1
|
Mei JL, Wang SF, Zhao YY, Xu T, Luo Y, Xiong LL. Identification of immune infiltration and PANoptosis-related molecular clusters and predictive model in Alzheimer's disease based on transcriptome analysis. IBRAIN 2024; 10:323-344. [PMID: 39346794 PMCID: PMC11427814 DOI: 10.1002/ibra.12179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
This study aims to explore the expression profile of PANoptosis-related genes (PRGs) and immune infiltration in Alzheimer's disease (AD). Based on the Gene Expression Omnibus database, this study investigated the differentially expressed PRGs and immune cell infiltration in AD and explored related molecular clusters. Gene set variation analysis (GSVA) was used to analyze the expression of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes in different clusters. Weighted gene co-expression network analysis was utilized to find co-expressed gene modules and core genes in the network. By analyzing the intersection genes in random forest, support vector machine, generalized linear model, and extreme gradient boosting (XGB), the XGB model was determined. Eventually, the first five genes (Signal Transducer and Activator of Transcription 3, Tumor Necrosis Factor (TNF) Receptor Superfamily Member 1B, Interleukin 4 Receptor, Chloride Intracellular Channel 1, TNF Receptor Superfamily Member 10B) in XGB model were selected as predictive genes. This research explored the relationship between PANoptosis and AD and established an XGB learning model to evaluate and screen key genes. At the same time, immune infiltration analysis showed that there were different immune infiltration expression profiles in AD.
Collapse
Affiliation(s)
- Jin-Lin Mei
- School of Anesthesiology Zunyi Medical University Zunyi China
| | - Shi-Feng Wang
- School of Anesthesiology Zunyi Medical University Zunyi China
| | - Yang-Yang Zhao
- School of Anesthesiology Zunyi Medical University Zunyi China
| | - Ting Xu
- School of Anesthesiology Zunyi Medical University Zunyi China
| | - Yong Luo
- Department of Neurology Third Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Liu-Lin Xiong
- School of Anesthesiology Zunyi Medical University Zunyi China
- Clinical and Health Sciences University of South Australia Adelaide South Australia Australia
| |
Collapse
|
2
|
Pasternack N, Doucet-O'Hare T, Johnson K, Paulsen O, Nath A. Endogenous retroviruses are dysregulated in ALS. iScience 2024; 27:110147. [PMID: 38989463 PMCID: PMC11233923 DOI: 10.1016/j.isci.2024.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a universally fatal neurodegenerative disease with no cure. Human endogenous retroviruses (HERVs) have been implicated in its pathogenesis but their relevance to ALS is not fully understood. We examined bulk RNA-seq data from almost 2,000 ALS and unaffected control samples derived from the cortex and spinal cord. Using different methods of feature selection, including differential expression analysis and machine learning, we discovered that transcription of HERV-K loci 1q22 and 8p23.1 were significantly upregulated in the spinal cord of individuals with ALS. Additionally, we identified a subset of ALS patients with upregulated HERV-K expression in the cortex and spinal cord. We also found the expression of HERV-K loci 19q11 and 8p23.1 was correlated with protein coding genes previously implicated in ALS and dysregulated in ALS patients in this study. These results clarify the association of HERV-K and ALS and highlight specific genes in the pathobiology of late-stage ALS.
Collapse
Affiliation(s)
- Nicholas Pasternack
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tara Doucet-O'Hare
- Neuro-Oncology Branch Stem Cell Team, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kory Johnson
- Bioinformatics Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
3
|
Pulli K, Saarimäki-Vire J, Ahonen P, Liu X, Ibrahim H, Chandra V, Santambrogio A, Wang Y, Vaaralahti K, Iivonen AP, Känsäkoski J, Tommiska J, Kemkem Y, Varjosalo M, Vuoristo S, Andoniadou CL, Otonkoski T, Raivio T. A splice site variant in MADD affects hormone expression in pancreatic β cells and pituitary gonadotropes. JCI Insight 2024; 9:e167598. [PMID: 38775154 PMCID: PMC11141940 DOI: 10.1172/jci.insight.167598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/12/2024] [Indexed: 06/02/2024] Open
Abstract
MAPK activating death domain (MADD) is a multifunctional protein regulating small GTPases RAB3 and RAB27, MAPK signaling, and cell survival. Polymorphisms in the MADD locus are associated with glycemic traits, but patients with biallelic variants in MADD manifest a complex syndrome affecting nervous, endocrine, exocrine, and hematological systems. We identified a homozygous splice site variant in MADD in 2 siblings with developmental delay, diabetes, congenital hypogonadotropic hypogonadism, and growth hormone deficiency. This variant led to skipping of exon 30 and in-frame deletion of 36 amino acids. To elucidate how this mutation causes pleiotropic endocrine phenotypes, we generated relevant cellular models with deletion of MADD exon 30 (dex30). We observed reduced numbers of β cells, decreased insulin content, and increased proinsulin-to-insulin ratio in dex30 human embryonic stem cell-derived pancreatic islets. Concordantly, dex30 led to decreased insulin expression in human β cell line EndoC-βH1. Furthermore, dex30 resulted in decreased luteinizing hormone expression in mouse pituitary gonadotrope cell line LβT2 but did not affect ontogeny of stem cell-derived GnRH neurons. Protein-protein interactions of wild-type and dex30 MADD revealed changes affecting multiple signaling pathways, while the GDP/GTP exchange activity of dex30 MADD remained intact. Our results suggest MADD-specific processes regulate hormone expression in pancreatic β cells and pituitary gonadotropes.
Collapse
Affiliation(s)
- Kristiina Pulli
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Pekka Ahonen
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Xiaonan Liu
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Alice Santambrogio
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Yafei Wang
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Anna-Pauliina Iivonen
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Johanna Känsäkoski
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
| | - Johanna Tommiska
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
| | - Yasmine Kemkem
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sanna Vuoristo
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Obstetrics and Gynecology; and
- HiLIFE, University of Helsinki, Helsinki, Finland
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- New Children’s Hospital, Helsinki University Hospital, Pediatric Research Center, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
- New Children’s Hospital, Helsinki University Hospital, Pediatric Research Center, Helsinki, Finland
| |
Collapse
|
4
|
Godieva V, Sammoura F, Verrier Paz S, Han Y, Di Guida V, Rishel MJ, Richardson JR, Chambers JW. Physiological JNK3 Concentrations Are Higher in Motor-related and Disease-implicated Brain Regions of C57BL6/J Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.575386. [PMID: 38293240 PMCID: PMC10827194 DOI: 10.1101/2024.01.17.575386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The c-Jun N-terminal kinase 3 (JNK3) is a stress-responsive protein kinase primarily expressed in the central nervous system (CNS). JNK3 exhibits nuanced neurological activities, such as roles in behavior, circadian rhythms, and neurotransmission, but JNK3 is also implicated in cell death and neurodegeneration. Despite the critical role of JNK3 in neurophysiology and pathology, its localization in the brain is not fully understood due to a paucity of tools to distinguish JNK3 from other isoforms. While previous functional and histological studies suggest locales for JNK3 in the CNS, a comprehensive and higher resolution of JNK3 distribution and abundance remained elusive. Here, we sought to define the anatomical and cellular distribution of JNK3 in adult mouse brains. Data reveal the highest levels of JNK3 and pJNK3 were found in the cortex and the hippocampus. JNK3 possessed neuron-type selectivity as JNK3 was present in GABAergic, cholinergic, and dopaminergic neurons, but was not detectable in VGLUT-1-positive glutamatergic neurons and astrocytes in vivo . Intriguingly, higher JNK3 signals were found in motor neurons and relevant nuclei in the cortex, basal ganglia, brainstem, and spinal cord. While JNK3 was primarily observed in the cytosol of neurons in the cortex and the hippocampus, JNK3 appeared commonly within the nucleus in the brainstem. These distinctions suggest the potential for significant differences between JNK3 actions in distinct brain regions and cell types. Our results provide a significant improvement over previous reports of JNK3 spatial organization in the adult CNS and support continued investigation of JNK3's role in neurophysiology and pathophysiology.
Collapse
|
5
|
Xu M, Liu Q, Bi R, Li Y, Li H, Kang WB, Yan Z, Zheng Q, Sun C, Ye M, Xiang BL, Luo XJ, Li M, Zhang DF, Yao YG. Coexistence of Multiple Functional Variants and Genes Underlies Genetic Risk Locus 11p11.2 of Alzheimer's Disease. Biol Psychiatry 2023; 94:743-759. [PMID: 37290560 DOI: 10.1016/j.biopsych.2023.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Genome-wide association studies have identified dozens of genetic risk loci for Alzheimer's disease (AD), yet the underlying causal variants and biological mechanisms remain elusive, especially for loci with complex linkage disequilibrium and regulation. METHODS To fully untangle the causal signal at a single locus, we performed a functional genomic study of 11p11.2 (the CELF1/SPI1 locus). Genome-wide association study signals at 11p11.2 were integrated with datasets of histone modification, open chromatin, and transcription factor binding to distill potentially functional variants (fVars). Their allelic regulatory activities were confirmed by allele imbalance, reporter assays, and base editing. Expressional quantitative trait loci and chromatin interaction data were incorporated to assign target genes to fVars. The relevance of these genes to AD was assessed by convergent functional genomics using bulk brain and single-cell transcriptomic, epigenomic, and proteomic datasets of patients with AD and control individuals, followed by cellular assays. RESULTS We found that 24 potential fVars, rather than a single variant, were responsible for the risk of 11p11.2. These fVars modulated transcription factor binding and regulated multiple genes by long-range chromatin interactions. Besides SPI1, convergent evidence indicated that 6 target genes (MTCH2, ACP2, NDUFS3, PSMC3, C1QTNF4, and MADD) of fVars were likely to be involved in AD development. Disruption of each gene led to cellular amyloid-β and phosphorylated tau changes, supporting the existence of multiple likely causal genes at 11p11.2. CONCLUSIONS Multiple variants and genes at 11p11.2 may contribute to AD risk. This finding provides new insights into the mechanistic and therapeutic challenges of AD.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Qianjin Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Yu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Hongli Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Wei-Bo Kang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zhongjiang Yan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Quanzhen Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Chunli Sun
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Maosen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Bo-Lin Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
6
|
Otmani K, Rouas R, Lagneaux L, Krayem M, Duvillier H, Berehab M, Lewalle P. Acute myeloid leukemia-derived exosomes deliver miR-24-3p to hinder the T-cell immune response through DENN/MADD targeting in the NF-κB signaling pathways. Cell Commun Signal 2023; 21:253. [PMID: 37735672 PMCID: PMC10515055 DOI: 10.1186/s12964-023-01259-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/07/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND microRNAs (miRNAs) are known as potent gene expression regulators, and several studies have revealed the prognostic value of miRNAs in acute myeloid leukemia (AML) patient survival. Recently, strong evidence has indicated that miRNAs can be transported by exosomes (EXOs) from cancer cells to recipient immune microenvironment (IME) cells. RESULTS We found that AML blast-released EXOs enhance CD3 T-cell apoptosis in both CD4 and CD8 T cells. We hypothesized that miRNAs present in EXOs are key players in mediating the changes observed in AML T-cell survival. We found that miR-24-3p, a commonly overexpressed miRNA in AML, was present in released EXOs, suggesting that EXO-miR-24-3p was linked to the increased miR-24-3p levels detected in isolated AML T cells. These results were corroborated by ex vivo-generated miR-24-3p-enriched EXOs, which showed that miR-24-3p-EXOs increased apoptosis and miR-24-3p levels in T cells. We also demonstrated that overexpression of miR-24-3p increased T-cell apoptosis and affected T-cell proliferation by directly targeting DENN/MADD expression and indirectly altering the NF-κB, p-JAK/STAT, and p-ERK signaling pathways but promoting regulatory T-cell (Treg) development. CONCLUSIONS These results highlight a mechanism through which AML blasts indirectly impede T-cell function via transferred exosomal miR-24-3p. In conclusion, by characterizing the signaling network regulated by individual miRNAs in the leukemic IME, we aimed to discover new nonleukemic immune targets to rescue the potent antitumor function of T cells against AML blasts. Video Abstract.
Collapse
Affiliation(s)
- Khalid Otmani
- Experimental Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles, (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, 90 Meylemeersch Street, 1070, Brussels, Belgium.
| | - Redouane Rouas
- Experimental Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles, (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, 90 Meylemeersch Street, 1070, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratoire de Thérapie Cellulaire Clinique (LTCC), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mohammad Krayem
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Hugues Duvillier
- Flow Cytometry Facility, Hôpital Universitaire de Bruxelles (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mimoune Berehab
- Experimental Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles, (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, 90 Meylemeersch Street, 1070, Brussels, Belgium
| | - Philippe Lewalle
- Experimental Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles, (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, 90 Meylemeersch Street, 1070, Brussels, Belgium.
| |
Collapse
|
7
|
Liu N, Zhang L, Tian T, Cheng J, Zhang B, Qiu S, Geng Z, Cui G, Zhang Q, Liao W, Yu Y, Zhang H, Gao B, Xu X, Han T, Yao Z, Qin W, Liu F, Liang M, Xu Q, Fu J, Xu J, Zhu W, Zhang P, Li W, Shi D, Wang C, Lui S, Yan Z, Chen F, Li J, Zhang J, Wang D, Shen W, Miao Y, Xian J, Gao JH, Zhang X, Li MJ, Xu K, Zuo XN, Wang M, Ye Z, Yu C. Cross-ancestry genome-wide association meta-analyses of hippocampal and subfield volumes. Nat Genet 2023:10.1038/s41588-023-01425-8. [PMID: 37337106 DOI: 10.1038/s41588-023-01425-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2023] [Indexed: 06/21/2023]
Abstract
The hippocampus is critical for memory and cognition and neuropsychiatric disorders, and its subfields differ in architecture and function. Genome-wide association studies on hippocampal and subfield volumes are mainly conducted in European populations; however, other ancestral populations are under-represented. Here we conduct cross-ancestry genome-wide association meta-analyses in 65,791 individuals for hippocampal volume and 38,977 for subfield volumes, including 7,009 individuals of East Asian ancestry. We identify 339 variant-trait associations at P < 1.13 × 10-9 for 44 hippocampal traits, including 23 new associations. Common genetic variants have similar effects on hippocampal traits across ancestries, although ancestry-specific associations exist. Cross-ancestry analysis improves the fine-mapping precision and the prediction performance of polygenic scores in under-represented populations. These genetic variants are enriched for Wnt signaling and neuron differentiation and affect cognition, emotion and neuropsychiatric disorders. These findings may provide insight into the genetic architectures of hippocampal and subfield volumes.
Collapse
Affiliation(s)
- Nana Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shijun Qiu
- Department of Medical Imaging, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Zuojun Geng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guangbin Cui
- Functional and Molecular Imaging Key Lab of Shaanxi Province & Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Quan Zhang
- Department of Radiology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Molecular Imaging Research Center of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhang
- Department of Radiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bo Gao
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dapeng Shi
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Jiance Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wen Shen
- Department of Radiology, Tianjin First Center Hospital, Tianjin, China
| | - Yanwei Miao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaochu Zhang
- Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Mulin Jun Li
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kai Xu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center at IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China.
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
8
|
Boukhalfa W, Jmel H, Kheriji N, Gouiza I, Dallali H, Hechmi M, Kefi R. Decoding the genetic relationship between Alzheimer's disease and type 2 diabetes: potential risk variants and future direction for North Africa. Front Aging Neurosci 2023; 15:1114810. [PMID: 37342358 PMCID: PMC10277480 DOI: 10.3389/fnagi.2023.1114810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/11/2023] [Indexed: 06/22/2023] Open
Abstract
Introduction Alzheimer's disease (AD) and Type 2 diabetes (T2D) are both age-associated diseases. Identification of shared genes could help develop early diagnosis and preventive strategies. Although genetic background plays a crucial role in these diseases, we noticed an underrepresentation tendency of North African populations in omics studies. Materials and methods First, we conducted a comprehensive review of genes and pathways shared between T2D and AD through PubMed. Then, the function of the identified genes and variants was investigated using annotation tools including PolyPhen2, RegulomeDB, and miRdSNP. Pathways enrichment analyses were performed with g:Profiler and EnrichmentMap. Next, we analyzed variant distributions in 16 worldwide populations using PLINK2, R, and STRUCTURE software. Finally, we performed an inter-ethnic comparison based on the minor allele frequency of T2D-AD common variants. Results A total of 59 eligible papers were included in our study. We found 231 variants and 363 genes shared between T2D and AD. Variant annotation revealed six single nucleotide polymorphisms (SNP) with a high pathogenic score, three SNPs with regulatory effects on the brain, and six SNPs with potential effects on miRNA-binding sites. The miRNAs affected were implicated in T2D, insulin signaling pathways, and AD. Moreover, replicated genes were significantly enriched in pathways related to plasma protein binding, positive regulation of amyloid fibril deposition, microglia activation, and cholesterol metabolism. Multidimensional screening performed based on the 363 shared genes showed that main North African populations are clustered together and are divergent from other worldwide populations. Interestingly, our results showed that 49 SNP associated with T2D and AD were present in North African populations. Among them, 11 variants located in DNM3, CFH, PPARG, ROHA, AGER, CLU, BDNF1, CST9, and PLCG1 genes display significant differences in risk allele frequencies between North African and other populations. Conclusion Our study highlighted the complexity and the unique molecular architecture of North African populations regarding T2D-AD shared genes. In conclusion, we emphasize the importance of T2D-AD shared genes and ethnicity-specific investigation studies for a better understanding of the link behind these diseases and to develop accurate diagnoses using personalized genetic biomarkers.
Collapse
Affiliation(s)
- Wided Boukhalfa
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Haifa Jmel
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Ismail Gouiza
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- University of Angers, MitoLab Team, Unité MitoVasc, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Mariem Hechmi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
9
|
Wang M, Tang G, Zhou C, Guo H, Hu Z, Hu Q, Li G. Revisiting the intersection of microglial activation and neuroinflammation in Alzheimer's disease from the perspective of ferroptosis. Chem Biol Interact 2023; 375:110387. [PMID: 36758888 DOI: 10.1016/j.cbi.2023.110387] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by chronic neuroinflammation with amyloid beta-protein deposition and hyperphosphorylated tau protein. The typical clinical manifestation of AD is progressive memory impairment, and AD is considered a multifactorial disease with various etiologies (genetic factors, aging, lifestyle, etc.) and complicated pathophysiological processes. Previous research identified that neuroinflammation and typical microglial activation are significant mechanisms underlying AD, resulting in dysfunction of the nervous system and progression of the disease. Ferroptosis is a novel modality involved in this process. As an iron-dependent form of cell death, ferroptosis, characterized by iron accumulation, lipid peroxidation, and irreversible plasma membrane disruption, promotes AD by accelerating neuronal dysfunction and abnormal microglial activation. In this case, disturbances in brain iron homeostasis and neuronal ferroptosis aggravate neuroinflammation and lead to the abnormal activation of microglia. Abnormally activated microglia release various pro-inflammatory factors that aggravate the dysregulation of iron homeostasis and neuroinflammation, forming a vicious cycle. In this review, we first introduce ferroptosis, microglia, AD, and their relationship. Second, we discuss the nonnegligible role of ferroptosis in the abnormal microglial activation involved in the chronic neuroinflammation of AD to provide new ideas for the identification of potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Miaomiao Wang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Gan Tang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Congfa Zhou
- Department of Anatomy, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Hongmin Guo
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Zihui Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Qixing Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
10
|
Bhatnagar A, Krick K, Karisetty BC, Armour EM, Heller EA, Elefant F. Tip60's Novel RNA-Binding Function Modulates Alternative Splicing of Pre-mRNA Targets Implicated in Alzheimer's Disease. J Neurosci 2023; 43:2398-2423. [PMID: 36849418 PMCID: PMC10072303 DOI: 10.1523/jneurosci.2331-22.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
The severity of Alzheimer's disease (AD) progression involves a complex interplay of genetics, age, and environmental factors orchestrated by histone acetyltransferase (HAT)-mediated neuroepigenetic mechanisms. While disruption of Tip60 HAT action in neural gene control is implicated in AD, alternative mechanisms underlying Tip60 function remain unexplored. Here, we report a novel RNA binding function for Tip60 in addition to its HAT function. We show that Tip60 preferentially interacts with pre-mRNAs emanating from its chromatin neural gene targets in the Drosophila brain and this RNA binding function is conserved in human hippocampus and disrupted in Drosophila brains that model AD pathology and in AD patient hippocampus of either sex. Since RNA splicing occurs co-transcriptionally and alternative splicing (AS) defects are implicated in AD, we investigated whether Tip60-RNA targeting modulates splicing decisions and whether this function is altered in AD. Replicate multivariate analysis of transcript splicing (rMATS) analysis of RNA-Seq datasets from wild-type and AD fly brains revealed a multitude of mammalian-like AS defects. Strikingly, over half of these altered RNAs are identified as bona-fide Tip60-RNA targets that are enriched for in the AD-gene curated database, with some of these AS alterations prevented against by increasing Tip60 in the fly brain. Further, human orthologs of several Tip60-modulated splicing genes in Drosophila are well characterized aberrantly spliced genes in human AD brains, implicating disruption of Tip60's splicing function in AD pathogenesis. Our results support a novel RNA interaction and splicing regulatory function for Tip60 that may underly AS impairments that hallmark AD etiology.SIGNIFICANCE STATEMENT Alzheimer's disease (AD) has recently emerged as a hotbed for RNA alternative splicing (AS) defects that alter protein function in the brain yet causes remain unclear. Although recent findings suggest convergence of epigenetics with co-transcriptional AS, whether epigenetic dysregulation in AD pathology underlies AS defects remains unknown. Here, we identify a novel RNA interaction and splicing regulatory function for Tip60 histone acetyltransferase (HAT) that is disrupted in Drosophila brains modeling AD pathology and in human AD hippocampus. Importantly, mammalian orthologs of several Tip60-modulated splicing genes in Drosophila are well characterized aberrantly spliced genes in human AD brain. We propose that Tip60-mediated AS modulation is a conserved critical posttranscriptional step that may underlie AS defects now characterized as hallmarks of AD.
Collapse
Affiliation(s)
- Akanksha Bhatnagar
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - Keegan Krick
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Ellen M Armour
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| |
Collapse
|
11
|
Bhardwaj A, Liyanage SI, Weaver DF. Cancer and Alzheimer's Inverse Correlation: an Immunogenetic Analysis. Mol Neurobiol 2023; 60:3086-3099. [PMID: 36797545 DOI: 10.1007/s12035-023-03260-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/05/2023] [Indexed: 02/18/2023]
Abstract
Numerous studies have demonstrated an inverse link between cancer and Alzheimer's disease (AD), with data suggesting that people with Alzheimer's have a decreased risk of cancer and vice versa. Although other studies have investigated mechanisms to explain this relationship, the connection between these two diseases remains largely unexplained. Processes seen in cancer, such as decreased apoptosis and increased cell proliferation, seem to be reversed in AD. Given the need for effective therapeutic strategies for AD, comparisons with cancer could yield valuable insights into the disease process and perhaps result in new treatments. Here, through a review of existing literature, we compared the expressions of genes involved in cell proliferation and apoptosis to establish a genetic basis for the reciprocal association between AD and cancer. We discuss an array of genes involved in the aforementioned processes, their relevance to both diseases, and how changes in those genes produce varying effects in either disease.
Collapse
Affiliation(s)
- Aditya Bhardwaj
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - S Imindu Liyanage
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Donald F Weaver
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada.
- Departments of Medicine and Chemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
12
|
Zhang Z, Meng P, Zhang H, Jia Y, Wen Y, Zhang J, Chen Y, Li C, Pan C, Cheng S, Yang X, Yao Y, Liu L, Zhang F. Brain Proteome-Wide Association Study Identifies Candidate Genes that Regulate Protein Abundance Associated with Post-Traumatic Stress Disorder. Genes (Basel) 2022; 13:genes13081341. [PMID: 35893077 PMCID: PMC9332745 DOI: 10.3390/genes13081341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
Although previous genome-wide association studies (GWASs) on post-traumatic stress disorder (PTSD) have identified multiple risk loci, how these loci confer risk of PTSD remains unclear. Through the FUSION pipeline, we integrated two human brain proteome reference datasets (ROS/MAP and Banner) with the PTSD GWAS dataset, respectively, to conduct a proteome-wide association study (PWAS) analysis. Then two transcriptome reference weights (Rnaseq and Splicing) were applied to a transcriptome-wide association study (TWAS) analysis. Finally, the PWAS and TWAS results were investigated through brain imaging analysis. In the PWAS analysis, 8 and 13 candidate genes were identified in the ROS/MAP and Banner reference weight groups, respectively. Examples included ADK (pPWAS-ROS/MAP = 3.00 × 10−5) and C3orf18 (pPWAS-Banner = 7.07 × 10−31). Moreover, the TWAS also detected multiple candidate genes associated with PTSD in two different reference weight groups, including RIMS2 (pTWAS-Splicing = 3.84 × 10−2), CHMP1A (pTWAS-Rnaseq = 5.09 × 10−4), and SIRT5 (pTWAS-Splicing = 4.81 × 10−3). Further comparison of the PWAS and TWAS results in different populations detected the overlapping genes: MADD (pPWAS-Banner = 4.90 × 10−2, pTWAS-Splicing = 1.23 × 10−2) in the total population and GLO1(pPWAS-Banner = 4.89 × 10−3, pTWAS-Rnaseq = 1.41 × 10−3) in females. Brain imaging analysis revealed several different brain imaging phenotypes associated with MADD and GLO1 genes. Our study identified multiple candidate genes associated with PTSD in the proteome and transcriptome levels, which may provide new clues to the pathogenesis of PTSD.
Collapse
|
13
|
Mosallaei M, Ehtesham N, Beheshtian M, Khoshbakht S, Davarnia B, Kahrizi K, Najmabadi H. Phenotype and genotype spectrum of variants in guanine nucleotide exchange factor genes in a broad cohort of Iranian patients. Mol Genet Genomic Med 2022; 10:e1894. [PMID: 35174982 PMCID: PMC9000939 DOI: 10.1002/mgg3.1894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Background Guanine nucleotide exchange factors (GEFs) play pivotal roles in neuronal cell functions by exchanging GDP to GTP nucleotide and activation of GTPases. We aimed to determine the genotype and phenotype spectrum of GEF mutations by collecting data from a large Iranian cohort with intellectual disability (ID) and/or developmental delay (DD). Methods We collected data from nine families with 20 patients extracted from Iranian cohort of 640 families with ID and/or DD. Next‐generation sequencing (NGS) was used to identify the causing variants in recruited families. We also compared our clinical and molecular findings with previously reported patients carrying mutations in these GEF genes in the literature published until mid‐2021. Results We identified disease‐causing variants in eight GEF genes including ALS2, IQSEC2, MADD, RAB3GAP1, RAB3GAP2, TRIO, ITSN1, and DENND2A. The major clinical manifestations in 203 previously reported cases along with our 20 patients with disease causing variants in eight GEF genes were as follow; speech disorder (85.2%), ID (81.6%), DD (81.1%), inability to walk (71.3%), facial dysmorphisms features (52.4%), abnormalities in skull morphology (55.6%), hypotonia and muscle weakness (47%), and brain MRI abnormalities (43.4%). Conclusion Our study provides new insights into the genotype and phenotype spectrum of mutations in GEF genes.
Collapse
Affiliation(s)
- Meysam Mosallaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Naeim Ehtesham
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahrouz Khoshbakht
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Behzad Davarnia
- Department of Genetic and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Kariminejad - Najmabadi Pathology & Genetics Centre, Tehran, Iran
| |
Collapse
|
14
|
Garrido A, Santamaría E, Fernández-Irigoyen J, Soto M, Simonet C, Fernández M, Obiang D, Tolosa E, Martí MJ, Padmanabhan S, Malagelada C, Ezquerra M, Fernández-Santiago R. Differential Phospho-Signatures in Blood Cells Identify LRRK2 G2019S Carriers in Parkinson's Disease. Mov Disord 2022; 37:1004-1015. [PMID: 35049090 PMCID: PMC9306798 DOI: 10.1002/mds.28927] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background The clinicopathological phenotype of G2019S LRRK2‐associated Parkinson's disease (L2PD) is similar to idiopathic Parkinson's disease (iPD), and G2019S LRRK2 nonmanifesting carriers (L2NMCs) are at increased risk for development of PD. With various therapeutic strategies in the clinical and preclinical pipeline, there is an urgent need to identify biomarkers that can aid early diagnosis and patient enrichment for ongoing and future LRRK2‐targeted trials. Objective The objective of this work was to investigate differential protein and phospho‐protein changes related to G2019S mutant LRRK2 in peripheral blood mononuclear cells from G2019S L2PD patients and G2019S L2NMCs, identify specific phospho‐protein changes associated with the G2019S mutation and with disease status, and compare findings with patients with iPD. Methods We performed an unbiased phospho‐proteomic study by isobaric label–based mass spectrometry using peripheral blood mononuclear cell group pools from a LRRK2 cohort from Spain encompassing patients with G2019S L2PD (n = 20), G2019S L2NMCs (n = 20), healthy control subjects (n = 30), patients with iPD (n = 15), patients with R1441G L2PD (n = 5), and R1441G L2NMCs (n = 3) (total N = 93). Results Comparing G2019S carriers with healthy controls, we identified phospho‐protein changes associated with the G2019S mutation. Moreover, we uncovered a specific G2019S phospho‐signature that changes with disease status and can discriminate patients with G2019S L2PD, G2019S L2NMCs, and healthy controls. Although patients with iPD showed a differential phospho‐proteomic profile, biological enrichment analyses revealed similar changes in deregulated pathways across the three groups. Conclusions We found a differential phospho‐signature associated with LRRK2 G2019S for which, consistent with disease status, the phospho‐profile from PD at‐risk G2019S L2NMCs was more similar to healthy controls than patients with G2019S L2PD with the manifested disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Alicia Garrido
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Enrique Santamaría
- Proteored-ISCIII, Proteomics Platform, Clinical Neuroproteomics Unit, Navarrabiomed, Departamento de Salud, UPNA, IdiSNA, Pamplona, Navarra, Spain
| | - Joaquín Fernández-Irigoyen
- Proteored-ISCIII, Proteomics Platform, Clinical Neuroproteomics Unit, Navarrabiomed, Departamento de Salud, UPNA, IdiSNA, Pamplona, Navarra, Spain
| | - Marta Soto
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Cristina Simonet
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Manel Fernández
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Parkinson's Disease and Movement Disorders Group of the Institut de Neurociències (Universitat de Barcelona), Barcelona, Catalonia, Spain
| | - Donina Obiang
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Eduardo Tolosa
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - María-José Martí
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Shalini Padmanabhan
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station, New York, New York, USA
| | - Cristina Malagelada
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Department of Biomedicine, Faculty of Medicine, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Mario Ezquerra
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Rubén Fernández-Santiago
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Histology Unit, Department of Biomedicine, Faculty of Medicine, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Li H, Li Y, Zhang Y, Tan B, Huang T, Xiong J, Tan X, Ermolaeva MA, Fu L. MAPK10 Expression as a Prognostic Marker of the Immunosuppressive Tumor Microenvironment in Human Hepatocellular Carcinoma. Front Oncol 2021; 11:687371. [PMID: 34408980 PMCID: PMC8366563 DOI: 10.3389/fonc.2021.687371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a devastating malignancy worldwide due to lack of effective therapy. The immune-rich contexture of HCC tumor microenvironment (TME) makes this tumor an appealing target for immune-based therapies; however, the immunosuppressive TME is still a major challenge for more efficient immunotherapy in HCC. Using bioinformatics analysis based on the TCGA database, here we found that MAPK10 is frequently down-regulated in HCC tumors and significantly correlates with poor survival of HCC patients. HCC patients with low MAPK10 expression have lower expression scores of tumor infiltration lymphocytes (TILs) and stromal cells in the TME and increased scores of tumor cells than those with high MAPK10 expression. Further transcriptomic analyses revealed that the immune activity in the TME of HCC was markedly reduced in the low-MAPK10 group of HCC patients compared to the high-MAPK10 group. Additionally, we identified 495 differentially expressed immune-associated genes (DIGs), with 482 genes down-regulated and 13 genes up-regulated in parallel with the decrease of MAPK10 expression. GO enrichment and KEGG pathway analyses indicated that the biological functions of these DIGs included cell chemotaxis, leukocyte migration and positive regulation of the response to cytokine–cytokine receptor interaction, T cell receptor activation and MAPK signaling pathway. Protein–protein interaction (PPI) analyses of the 495 DIGs revealed five potential downstream hub genes of MAPK10, including SYK, CBL, VAV1, LCK, and CD3G. Several hub genes such as SYK, LCK, and VAV1 could respond to the immunological costimulatory signaling mediated by the transmembrane protein ICAM1, which was identified as a down-regulated DIG associated with low-MAPK10 expression. Moreover, ectopic overexpression or knock-down of MAPK10 could up-regulate or down-regulate ICAM1 expression via phosphorylation of c-jun at Ser63 in HCC cell lines, respectively. Collectively, our results demonstrated that MAPK10 down-regulation likely contributes to the immunosuppressive TME of HCC, and this gene might serve as a potential immunotherapeutic target and a prognostic factor for HCC patients.
Collapse
Affiliation(s)
- Huahui Li
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China.,Group of Homeostasis and Stress Tolerance, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany.,Shenzhen University-Friedrich Schiller Universitat Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China
| | - Yuting Li
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China.,Group of Homeostasis and Stress Tolerance, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany.,Shenzhen University-Friedrich Schiller Universitat Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China
| | - Ying Zhang
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Binbin Tan
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Tuxiong Huang
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Jixian Xiong
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiangyu Tan
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Maria A Ermolaeva
- Group of Homeostasis and Stress Tolerance, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Li Fu
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
16
|
Cheng J, Li M, Tzeng CM, Gou X, Chen S. Suppression of Tumorigenicity 5 Ameliorates Tumor Characteristics of Invasive Breast Cancer Cells via ERK/JNK Pathway. Front Oncol 2021; 11:621500. [PMID: 34395234 PMCID: PMC8356645 DOI: 10.3389/fonc.2021.621500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/04/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Suppression of tumorigenicity 5 (ST5) has been considered as a tumor suppressor gene in HeLa tumor cells. However, its role in the progression of breast cancer remains vague. METHODS Online database analysis was determined by Oncomine and Breast Cancer Gene-Expression Miner v4.4 (bc-GenExMiner v4.4). Tumor biology behaviors were measured by MTT assay, wound healing model, Transwell and Flow cytometry assays. Methylation-specific PCR (MSP) was employed to detect promoter methylation. RESULTS Low level of ST5 was observed in breast cancer specimens, particularly in recurrent, invasive breast cancer cases compared to para-carcinoma tissue or non-invasive breast cancer. The downregulation of ST5 was also proved in MDA-MB-231 and SKBR3 cell lines with a high invasive capability as compared to MCF-7 cell with a low invasive capability. ST5 was negatively associated with pathological stages of breast cancer. ST5-downregulation promoted, while ST5-upregulation inhibited the progression of cell proliferation, cell cycle and migration of MDA-MB-231 cells. Additionally, ST5 knockdown inhibited, whereas ST5 overexpression promoted apoptosis of MDA-MB-231 cells. However, ST5 modification, either upregulation or downregulation, had no significant impact on tumor behaviors of MCF-7 cells. Mechanistically, ST5 protein ablation activated, while ST5-upregulation repressed the activities of phosphorylated ERK1/2 and JNK, and subsequently the expression of c-Myc. PD98059-mediated ERK1/2 inhibition abolished the stimulatory effects of ST5-depletion on ERK1/2/JNK/c-Myc signaling axis, and ST5 depletion-mediated cell over-proliferation and migration. Of note, ST5 reduction in invasive breast cancer cells should implicate in the hypermethylation of ST5 promoter region. CONCLUSION Our findings suggest that ST5 potentially acts as a tumor suppressor gene in invasive breast cancer through regulating ERK/JNK signaling pathway and provide a novel insight for breast cancer treatment.
Collapse
Affiliation(s)
- Jianghong Cheng
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Mingli Li
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, China
| | - Chi-Meng Tzeng
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi’an Medical University, Xi’an, China
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Academician Workstation of Chen Zhi-nan, Xi’an Medical University, Xi’an, China
| | - Shuai Chen
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi’an Medical University, Xi’an, China
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Academician Workstation of Chen Zhi-nan, Xi’an Medical University, Xi’an, China
| |
Collapse
|
17
|
Kwon J, Arsenis C, Suessmilch M, McColl A, Cavanagh J, Morris BJ. Differential Effects of Toll-Like Receptor Activation and Differential Mediation by MAP Kinases of Immune Responses in Microglial Cells. Cell Mol Neurobiol 2021; 42:2655-2671. [PMID: 34297254 PMCID: PMC9560989 DOI: 10.1007/s10571-021-01127-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/10/2021] [Indexed: 10/26/2022]
Abstract
Microglial activation is believed to play a role in many psychiatric and neurodegenerative diseases. Based largely on evidence from other cell types, it is widely thought that MAP kinase (ERK, JNK and p38) signalling pathways contribute strongly to microglial activation following immune stimuli acting on toll-like receptor (TLR) 3 or TLR4. We report here that exposure of SimA9 mouse microglial cell line to immune mimetics stimulating TLR4 (lipopolysaccharide-LPS) or TLR7/8 (resiquimod/R848), results in marked MAP kinase activation, followed by induction of nitric oxide synthase, and various cytokines/chemokines. However, in contrast to TLR4 or TLR7/8 stimulation, very few effects of TLR3 stimulation by poly-inosine/cytidine (polyI:C) were detected. Induction of chemokines/cytokines at the mRNA level by LPS and resiquimod were, in general, only marginally affected by MAP kinase inhibition, and expression of TNF, Ccl2 and Ccl5 mRNAs, along with nitrite production, were enhanced by p38 inhibition in a stimulus-specific manner. Selective JNK inhibition enhanced Ccl2 and Ccl5 release. Many distinct responses to stimulation of TLR4 and TLR7 were observed, with JNK mediating TNF protein induction by the latter but not the former, and suppressing Ccl5 release by the former but not the latter. These data reveal complex modulation by MAP kinases of microglial responses to immune challenge, including a dampening of some responses. They demonstrate that abnormal levels of JNK or p38 signalling in microglial cells will perturb their profile of cytokine and chemokine release, potentially contributing to abnormal inflammatory patterns in CNS disease states.
Collapse
Affiliation(s)
- Jaedeok Kwon
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow, G12 8QQ, UK.,Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Christos Arsenis
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow, G12 8QQ, UK
| | - Maria Suessmilch
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Alison McColl
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Jonathan Cavanagh
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Brian J Morris
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow, G12 8QQ, UK.
| |
Collapse
|
18
|
Mechanistic insights into TNFR1/MADD death domains in Alzheimer's disease through conformational molecular dynamic analysis. Sci Rep 2021; 11:12256. [PMID: 34112868 PMCID: PMC8192743 DOI: 10.1038/s41598-021-91606-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/27/2021] [Indexed: 01/22/2023] Open
Abstract
Proteins are tiny players involved in the activation and deactivation of multiple signaling cascades through interactions in cells. The TNFR1 and MADD interact with each other and mediate downstream protein signaling pathways which cause neuronal cell death and Alzheimer’s disease. In the current study, a molecular docking approach was employed to explore the interactive behavior of TNFR1 and MADD proteins and their role in the activation of downstream signaling pathways. The computational sequential and structural conformational results revealed that Asp400, Arg58, Arg59 were common residues of TNFR1 and MADD which are involved in the activation of downstream signaling pathways. Aspartic acid in negatively charged residues is involved in the biosynthesis of protein. However, arginine is a positively charged residue with the potential to interact with oppositely charged amino acids. Furthermore, our molecular dynamic simulation results also ensured the stability of the backbone of TNFR1 and MADD death domains (DDs) in binding interactions. This DDs interaction mediates some conformational changes in TNFR1 which leads to the activation of mediators proteins in the cellular signaling pathways. Taken together, a better understanding of TNFR1 and MADD receptors and their activated signaling cascade may help treat Alzheimer’s disease. The death domains of TNFR1 and MADD could be used as a novel pharmacological target for the treatment of Alzheimer’s disease by inhibiting the MAPK pathway.
Collapse
|
19
|
Patel D, Zhang X, Farrell JJ, Chung J, Stein TD, Lunetta KL, Farrer LA. Cell-type-specific expression quantitative trait loci associated with Alzheimer disease in blood and brain tissue. Transl Psychiatry 2021; 11:250. [PMID: 33907181 PMCID: PMC8079392 DOI: 10.1038/s41398-021-01373-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 02/02/2023] Open
Abstract
Because regulation of gene expression is heritable and context-dependent, we investigated AD-related gene expression patterns in cell types in blood and brain. Cis-expression quantitative trait locus (eQTL) mapping was performed genome-wide in blood from 5257 Framingham Heart Study (FHS) participants and in brain donated by 475 Religious Orders Study/Memory & Aging Project (ROSMAP) participants. The association of gene expression with genotypes for all cis SNPs within 1 Mb of genes was evaluated using linear regression models for unrelated subjects and linear-mixed models for related subjects. Cell-type-specific eQTL (ct-eQTL) models included an interaction term for the expression of "proxy" genes that discriminate particular cell type. Ct-eQTL analysis identified 11,649 and 2533 additional significant gene-SNP eQTL pairs in brain and blood, respectively, that were not detected in generic eQTL analysis. Of note, 386 unique target eGenes of significant eQTLs shared between blood and brain were enriched in apoptosis and Wnt signaling pathways. Five of these shared genes are established AD loci. The potential importance and relevance to AD of significant results in myeloid cell types is supported by the observation that a large portion of GWS ct-eQTLs map within 1 Mb of established AD loci and 58% (23/40) of the most significant eGenes in these eQTLs have previously been implicated in AD. This study identified cell-type-specific expression patterns for established and potentially novel AD genes, found additional evidence for the role of myeloid cells in AD risk, and discovered potential novel blood and brain AD biomarkers that highlight the importance of cell-type-specific analysis.
Collapse
Affiliation(s)
- Devanshi Patel
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lindsay A Farrer
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA.
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
- Departments of Neurology and Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
20
|
GIPSON CD, BIMONTE-NELSON HA. Interactions between reproductive transitions during aging and addiction: promoting translational crosstalk between different fields of research. Behav Pharmacol 2021; 32:112-122. [PMID: 32960852 PMCID: PMC7965232 DOI: 10.1097/fbp.0000000000000591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Discovery of neural mechanisms underlying neuropsychiatric disorders within the aging and addiction fields has been a main focus of the National Institutes of Health. However, there is a dearth of knowledge regarding the biological interactions of aging and addiction, which may have important influences on progression of disease and treatment outcomes in aging individuals with a history of chronic drug use. Thus, there is a large gap in these fields of research, which has slowed progress in understanding and treating substance use disorders (SUDs) as well as age-related diseases, specifically in women who experience precipitous reproductive cycle transitions during aging. The goal of this review is to highlight overlap of SUDs and age-related processes with a specific focus on menopause and smoking, and identify critical gaps. We have narrowed the focus of the review to smoking, as the majority of findings on hormonal and aging influences on drug use have come from this area of research. Further, we highlight female-specific issues such as transitional menopause and exogenous estrogen use. These issues may impact drug use cessation as well as outcomes with aging and age-related neurodegenerative diseases in women. We first review clinical studies for smoking, normal aging, and pathological aging, and discuss the few aging-related studies taking smoking history into account. Conversely, we highlight the dearth of clinical smoking studies taking age as a biological variable into account. Preclinical and clinical literature show that aging, age-related pathological brain disease, and addiction engage overlapping neural mechanisms. We hypothesize that these putative drivers interact in meaningful ways that may exacerbate disease and hinder successful treatment outcomes in such comorbid populations. We highlight areas where preclinical studies are needed to uncover neural mechanisms in aging and addiction processes. Collectively, this review highlights the need for crosstalk between different fields of research to address medical complexities of older adults, and specifically women, who smoke.
Collapse
Affiliation(s)
- Cassandra D. GIPSON
- Department of Family and Community Medicine, University of Kentucky, Lexington, KY
- Arizona Alzheimer’s Consortium
| | | |
Collapse
|
21
|
Abu-Libdeh B, Mor-Shaked H, Atawna AA, Gillis D, Halstuk O, Shaul-Lotan N, Slae M, Sultan M, Meiner V, Elpeleg O, Harel T. Homozygous variant in MADD, encoding a Rab guanine nucleotide exchange factor, results in pleiotropic effects and a multisystemic disorder. Eur J Hum Genet 2021; 29:977-987. [PMID: 33723354 DOI: 10.1038/s41431-021-00844-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/20/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Rab proteins coordinate inter-organellar vesicle-mediated transport, facilitating intracellular communication, protein recycling, and signaling processes. Dysfunction of Rab proteins or their direct interactors leads to a wide range of diseases with diverse manifestations. We describe seven individuals from four consanguineous Arab Muslim families with an infantile-lethal syndrome, including failure to thrive (FTT), chronic diarrhea, neonatal respiratory distress, variable pituitary dysfunction, and distal arthrogryposis. Exome sequencing analysis in the independent families, followed by an internal gene-matching process using a local exome database, identified a homozygous splice-site variant in MADD (c.2816 + 1 G > A) on a common haplotype. The variant segregated with the disease in all available family members. Determination of cDNA sequence verified single exon skipping, resulting in an out-of-frame deletion. MADD encodes a Rab guanine nucleotide exchange factor (GEF), which activates RAB3 and RAB27A/27B and is thus a crucial regulator of neuromuscular junctions and endocrine secretory granule release. Moreover, MADD protects cells from caspase-mediated TNF-α-induced apoptosis. The combined roles of MADD and its downstream effectors correlate with the phenotypic spectrum of disease, and call for additional studies to confirm the pathogenic mechanism and to investigate possible therapeutic avenues through modulation of TNF-α signaling.
Collapse
Affiliation(s)
- Bassam Abu-Libdeh
- Department of Pediatrics, Makassed Hospital and Faculty of Medicine, Al-Quds University, East Jerusalem, Palestine
| | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir A Atawna
- Department of Neonatology, Makassed Hospital, East Jerusalem, Palestine
| | - David Gillis
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Orli Halstuk
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nava Shaul-Lotan
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Mordechai Slae
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Mutaz Sultan
- Department of Pediatrics, Makassed Hospital and Faculty of Medicine, Al-Quds University, East Jerusalem, Palestine
| | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel. .,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
22
|
Liu W, Vetreno RP, Crews FT. Hippocampal TNF-death receptors, caspase cell death cascades, and IL-8 in alcohol use disorder. Mol Psychiatry 2021; 26:2254-2262. [PMID: 32139808 PMCID: PMC7483234 DOI: 10.1038/s41380-020-0698-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 01/22/2023]
Abstract
The relationship between increased neuroimmune gene expression and hippocampal degeneration in alcohol use disorder (AUD) and other mental diseases is poorly understood. We report here that tumor necrosis factor receptor superfamily death receptor 3 (TNFRSF25, DR3) and Fas receptors (Fas) that initiate caspase cell death cascades are increased in AUD hippocampus and following a rat adolescent binge drinking model. Death receptors are known inducers of apoptosis and cell death that recruit death domain (DD) proteins FADD and TRADD and caspases to form death-inducing signaling complexes (DISC). In postmortem human AUD hippocampus, mRNA and IHC protein are increased for the entire death receptor cascade. In AUD hippocampus, ligand-death receptor pairs, i.e., TL1A-DR3 and FasL-Fas, were increased, as well as FADD and TRADD, and active caspase-8, -7, -9, and caspase-3. Further, pNFκB p65, a key neuroimmune transcription factor, and IL-8, a chemokine, were significantly increased. Interestingly, across AUD patients, increases in DR3 and Fas correlated with TRADD, and TRADD with active caspase+IR and IL-8+IR, consistent with coordinated activation of neuronal DISC mediated death cascades and neuroimmune gene induction in AUD. These findings support a role for DR3 and Fas neuroimmune signaling in AUD hippocampal neurodegeneration.
Collapse
Affiliation(s)
- Wen Liu
- grid.10698.360000000122483208Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178 USA
| | - Ryan P. Vetreno
- grid.10698.360000000122483208Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178 USA
| | - Fulton T. Crews
- grid.10698.360000000122483208Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178 USA
| |
Collapse
|
23
|
Zuo H, Liu X, Li Y, Wang D, Hao Y, Yu C, Xu X, Peng R, Song T. The mitochondria/caspase-dependent apoptotic pathway plays a role in the positive effects of a power frequency electromagnetic field on Alzheimer's disease neuronal model. J Chem Neuroanat 2020; 109:101857. [PMID: 32918997 DOI: 10.1016/j.jchemneu.2020.101857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 09/06/2020] [Indexed: 11/16/2022]
Abstract
In this study, rat pheochromocytoma (PC12) cells were induced into an Alzheimer's Disease (AD) neuronal model using nerve growth factor (NGF; 50 ng/mL) and Amyloid β25-35 (20 μmol/L). Changes in the morphological structure, cell viability, apoptosis rate, and expression of apoptosis-related protein induced by exposure to a power frequency electromagnetic field (PF-MF; 50 Hz, 100 μT, 24 h) were detected respectively by light and electron microscopy, the MTT assay, immunohistochemistry, flow cytometry and enzyme-linked immunosorbent assays. The results showed that 3-12 h after PF-MF exposure, the pathological injury was improved partly; metabolic activity was promoted and cell apoptosis was inhibited in the AD neuronal model. In addition, PF-MF exposure significantly inhibited the expression of Caspase8, Caspase3, and CytC, but increased the Bcl-2/Bax ratio of the AD neuronal model. Meanwhile, PF-MF seemed to have no effect on the expression of Fas and TNFR1. This study indicated that the mitochondria/caspase-dependent apoptotic pathway plays an important role in the positive effects of PF-MF on an AD neuronal model. The results suggested that PF-MF exposure might have potential therapeutic value for AD, and the underling molecular mechanisms still need further studies.
Collapse
Affiliation(s)
- Hongyan Zuo
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Xiao Liu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China; Department ofPathology, Hainan Hospital of PLA General Hospital, Sanya 572013, China
| | - Yang Li
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China; Anhui Medical University, Hefei 230032, China
| | - Dewen Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yanhui Hao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chao Yu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xinping Xu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
24
|
Schneeberger PE, Kortüm F, Korenke GC, Alawi M, Santer R, Woidy M, Buhas D, Fox S, Juusola J, Alfadhel M, Webb BD, Coci EG, Abou Jamra R, Siekmeyer M, Biskup S, Heller C, Maier EM, Javaher-Haghighi P, Bedeschi MF, Ajmone PF, Iascone M, Peeters H, Ballon K, Jaeken J, Rodríguez Alonso A, Palomares-Bralo M, Santos-Simarro F, Meuwissen MEC, Beysen D, Kooy RF, Houlden H, Murphy D, Doosti M, Karimiani EG, Mojarrad M, Maroofian R, Noskova L, Kmoch S, Honzik T, Cope H, Sanchez-Valle A, Gelb BD, Kurth I, Hempel M, Kutsche K. Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder. Brain 2020; 143:2437-2453. [PMID: 32761064 PMCID: PMC7447524 DOI: 10.1093/brain/awaa204] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-α resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-α-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.
Collapse
Affiliation(s)
- Pauline E Schneeberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Christoph Korenke
- Klinik für Neuropädiatrie und angeborene Stoffwechselerkrankungen, Klinikum Oldenburg, Oldenburg, Germany
| | - Malik Alawi
- Bioinformatics Core Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Woidy
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Canada
- Human Genetics Department, McGill University, Montreal, Canada
| | - Stephanie Fox
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Canada
- Human Genetics Department, McGill University, Montreal, Canada
| | | | - Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdullah specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Bryn D Webb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Emanuele G Coci
- Department for Neuropediatrics, University Children's Hospital, Ruhr University Bochum, Bochum, Germany
- Department of Pediatrics, Prignitz Hospital, Brandenburg Medical School, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Manuela Siekmeyer
- Universitätsklinikum Leipzig - AöR, University of Leipzig, Hospital for Children and Adolescents, Leipzig, Germany
| | - Saskia Biskup
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Corina Heller
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Esther M Maier
- Dr. von Hauner Children's Hospital, University of Munich, Munich, Germany
| | | | - Maria F Bedeschi
- Medical Genetic Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola F Ajmone
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Hilde Peeters
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Katleen Ballon
- Centre for Developmental Disabilities, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Jaak Jaeken
- Center for Metabolic Diseases, KU Leuven, Leuven, Belgium
| | - Aroa Rodríguez Alonso
- Unidad de Patología Compleja, Servicio de Pediatría, Hospital Universitario La Paz, Madrid, Spain
| | - María Palomares-Bralo
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | - Fernando Santos-Simarro
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | | | - Diane Beysen
- Department of Pediatric Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - David Murphy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Ehsan G Karimiani
- Next Generation Genetic Polyclinic, Mashhad, Iran
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George's, University, London, UK
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Genetic Center of Khorasan Razavi, Mashhad, Iran
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Lenka Noskova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Amarilis Sanchez-Valle
- Division of Genetics and Metabolism, College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
25
|
Nakano R, Nakayama T, Sugiya H. Biological Properties of JNK3 and Its Function in Neurons, Astrocytes, Pancreatic β-Cells and Cardiovascular Cells. Cells 2020; 9:cells9081802. [PMID: 32751228 PMCID: PMC7464089 DOI: 10.3390/cells9081802] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
JNK is a protein kinase, which induces transactivation of c-jun. The three isoforms of JNK, JNK1, JNK2, and JNK3, are encoded by three distinct genes. JNK1 and JNK2 are expressed ubiquitously throughout the body. By contrast, the expression of JNK3 is limited and observed mainly in the brain, heart, and testes. Concerning the biological properties of JNKs, the contribution of upstream regulators and scaffold proteins plays an important role in the activation of JNKs. Since JNK signaling has been described as a form of stress-response signaling, the contribution of JNK3 to pathophysiological events, such as stress response or cell death including apoptosis, has been well studied. However, JNK3 also regulates the physiological functions of neurons and non-neuronal cells, such as development, regeneration, and differentiation/reprogramming. In this review, we shed light on the physiological functions of JNK3. In addition, we summarize recent advances in the knowledge regarding interactions between JNK3 and cellular reprogramming.
Collapse
Affiliation(s)
- Rei Nakano
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Laboratory of Veterinary Radiology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan; (T.N.); (H.S.)
- Correspondence:
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan; (T.N.); (H.S.)
| | - Hiroshi Sugiya
- Laboratory of Veterinary Radiology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan; (T.N.); (H.S.)
| |
Collapse
|
26
|
Lutz MW, Sprague D, Chiba-Falek O. Bioinformatics strategy to advance the interpretation of Alzheimer's disease GWAS discoveries: The roads from association to causation. Alzheimers Dement 2019; 15:1048-1058. [PMID: 31262699 PMCID: PMC6699885 DOI: 10.1016/j.jalz.2019.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Genome-wide association studies (GWAS) discovered multiple late-onset Alzheimer's disease (LOAD)-associated SNPs and inferred the genes based on proximity; however, the actual causal genes are yet to be identified. METHODS We defined LOAD-GWAS regions by the most significantly associated SNP ±0.5 Mb and developed a bioinformatics pipeline that uses and integrates chromatin state segmentation track to map active enhancers and virtual 4C software to visualize interactions between active enhancers and gene promoters. We augmented our pipeline with biomedical and functional information. RESULTS We applied the bioinformatics pipeline using three ∼1 Mb LOAD-GWAS loci: BIN1, PICALM, CELF1. These loci contain 10-24 genes, an average of 106 active enhancers and 80 CTCF sites. Our strategy identified all genes corresponding to the promoters that interact with the active enhancer that is closest to the LOAD-GWAS-SNP and generated a shorter list of prioritized candidate LOAD genes (5-14/loci), feasible for post-GWAS investigations of causality. DISCUSSION Interpretation of LOAD-GWAS discoveries requires the integration of brain-specific functional genomic data sets and information related to regulatory activity.
Collapse
Affiliation(s)
- Michael W Lutz
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Daniel Sprague
- Department of Neurology, Duke University Medical Center, Durham, NC, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA
| | - Ornit Chiba-Falek
- Department of Neurology, Duke University Medical Center, Durham, NC, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
27
|
Pido-Lopez J, Tanudjojo B, Farag S, Bondulich MK, Andre R, Tabrizi SJ, Bates GP. Inhibition of tumour necrosis factor alpha in the R6/2 mouse model of Huntington's disease by etanercept treatment. Sci Rep 2019; 9:7202. [PMID: 31076648 PMCID: PMC6510744 DOI: 10.1038/s41598-019-43627-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the expansion of the CAG repeat in exon 1 of the huntingtin (HTT) gene, which results in a mutant protein with an extended polyglutamine tract. Inflammation occurs in both the brain and the periphery of HD patients and mouse models, with increases in brain and/or plasma levels of neurotoxic TNFα and several other proinflammatory cytokines. TNFα promotes the generation of many of these cytokines, such as IL6, which raises the possibility that TNFα is central to the inflammatory milieu associated with HD. A number of mouse studies have reported that the suppression of chronic immune activation during HD has beneficial consequences. Here, we investigated whether TNFα contributes to the peripheral inflammation that occurs in the R6/2 mouse model, and whether the in vivo blockade of TNFα, via etanercept treatment, can modify disease progression. We found that etanercept treatment normalised the elevated plasma levels of some cytokines. This did not modify the progression of certain behavioural measures, but slightly ameliorated brain weight loss, possibly related to a reduction in the elevated striatal level of soluble TNFα.
Collapse
Affiliation(s)
- Jeffrey Pido-Lopez
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| | - Benedict Tanudjojo
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Sahar Farag
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Marie-Katrin Bondulich
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Ralph Andre
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Gillian P Bates
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
28
|
Zhang J, Zhang K, Qi L, Hu Q, Shen Z, Liu B, Deng J, Zhang C, Zhang Y. DENN domain-containing protein FAM45A regulates the homeostasis of late/multivesicular endosomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:916-929. [DOI: 10.1016/j.bbamcr.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/25/2019] [Indexed: 11/27/2022]
|
29
|
Sanzà P, Evans RD, Briggs DA, Cantero M, Montoliu L, Patel S, Sviderskaya EV, Itzen A, Figueiredo AC, Seabra MC, Hume AN. Nucleotide exchange factor Rab3GEP requires DENN and non-DENN elements for activation and targeting of Rab27a. J Cell Sci 2019; 132:jcs.212035. [PMID: 30898842 PMCID: PMC6526710 DOI: 10.1242/jcs.212035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/11/2019] [Indexed: 02/04/2023] Open
Abstract
Rab GTPases are compartment-specific molecular switches that regulate intracellular vesicular transport in eukaryotes. GDP/GTP exchange factors (GEFs) control Rab activation, and current models propose that localised and regulated GEF activity is important in targeting Rabs to specific membranes. Here, we investigated the mechanism of GEF function using the Rab27a GEF, Rab3GEP (also known as MADD), in melanocytes as a model. We show that Rab3GEP-deficient melanocytes (melan-R3GKO) manifest partial disruption of melanosome dispersion, a read-out of Rab27a activation and targeting. Using rescue of melanosome dispersion in melan-R3GKO cells and effector pull-down approaches we show that the DENN domain of Rab3GEP (conserved among RabGEFs) is necessary, but insufficient, for its cellular function and GEF activity. Finally, using a mitochondrial re-targeting strategy, we show that Rab3GEP can target Rab27a to specific membranes in a GEF-dependent manner. We conclude that Rab3GEP facilitates the activation and targeting of Rab27a to specific membranes, but that it differs from other DENN-containing RabGEFs in requiring DENN and non-DENN elements for both of these activities and by lacking compartment-specific localisation.
Collapse
Affiliation(s)
- Paolo Sanzà
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Richard D Evans
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marta Cantero
- Centro Nacional de Biotecnologia (CNB-CSIC), Madrid 28049, Spain.,CIBERER-ISCIII, Madrid 28029, Spain
| | - Lluis Montoliu
- Centro Nacional de Biotecnologia (CNB-CSIC), Madrid 28049, Spain.,CIBERER-ISCIII, Madrid 28029, Spain
| | - Shyamal Patel
- Cell Biology and Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK
| | - Elena V Sviderskaya
- Cell Biology and Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK
| | - Aymelt Itzen
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Garching 85748, Germany
| | - Ana C Figueiredo
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
| | - Miguel C Seabra
- CEDOC Faculdade de Ciencias Medicas, Universidade Nova de Lisboa, Lisbon 1169-056, Portugal
| | - Alistair N Hume
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
30
|
Lemche E. Early Life Stress and Epigenetics in Late-onset Alzheimer's Dementia: A Systematic Review. Curr Genomics 2018; 19:522-602. [PMID: 30386171 PMCID: PMC6194433 DOI: 10.2174/1389202919666171229145156] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
Involvement of life stress in Late-Onset Alzheimer's Disease (LOAD) has been evinced in longitudinal cohort epidemiological studies, and endocrinologic evidence suggests involvements of catecholamine and corticosteroid systems in LOAD. Early Life Stress (ELS) rodent models have successfully demonstrated sequelae of maternal separation resulting in LOAD-analogous pathology, thereby supporting a role of insulin receptor signalling pertaining to GSK-3beta facilitated tau hyper-phosphorylation and amyloidogenic processing. Discussed are relevant ELS studies, and findings from three mitogen-activated protein kinase pathways (JNK/SAPK pathway, ERK pathway, p38/MAPK pathway) relevant for mediating environmental stresses. Further considered were the roles of autophagy impairment, neuroinflammation, and brain insulin resistance. For the meta-analytic evaluation, 224 candidate gene loci were extracted from reviews of animal studies of LOAD pathophysiological mechanisms, of which 60 had no positive results in human LOAD association studies. These loci were combined with 89 gene loci confirmed as LOAD risk genes in previous GWAS and WES. Of the 313 risk gene loci evaluated, there were 35 human reports on epigenomic modifications in terms of methylation or histone acetylation. 64 microRNA gene regulation mechanisms were published for the compiled loci. Genomic association studies support close relations of both noradrenergic and glucocorticoid systems with LOAD. For HPA involvement, a CRHR1 haplotype with MAPT was described, but further association of only HSD11B1 with LOAD found; however, association of FKBP1 and NC3R1 polymorphisms was documented in support of stress influence to LOAD. In the brain insulin system, IGF2R, INSR, INSRR, and plasticity regulator ARC, were associated with LOAD. Pertaining to compromised myelin stability in LOAD, relevant associations were found for BIN1, RELN, SORL1, SORCS1, CNP, MAG, and MOG. Regarding epigenetic modifications, both methylation variability and de-acetylation were reported for LOAD. The majority of up-to-date epigenomic findings include reported modifications in the well-known LOAD core pathology loci MAPT, BACE1, APP (with FOS, EGR1), PSEN1, PSEN2, and highlight a central role of BDNF. Pertaining to ELS, relevant loci are FKBP5, EGR1, GSK3B; critical roles of inflammation are indicated by CRP, TNFA, NFKB1 modifications; for cholesterol biosynthesis, DHCR24; for myelin stability BIN1, SORL1, CNP; pertaining to (epi)genetic mechanisms, hTERT, MBD2, DNMT1, MTHFR2. Findings on gene regulation were accumulated for BACE1, MAPK signalling, TLR4, BDNF, insulin signalling, with most reports for miR-132 and miR-27. Unclear in epigenomic studies remains the role of noradrenergic signalling, previously demonstrated by neuropathological findings of childhood nucleus caeruleus degeneration for LOAD tauopathy.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
31
|
Ding M, Li P, Wen Y, Zhao Y, Cheng B, Zhang L, Ma M, Cheng S, Liu L, Du Y, Liang X, He A, Guo X, Zhang F. Integrative analysis of genome-wide association study and brain region related enhancer maps identifies biological pathways for insomnia. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:180-185. [PMID: 29883697 DOI: 10.1016/j.pnpbp.2018.05.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 12/30/2022]
Abstract
Insomnia is a common sleep disorder whose genetic mechanism remains unknown. The aim of this study is to identify novel genes, gene enrichment sets and enriched tissue/cell types for insomnia considering the differences across different brain regions. We conducted an integrative analysis of genome-wide association study (GWAS) and brain region related enhancer maps. Summary data was derived from a large-scale GWAS of insomnia, involving 113,006 unrelated individuals. The chromosomal enhancer maps of 6 brain regions were then aligned with the GWAS summary data to obtain the association testing results of enhancer regions for insomnia. Gene prioritization, tissue/cell and pathway enrichment analysis were implemented by Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) tool. We identified multiple cross-brain regions or brain-region specific prioritized genes for insomnia, such as MADD (P = .0013 in angular gyrus), PPP2R3C (P = .0319 in cingulate gyrus), CASP9 (P = .0066 in angular gyrus and P = .0278 in hippocampus middle), PLEKHM2 (P = .0032 in angular gyrus, P = .0052 in anterior caudate, P = .0385 in cingulate gyrus and P = .0011 in inferior temporal lobe). This study also detected a group of insomnia associated biological pathways within multiple or specific brain regions, such as REACTOME_SIGNALING_BY_NOTCH and KEGG_GLYCEROPHOSPHOLIPID_METABOLISM. Our results showed that insomnia associated genes were significantly enriched in neural stem cells. Our results highlight a set of potential points, particularly neural stem cells, for subsequent biological studies for insomnia.
Collapse
Affiliation(s)
- Miao Ding
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Yan Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Yanan Du
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Xiao Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Awen He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.
| |
Collapse
|
32
|
Kwon M, Leem S, Yoon J, Park T. GxGrare: gene-gene interaction analysis method for rare variants from high-throughput sequencing data. BMC SYSTEMS BIOLOGY 2018; 12:19. [PMID: 29560826 PMCID: PMC5861485 DOI: 10.1186/s12918-018-0543-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background With the rapid advancement of array-based genotyping techniques, genome-wide association studies (GWAS) have successfully identified common genetic variants associated with common complex diseases. However, it has been shown that only a small proportion of the genetic etiology of complex diseases could be explained by the genetic factors identified from GWAS. This missing heritability could possibly be explained by gene-gene interaction (epistasis) and rare variants. There has been an exponential growth of gene-gene interaction analysis for common variants in terms of methodological developments and practical applications. Also, the recent advancement of high-throughput sequencing technologies makes it possible to conduct rare variant analysis. However, little progress has been made in gene-gene interaction analysis for rare variants. Results Here, we propose GxGrare which is a new gene-gene interaction method for the rare variants in the framework of the multifactor dimensionality reduction (MDR) analysis. The proposed method consists of three steps; 1) collapsing the rare variants, 2) MDR analysis for the collapsed rare variants, and 3) detect top candidate interaction pairs. GxGrare can be used for the detection of not only gene-gene interactions, but also interactions within a single gene. The proposed method is illustrated with 1080 whole exome sequencing data of the Korean population in order to identify causal gene-gene interaction for rare variants for type 2 diabetes. Conclusion The proposed GxGrare performs well for gene-gene interaction detection with collapsing of rare variants. GxGrare is available at http://bibs.snu.ac.kr/software/gxgrare which contains simulation data and documentation. Supported operating systems include Linux and OS X. Electronic supplementary material The online version of this article (10.1186/s12918-018-0543-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minseok Kwon
- Department of Biomedical Informatics, Harvard Medical School, Boston, 02115, MA, USA
| | - Sangseob Leem
- Department of Statistics, Seoul National University, Seoul, 08826, South Korea
| | - Joon Yoon
- Interdisciplinary program, Seoul National University, Seoul, 08826, South Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
33
|
Ng B, White CC, Klein H, Sieberts SK, McCabe C, Patrick E, Xu J, Yu L, Gaiteri C, Bennett DA, Mostafavi S, De Jager PL. An xQTL map integrates the genetic architecture of the human brain's transcriptome and epigenome. Nat Neurosci 2017; 20:1418-1426. [PMID: 28869584 PMCID: PMC5785926 DOI: 10.1038/nn.4632] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/02/2017] [Indexed: 12/15/2022]
Abstract
We report a multi-omic resource generated by applying quantitative trait locus (xQTL) analyses to RNA sequence, DNA methylation and histone acetylation data from the dorsolateral prefrontal cortex of 411 older adults who have all three data types. We identify SNPs significantly associated with gene expression, DNA methylation and histone modification levels. Many of these SNPs influence multiple molecular features, and we demonstrate that SNP effects on RNA expression are fully mediated by epigenetic features in 9% of these loci. Further, we illustrate the utility of our new resource, xQTL Serve, by using it to prioritize the cell type(s) most affected by an xQTL. We also reanalyze published genome wide association studies using an xQTL-weighted analysis approach and identify 18 new schizophrenia and 2 new bipolar susceptibility variants, which is more than double the number of loci that can be discovered with a larger blood-based expression eQTL resource.
Collapse
Affiliation(s)
- B Ng
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - CC White
- Broad Institute, Cambridge, Massachusetts, USA
| | - H Klein
- Broad Institute, Cambridge, Massachusetts, USA
- Center for Translational & Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | - C McCabe
- Broad Institute, Cambridge, Massachusetts, USA
| | - E Patrick
- Broad Institute, Cambridge, Massachusetts, USA
| | - J Xu
- Broad Institute, Cambridge, Massachusetts, USA
| | - L Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - C Gaiteri
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - DA Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - S Mostafavi
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
- Canadian Institute for Advanced Research, CIFAR program in Child and Brain Development, Toronto, Canada
| | - PL De Jager
- Broad Institute, Cambridge, Massachusetts, USA
- Center for Translational & Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
34
|
Anazi S, Maddirevula S, Salpietro V, Asi YT, Alsahli S, Alhashem A, Shamseldin HE, AlZahrani F, Patel N, Ibrahim N, Abdulwahab FM, Hashem M, Alhashmi N, Al Murshedi F, Al Kindy A, Alshaer A, Rumayyan A, Al Tala S, Kurdi W, Alsaman A, Alasmari A, Banu S, Sultan T, Saleh MM, Alkuraya H, Salih MA, Aldhalaan H, Ben-Omran T, Al Musafri F, Ali R, Suleiman J, Tabarki B, El-Hattab AW, Bupp C, Alfadhel M, Al Tassan N, Monies D, Arold ST, Abouelhoda M, Lashley T, Houlden H, Faqeih E, Alkuraya FS. Expanding the genetic heterogeneity of intellectual disability. Hum Genet 2017; 136:1419-1429. [PMID: 28940097 DOI: 10.1007/s00439-017-1843-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/15/2017] [Indexed: 11/30/2022]
Abstract
Intellectual disability (ID) is a common morbid condition with a wide range of etiologies. The list of monogenic forms of ID has increased rapidly in recent years thanks to the implementation of genomic sequencing techniques. In this study, we describe the phenotypic and genetic findings of 68 families (105 patients) all with novel ID-related variants. In addition to established ID genes, including ones for which we describe unusual mutational mechanism, some of these variants represent the first confirmatory disease-gene links following previous reports (TRAK1, GTF3C3, SPTBN4 and NKX6-2), some of which were based on single families. Furthermore, we describe novel variants in 14 genes that we propose as novel candidates (ANKHD1, ASTN2, ATP13A1, FMO4, MADD, MFSD11, NCKAP1, NFASC, PCDHGA10, PPP1R21, SLC12A2, SLK, STK32C and ZFAT). We highlight MADD and PCDHGA10 as particularly compelling candidates in which we identified biallelic likely deleterious variants in two independent ID families each. We also highlight NCKAP1 as another compelling candidate in a large family with autosomal dominant mild intellectual disability that fully segregates with a heterozygous truncating variant. The candidacy of NCKAP1 is further supported by its biological function, and our demonstration of relevant expression in human brain. Our study expands the locus and allelic heterogeneity of ID and demonstrates the power of positional mapping to reveal unusual mutational mechanisms.
Collapse
Affiliation(s)
- Shams Anazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Vincenzo Salpietro
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Yasmine T Asi
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Saud Alsahli
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatema AlZahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous M Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nadia Alhashmi
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Fathiya Al Murshedi
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Adila Al Kindy
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Ahmad Alshaer
- Pediatric Neurology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ahmed Rumayyan
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Neurology Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Department of Pediatrics and Genetic Unit, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Wesam Kurdi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital, Riyadh, Saudi Arabia
| | - Abdulaziz Alsaman
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali Alasmari
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Selina Banu
- Department of Pediatric Neurology, ICH and SSF Hospital Mirpur, Dhaka, 1216, Bangladesh
| | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health and The Children's Hospital Lahore, 381-D/2, Lahore, Pakistan
| | - Mohammed M Saleh
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hisham Alkuraya
- Department of Ophthalmology, Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Pediatric Neurology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Fatima Al Musafri
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Rehab Ali
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Jehan Suleiman
- Division of Neurology, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Brahim Tabarki
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Caleb Bupp
- Spectrum Health Genetics, Grand Rapids, MI, USA
| | - Majid Alfadhel
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Stefan T Arold
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia. .,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia. .,Spectrum Health Genetics, Grand Rapids, MI, USA. .,Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
35
|
Transcriptional Effects of ApoE4: Relevance to Alzheimer's Disease. Mol Neurobiol 2017; 55:5243-5254. [PMID: 28879423 DOI: 10.1007/s12035-017-0757-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
Abstract
The major genetic risk factor for sporadic Alzheimer's disease (AD) is the lipid binding and transporting carrier protein apolipoprotein E, epsilon 4 allele (ApoE4). One of the unsolved mysteries of AD is how the presence of ApoE4 elicits this age-associated, currently incurable neurodegenerative disease. Recently, we showed that ApoE4 acts as a transcription factor and binds to the promoters of genes involved in a range of processes linked to aging and AD disease pathogenesis. These findings point to novel therapeutic strategies for AD and aging, resulting in an extension of human healthspan, the disease-free and functional period of life. Here, we review the effects and implications of the putative transcriptional role of ApoE4 and propose a model of Alzheimer's disease that focuses on the transcriptional nature of ApoE4 and its downstream effects, with the aim that this knowledge will help to define the role ApoE4 plays as a risk factor for AD, aging, and other processes such as inflammation and cardiovascular disease.
Collapse
|
36
|
Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology. Mol Psychiatry 2017; 22:874-883. [PMID: 27113998 PMCID: PMC5444024 DOI: 10.1038/mp.2016.59] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/12/2015] [Accepted: 01/20/2016] [Indexed: 01/02/2023]
Abstract
A recent genome-wide association meta-analysis for Alzheimer's disease (AD) identified 19 risk loci (in addition to APOE) in which the functional genes are unknown. Using Drosophila, we screened 296 constructs targeting orthologs of 54 candidate risk genes within these loci for their ability to modify Tau neurotoxicity by quantifying the size of >6000 eyes. Besides Drosophila Amph (ortholog of BIN1), which we previously implicated in Tau pathology, we identified p130CAS (CASS4), Eph (EPHA1), Fak (PTK2B) and Rab3-GEF (MADD) as Tau toxicity modulators. Of these, the focal adhesion kinase Fak behaved as a strong Tau toxicity suppressor in both the eye and an independent focal adhesion-related wing blister assay. Accordingly, the human Tau and PTK2B proteins biochemically interacted in vitro and PTK2B co-localized with hyperphosphorylated and oligomeric Tau in progressive pathological stages in the brains of AD patients and transgenic Tau mice. These data indicate that PTK2B acts as an early marker and in vivo modulator of Tau toxicity.
Collapse
|
37
|
Ghorbani S, Talebi F, Ghasemi S, Jahanbazi Jahan Abad A, Vojgani M, Noorbakhsh F. miR-181 interacts with signaling adaptor molecule DENN/MADD and enhances TNF-induced cell death. PLoS One 2017; 12:e0174368. [PMID: 28323882 PMCID: PMC5360339 DOI: 10.1371/journal.pone.0174368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 03/08/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small noncoding RNAs, which regulate the expression of protein coding transcripts through mRNA degradation or translational inhibition. Numerous reports have highlighted the role of miRNAs in regulating cell death pathways including the expression of genes involved in the induction of apoptosis. Tumor necrosis factor alpha (TNF-α) is a proinflammatory cytokine which can send pro-death signals through its receptor TNFR1. Diverse adaptor molecules including DENN/MADD adaptor protein have been shown to modulate TNF-α pro-death signaling via recruitment of MAP kinases to TNFR1 and activation of pro-survival NFκB signaling. Herein, we investigated the role of microRNA-181 (miR-181) in regulating DENN/MADD expression levels and its subsequent effects on TNF-α-induced cell death. Using bioinformatics analyses followed by luciferase reporter assays we showed that miR-181 interacts with the 3’ UTR of DENN/MADD transcripts. miR-181 overexpression also led to decreased endogenous DENN/MADD mRNA levels in L929 murine fibroblasts. Flow cytometric analysis of miR-181 transfected cells showed this miRNA accentuates mitochondrial membrane potential loss caused by TNF-α. These findings were associated with enhanced apoptosis of L929 cells following TNF-α treatment. Overall, these data point to the potential role of miR-181 in regulating TNF-α pro-death signaling, which could be of importance from pathogenesis and therapeutic perspectives in inflammatory disorders associated with tissue degeneration and cell death.
Collapse
Affiliation(s)
- Samira Ghorbani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Shefa Neuroscience Research Institute, Khatam Al-Anbia Hospital, Tehran, Iran
| | - Farideh Talebi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Ghasemi
- Shefa Neuroscience Research Institute, Khatam Al-Anbia Hospital, Tehran, Iran
| | | | - Mohammed Vojgani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
38
|
Nagae T, Araki K, Shimoda Y, Sue LI, Beach TG, Konishi Y. Cytokines and Cytokine Receptors Involved in the Pathogenesis of Alzheimer's Disease. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:441. [PMID: 27895978 PMCID: PMC5123596 DOI: 10.4172/2155-9899.1000441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory mechanisms are implicated in the pathology of Alzheimer's disease (AD). However, it is unclear whether inflammatory alterations are a cause or consequence of neurodegeneration leading to dementia. Clarifying this issue would provide valuable insight into the early diagnosis and therapeutic management of AD. To address this, we compared the mRNA expression profiles of cytokines in the brains of AD patients with "non-demented individuals with AD pathology" and non-demented healthy control (ND) individuals. "Non-demented individuals with AD pathology" are referred to as high pathology control (HPC) individuals that are considered an intermediate subset between AD and ND. HPC represents a transition between normal aging and early stage of AD, and therefore, is useful for determining whether neuroinflammation is a cause or consequence of AD pathology. We observed that immunological conditions that produce cytokines in the HPC brain were more representative of ND than AD. To validate these result, we investigated the expression of inflammatory mediators at the protein level in postmortem brain tissues. We examined the protein expression of tumor necrosis factor (TNF)α and its receptors (TNFRs) in the brains of AD, HPC, and ND individuals. We found differences in soluble TNFα and TNFRs expression between AD and ND groups and between AD and HPC groups. Expression in the temporal cortex was lower in the AD brains than HPC and ND. Our findings indicate that alterations in immunological conditions involving TNFR-mediated signaling are not the primary events initiating AD pathology, such as amyloid plaques and tangle formation. These may be early events occurring along with synaptic and neuronal changes or later events caused by these changes. In this review, we emphasize that elucidating the temporal expression of TNFα signaling molecules during AD is important to understand the selective tuning of these pathways required to develop effective therapeutic strategies for AD.
Collapse
Affiliation(s)
- Tomone Nagae
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Kiho Araki
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Yuki Shimoda
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Lucia I. Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Yoshihiro Konishi
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| |
Collapse
|
39
|
Marei HE, Althani A, Suhonen J, El Zowalaty ME, Albanna MA, Cenciarelli C, Wang T, Caceci T. Common and Rare Genetic Variants Associated With Alzheimer's Disease. J Cell Physiol 2016; 231:1432-1437. [PMID: 26496533 DOI: 10.1002/jcp.25225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/21/2015] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is one of the most devastating disorders. Despite the continuing increase of its incidence among aging populations, no effective cure has been developed mainly due to difficulties in early diagnosis of the disease before damaging of the brain, and the failure to explore its complex underlying molecular mechanisms. Recent technological advances in genome-wide association studies (GWAS) and high throughput next generation whole genome, and exome sequencing had deciphered many of AD-related loci, and discovered single nucleotide polymorphisms (SNPs) that are associated with altered AD molecular pathways. Highlighting altered molecular pathways linked to AD pathogenesis is crucial to identify novel diagnostic and therapeutic AD targets.
Collapse
Affiliation(s)
- Hany E Marei
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Asmaa Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Health Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Jaana Suhonen
- Department of Neurology, Al-Ahli Hospital, Doha, Qatar
| | | | | | - Carlo Cenciarelli
- CNR-Institute of Translational Pharmacology, Via Fosso del Cavaliere, Roma-Italy
| | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Thomas Caceci
- Department of Biomedical Sciences, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| |
Collapse
|
40
|
Abstract
A major unanswered question in biology and medicine is the mechanism by which the product of the apolipoprotein E ε4 allele, the lipid-binding protein apolipoprotein E4 (ApoE4), plays a pivotal role in processes as disparate as Alzheimer's disease (AD; in which it is the single most important genetic risk factor), atherosclerotic cardiovascular disease, Lewy body dementia, hominid evolution, and inflammation. Using a combination of neural cell lines, skin fibroblasts from AD patients, and ApoE targeted replacement mouse brains, we show in the present report that ApoE4 undergoes nuclear translocation, binds double-stranded DNA with high affinity (low nanomolar), and functions as a transcription factor. Using chromatin immunoprecipitation and high-throughput DNA sequencing, our results indicate that the ApoE4 DNA binding sites include ∼1700 gene promoter regions. The genes associated with these promoters provide new insight into the mechanism by which AD risk is conferred by ApoE4, because they include genes associated with trophic support, programmed cell death, microtubule disassembly, synaptic function, aging, and insulin resistance, all processes that have been implicated in AD pathogenesis. Significance statement: This study shows for the first time that apolipoprotein E4 binds DNA with high affinity and that its binding sites include 1700 promoter regions that include genes associated with neurotrophins, programmed cell death, synaptic function, sirtuins and aging, and insulin resistance, all processes that have been implicated in Alzheimer's disease pathogenesis.
Collapse
|
41
|
Busch JI, Unger TL, Jain N, Tyler Skrinak R, Charan RA, Chen-Plotkin AS. Increased expression of the frontotemporal dementia risk factor TMEM106B causes C9orf72-dependent alterations in lysosomes. Hum Mol Genet 2016; 25:2681-2697. [PMID: 27126638 DOI: 10.1093/hmg/ddw127] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is an important cause of dementia in individuals under age 65. Common variants in the TMEM106B gene were previously discovered by genome-wide association to confer genetic risk for FTLD-TDP (p = 1 × 10-11, OR = 1.6). Furthermore, TMEM106B may act as a genetic modifier affecting age at onset and age at death in the Mendelian subgoup of FTLD-TDP due to expansions of the C9orf72 gene. Evidence suggests that TMEM106B variants increase risk for developing FTLD-TDP by increasing expression of Transmembrane Protein 106B (TMEM106B), a lysosomal protein. To further understand the functional role of TMEM106B in disease pathogenesis, we investigated the cell biological effects of increased TMEM106B expression. Here, we report that increased TMEM106B expression results in the appearance of a vacuolar phenotype in multiple cell types, including neurons. Concomitant with the development of this vacuolar phenotype, cells over-expressing TMEM106B exhibit impaired lysosomal acidification and degradative function, as well as increased cytotoxicity. We further identify a potential lysosomal sorting motif for TMEM106B and demonstrate that abrogation of sorting to lysosomes rescues TMEM106B-induced defects. Finally, we show that TMEM106B-induced defects are dependent on the presence of C9orf72, as knockdown of C9orf72 also rescues these defects. In sum, our results suggest that TMEM106B exerts its effects on FTLD-TDP disease risk through alterations in lysosomal pathways. Furthermore, TMEM106B and C9orf72 may interact in FTLD-TDP pathophysiology.
Collapse
Affiliation(s)
- Johanna I Busch
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Travis L Unger
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nimansha Jain
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Tyler Skrinak
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rakshita A Charan
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Kim BJ, Silverman SM, Liu Y, Wordinger RJ, Pang IH, Clark AF. In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells. Mol Neurodegener 2016; 11:30. [PMID: 27098079 PMCID: PMC4839164 DOI: 10.1186/s13024-016-0093-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 04/08/2016] [Indexed: 01/24/2023] Open
Abstract
Background The c-Jun N-terminal kinase (JNK) signaling pathway plays an important role in neuronal pathophysiology. Using JNK inhibitors, we examined involvement of the JNK pathway in cultured rat retinal ganglion cell (RGC) death and in mouse retinal ischemia/reperfusion (I/R) injury of the visual axis. The in vitro effects of JNK inhibitors were evaluated in cultured adult rat retinal cells enriched in RGCs. Retinal I/R was induced in C57BL/6J mice through elevation of intraocular pressure to 120 mmHg for 60 min followed by reperfusion. SP600125 was administered intraperitoneally once daily for 28 days. Phosphorylation of JNK and c-Jun in the retina was examined by immunoblotting and immunohistochemistry. The thickness of retinal layers and cell numbers in the ganglion cell layer (GCL) were examined using H&E stained retinal cross sections and spectral domain optical coherence tomography (SD-OCT). Retinal function was measured by scotopic flash electroretinography (ERG). Volumetric measurement of the superior colliculus (SC) as well as VGLUT2 and PSD95 expression were studied. Results JNK inhibitors SP600125 and TAT-JNK-III, dose-dependently and significantly (p < 0.05) protected against glutamate excitotoxicity and trophic factor withdrawal induced RGC death in culture. In the I/R model, phosphorylation of JNK (pJNK) in the retina was significantly (p < 0.05) increased after injury. I/R injury significantly (p < 0.05) decreased the thickness of retinal layers, including the whole retina, inner plexiform layer, and inner nuclear layer and cell numbers in the GCL. Administration of SP600125 for 28 days protected against all these degenerative morphological changes (p < 0.05). In addition, SP600125 significantly (p < 0.05) protected against I/R-induced reduction in scotopic ERG b-wave amplitude at 3, 7, 14, 21 and 28 days after injury. SP600125 also protected against the I/R-induced losses in volume and levels of synaptic markers in the SC. Moreover, the protective effects of SP600125 in the retina and SC were also detected even with only 7 days (Days 1–7 after I/R) of SP600125 treatment. Conclusions Our results demonstrate the important role the JNK pathway plays in retinal degeneration in both in vitro and in vivo models and suggest that JNK inhibitors may be a useful therapeutic strategy for neuroprotection of RGCs in the retina. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0093-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Byung-Jin Kim
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.,Present Address: Department of Ophthalmology, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21231, USA
| | - Sean M Silverman
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Yang Liu
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.,Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Robert J Wordinger
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Iok-Hou Pang
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA.,Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76109, USA. .,Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| |
Collapse
|
43
|
Golizeh M, LeBlanc A, Sleno L. Identification of Acetaminophen Adducts of Rat Liver Microsomal Proteins using 2D-LC-MS/MS. Chem Res Toxicol 2015; 28:2142-50. [DOI: 10.1021/acs.chemrestox.5b00317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Makan Golizeh
- Chemistry
Department/Pharmaqam, Université du Québec à Montréal (UQÀM), Montréal, Québec H2X 2J6, Canada
| | - André LeBlanc
- Chemistry
Department/Pharmaqam, Université du Québec à Montréal (UQÀM), Montréal, Québec H2X 2J6, Canada
| | - Lekha Sleno
- Chemistry
Department/Pharmaqam, Université du Québec à Montréal (UQÀM), Montréal, Québec H2X 2J6, Canada
| |
Collapse
|
44
|
Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death. Prog Neurobiol 2015; 130:86-120. [PMID: 25930681 DOI: 10.1016/j.pneurobio.2015.04.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Recent breakthroughs in neuroscience have led to the awareness that we should revise our traditional mode of thinking and studying the CNS, i.e. by isolating the privileged network of "intelligent" synaptic contacts. We may instead need to contemplate all the variegate communications occurring between the different neural cell types, and centrally involving the astrocytes. Basically, it appears that a single astrocyte should be considered as a core that receives and integrates information from thousands of synapses, other glial cells and the blood vessels. In turn, it generates complex outputs that control the neural circuitry and coordinate it with the local microcirculation. Astrocytes thus emerge as the possible fulcrum of the functional homeostasis of the healthy CNS. Yet, evidence indicates that the bridging properties of the astrocytes can change in parallel with, or as a result of, the morphological, biochemical and functional alterations these cells undergo upon injury or disease. As a consequence, they have the potential to transform from supportive friends and interactive partners for neurons into noxious foes. In this review, we summarize the currently available knowledge on the contribution of astrocytes to the functioning of the CNS and what goes wrong in various pathological conditions, with a particular focus on Amyotrophic Lateral Sclerosis, Alzheimer's Disease and ischemia. The observations described convincingly demonstrate that the development and progression of several neurological disorders involve the de-regulation of a finely tuned interplay between multiple cell populations. Thus, it seems that a better understanding of the mechanisms governing the integrated communication and detrimental responses of the astrocytes as well as their impact towards the homeostasis and performance of the CNS is fundamental to open novel therapeutic perspectives.
Collapse
|
45
|
Cui L, Li G, Zhong W, Bian Y, Su S, Sheng Y, Shi Y, Wei D, Zhang W, Zhao H, Chen ZJ. Polycystic ovary syndrome susceptibility single nucleotide polymorphisms in women with a single PCOS clinical feature. Hum Reprod 2015; 30:732-6. [DOI: 10.1093/humrep/deu361] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
46
|
Smith N, Hankinson J, Simpson A, Denning D, Bowyer P. Reduced expression of TLR3, TLR10 and TREM1 by human macrophages in Chronic cavitary pulmonary aspergillosis, and novel associations of VEGFA, DENND1B and PLAT. Clin Microbiol Infect 2014; 20:O960-8. [DOI: 10.1111/1469-0691.12643] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022]
|
47
|
Therrien M, Parker JA. Deciphering genetic interactions between ALS genes using C. elegans. WORM 2014; 3:e29047. [PMID: 25254150 DOI: 10.4161/worm.29047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/14/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder causing selective death of motor neurons in which it is speculated that 10% of cases have a familial history. In the past 20 years, many genes causative for ALS have been discovered, but the link between them and their roles in neurodegeneration remain unknown. The identification of genes associated with both ALS and frontotemporal dementia (FTD), along with the observation of patients affected by both diseases, have suggested that they are part of the same neurodegenerative spectrum. Investigating possible genetic interactions among ALS/FTD genes could help understand the role of these genes in neurodegeneration. To pursue this goal, our group has developed several ALS models to study potential genetic interactions. More recently, we characterized the deletion mutant alfa-1, the ortholog of C9ORF72, to evaluate the potential genetic interactions between C9ORF72/alfa-1 and other ALS genes. Here, we discuss the genetic interactions identified in our models and how some of these proteins may also be linked to other neurodegenerative disorders.
Collapse
Affiliation(s)
- Martine Therrien
- CRCHUM; Montréal, QC Canada ; Departement de pathologie et biologie cellulaire; Universite de Montréal; Montréal, QC Canada
| | - J Alex Parker
- CRCHUM; Montréal, QC Canada ; Departement de pathologie et biologie cellulaire; Universite de Montréal; Montréal, QC Canada ; Departement de neurosciences; Universite de Montréal; Montréal, QC Canada
| |
Collapse
|
48
|
Li LC, Wang Y, Carr R, Haddad CS, Li Z, Qian L, Oberholzer J, Maker AV, Wang Q, Prabhakar BS. IG20/MADD plays a critical role in glucose-induced insulin secretion. Diabetes 2014; 63:1612-23. [PMID: 24379354 PMCID: PMC3994957 DOI: 10.2337/db13-0707] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic β-cell dysfunction is a common feature of type 2 diabetes. Earlier, we had cloned IG20 cDNA from a human insulinoma and had shown that IG20/MADD can encode six different splice isoforms that are differentially expressed and have unique functions, but its role in β-cell function was unexplored. To investigate the role of IG20/MADD in β-cell function, we generated conditional knockout (KMA1ko) mice. Deletion of IG20/MADD in β-cells resulted in hyperglycemia and glucose intolerance associated with reduced and delayed glucose-induced insulin production. KMA1ko β-cells were able to process insulin normally but had increased insulin accumulation and showed a severe defect in glucose-induced insulin release. These findings indicated that IG20/MADD plays a critical role in glucose-induced insulin release from β-cells and that its functional disruption can cause type 2 diabetes. The clinical relevance of these findings is highlighted by recent reports of very strong association of the rs7944584 single nucleotide polymorphism (SNP) of IG20/MADD with fasting hyperglycemia/diabetes. Thus, IG20/MADD could be a therapeutic target for type 2 diabetes, particularly in those with the rs7944584 SNP.
Collapse
Affiliation(s)
- Liang-cheng Li
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
- School of Pharmaceutical Sciences, Xiamen University at Xiang'an, Xiamen, Fujian, China
| | - Yong Wang
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Ryan Carr
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Christine Samir Haddad
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Ze Li
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Lixia Qian
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jose Oberholzer
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Ajay V. Maker
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Qian Wang
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Bellur S. Prabhakar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
- Corresponding author: Bellur S. Prabhakar,
| |
Collapse
|
49
|
Carbone M, Lleo A, Sandford RN, Invernizzi P. Implications of genome-wide association studies in novel therapeutics in primary biliary cirrhosis. Eur J Immunol 2014; 44:945-954. [PMID: 24481870 PMCID: PMC4013286 DOI: 10.1002/eji.201344270] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/07/2014] [Accepted: 01/27/2014] [Indexed: 12/11/2022]
Abstract
Genome-wide association studies (GWAS) have revolutionized the search for genetic influences on complex disorders, such as primary biliary cirrhosis (PBC). Recent GWAS have identified many disease-associated genetic variants. These, overall, highlighted the remarkable contribution of key immunological pathways in PBC that may be involved in the initial mechanisms of loss of tolerance and the subsequent inflammatory response and chronic bile duct damage. Results from GWAS have the potential to be translated in biological knowledge and, hopefully, clinical application. There are a number of immune pathways highlighted in GWAS that may have therapeutic implications in PBC and in other autoimmune diseases, such as the anti-interleukin-12/interleukin-23, nuclear factor-kb, tumor necrosis factor, phosphatidylinositol signaling and hedgehog signaling pathways. Further areas in which GWAS findings are leading to clinical applications either in PBC or in other autoimmune conditions, include disease classification, risk prediction and drug development. In this review we outline the possible next steps that may help accelerate progress from genetic studies to the biological knowledge that would guide the development of predictive, preventive, or therapeutic measures in PBC.
Collapse
Affiliation(s)
- Marco Carbone
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Richard N. Sandford
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, California, USA
| |
Collapse
|
50
|
Gendron TF, Belzil VV, Zhang YJ, Petrucelli L. Mechanisms of toxicity in C9FTLD/ALS. Acta Neuropathol 2014; 127:359-76. [PMID: 24394885 DOI: 10.1007/s00401-013-1237-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022]
Abstract
A hexanucleotide repeat expansion within a non-coding region of the C9ORF72 gene is the most common mutation causative of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Elucidating how this bidirectionally transcribed G4C2·C4G2 expanded repeat causes "C9FTLD/ALS" has since become an important goal of the field. Likely pathogenic mechanisms include toxicity induced by repeat-containing RNAs, and loss of C9orf72 function due to epigenetic changes resulting in decreased C9ORF72 mRNA expression. With regards to the former, sense and antisense transcripts of the expanded repeat aberrantly interact with various RNA-binding proteins and form discrete nuclear structures, termed RNA foci. These foci have the capacity to sequester select RNA-binding proteins, thereby impairing their function. (G4C2)exp and (C4G2)exp transcripts also succumb to an alternative fate: repeat-associated non-ATG (RAN) translation. This unconventional mode of translation, which occurs in the absence of an initiating codon, results in the abnormal production of poly(GA), poly(GP), poly(GR), poly(PR) and poly(PA) peptides, collectively referred to as C9RAN proteins. C9RAN proteins form neuronal inclusions throughout the central nervous system of C9FTLD/ALS patients and may contribute to disease pathogenesis. This review aims to summarize the important findings from studies examining mechanisms of disease in C9FTLD/ALS, and will also highlight some of the many questions in need of further investigation.
Collapse
|