the C1a-34, C1a-32, and C1a-18 sub-complex and wild-type beat frequency. Analysis of double mutants lacking the amino terminus of PF6 and outer dynein arms reveal that C1a may play a role in modulating both inner and outer dynein arm activity.
Collapse
Affiliation(s)
- Daniel J Goduti
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
38
|
Konno A, Setou M, Ikegami K. Ciliary and flagellar structure and function--their regulations by posttranslational modifications of axonemal tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:133-70. [PMID: 22364873 DOI: 10.1016/b978-0-12-394305-7.00003-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Eukaryotic cilia and flagella are evolutionarily conserved microtubule-based organelles protruding from the cell surface. They perform dynein-driven beating which contributes to cell locomotion or flow generation. They also play important roles in sensing as cellular antennae, which allows cells to respond to various external stimuli. The main components of cilia and flagella, α- and β-tubulins, are known to undergo various posttranslational modifications (PTMs), including phosphorylation, palmitoylation, tyrosination/detyrosination, Δ2 modification, acetylation, glutamylation, and glycylation. Recent identification of tubulin-modifying enzymes, especially tubulin tyrosine ligase-like proteins which perform tubulin glutamylation and glycylation, has demonstrated the importance of tubulin modifications for the assembly and functions of cilia and flagella. In this chapter, we review recent work on PTMs of ciliary and flagellar tubulins in conjunction with discussing the basic knowledge.
Collapse
Affiliation(s)
- Alu Konno
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | |
Collapse
|
39
|
DiPetrillo CG, Smith EF. The Pcdp1 complex coordinates the activity of dynein isoforms to produce wild-type ciliary motility. Mol Biol Cell 2011; 22:4527-38. [PMID: 21998195 PMCID: PMC3226472 DOI: 10.1091/mbc.e11-08-0739] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Generating the complex waveforms characteristic of beating cilia requires the coordinated activity of multiple dynein isoforms anchored to the axoneme. We previously identified a complex associated with the C1d projection of the central apparatus that includes primary ciliary dyskinesia protein 1 (Pcdp1). Reduced expression of complex members results in severe motility defects, indicating that C1d is essential for wild-type ciliary beating. To define a mechanism for Pcdp1/C1d regulation of motility, we took a functional and structural approach combined with mutants lacking C1d and distinct subsets of dynein arms. Unlike mutants completely lacking the central apparatus, dynein-driven microtubule sliding velocities are wild type in C1d- defective mutants. However, coordination of dynein activity among microtubule doublets is severely disrupted. Remarkably, mutations in either outer or inner dynein arm restore motility to mutants lacking C1d, although waveforms and beat frequency differ depending on which isoform is mutated. These results define a unique role for C1d in coordinating the activity of specific dynein isoforms to control ciliary motility.
Collapse
|
40
|
Dymek EE, Heuser T, Nicastro D, Smith EF. The CSC is required for complete radial spoke assembly and wild-type ciliary motility. Mol Biol Cell 2011; 22:2520-31. [PMID: 21613541 PMCID: PMC3135477 DOI: 10.1091/mbc.e11-03-0271] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Structural and functional analyses of artificial micro RNA (amiRNA) mutants reveal that the CSC plays a role not only in generating wild-type motility, but also in assembly of at least a subset of radial spokes. This study also produced the unexpected finding that, contrary to current belief, the radial spokes may not be homogeneous. The ubiquitous calcium binding protein, calmodulin (CaM), plays a major role in regulating the motility of all eukaryotic cilia and flagella. We previously identified a CaM and Spoke associated Complex (CSC) and provided evidence that this complex mediates regulatory signals between the radial spokes and dynein arms. We have now used an artificial microRNA (amiRNA) approach to reduce expression of two CSC subunits in Chlamydomonas. For all amiRNA mutants, the entire CSC is lacking or severely reduced in flagella. Structural studies of mutant axonemes revealed that assembly of radial spoke 2 is defective. Furthermore, analysis of both flagellar beating and microtubule sliding in vitro demonstrates that the CSC plays a critical role in modulating dynein activity. Our results not only indicate that the CSC is required for spoke assembly and wild-type motility, but also provide evidence for heterogeneity among the radial spokes.
Collapse
Affiliation(s)
- Erin E Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
41
|
Inaba K. Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol Hum Reprod 2011; 17:524-38. [PMID: 21586547 DOI: 10.1093/molehr/gar034] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sperm motility is necessary for the transport of male DNA to eggs in species with both external and internal fertilization. Flagella comprise several proteins for generating and regulating motility. Central cytoskeletal structures called axonemes have been well conserved through evolution. In mammalian sperm flagella, two accessory structures (outer dense fiber and the fibrous sheath) surround the axoneme. The axonemal bend movement is based on the active sliding of axonemal doublet microtubules by the molecular motor dynein, which is divided into outer and inner arm dyneins according to positioning on the doublet microtubule. Outer and inner arm dyneins play different roles in the production and regulation of flagellar motility. Several regulatory mechanisms are known for both dyneins, which are important in motility activation and chemotaxis at fertilization. Although dynein itself has certain properties that contribute to the formation and propagation of flagellar bending, other axonemal structures-specifically, the radial spoke/central pair apparatus-have essential roles in the regulation of flagellar bending. Recent genetic and proteomic studies have explored several new components of axonemes and shed light on the generation and regulation of sperm motility during fertilization.
Collapse
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan.
| |
Collapse
|
42
|
Kohno T, Wakabayashi KI, Diener DR, Rosenbaum JL, Kamiya R. Subunit interactions within the Chlamydomonas flagellar spokehead. Cytoskeleton (Hoboken) 2011; 68:237-46. [PMID: 21391306 PMCID: PMC3098140 DOI: 10.1002/cm.20507] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 02/08/2011] [Indexed: 11/10/2022]
Abstract
The radial spoke (RS)/central pair (CP) system in cilia and flagella plays an essential role in the regulation of force generation by dynein, the motor protein that drives cilia/flagella movements. Mechanical and mechanochemicl interactions between the CP and the distal part of the RS, the spokehead, should be crucial for this control; however, the details of interaction are totally unknown. As an initial step toward an understanding of the RS-CP interaction, we examined the protein-protein interactions between the five spokehead proteins (radial spoke protein (RSP)1, RSP4, RSP6, RSP9, and RSP10) and three spoke stalk proteins (RSP2, RSP5, and RSP23), all expressed as recombinant proteins. Three of them were shown to have physiological activities by electroporation-mediated protein delivery into mutants deficient in the respective proteins. Glutathione S-transferase pulldown assays in vitro detected interactions in 10 out of 64 pairs of recombinants. In addition, chemical crosslinking of axonemes using five reagents detected seven kinds of interactions between the RS subunits in situ. Finally, in the mixture of the recombinant spokehead subunits, RSP1, RSP4, RSP6, and RSP9 formed a 7-10S complex as detected by sucrose density gradient centrifugation. It may represent a partial assembly of the spokehead. From these results, we propose a model of interactions taking place between the spokehead subunits.
Collapse
Affiliation(s)
- Takahiro Kohno
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Ken-ichi Wakabayashi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Dennis R. Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Joel L. Rosenbaum
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Ritsu Kamiya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
43
|
Lindemann CB, Lesich KA. Flagellar and ciliary beating: the proven and the possible. J Cell Sci 2010; 123:519-28. [PMID: 20145000 DOI: 10.1242/jcs.051326] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The working mechanism of the eukaryotic flagellar axoneme remains one of nature's most enduring puzzles. The basic mechanical operation of the axoneme is now a story that is fairly complete; however, the mechanism for coordinating the action of the dynein motor proteins to produce beating is still controversial. Although a full grasp of the dynein switching mechanism remains elusive, recent experimental reports provide new insights that might finally disclose the secrets of the beating mechanism: the special role of the inner dynein arms, especially dynein I1 and the dynein regulatory complex, the importance of the dynein microtubule-binding affinity at the stalk, and the role of bending in the selection of the active dynein group have all been implicated by major new evidence. This Commentary considers this new evidence in the context of various hypotheses of how axonemal dynein coordination might work.
Collapse
Affiliation(s)
- Charles B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
| | | |
Collapse
|
44
|
DiPetrillo CG, Smith EF. Pcdp1 is a central apparatus protein that binds Ca(2+)-calmodulin and regulates ciliary motility. ACTA ACUST UNITED AC 2010; 189:601-12. [PMID: 20421426 PMCID: PMC2867295 DOI: 10.1083/jcb.200912009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A complex that localizes to the C1d central pair projection of cilia controls flagellar waveform and beat frequency in response to calcium. For all motile eukaryotic cilia and flagella, beating is regulated by changes in intraciliary calcium concentration. Although the mechanism for calcium regulation is not understood, numerous studies have shown that calmodulin (CaM) is a key axonemal calcium sensor. Using anti-CaM antibodies and Chlamydomonas reinhardtii axonemal extracts, we precipitated a complex that includes four polypeptides and that specifically interacts with CaM in high [Ca2+]. One of the complex members, FAP221, is an orthologue of mammalian Pcdp1 (primary ciliary dyskinesia protein 1). Both FAP221 and mammalian Pcdp1 specifically bind CaM in high [Ca2+]. Reduced expression of Pcdp1 complex members in C. reinhardtii results in failure of the C1d central pair projection to assemble and significant impairment of motility including uncoordinated bends, severely reduced beat frequency, and altered waveforms. These combined results reveal that the central pair Pcdp1 (FAP221) complex is essential for control of ciliary motility.
Collapse
|
45
|
King SM. Sensing the mechanical state of the axoneme and integration of Ca2+ signaling by outer arm dynein. Cytoskeleton (Hoboken) 2010; 67:207-13. [PMID: 20186692 PMCID: PMC2859441 DOI: 10.1002/cm.20445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 02/18/2010] [Indexed: 01/05/2023]
Abstract
Axonemal dyneins have been demonstrated to monitor the mechanical state of the axoneme and must also alter activity in response to various signaling pathways. The central pair/radial spoke systems are clearly involved in controlling inner dynein arm function; however, the mechanisms by which the outer dynein arm transduces regulatory signals appear quite distinct at the molecular level. In Chlamydomonas, these regulatory components include thioredoxins involved in response to redox changes, molecules that tether the gamma heavy-chain motor unit to the A-tubule of the outer doublet and a Ca(2+)-binding protein that controls the structure of the gamma heavy-chain N-terminal domain. Together, these studies now suggest that the gamma heavy chain acts as a key regulatory node for controlling outer arm function in response to alterations in curvature and ligand binding. Furthermore, they allow us to propose a testable molecular mechanism by which altered Ca(2+) levels might lead to a change in ciliary waveform by controlling whether one heavy chain of outer arm dynein acts as a microtubule translocase or as an ATP-dependent brake that limits the amount of interdoublet sliding.
Collapse
Affiliation(s)
- Stephen M King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3305, USA.
| |
Collapse
|
46
|
Abstract
Tubulin and other flagellar and ciliary proteins are the substrates for a host of posttranslational modifications (PTMs), many of which have been highly conserved over evolutionary time. In addition to the binding of MAPs (microtubule-associated proteins) that provide a specific functionality, or the use of different tubulin isotypes to convey a specific function, most cells rely on an array of PTMs. These include phosphorylation, acetylation, glycylation, glutamylation, and methylation. The first and the last of this list are not unique to the tubulin in cilia and flagella, while the others are. This chapter will review briefly these varying modifications and will conclude with detailed methods for their detection and localization at the limit of resolution provided by electron microscopy.
Collapse
Affiliation(s)
- Roger D Sloboda
- Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
47
|
Abstract
Eukaryotic flagella and cilia have a remarkably uniform internal 'engine' known as the '9+2' axoneme. With few exceptions, the function of cilia and flagella is to beat rhythmically and set up relative motion between themselves and the liquid that surrounds them. The molecular basis of axonemal movement is understood in considerable detail, with the exception of the mechanism that provides its rhythmical or oscillatory quality. Some kind of repetitive 'switching' event is assumed to occur; there are several proposals regarding the nature of the 'switch' and how it might operate. Herein I first summarise all the factors known to influence the rate of the oscillation (the beating frequency). Many of these factors exert their effect through modulating the mean sliding velocity between the nine doublet microtubules of the axoneme, this velocity being the determinant of bend growth rate and bend propagation rate. Then I explain six proposed mechanisms for flagellar oscillation and review the evidence on which they are based. Finally, I attempt to derive an economical synthesis, drawing for preference on experimental research that has been minimally disruptive of the intricate structure of the axoneme. The 'provisional synthesis' is that flagellar oscillation emerges from an effect of passive sliding direction on the dynein arms. Sliding in one direction facilitates force-generating cycles and dynein-to-dynein synchronisation along a doublet; sliding in the other direction is inhibitory. The direction of the initial passive sliding normally oscillates because it is controlled hydrodynamically through the alternating direction of the propulsive thrust. However, in the absence of such regulation, there can be a perpetual, mechanical self-triggering through a reversal of sliding direction due to the recoil of elastic structures that deform as a response to the prior active sliding. This provisional synthesis may be a useful basis for further examination of the problem.
Collapse
Affiliation(s)
- David M Woolley
- Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, U.K.
| |
Collapse
|
48
|
Mitchell DR, Smith B. Analysis of the central pair microtubule complex in Chlamydomonas reinhardtii. Methods Cell Biol 2009; 92:197-213. [PMID: 20409807 DOI: 10.1016/s0091-679x(08)92013-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The central pair microtubule complex in Chlamydomonas flagella has been well characterized as a regulator of flagellar dynein activity, but many aspects of this regulation depend on specific interactions between the asymmetric central pair structure and radial spokes, which appear symmetrically arranged along all nine outer doublet microtubules. Relationships between central pair-radial spoke interactions and dynein regulation have been difficult to understand because the Chlamydomonas central pair is twisted in vivo and rotates during bend propagation. Here we describe genetic and biochemical methods of dissecting the Chlamydomonas central pair and electron microscopic methods useful to determine structure-function relationships in this complex.
Collapse
Affiliation(s)
- David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | | |
Collapse
|
49
|
Abstract
Axonemal dynein in flagella and cilia is a motor molecule that produces microtubule sliding, powered by the energy of ATP hydrolysis. Our goal is to understand how dynein motile activity is controlled to produce the characteristic oscillatory movement of flagella. ATP, the energy source for dynein, is also important as a regulator of dynein activity. Among the four nucleotide-binding sites of a dynein heavy chain, one is the primary ATP hydrolyzing site while the others are noncatalytic sites and thought to perform regulatory functions. Stable binding of both ATP and ADP to these regulatory sites is probably essential for the chemomechanical energy transduction in dynein. Although the ATP concentration in beating flagella is physiologically high and constant, at any moment in the oscillatory cycle some dynein molecules are active while others are not, and the motile activity of dynein oscillates temporally and spatially in the axoneme. It is likely that the basic mechanism underlying the highly dynamic control of dynein activity involves the ATP-dependent inhibition and ADP-dependent activation (or release of inhibition) of dynein. How the inhibition and activation can be induced in beating flagella is still unknown. It seems, however, that the mechanical force of bending is involved in the activation of dynein, probably through the control of noncatalytic nucleotide binding to dynein. This chapter provides an overview of several approaches, using sea urchin sperm flagella, to studying the roles of ATP and ADP in the regulation of dynein activity with or without the mechanical signal of bending.
Collapse
Affiliation(s)
- Chikako Shingyoji
- Department of Biological Sciences, University of Tokyo, Hongo, Japan
| |
Collapse
|
50
|
Bui KH, Sakakibara H, Movassagh T, Oiwa K, Ishikawa T. Asymmetry of inner dynein arms and inter-doublet links in Chlamydomonas flagella. ACTA ACUST UNITED AC 2009; 186:437-46. [PMID: 19667131 PMCID: PMC2728406 DOI: 10.1083/jcb.200903082] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the widely shared “9 + 2” structure of axonemes is thought to be highly symmetrical, axonemes show asymmetrical bending during planar and conical motion. In this study, using electron cryotomography and single particle averaging, we demonstrate an asymmetrical molecular arrangement of proteins binding to the nine microtubule doublets in Chlamydomonasreinhardtii flagella. The eight inner arm dynein heavy chains regulate and determine flagellar waveform. Among these, one heavy chain (dynein c) is missing on one microtubule doublet (this doublet also lacks the outer dynein arm), and another dynein heavy chain (dynein b or g) is missing on the adjacent doublet. Some dynein heavy chains either show an abnormal conformation or were replaced by other proteins, possibly minor dyneins. In addition to nexin, there are two additional linkages between specific pairs of doublets. Interestingly, all these exceptional arrangements take place on doublets on opposite sides of the axoneme, suggesting that the transverse functional asymmetry of the axoneme causes an in-plane bending motion.
Collapse
Affiliation(s)
- Khanh Huy Bui
- Department of Biology, ETH Zurich, CH8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|