1
|
Liu Y, Zuo Y, Li C, Fu P, He X, Wang Z, Li Y, Wan C, Wang Y, Wang Y, Zhu L, Shen X. Activation of an antifungal pathway in Yersinia pseudotuberculosis by chitin-receptor-mediated fungal recognition. Curr Biol 2025:S0960-9822(25)00569-X. [PMID: 40403720 DOI: 10.1016/j.cub.2025.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 04/07/2025] [Accepted: 04/28/2025] [Indexed: 05/24/2025]
Abstract
Despite the ubiquitous nature of bacterial-fungal interactions (BFIs), it is not fully understood how bacteria detect the presence of a potential fungal competitor to initiate appropriate defense responses. In this study, we show that the enteropathogen Yersinia pseudotuberculosis (Yptb) utilizes the two-component system (TCS) histidine kinase RstB to sense chitin as a pathogen-associated molecular pattern (PAMP) for detecting fungi, resulting in the phosphorylation of the downstream response regulator RstA and subsequent activation of the classical type II secretion system (T2SS) and the tight adherence secretion system (TadSS), a major subtype of T2SS. The activation of T2SS and TadSS facilitates the secretion of chitinase T2SS/TadSS-related chitinase effector (TscE), which eliminates fungi and enhances bacterial colonization of the murine gut. These findings not only elucidate the role of T2SS and TscE in antagonizing fungal competitors but also offer insights into the interkingdom recognition mechanisms between bacteria and fungi.
Collapse
Affiliation(s)
- Yuqi Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yuxin Zuo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China; College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Changfu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Peishuai Fu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xinquan He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhuo Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, P.R. China
| | - Chuanxing Wan
- College of Life Sciences, Tarim University, Alar, Xinjiang 843300, P.R. China
| | - Yang Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Lingfang Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
| |
Collapse
|
2
|
Tugui CG, Sorokin DY, Hijnen W, Wunderer J, Bout K, van Loosdrecht MCM, Pabst M. Exploring the metabolic potential of Aeromonas to utilise the carbohydrate polymer chitin. RSC Chem Biol 2025; 6:227-239. [PMID: 39703203 PMCID: PMC11653859 DOI: 10.1039/d4cb00200h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
Members of the Aeromonas genus are commonly found in natural aquatic ecosystems. However, they are also frequently present in non-chlorinated drinking water distribution systems. High densities of these bacteria indicate favorable conditions for microbial regrowth, which is considered undesirable. Studies have indicated that the presence of Aeromonas is associated with loose deposits and the presence of invertebrates, specifically Asellus aquaticus. Therefore, a potential source of energy in these nutrient poor environments is chitin, the structural shell component in these invertebrates. In this study, we demonstrate the ability of two Aeromonas strains, commonly encountered in drinking water distribution systems, to effectively degrade and utilize chitin as a sole carbon and nitrogen source. We conducted a quantitative proteomics study on the cell biomass and secretome from pure strain cultures when switching the nutrient source from glucose to chitin, uncovering a diverse array of hydrolytic enzymes and metabolic pathways specifically dedicated to the utilization of chitin. Additionally, a genomic analysis of different Aeromonas species suggests the general ability of this genus to degrade and utilize a variety of carbohydrate biopolymers. This study indicates the relation between the utilization of chitin by Aeromonas and their association with invertebrates such as A. aquaticus in loose deposits in drinking water distribution systems.
Collapse
Affiliation(s)
- Claudia G Tugui
- Delft University of Technology, Department of Biotechnology Delft The Netherlands
| | - Dimitry Y Sorokin
- Delft University of Technology, Department of Biotechnology Delft The Netherlands
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, RAS Moscow Russia
| | - Wim Hijnen
- Evides Water Company Rotterdam The Netherlands
| | | | - Kaatje Bout
- Delft University of Technology, Department of Biotechnology Delft The Netherlands
| | | | - Martin Pabst
- Delft University of Technology, Department of Biotechnology Delft The Netherlands
| |
Collapse
|
3
|
Hullinger AC, Green VE, Klancher CA, Dalia TN, Dalia AB. Two transmembrane transcriptional regulators coordinate to activate chitin-induced natural transformation in Vibrio cholerae. PLoS Genet 2025; 21:e1011606. [PMID: 39965000 PMCID: PMC11856585 DOI: 10.1371/journal.pgen.1011606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/25/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Transcriptional regulators are a broad class of proteins that alter gene expression in response to environmental stimuli. Transmembrane transcriptional regulators (TTRs) are a subset of transcriptional regulators in bacteria that can directly regulate gene expression while remaining anchored in the membrane. Whether this constraint impacts the ability of TTRs to bind their DNA targets remains unclear. Vibrio cholerae uses two TTRs, ChiS and TfoS, to activate horizontal gene transfer by natural transformation in response to chitin by inducing the tfoR promoter (PtfoR). While TfoS was previously shown to bind and regulate PtfoR directly, the role of ChiS in PtfoR activation remains unclear. Here, we show that ChiS directly binds PtfoR upstream of TfoS, and that ChiS directly interacts with TfoS. By independently disrupting ChiS-PtfoR and ChiS-TfoS interactions, we show that ChiS-PtfoR interactions play the dominant role in PtfoR activation. Correspondingly, we show that in the absence of ChiS, recruitment of the PtfoR locus to the membrane is sufficient for PtfoR activation when TfoS is expressed at native levels. Finally, we show that the overexpression of TfoS can bypass the need for ChiS for PtfoR activation. All together, these data suggest a model whereby ChiS both (1) recruits the PtfoR DNA locus to the membrane for TfoS and (2) directly interacts with TfoS, thereby recruiting it to the membrane-proximal promoter. This work furthers our understanding of the molecular mechanisms that drive chitin-induced responses in V. cholerae and more broadly highlights how the membrane-embedded localization of TTRs can impact their activity.
Collapse
Affiliation(s)
- Allison C. Hullinger
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Virginia E. Green
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Catherine A. Klancher
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Triana N. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
4
|
Hullinger AC, Green VE, Klancher CA, Dalia TN, Dalia AB. Two transmembrane transcriptional regulators coordinate to activate chitin-induced natural transformation in Vibrio cholerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.30.615920. [PMID: 39974991 PMCID: PMC11838194 DOI: 10.1101/2024.09.30.615920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Transcriptional regulators are a broad class of proteins that alter gene expression in response to environmental stimuli. Transmembrane transcriptional regulators (TTRs) are a subset of transcriptional regulators in bacteria that can directly regulate gene expression while remaining anchored in the membrane. Whether this constraint impacts the ability of TTRs to bind their DNA targets remains unclear. Vibrio cholerae uses two TTRs, ChiS and TfoS, to activate horizontal gene transfer by natural transformation in response to chitin by inducing the tfoR promoter (P tfoR ). While TfoS was previously shown to bind and regulate P tfoR directly, the role of ChiS in P tfoR activation remains unclear. Here, we show that ChiS directly binds P tfoR upstream of TfoS, and that ChiS directly interacts with TfoS. By independently disrupting ChiS-P tfoR and ChiS-TfoS interactions, we show that ChiS-P tfoR interactions play the dominant role in P tfoR activation. Correspondingly, we show that in the absence of ChiS, recruitment of the P tfoR locus to the membrane is sufficient for P tfoR activation when TfoS is expressed at native levels. Finally, we show that the overexpression of TfoS can bypass the need for ChiS for P tfoR activation. All together, these data suggest a model whereby ChiS both (1) recruits the P tfoR DNA locus to the membrane for TfoS and (2) directly interacts with TfoS, thereby recruiting it to the membrane-proximal promoter. This work furthers our understanding of the molecular mechanisms that drive chitin-induced responses in V. cholerae and more broadly highlights how the membrane-embedded localization of TTRs can impact their activity. AUTHOR SUMMARY Living organisms inhabit diverse environments where they encounter a wide range of stressors. To survive, they must rapidly sense and respond to their surroundings. One universally conserved mechanism to respond to stimuli is via the action of DNA-binding transcriptional regulators. In bacterial species, these regulators are canonically cytoplasmic proteins that freely diffuse within the cytoplasm. In contrast, an emerging class of transmembrane transcriptional regulators (TTRs) directly regulate gene expression from the cell membrane. Prior work shows that two TTRs, TfoS and ChiS, cooperate to activate horizontal gene transfer by natural transformation in response to chitin in the facultative pathogen Vibrio cholerae . However, how these TTRs coordinate to activate this response has remained unclear. Here, we show that ChiS likely promotes TfoS-dependent activation of natural transformation by (1) relocalizing its target promoter to the membrane and (2) recruiting TfoS to the membrane proximal promoter through a direct interaction. Together, these results inform our understanding of both the V. cholerae chitin response and how TTR function can be impacted by their membrane localization.
Collapse
|
5
|
Yang Y, Yan J, Olson R, Jiang X. Comprehensive Genomic and Evolutionary Analysis of Biofilm Matrix Clusters and Proteins in the Vibrio Genus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.19.608685. [PMID: 39372729 PMCID: PMC11451748 DOI: 10.1101/2024.08.19.608685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Vibrio cholerae pathogens cause cholera, an acute diarrheal disease resulting in significant morbidity and mortality worldwide. Biofilms in vibrios enhance their survival in natural ecosystems and facilitate transmission during cholera outbreaks. Critical components of the biofilm matrix include the Vibrio polysaccharides produced by the vps-1 and vps-2 gene clusters and the biofilm matrix proteins encoded in the rbm gene cluster, together comprising the biofilm matrix cluster. However, the biofilm matrix clusters and their evolutionary patterns in other Vibrio species remain underexplored. In this study, we systematically investigated the distribution, diversity, and evolution of biofilm matrix clusters and proteins across the Vibrio genus. Our findings reveal that these gene clusters are sporadically distributed throughout the genus, even appearing in species phylogenetically distant from V. cholerae. Evolutionary analysis of the major biofilm matrix proteins RbmC and Bap1 shows that they are structurally and sequentially related, having undergone structural domain and modular alterations. Additionally, a novel loop-less Bap1 variant was identified, predominantly represented in two phylogenetically distant Vibrio cholerae subspecies clades that share specific gene groups associated with the presence or absence of the protein. Furthermore, our analysis revealed that rbmB, a gene involved in biofilm dispersal, shares a recent common ancestor with Vibriophage tail proteins, suggesting that phages may mimic host functions to evade biofilm-associated defenses. Our study offers a foundational understanding of the diversity and evolution of biofilm matrix clusters in vibrios, laying the groundwork for future biofilm engineering through genetic modification.
Collapse
Affiliation(s)
- Yiyan Yang
- Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Rich Olson
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA
| | - Xiaofang Jiang
- Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Zhao Z, Liu S, Jiang S, Zhang D, Sha Z. Diversity and Potential Metabolic Characteristics of Culturable Copiotrophic Bacteria That Can Grow on Low-Nutrient Medium in Zhenbei Seamount in the South China Sea. MICROBIAL ECOLOGY 2024; 87:157. [PMID: 39708139 DOI: 10.1007/s00248-024-02475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Oligotrophs are predominant in nutrient-poor environments, but copiotrophic bacteria may tolerate conditions of low energy and can also survive and thrive in these nutrient-limited conditions. In the present study, we isolated 648 strains using a dilution plating method after enrichment for low-nutrient conditions. We collected 150 seawater samples at 21 stations in different parts of the water column at the Zhenbei Seamount in the South China Sea. The 648 isolated copiotrophic strains that could grow on low-nutrient medium were in 21 genera and 42 species. A total of 99.4% (644/648) of the bacteria were in the phylum Pseudomonadota, with 73.3% (472/644) in the class Gammaproteobacteria and 26.7% (172/644) in the class Alphaproteobacteria. Among the 42 representative isolates, Pseudoalteromonas arabiensis, Roseibium aggregatum, and Vibrio neocaledonicus were present in all layers of seawater and at almost all of the stations. Almost half of these species (20/42) contained genes that performed nitrate reduction, with confirmation by nitrate reduction testing. These isolates also contained genes that functioned in sulfur metabolism, including sulfate reduction, thiosulfate oxidation, thiosulfate disproportionation, and dimethylsulfoniopropionate degradation. GH23, CBM50, GT4, GT2, and GT51 were the main carbohydrate-active enzymes (CAZymes), and these five enzymes were present in all or almost all of the isolated strains. The most abundant classes of CAZymes were those associated with the degradation of chitin, starch, and cellulose. Collectively, our study of marine copiotrophic bacteria capable of growing on low-nutrient medium demonstrated the diversity of these species and their potential metabolic characteristics.
Collapse
Affiliation(s)
- Zhangqi Zhao
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Sizhen Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shan Jiang
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dechao Zhang
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhongli Sha
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Laoshan Laboratory, Qingdao, 266237, China.
| |
Collapse
|
7
|
Meunier L, Costa R, Keller-Costa T, Cannella D, Dechamps E, George IF. Selection of marine bacterial consortia efficient at degrading chitin leads to the discovery of new potential chitin degraders. Microbiol Spectr 2024; 12:e0088624. [PMID: 39315806 PMCID: PMC11537107 DOI: 10.1128/spectrum.00886-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/13/2024] [Indexed: 09/25/2024] Open
Abstract
Chitin degradation is a keystone process in the oceans, mediated by marine microorganisms with the help of several enzymes, mostly chitinases. Sediment, seawater, and filter-feeding marine invertebrates, such as sponges, are known to harbor chitin-degrading bacteria and are presumably hotspots for chitin turnover. Here, we employed an artificial selection process involving enrichment cultures derived from microbial communities associated with the marine sponge Hymeniacidon perlevis, its surrounding seawater and sediment, to select bacterial consortia capable of degrading raw chitin. Throughout the artificial selection process, chitin degradation rates and the taxonomic composition of the four successive enrichment cultures were followed. To the best of our knowledge, chitin degradation was characterized for the first time using size exclusion chromatography, which revealed significant shifts in the numbered average chitin molecular weight, strongly suggesting the involvement of endo-chitinases in the breakdown of the chitin polymer during the enrichment process. Concomitantly with chitin degradation, the enrichment cultures exhibited a decrease in alpha diversity compared with the environmental samples. Notably, some of the dominant taxa in the enriched communities, such as Motilimonas, Arcobacter, and Halarcobacter, were previously unknown to be involved in chitin degradation. In particular, the analysis of published genomes of these genera suggests a pivotal role of Motilimonas in the hydrolytic cleavage of chitin. This study provides context to the microbiome of the marine sponge Hymeniacidon perlevis in light of its environmental surroundings and opens new ground to the future discovery and characterization of novel enzymes of marine origin involved in chitin degradation processes.IMPORTANCEChitin is the second most abundant biopolymer on Earth after cellulose, and the most abundant in the marine environment. At present, industrial processes for the conversion of seafood waste into chitin, chitosan, and chitooligosaccharide (COS) rely on the use of high amounts of concentrated acids or strong alkali at high temperature. Developing bio-based methods to transform available chitin into valuable compounds, such as chitosan and COS, holds promise in promoting a more sustainable, circular bioeconomy. By employing an artificial selection procedure based on chitin as a sole C and N source, we discovered microorganisms so-far unknown to metabolize chitin in the rare microbial biosphere of several marine biotopes. This finding represents a first important step on the path towards characterizing and exploiting potentially novel enzymes of marine origin with biotechnological interest, since products of chitin degradation may find applications across several sectors, such as agriculture, pharmacy, and waste management.
Collapse
Affiliation(s)
- Laurence Meunier
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB) and Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences (iBB) and Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
| | - David Cannella
- PhotoBioCatalysis Unit, Crop Nutrition and Biostimulation Lab (CPBL) and Biomass Transformation Lab (BTL), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels, Belgium
| | - Etienne Dechamps
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Isabelle F. George
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
8
|
Zhou Y, Rernglit W, Fukamizo T, Sucharitakul J, Suginta W. A three-step "ping-pong" mechanism of a GH20 β-N-acetylglucosaminidase from Vibrio campbellii belonging to a major Clade A-I of the phylogenetic tree of the enzyme superfamily. Biochem Biophys Res Commun 2024; 729:150357. [PMID: 39002194 DOI: 10.1016/j.bbrc.2024.150357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
β-N-acetylglucosaminidase (GlcNAcase) is an essential biocatalyst in chitin assimilation by marine Vibrio species, which rely on chitin as their main carbon source. Structure-based phylogenetic analysis of the GlcNAcase superfamily revealed that a GlcNAcase from Vibrio campbellii, formerly named V. harveyi, (VhGlcNAcase) belongs to a major clade, Clade A-I, of the phylogenetic tree. Pre-steady-state and steady-state kinetic analysis of the reaction catalysed by VhGlcNAcase with the fluorogenic substrate 4-methylumbelliferyl N-acetyl-β-D-glucosaminide suggested the following mechanism: (1) the Michaelis-Menten complex is formed in a rapid enzyme-substrate equilibrium with a Kd of 99.1 ± 1 μM. (2) The glycosidic bond is cleaved by the action of the catalytic residue Glu438, followed by the rapid release of the aglycone product with a rate constant (k2) of 53.3 ± 1 s-1. (3) After the formation of an oxazolinium ion intermediate with the assistance of Asp437, the anomeric carbon of the transition state is attacked by a catalytic water, followed by release of the glycone product with a rate constant (k3) of 14.6 s-1, which is rate-limiting. The result clearly indicated a three-step "ping-pong" mechanism for VhGlcNAcase.
Collapse
Affiliation(s)
- Yong Zhou
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Waraporn Rernglit
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Tamo Fukamizo
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand.
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand.
| |
Collapse
|
9
|
Ben Slimene Debez I, Houmani H, Mahmoudi H, Mkadmini K, Garcia-Caparros P, Debez A, Tabbene O, Djébali N, Urdaci MC. Response Surface Methodology-Based Optimization of the Chitinolytic Activity of Burkholderia contaminans Strain 614 Exerting Biological Control against Phytopathogenic Fungi. Microorganisms 2024; 12:1580. [PMID: 39203422 PMCID: PMC11356717 DOI: 10.3390/microorganisms12081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
As part of the development of alternative and environmentally friendly control against phytopathogenic fungi, Burkholderia cepacia could be a useful species notably via the generation of hydrolytic enzymes like chitinases, which can act as a biological control agent. Here, a Burkholderia contaminans S614 strain exhibiting chitinase activity was isolated from a soil in southern Tunisia. Then, response surface methodology (RSM) with a central composite design (CCD) was used to assess the impact of five factors (colloidal chitin, magnesium sulfate, dipotassium phosphate, yeast extract, and ammonium sulfate) on chitinase activity. B. contaminans strain 614 growing in the optimized medium showed up to a 3-fold higher chitinase activity. This enzyme was identified as beta-N-acetylhexosaminidase (90.1 kDa) based on its peptide sequences, which showed high similarity to those of Burkholderia lata strain 383. Furthermore, this chitinase significantly inhibited the growth of two phytopathogenic fungi: Botrytis cinerea M5 and Phoma medicaginis Ph8. Interestingly, a crude enzyme from strain S614 was effective in reducing P. medicaginis damage on detached leaves of Medicago truncatula. Overall, our data provide strong arguments for the agricultural and biotechnological potential of strain S614 in the context of developing biocontrol approaches.
Collapse
Affiliation(s)
- Imen Ben Slimene Debez
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia; (I.B.S.D.); (O.T.); (N.D.)
| | - Hayet Houmani
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia; (H.H.); (A.D.)
| | - Henda Mahmoudi
- International Center for Biosaline Agriculture (ICBA), Academic City, Near Zayed University, Dubai P.O. Box 14660, United Arab Emirates
| | - Khaoula Mkadmini
- Useful Materials Valorization Laboratory, National Centre of Research in Materials Science, Technologic Park of Borj Cedria, BP 073, Soliman 8027, Tunisia;
| | - Pedro Garcia-Caparros
- Agronomy Department of Superior School Engineering, University of Almería, 04120 Almeria, Spain;
| | - Ahmed Debez
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia; (H.H.); (A.D.)
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia; (I.B.S.D.); (O.T.); (N.D.)
| | - Naceur Djébali
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia; (I.B.S.D.); (O.T.); (N.D.)
| | - Maria-Camino Urdaci
- Laboratoire de Microbiologie, Université de Bordeaux-Bordeaux Sciences Agro, UMR 5248, 1 Cours du Général de Gaulle, 33175 Gradignan, France;
| |
Collapse
|
10
|
Guseva K, Mohrlok M, Alteio L, Schmidt H, Pollak S, Kaiser C. Bacteria face trade-offs in the decomposition of complex biopolymers. PLoS Comput Biol 2024; 20:e1012320. [PMID: 39116194 PMCID: PMC11364420 DOI: 10.1371/journal.pcbi.1012320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/30/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Although depolymerization of complex carbohydrates is a growth-limiting bottleneck for microbial decomposers, we still lack understanding about how the production of different types of extracellular enzymes affect individual microbes and in turn the performance of whole decomposer communities. In this work we use a theoretical model to evaluate the potential trade-offs faced by microorganisms in biopolymer decomposition which arise due to the varied biochemistry of different depolymerizing enzyme classes. We specifically consider two broad classes of depolymerizing extracellular enzymes, which are widespread across microbial taxa: exo-enzymes that cleave small units from the ends of polymer chains and endo-enzymes that act at random positions generating degradation products of varied sizes. Our results demonstrate a fundamental trade-off in the production of these enzymes, which is independent of system's complexity and which appears solely from the intrinsically different temporal depolymerization dynamics. As a consequence, specialists that produce either exo- or only endo-enzymes limit their growth to high or low substrate conditions, respectively. Conversely, generalists that produce both enzymes in an optimal ratio expand their niche and benefit from the synergy between the two enzymes. Finally, our results show that, in spatially-explicit environments, consortia composed of endo- and exo-specialists can only exist under oligotrophic conditions. In summary, our analysis demonstrates that the (evolutionary or ecological) selection of a depolymerization pathway will affect microbial fitness under low or high substrate conditions, with impacts on the ecological dynamics of microbial communities. It provides a possible explanation why many polysaccharide degraders in nature show the genetic potential to produce both of these enzyme classes.
Collapse
Affiliation(s)
- Ksenia Guseva
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Moritz Mohrlok
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Lauren Alteio
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and innovation, Tulln, Austria
| | - Hannes Schmidt
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Shaul Pollak
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Christina Kaiser
- Centre for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Itoh T, Ogawa T, Hibi T, Kimoto H. Characterization of the extracellular domain of sensor histidine kinase NagS from Paenibacillus sp. str. FPU-7: nagS interacts with oligosaccharide binding protein NagB1 in complexes with N, N'-diacetylchitobiose. Biosci Biotechnol Biochem 2024; 88:294-304. [PMID: 38059852 DOI: 10.1093/bbb/zbad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
We have previously isolated the Gram-positive chitin-degrading bacterium Paenibacillus sp. str. FPU-7. This bacterium traps chitin disaccharide (GlcNAc)2 on its cell surface using two homologous solute-binding proteins, NagB1 and NagB2. Bacteria use histidine kinase (HK) of the two-component regulatory system as an extracellular environment sensor. In this study, we found that nagS, which encodes a HK, is located next to the nagB1 gene. Biochemical experiments revealed that the NagS sensor domain (NagS30-294) interacts with the NagB1-(GlcNAc)2 complex. However, proof of NagS30-294 interacting with NagB1 without (GlcNAc)2 is currently unavailable. In contrast to NagB1, no complex formation was observed between NagS30-294 and NagB2, even in the presence of (GlcNAc)2. The NagS30-294 crystal structure at 1.8 Å resolution suggested that the canonical tandem-Per-Arnt-Sim fold recognizes the NagB1-(GlcNAc)2 complex. This study provides insight into the recognition of chitin oligosaccharides by bacteria.
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Tomoki Ogawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Takao Hibi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Hisashi Kimoto
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| |
Collapse
|
12
|
Dinçtürk E, Öndes F, Leria L, Maldonado M. Mass mortality of the keratose sponge Sarcotragus foetidus in the Aegean Sea (Eastern Mediterranean) correlates with proliferation of Vibrio bacteria in the tissues. Front Microbiol 2023; 14:1272733. [PMID: 38107859 PMCID: PMC10722426 DOI: 10.3389/fmicb.2023.1272733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/12/2023] [Indexed: 12/19/2023] Open
Abstract
In the last two decades, episodes of mass mortality in benthic communities have often been associated with climatic anomalies, but the ultimate mechanisms through which they lead to death have rarely been identified. This study reports a mass mortality of wild sponges in the Aegean Sea (Turkey, Eastern Mediterranean), which affected the keratose demosponge Sarcotragus foetidus in September 2021. We examined the occurrence of thermo-dependent bacteria of the genus Vibrio in the sponges, identified through 16S rRNA of colonies isolated from sponge tissue in specific culturing media. Six Vibrio sequences were identified from the sponges, three of them being putatively pathogenic (V. fortis, V. owensii, V. gigantis). Importantly, those Vibrios were isolated from only tissues of diseased sponges. In contrast, healthy individuals sampled in both summer and winter led to no Vibrio growth in laboratory cultures. A 50 years record of sea surface temperature (SST) data for the study area reveals a progressive increase in temperature from 1970 to 2021, with values above 24°C from May to September 2021, reaching an absolute historical maximum of 28.9°C in August 2021. We hypothesize that such elevated SST values maintained for several months in 2021 promoted proliferation of pathogenic Vibrio species (thermo-dependent bacteria) in S. foetidus, triggering or aggravating the course of sponge disease. Thus, vibrioisis emerges as one of the putative mechanisms through which global water warming in the Mediterranean Sea translates into sponge mortality. The historical time course of temperature data for the studied area in the Aegean Sea predicts that recurrent waves of elevated SST are likely to occur in the coming summers. If so, recurrent disease may eventually eliminate this abundant sponge from the sublittoral in the midterm, altering the original bathymetric distribution of the species and compromising its ecological role.
Collapse
Affiliation(s)
- Ezgi Dinçtürk
- Fish Disease and Biotechnology Laboratory, Department of Aquaculture, Faculty of Fisheries, Izmir Katip Celebi University, Izmir, Türkiye
| | - Fikret Öndes
- Fisheries Laboratory, Department of Fisheries and Seafood Processing Technology, Faculty of Fisheries, Izmir Katip Celebi University, Izmir, Türkiye
- Department of Marine Sciences and Applied Biology, Faculty of Science, University of Alicante, Alicante, Spain
| | - Laia Leria
- Department of Aquatic Ecology, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Girona, Spain
| | - Manuel Maldonado
- Department of Aquatic Ecology, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Girona, Spain
| |
Collapse
|
13
|
Ohnuma T, Tsujii J, Kataoka C, Yoshimoto T, Takeshita D, Lampela O, Juffer AH, Suginta W, Fukamizo T. Periplasmic chitooligosaccharide-binding protein requires a three-domain organization for substrate translocation. Sci Rep 2023; 13:20558. [PMID: 37996461 PMCID: PMC10667598 DOI: 10.1038/s41598-023-47253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Periplasmic solute-binding proteins (SBPs) specific for chitooligosaccharides, (GlcNAc)n (n = 2, 3, 4, 5 and 6), are involved in the uptake of chitinous nutrients and the negative control of chitin signal transduction in Vibrios. Most translocation processes by SBPs across the inner membrane have been explained thus far by two-domain open/closed mechanism. Here we propose three-domain mechanism of the (GlcNAc)n translocation based on experiments using a recombinant VcCBP, SBP specific for (GlcNAc)n from Vibrio cholerae. X-ray crystal structures of unliganded or (GlcNAc)3-liganded VcCBP solved at 1.2-1.6 Å revealed three distinct domains, the Upper1, Upper2 and Lower domains for this protein. Molecular dynamics simulation indicated that the motions of the three domains are independent and that in the (GlcNAc)3-liganded state the Upper2/Lower interface fluctuated more intensively, compared to the Upper1/Lower interface. The Upper1/Lower interface bound two GlcNAc residues tightly, while the Upper2/Lower interface appeared to loosen and release the bound sugar molecule. The three-domain mechanism proposed here was fully supported by binding data obtained by thermal unfolding experiments and ITC, and may be applicable to other translocation systems involving SBPs belonging to the same cluster.
Collapse
Affiliation(s)
- Takayuki Ohnuma
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan.
- Agricultural Technology and Innovation Research Institute (ATIRI), Kindai University, 3327-204, Nakamachi, Nara, 631-8505, Japan.
| | - Jun Tsujii
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan
| | - Chikara Kataoka
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan
| | - Teruki Yoshimoto
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan
| | - Daijiro Takeshita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba-Shi, Ibaraki, 305-8566, Japan
| | - Outi Lampela
- Biocenter Oulu, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
| | - André H Juffer
- Biocenter Oulu, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O.Box 5000, FI-90014, Oulu, Finland
| | - Wipa Suginta
- School of Biomolecular Science & Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
| | - Tamo Fukamizo
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan.
- School of Biomolecular Science & Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand.
| |
Collapse
|
14
|
Capovilla G, Castro KG, Collani S, Kearney SM, Kehoe DM, Chisholm SW. Chitin degradation by Synechococcus WH7803. Sci Rep 2023; 13:19944. [PMID: 37968300 PMCID: PMC10651935 DOI: 10.1038/s41598-023-47332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023] Open
Abstract
Chitin is an abundant, carbon-rich polymer in the marine environment. Chitinase activity has been detected in spent media of Synechococcus WH7803 cultures-yet it was unclear which specific enzymes were involved. Here we delivered a CRISPR tool into the cells via electroporation to generate loss-of-function mutants of putative candidates and identified ChiA as the enzyme required for the activity detected in the wild type.
Collapse
Affiliation(s)
- Giovanna Capovilla
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Kurt G Castro
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Silvio Collani
- Department of Fysiologisk Botanik, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
| | - Sean M Kearney
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Sallie W Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
Guessous G, Patsalo V, Balakrishnan R, Çağlar T, Williamson JR, Hwa T. Inherited chitinases enable sustained growth and rapid dispersal of bacteria from chitin particles. Nat Microbiol 2023; 8:1695-1705. [PMID: 37580592 DOI: 10.1038/s41564-023-01444-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/04/2023] [Indexed: 08/16/2023]
Abstract
Many biogeochemical functions involve bacteria utilizing solid substrates. However, little is known about the coordination of bacterial growth with the kinetics of attachment to and detachment from such substrates. In this quantitative study of Vibrio sp. 1A01 growing on chitin particles, we reveal the heterogeneous nature of the exponentially growing culture comprising two co-existing subpopulations: a minority replicating on chitin particles and a non-replicating majority which was planktonic. This partition resulted from a high rate of cell detachment from particles. Despite high detachment, sustained exponential growth of cells on particles was enabled by the enrichment of extracellular chitinases excreted and left behind by detached cells. The 'inheritance' of these chitinases sustains the colonizing subpopulation despite its reduced density. This simple mechanism helps to circumvent a trade-off between growth and dispersal, allowing particle-associated marine heterotrophs to explore new habitats without compromising their fitness on the habitat they have already colonized.
Collapse
Affiliation(s)
- Ghita Guessous
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Vadim Patsalo
- Department of Integrative Structural and Computational Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
- DataBricks, San Diego, CA, USA
| | - Rohan Balakrishnan
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Tolga Çağlar
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
- San Diego Supercomputer Center, La Jolla, CA, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Terence Hwa
- Department of Physics, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Arnold ND, Garbe D, Brück TB. Proteomic and Transcriptomic Analyses to Decipher the Chitinolytic Response of Jeongeupia spp. Mar Drugs 2023; 21:448. [PMID: 37623729 PMCID: PMC10455584 DOI: 10.3390/md21080448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
In nature, chitin, the most abundant marine biopolymer, does not accumulate due to the action of chitinolytic organisms, whose saccharification systems provide instructional blueprints for effective chitin conversion. Therefore, discovery and deconstruction of chitinolytic machineries and associated enzyme systems are essential for the advancement of biotechnological chitin valorization. Through combined investigation of the chitin-induced secretome with differential proteomic and transcriptomic analyses, a holistic system biology approach has been applied to unravel the chitin response mechanisms in the Gram-negative Jeongeupia wiesaeckerbachi. Hereby, the majority of the genome-encoded chitinolytic machinery, consisting of various glycoside hydrolases and a lytic polysaccharide monooxygenase, could be detected extracellularly. Intracellular proteomics revealed a distinct translation pattern with significant upregulation of glucosamine transport, metabolism, and chemotaxis-associated proteins. While the differential transcriptomic results suggested the overall recruitment of more genes during chitin metabolism compared to that of glucose, the detected protein-mRNA correlation was low. As one of the first studies of its kind, the involvement of over 350 unique enzymes and 570 unique genes in the catabolic chitin response of a Gram-negative bacterium could be identified through a three-way systems biology approach. Based on the cumulative data, a holistic model for the chitinolytic machinery of Jeongeupia spp. is proposed.
Collapse
Affiliation(s)
| | | | - Thomas B. Brück
- TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Werner-Siemens Chair for Synthetic Biotechnology (WSSB), Lichtenbergstr. 4, 85748 Garching, Germany; (N.D.A.); (D.G.)
| |
Collapse
|
17
|
Sanram S, Aunkham A, Robinson R, Suginta W. Structural displacement model of chitooligosaccharide transport through chitoporin. J Biol Chem 2023; 299:105000. [PMID: 37394001 PMCID: PMC10406626 DOI: 10.1016/j.jbc.2023.105000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
VhChiP is a chitooligosaccharide-specific porin identified in the outer membrane of Vibrio campbellii type strain American Type Culture Collection BAA 1116. VhChiP contains three identical subunits, and in each subunit, the 19-amino acid N-terminal segment serves as a molecular plug (the "N-plug") that controls the closed/open dynamics of the neighboring pores. In this study, the crystal structures of VhChiP lacking the N-plug were determined in the absence and presence of chitohexaose. Binding studies of sugar-ligand interactions by single-channel recordings and isothermal microcalorimetry experiments suggested that the deletion of the N-plug peptide significantly weakened the sugar-binding affinity due to the loss of hydrogen bonds around the central affinity sites. Steered molecular dynamic simulations revealed that the movement of the sugar chain along the sugar passage triggered the ejection of the N-plug, while the H-bonds transiently formed between the reducing end GlcNAc units of the sugar chain with the N-plug peptide may help to facilitate sugar translocation. The findings enable us to propose the structural displacement model, which enables us to understand the molecular basis of chitooligosaccharide uptake by marine Vibrio bacteria.
Collapse
Affiliation(s)
- Surapoj Sanram
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Anuwat Aunkham
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Robert Robinson
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
18
|
Hespanhol JT, Nóbrega-Silva L, Bayer-Santos E. Regulation of type VI secretion systems at the transcriptional, posttranscriptional and posttranslational level. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001376. [PMID: 37552221 PMCID: PMC10482370 DOI: 10.1099/mic.0.001376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Bacteria live in complex polymicrobial communities and are constantly competing for resources. The type VI secretion system (T6SS) is a widespread antagonistic mechanism used by Gram-negative bacteria to gain an advantage over competitors. T6SSs translocate toxic effector proteins inside target prokaryotic cells in a contact-dependent manner. In addition, some T6SS effectors can be secreted extracellularly and contribute to the scavenging scarce metal ions. Bacteria deploy their T6SSs in different situations, categorizing these systems into offensive, defensive and exploitative. The great variety of bacterial species and environments occupied by such species reflect the complexity of regulatory signals and networks that control the expression and activation of the T6SSs. Such regulation is tightly controlled at the transcriptional, posttranscriptional and posttranslational level by abiotic (e.g. pH, iron) or biotic (e.g. quorum-sensing) cues. In this review, we provide an update on the current knowledge about the regulatory networks that modulate the expression and activity of T6SSs across several species, focusing on systems used for interbacterial competition.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Luize Nóbrega-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Ethel Bayer-Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| |
Collapse
|
19
|
Abstract
It has been widely appreciated that numerous bacterial species express chitinases for the purpose of degrading environmental chitin. However, chitinases and chitin-binding proteins are also expressed by pathogenic bacterial species during infection even though mammals do not produce chitin. Alternative molecular targets are therefore likely present within the host. Here, we will describe our current understanding of chitinase/chitin-binding proteins as virulence factors that promote bacterial colonization and infection. The targets of these chitinases in the host have been shown to include immune system components, mucins, and surface glycans. Bacterial chitinases have also been shown to interact with other microorganisms, targeting the peptidoglycan or chitin in the bacterial and fungal cell wall, respectively. This review highlights that even though the name "chitinase" implies activity toward chitin, chitinases can have a wide diversity of targets, including ones relevant to host infection. Chitinases may therefore be useful as a target of future anti-infective therapeutics.
Collapse
Affiliation(s)
- Jason R. Devlin
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
20
|
Ran L, Wang X, He X, Guo R, Wu Y, Zhang P, Zhang XH. Genomic analysis and chitinase characterization of Vibrio harveyi WXL538: insight into its adaptation to the marine environment. Front Microbiol 2023; 14:1121720. [PMID: 37465025 PMCID: PMC10350509 DOI: 10.3389/fmicb.2023.1121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/05/2023] [Indexed: 07/20/2023] Open
Abstract
Chitin, the most abundant bio-polymer in seawater, may be utilized by various microorganisms as a carbon source. Vibrios have been regarded as one of the main groups of chitin consumers in the marine carbon cycle and chitinase producers. The organisms are widely distributed in the aquatic environment. However, the co-working mechanism between their chitinases, and whether the chitinase's diversity contributes to their adaption to the environment, needs to be further elucidated. Here, we obtained a chitinolytic strain, Vibrio harveyi WXL538 with eight putative chitinase-coding genes. Five of the genes, i.e., Chi4733, Chi540, Chi4668, Chi5174, and Chi4963, were overexpressed and validated, in which Chi4668, Chi4733 and Chi540 were purified and characterized. The result of Chi4668 was described in our previous study. Endo-chitinase Chi4733 degraded colloidal chitin to produce (GlcNAc)2 and minor (GlcNAc)3. The enzymatic activity of Chi4733 was 175.5 U mg-1 and Kcat/Km was 54.9 s-1 M-1. Chi4733 had its maximum activity at 50°C and pH 4-6, activated by Sr2+, Co2+, Ca2+, and Mg2+ and inhibited by Al3+, Zn2+, Cu2+, Ni2+, and SDS. Exo-chitinase Chi540 degraded colloidal chitin to (GlcNAc)2. The enzymatic activity of Chi540 was 134.5 U mg-1 and Kcat/Km was 54.9 s-1 M-1. Chi540 had its maximum activity at 60°C and pH 6-8, was activated by Sr2+, Ca2+, and Mg2+ but inhibited by K+, Ba2+, Zn2+, Cu2+, Ni2+, SDS and urea. Whole genome analysis of V. harveyi WXL538 and characterization of its chitinase can provide a better understanding of its adaptability to the changing marine environment.
Collapse
Affiliation(s)
- Lingman Ran
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinxin He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ruihong Guo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yanhong Wu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Pingping Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
21
|
Green VE, Klancher CA, Yamamoto S, Dalia AB. The molecular mechanism for carbon catabolite repression of the chitin response in Vibrio cholerae. PLoS Genet 2023; 19:e1010767. [PMID: 37172034 PMCID: PMC10208484 DOI: 10.1371/journal.pgen.1010767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/24/2023] [Accepted: 04/30/2023] [Indexed: 05/14/2023] Open
Abstract
Vibrio cholerae is a facultative pathogen that primarily occupies marine environments. In this niche, V. cholerae commonly interacts with the chitinous shells of crustacean zooplankton. As a chitinolytic microbe, V. cholerae degrades insoluble chitin into soluble oligosaccharides. Chitin oligosaccharides serve as both a nutrient source and an environmental cue that induces a strong transcriptional response in V. cholerae. Namely, these oligosaccharides induce the chitin sensor, ChiS, to activate the genes required for chitin utilization and horizontal gene transfer by natural transformation. Thus, interactions with chitin impact the survival of V. cholerae in marine environments. Chitin is a complex carbon source for V. cholerae to degrade and consume, and the presence of more energetically favorable carbon sources can inhibit chitin utilization. This phenomenon, known as carbon catabolite repression (CCR), is mediated by the glucose-specific Enzyme IIA (EIIAGlc) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). In the presence of glucose, EIIAGlc becomes dephosphorylated, which inhibits ChiS transcriptional activity by an unknown mechanism. Here, we show that dephosphorylated EIIAGlc interacts with ChiS. We also isolate ChiS suppressor mutants that evade EIIAGlc-dependent repression and demonstrate that these alleles no longer interact with EIIAGlc. These findings suggest that EIIAGlc must interact with ChiS to exert its repressive effect. Importantly, the ChiS suppressor mutations we isolated also relieve repression of chitin utilization and natural transformation by EIIAGlc, suggesting that CCR of these behaviors is primarily regulated through ChiS. Together, our results reveal how nutrient conditions impact the fitness of an important human pathogen in its environmental reservoir.
Collapse
Affiliation(s)
- Virginia E. Green
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Catherine A. Klancher
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Shouji Yamamoto
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
22
|
Jiang WX, Li PY, Chen XL, Zhang YS, Wang JP, Wang YJ, Sheng Q, Sun ZZ, Qin QL, Ren XB, Wang P, Song XY, Chen Y, Zhang YZ. A pathway for chitin oxidation in marine bacteria. Nat Commun 2022; 13:5899. [PMID: 36202810 PMCID: PMC9537276 DOI: 10.1038/s41467-022-33566-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Oxidative degradation of chitin, initiated by lytic polysaccharide monooxygenases (LPMOs), contributes to microbial bioconversion of crystalline chitin, the second most abundant biopolymer in nature. However, our knowledge of oxidative chitin utilization pathways, beyond LPMOs, is very limited. Here, we describe a complete pathway for oxidative chitin degradation and its regulation in a marine bacterium, Pseudoalteromonas prydzensis. The pathway starts with LPMO-mediated extracellular breakdown of chitin into C1-oxidized chitooligosaccharides, which carry a terminal 2-(acetylamino)-2-deoxy-D-gluconic acid (GlcNAc1A). Transmembrane transport of oxidized chitooligosaccharides is followed by their hydrolysis in the periplasm, releasing GlcNAc1A, which is catabolized in the cytoplasm. This pathway differs from the known hydrolytic chitin utilization pathway in enzymes, transporters and regulators. In particular, GlcNAc1A is converted to 2-keto-3-deoxygluconate 6-phosphate, acetate and NH3 via a series of reactions resembling the degradation of D-amino acids rather than other monosaccharides. Furthermore, genomic and metagenomic analyses suggest that the chitin oxidative utilization pathway may be prevalent in marine Gammaproteobacteria.
Collapse
Affiliation(s)
- Wen-Xin Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yi-Shuo Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-Ping Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yan-Jun Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qi Sheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhong-Zhi Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xue-Bing Ren
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Peng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yin Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China. .,Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
23
|
Debnath A, Miyoshi SI. Chitin degradation and its effect on natural transformation: A systematic genetic study in Vibrio parahaemolyticus. Can J Microbiol 2022; 68:521-530. [PMID: 35623097 DOI: 10.1139/cjm-2021-0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The degradation of polymeric chitin by chitinase liberates soluble N-acetyl glucosamine oligosaccharides (GlcNAcn≥2), a source of nutrition that can also induce state of natural genetic competence in Vibrio parahaemolyticus. This analysis revealed that among 7 predicted chitinases, the synergistic action of VPA0055 (ChiA2), VP0619 (ChiB) and VPA0832 (Cdx) were essential for the robust growth and high transformation frequency on chitin. The endo-chitinase, ChiA2 and periplasmic chitinase, Cdx were indispensable for chitin degradation. ChiB was not essential for growth on chitin but did have an effect on the rate of chitin degradation. Interestingly, the loss of Cdx drastically reduced growth on insoluble chitin, but growth on soluble GlcNAc5/6 remained same. The utilization of GlcNAc5/6 was only inhibited when there was mutation of Cdx with the other periplasmic chitinases VP0755 and VP2486. This suggests that Cdx might also be involved in extracellular degradation of chitin, in addition to its role as a periplasmic chitinase. Moreover, the periplasmic chitin oligosaccharide binding protein (CBP) was found to be essential for the efficient utilization of chitin. The CBP was specifically needed for the processing of GlcNAc4-6 during growth on chitin. Overall, this study provides detailed analysis of the machinery behind chitin degradation in V. parahaemolyticus. .
Collapse
|
24
|
Bacterial chemotaxis to saccharides is governed by a trade-off between sensing and uptake. Biophys J 2022; 121:2046-2059. [PMID: 35526093 DOI: 10.1016/j.bpj.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
To swim up gradients of nutrients, E. coli senses nutrient concentrations within its periplasm. For small nutrient molecules, periplasmic concentrations typically match extracellular concentrations. However, this is not necessarily the case for saccharides, such as maltose, which are transported into the periplasm via a specific porin. Previous observations have shown that, under various conditions, E. coli limits maltoporin abundance so that, for extracellular micromolar concentrations of maltose, there are predicted to be only nanomolar concentrations of free maltose in the periplasm. Thus, in the micromolar regime, the total uptake of maltose from the external environment into the cytoplasm is limited not by the abundance of cytoplasmic transport proteins but by the abundance of maltoporins. Here we present results from experiments and modeling suggesting that this porin-limited transport enables E. coli to sense micromolar gradients of maltose despite having a high-affinity ABC transport system that is saturated at these micromolar levels. We used microfluidic assays to study chemotaxis of E. coli in various gradients of maltose and methyl-aspartate and leveraged our experimental observations to develop a mechanistic transport-and-sensing chemotaxis model. Incorporating this model into agent-based simulations, we discover a trade-off between uptake and sensing: although high-affinity transport enables higher uptake rates at low nutrient concentrations, it severely limits the range of dynamic sensing. We thus propose that E. coli may limit periplasmic uptake to increase its chemotactic sensitivity, enabling it to use maltose as an environmental cue.
Collapse
|
25
|
Khokhani D, Carrera Carriel C, Vayla S, Irving TB, Stonoha-Arther C, Keller NP, Ané JM. Deciphering the Chitin Code in Plant Symbiosis, Defense, and Microbial Networks. Annu Rev Microbiol 2021; 75:583-607. [PMID: 34623896 DOI: 10.1146/annurev-micro-051921-114809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chitin is a structural polymer in many eukaryotes. Many organisms can degrade chitin to defend against chitinous pathogens or use chitin oligomers as food. Beneficial microorganisms like nitrogen-fixing symbiotic rhizobia and mycorrhizal fungi produce chitin-based signal molecules called lipo-chitooligosaccharides (LCOs) and short chitin oligomers to initiate a symbiotic relationship with their compatible hosts and exchange nutrients. A recent study revealed that a broad range of fungi produce LCOs and chitooligosaccharides (COs), suggesting that these signaling molecules are not limited to beneficial microbes. The fungal LCOs also affect fungal growth and development, indicating that the roles of LCOs beyond symbiosis and LCO production may predate mycorrhizal symbiosis. This review describes the diverse structures of chitin; their perception by eukaryotes and prokaryotes; and their roles in symbiotic interactions, defense, and microbe-microbe interactions. We also discuss potential strategies of fungi to synthesize LCOs and their roles in fungi with different lifestyles.
Collapse
Affiliation(s)
- Devanshi Khokhani
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Current affiliation: Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota 55108, USA;
| | - Cristobal Carrera Carriel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Shivangi Vayla
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Christina Stonoha-Arther
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
26
|
Itoh T. Structures and functions of carbohydrate-active enzymes of chitinolytic bacteria Paenibacillus sp. str. FPU-7. Biosci Biotechnol Biochem 2021; 85:1314-1323. [PMID: 33792636 DOI: 10.1093/bbb/zbab058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 11/14/2022]
Abstract
Chitin and its derivatives have valuable potential applications in various fields that include medicine, agriculture, and food industries. Paenibacillus sp. str. FPU-7 is one of the most potent chitin-degrading bacteria identified. This review introduces the chitin degradation system of P. str. FPU-7. In addition to extracellular chitinases, P. str. FPU-7 uses a unique multimodular chitinase (ChiW) to hydrolyze chitin to oligosaccharides on the cell surface. Chitin oligosaccharides are converted to N-acetyl-d-glucosamine by β-N-acetylhexosaminidase (PsNagA) in the cytosol. The functions and structures of ChiW and PsNagA are also summarized. The genome sequence of P. str. FPU-7 provides opportunities to acquire novel enzymes. Genome mining has identified a novel alginate lyase, PsAly. The functions and structure of PsAly are reviewed. These findings will inform further improvement of the sustainable conversion of polysaccharides to functional materials.
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
| |
Collapse
|
27
|
Kitaoku Y, Fukamizo T, Kumsaoad S, Ubonbal P, Robinson RC, Suginta W. A structural model for (GlcNAc) 2 translocation via a periplasmic chitooligosaccharide-binding protein from marine Vibrio bacteria. J Biol Chem 2021; 297:101071. [PMID: 34400168 PMCID: PMC8449061 DOI: 10.1016/j.jbc.2021.101071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
VhCBP is a periplasmic chitooligosaccharide-binding protein mainly responsible for translocation of the chitooligosaccharide (GlcNAc)2 across the double membranes of marine bacteria. However, structural and thermodynamic understanding of the sugar-binding/-release processes of VhCBP is relatively less. VhCBP displayed the greatest affinity toward (GlcNAc)2, with lower affinity for longer-chain chitooligosaccharides [(GlcNAc)3–4]. (GlcNAc)4 partially occupied the closed sugar-binding groove, with two reducing-end GlcNAc units extending beyond the sugar-binding groove and barely characterized by weak electron density. Mutation of three conserved residues (Trp363, Asp365, and Trp513) to Ala resulted in drastic decreases in the binding affinity toward the preferred substrate (GlcNAc)2, indicating their significant contributions to sugar binding. The structure of the W513A–(GlcNAc)2 complex in a ‘half-open’ conformation unveiled the intermediary step of the (GlcNAc)2 translocation from the soluble CBP in the periplasm to the inner membrane–transporting components. Isothermal calorimetry data suggested that VhCBP adopts the high-affinity conformation to bind (GlcNAc)2, while its low-affinity conformation facilitated sugar release. Thus, chitooligosaccharide translocation, conferred by periplasmic VhCBP, is a crucial step in the chitin catabolic pathway, allowing Vibrio bacteria to thrive in oceans where chitin is their major source of nutrients.
Collapse
Affiliation(s)
- Yoshihito Kitaoku
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Tamo Fukamizo
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| | - Sawitree Kumsaoad
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Prakayfun Ubonbal
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Robert C Robinson
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand; Research Institute of Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan.
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
28
|
Das S, Chourashi R, Mukherjee P, Gope A, Koley H, Dutta M, Mukhopadhyay AK, Okamoto K, Chatterjee NS. Multifunctional transcription factor CytR of Vibrio cholerae is important for pathogenesis. MICROBIOLOGY-SGM 2021; 166:1136-1148. [PMID: 33150864 DOI: 10.1099/mic.0.000949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vibrio cholerae, the Gram-negative facultative pathogen, resides in the aquatic environment and infects humans and causes diarrhoeagenic cholera. Although the environment differs drastically, V. cholerae thrives in both of these conditions aptly and chitinases play a vital role in their persistence and nutrient acquisition. Chitinases also play a role in V. cholerae pathogenesis. Chitinases and its downstream chitin utilization genes are regulated by sensor histidine kinase ChiS, which also plays a significant role in pathogenesis. Recent exploration suggests that CytR, a transcription factor of the LacI family in V. cholerae, also regulates chitinase secretion in environmental conditions. Since chitinases and chitinase regulator ChiS is involved in pathogenesis, CytR might also play a significant role in pathogenicity. However, the role of CytR in pathogenesis is yet to be known. This study explores the regulation of CytR on the activation of ChiS in the presence of mucin and its role in pathogenesis. Therefore, we created a CytR isogenic mutant strain of V. cholerae (CytR¯) and found considerably less β-hexosaminidase enzyme production, which is an indicator of ChiS activity. The CytR¯ strain greatly reduced the expression of chitinases chiA1 and chiA2 in mucin-supplemented media. Electron microscopy showed that the CytR¯ strain was aflagellate. The expression of flagellar-synthesis regulatory genes flrB, flrC and class III flagellar-synthesis genes were reduced in the CytR¯ strain. The isogenic CytR mutant showed less growth compared to the wild-type in mucin-supplemented media as well as demonstrated highly retarded motility and reduced mucin-layer penetration. The CytR mutant revealed decreased adherence to the HT-29 cell line. In animal models, reduced fluid accumulation and colonization were observed during infection with the CytR¯ strain due to reduced expression of ctxB, toxT and tcpA. Collectively these data suggest that CytR plays an important role in V. cholerae pathogenesis.
Collapse
Affiliation(s)
- Suman Das
- Division of Biochemistry, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | - Rhishita Chourashi
- Division of Biochemistry, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | - Priyadarshini Mukherjee
- Division of Bacteriology, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | - Animesh Gope
- Division of Clinical Medicine, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | - Asish K Mukhopadhyay
- Division of Bacteriology, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases at NICED, Kolkata, India
| | - Nabendu Sekhar Chatterjee
- Division of Biochemistry, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| |
Collapse
|
29
|
The fish pathogen Aliivibrio salmonicida LFI1238 can degrade and metabolize chitin despite major gene loss in the chitinolytic pathway. Appl Environ Microbiol 2021; 87:e0052921. [PMID: 34319813 DOI: 10.1128/aem.00529-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fish pathogen Aliivibrio (Vibrio) salmonicida LFI1238 is thought to be incapable of utilizing chitin as a nutrient source since approximately half of the genes representing the chitinolytic pathway are disrupted by insertion sequences. In the present study, we combined a broad set of analytical methods to investigate this hypothesis. Cultivation studies revealed that Al. salmonicida grew efficiently on N-acetylglucosamine (GlcNAc) and chitobiose ((GlcNAc)2), the primary soluble products resulting from enzymatic chitin hydrolysis. The bacterium was also able to grow on chitin particles, albeit at a lower rate compared to the soluble substrates. The genome of the bacterium contains five disrupted chitinase genes (pseudogenes) and three intact genes encoding a glycoside hydrolase family 18 (GH18) chitinase and two auxiliary activity family 10 (AA10) lytic polysaccharide monooxygenases (LPMOs). Biochemical characterization showed that the chitinase and LPMOs were able to depolymerize both α- and β-chitin to (GlcNAc)2 and oxidized chitooligosaccharides, respectively. Notably, the chitinase displayed up to 50-fold lower activity compared to other well-studied chitinases. Deletion of the genes encoding the intact chitinolytic enzymes showed that the chitinase was important for growth on β-chitin, whereas the LPMO gene-deletion variants only showed minor growth defects on this substrate. Finally, proteomic analysis of Al. salmonicida LFI1238 growth on β-chitin showed expression of all three chitinolytic enzymes, and intriguingly also three of the disrupted chitinases. In conclusion, our results show that Al. salmonicida LFI1238 can utilize chitin as a nutrient source and that the GH18 chitinase and the two LPMOs are needed for this ability. IMPORTANCE The ability to utilize chitin as a source of nutrients is important for the survival and spread of marine microbial pathogens in the environment. One such pathogen is Aliivibrio (Vibrio) salmonicida, the causative agent of cold water vibriosis. Due to extensive gene decay, many key enzymes in the chitinolytic pathway have been disrupted, putatively rendering this bacterium incapable of chitin degradation and utilization. In the present study we demonstrate that Al. salmonicida can degrade and metabolize chitin, the most abundant biopolymer in the ocean. Our findings shed new light on the environmental adaption of this fish pathogen.
Collapse
|
30
|
Abstract
Bacteria thrive both in liquids and attached to surfaces. The concentration of bacteria on surfaces is generally much higher than in the surrounding environment, offering bacteria ample opportunity for mutualistic, symbiotic, and pathogenic interactions. To efficiently populate surfaces, they have evolved mechanisms to sense mechanical or chemical cues upon contact with solid substrata. This is of particular importance for pathogens that interact with host tissue surfaces. In this review we discuss how bacteria are able to sense surfaces and how they use this information to adapt their physiology and behavior to this new environment. We first survey mechanosensing and chemosensing mechanisms and outline how specific macromolecular structures can inform bacteria about surfaces. We then discuss how mechanical cues are converted to biochemical signals to activate specific cellular processes in a defined chronological order and describe the role of two key second messengers, c-di-GMP and cAMP, in this process.
Collapse
Affiliation(s)
| | - Urs Jenal
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland; ,
| |
Collapse
|
31
|
Itoh T, Yaguchi M, Nakaichi A, Yoda M, Hibi T, Kimoto H. Structural characterization of two solute-binding proteins for N,N'-diacetylchitobiose/ N,N',N''-triacetylchitotoriose of the gram-positive bacterium, Paenibacillus sp. str. FPU-7. J Struct Biol X 2021; 5:100049. [PMID: 34195603 PMCID: PMC8233162 DOI: 10.1016/j.yjsbx.2021.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 10/27/2022] Open
Abstract
The chitinolytic bacterium Paenibacillus sp. str. FPU-7 efficiently degrades chitin into oligosaccharides such as N-acetyl-D-glucosamine (GlcNAc) and disaccharides (GlcNAc)2 through multiple secretory chitinases. Transport of these oligosaccharides by P. str. FPU-7 has not yet been clarified. In this study, we identified nagB1, predicted to encode a sugar solute-binding protein (SBP), which is a component of the ABC transport system. However, the genes next to nagB1 were predicted to encode two-component regulatory system proteins rather than transmembrane domains (TMDs). We also identified nagB2, which is highly homologous to nagB1. Adjacent to nagB2, two genes were predicted to encode TMDs. Binding experiments of the recombinant NagB1 and NagB2 to several oligosaccharides using differential scanning fluorimetry and surface plasmon resonance confirmed that both proteins are SBPs of (GlcNAc)2 and (GlcNAc)3. We determined their crystal structures complexed with and without chitin oligosaccharides at a resolution of 1.2 to 2.0 Å. The structures shared typical SBP structural folds and were classified as subcluster D-I. Large domain motions were observed in the structures, suggesting that they were induced by ligand binding via the "Venus flytrap" mechanism. These structures also revealed chitin oligosaccharide recognition mechanisms. In conclusion, our study provides insight into the recognition and transport of chitin oligosaccharides in bacteria.
Collapse
Key Words
- ABC transporter
- ABC, ATP-binding cassette
- Chitin oligosaccharide
- DSF, differential scanning fluorimetry
- GH, glycoside hydrolase
- GlcN, D-glucosamine
- GlcNAc, N-acetyl-D-glucosamine
- OD600, optical density at 600 nm
- PDB, Protein Data Bank
- PTS, phosphoenolpyruvate phosphotransferase system
- Paenibacillus
- RU, response unit
- SBP, solute binding protein
- Se-Met, selenomethionine
- Solute binding protein
- TMD, transmembrane domain
- Two-component regulatory system
- a.a., amino acid
- r.m.s.d., root mean-square deviation
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Misaki Yaguchi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Akari Nakaichi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Moe Yoda
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Takao Hibi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Hisashi Kimoto
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| |
Collapse
|
32
|
Fennell TG, Blackwell GA, Thomson NR, Dorman MJ. gbpA and chiA genes are not uniformly distributed amongst diverse Vibrio cholerae. Microb Genom 2021; 7:000594. [PMID: 34100695 PMCID: PMC8461464 DOI: 10.1099/mgen.0.000594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Members of the bacterial genus Vibrio utilize chitin both as a metabolic substrate and a signal to activate natural competence. Vibrio cholerae is a bacterial enteric pathogen, sub-lineages of which can cause pandemic cholera. However, the chitin metabolic pathway in V. cholerae has been dissected using only a limited number of laboratory strains of this species. Here, we survey the complement of key chitin metabolism genes amongst 195 diverse V. cholerae. We show that the gene encoding GbpA, known to be an important colonization and virulence factor in pandemic isolates, is not ubiquitous amongst V. cholerae. We also identify a putatively novel chitinase, and present experimental evidence in support of its functionality. Our data indicate that the chitin metabolic pathway within V. cholerae is more complex than previously thought, and emphasize the importance of considering genes and functions in the context of a species in its entirety, rather than simply relying on traditional reference strains.
Collapse
Affiliation(s)
- Thea G. Fennell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Churchill College, Storey’s Way, Cambridge, CB3 0DS, UK
- Present address: Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, UK
| | - Grace A. Blackwell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- EMBL-EBI, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, Keppel St., Bloomsbury, London, WC1E 7HT, UK
| | - Matthew J. Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Churchill College, Storey’s Way, Cambridge, CB3 0DS, UK
| |
Collapse
|
33
|
Meekrathok P, Bürger M, Porfetye AT, Kumsaoad S, Aunkham A, Vetter IR, Suginta W. Structural basis of chitin utilization by a GH20 β-N-acetylglucosaminidase from Vibrio campbellii strain ATCC BAA-1116. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:674-689. [PMID: 33950022 PMCID: PMC8098473 DOI: 10.1107/s2059798321002771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/15/2021] [Indexed: 12/03/2022]
Abstract
Crystal structures of a GH20 β-N-acetylglucosaminidase from V. campbellii reveal substrate specificity in chitin utilization. Vibrio species play a crucial role in maintaining the carbon and nitrogen balance between the oceans and the land through their ability to employ chitin as a sole source of energy. This study describes the structural basis for the action of the GH20 β-N-acetylglucosaminidase (VhGlcNAcase) in chitin metabolism by Vibrio campbellii (formerly V. harveyi) strain ATCC BAA-1116. Crystal structures of wild-type VhGlcNAcase in the absence and presence of the sugar ligand, and of the unliganded D437A mutant, were determined. VhGlcNAcase contains three distinct domains: an N-terminal carbohydrate-binding domain linked to a small α+β domain and a C-terminal (β/α)8 catalytic domain. The active site of VhGlcNAcase has a narrow, shallow pocket that is suitable for accommodating a small chitooligosaccharide. VhGlcNAcase is a monomeric enzyme of 74 kDa, but its crystal structures show two molecules of enzyme per asymmetric unit, in which Gln16 at the dimeric interface of the first molecule partially blocks the entrance to the active site of the neighboring molecule. The GlcNAc unit observed in subsite −1 makes exclusive hydrogen bonds to the conserved residues Arg274, Tyr530, Asp532 and Glu584, while Trp487, Trp546, Trp582 and Trp505 form a hydrophobic wall around the −1 GlcNAc. The catalytic mutants D437A/N and E438A/Q exhibited a drastic loss of GlcNAcase activity, confirming the catalytic role of the acidic pair (Asp437–Glu438).
Collapse
Affiliation(s)
- Piyanat Meekrathok
- Biochemistry-Electrochemistry Research Unit, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Marco Bürger
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Arthur T Porfetye
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Sawitree Kumsaoad
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Anuwat Aunkham
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Ingrid R Vetter
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Wipa Suginta
- Biochemistry-Electrochemistry Research Unit, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
34
|
Matilla MA, Ortega Á, Krell T. The role of solute binding proteins in signal transduction. Comput Struct Biotechnol J 2021; 19:1786-1805. [PMID: 33897981 PMCID: PMC8050422 DOI: 10.1016/j.csbj.2021.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
The solute binding proteins (SBPs) of prokaryotes are present in the extracytosolic space. Although their primary function is providing substrates to transporters, SBPs also stimulate different signaling proteins, including chemoreceptors, sensor kinases, diguanylate cyclases/phosphodiesterases and Ser/Thr kinases, thereby causing a wide range of responses. While relatively few such systems have been identified, several pieces of evidence suggest that SBP-mediated receptor activation is a widespread mechanism. (1) These systems have been identified in Gram-positive and Gram-negative bacteria and archaea. (2) There is a structural diversity in the receptor domains that bind SBPs. (3) SBPs belonging to thirteen different families interact with receptor ligand binding domains (LBDs). (4) For the two most abundant receptor LBD families, dCache and four-helix-bundle, there are different modes of interaction with SBPs. (5) SBP-stimulated receptors carry out many different functions. The advantage of SBP-mediated receptor stimulation is attributed to a strict control of SBP levels, which allows a precise adjustment of the systeḿs sensitivity. We have compiled information on the effect of ligands on the transcript/protein levels of their cognate SBPs. In 87 % of the cases analysed, ligands altered SBP expression levels. The nature of the regulatory effect depended on the ligand family. Whereas inorganic ligands typically downregulate SBP expression, an upregulation was observed in response to most sugars and organic acids. A major unknown is the role that SBPs play in signaling and in receptor stimulation. This review attempts to summarize what is known and to present new information to narrow this gap in knowledge.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| |
Collapse
|
35
|
Klancher CA, Minasov G, Podicheti R, Rusch DB, Dalia TN, Satchell KJF, Neiditch MB, Dalia AB. The ChiS-Family DNA-Binding Domain Contains a Cryptic Helix-Turn-Helix Variant. mBio 2021; 12:e03287-20. [PMID: 33727356 PMCID: PMC8092284 DOI: 10.1128/mbio.03287-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/10/2021] [Indexed: 11/20/2022] Open
Abstract
Sequence-specific DNA-binding domains (DBDs) are conserved in all domains of life. These proteins carry out a variety of cellular functions, and there are a number of distinct structural domains already described that allow for sequence-specific DNA binding, including the ubiquitous helix-turn-helix (HTH) domain. In the facultative pathogen Vibrio cholerae, the chitin sensor ChiS is a transcriptional regulator that is critical for the survival of this organism in its marine reservoir. We recently showed that ChiS contains a cryptic DBD in its C terminus. This domain is not homologous to any known DBD, but it is a conserved domain present in other bacterial proteins. Here, we present the crystal structure of the ChiS DBD at a resolution of 1.28 Å. We find that the ChiS DBD contains an HTH domain that is structurally similar to those found in other DNA-binding proteins, like the LacI repressor. However, one striking difference observed in the ChiS DBD is that the canonical tight turn of the HTH is replaced with an insertion containing a β-sheet, a variant which we term the helix-sheet-helix. Through systematic mutagenesis of all positively charged residues within the ChiS DBD, we show that residues within and proximal to the ChiS helix-sheet-helix are critical for DNA binding. Finally, through phylogenetic analyses we show that the ChiS DBD is found in diverse proteobacterial proteins that exhibit distinct domain architectures. Together, these results suggest that the structure described here represents the prototypical member of the ChiS-family of DBDs.IMPORTANCE Regulating gene expression is essential in all domains of life. This process is commonly facilitated by the activity of DNA-binding transcription factors. There are diverse structural domains that allow proteins to bind to specific DNA sequences. The structural basis underlying how some proteins bind to DNA, however, remains unclear. Previously, we showed that in the major human pathogen Vibrio cholerae, the transcription factor ChiS directly regulates gene expression through a cryptic DNA-binding domain. This domain lacked homology to any known DNA-binding protein. In the current study, we determined the structure of the ChiS DNA-binding domain (DBD) and found that the ChiS-family DBD is a cryptic variant of the ubiquitous helix-turn-helix (HTH) domain. We further demonstrate that this domain is conserved in diverse proteins that may represent a novel group of transcriptional regulators.
Collapse
Affiliation(s)
| | - George Minasov
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Triana N Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Karla J F Satchell
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Matthew B Neiditch
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, New Jersey, USA
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
36
|
Bordoloi KS, Krishnatreya DB, Baruah PM, Borah AK, Mondal TK, Agarwala N. Genome-wide identification and expression profiling of chitinase genes in tea ( Camellia sinensis (L.) O. Kuntze) under biotic stress conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:369-385. [PMID: 33707875 PMCID: PMC7907415 DOI: 10.1007/s12298-021-00947-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 05/05/2023]
Abstract
Chitinases are a diverse group of enzymes having the ability to degrade chitin. Chitin is the second most abundant polysaccharide on earth, predominantly found in insect exoskeletons and fungal cell walls. In this study, we performed a genome-wide search for chitinase genes and identified a total of 49 chitinases in tea. These genes were categorized into 5 classes, where an expansion of class V chitinases has been observed in comparison to other plant species. Extensive loss of introns in 46% of the GH18 chitinases indicates that an evolutionary pressure is acting upon these genes to lose introns for rapid gene expression. The promoter upstream regions in 65% of the predicted chitinases contain methyl-jasmonate, salicylic acid and defense responsive cis-acting elements, which may further illustrate the possible role of chitinases in tea plant's defense against various pests and pathogens. Differential expression analysis revealed that transcripts of two GH19 chitinases TEA028279 and TEA019397 got upregulated during three different fungal infections in tea. While GH19 chitinase TEA031377 showed an increase in transcript abundance in the two insect infested tea tissues. Semi-quantitative RT-PCR analysis revealed that five GH19 chitinases viz. TEA018892, TEA031484, TEA28279, TEA033470 and TEA031277 showed significant increase in expression in the tea plants challenged with a biotrophic pathogen Exobasidium vexans. The study endeavours in highlighting biotic stress responsive defensive role of chitinase genes in tea.
Collapse
Affiliation(s)
| | | | - Pooja Moni Baruah
- Department of Botany, Gauhati University, Jalukbari, Guwahati, Assam 781014 India
| | - Anuj Kumar Borah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028 India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa, IARI, New Delhi, 110012 India
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Jalukbari, Guwahati, Assam 781014 India
| |
Collapse
|
37
|
Wang BX, Wheeler KM, Cady KC, Lehoux S, Cummings RD, Laub MT, Ribbeck K. Mucin Glycans Signal through the Sensor Kinase RetS to Inhibit Virulence-Associated Traits in Pseudomonas aeruginosa. Curr Biol 2021; 31:90-102.e7. [DOI: 10.1016/j.cub.2020.09.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/29/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
|
38
|
Zhou Y, Lee ZL, Zhu J. On or Off: Life-Changing Decisions Made by Vibrio cholerae Under Stress. INFECTIOUS MICROBES & DISEASES 2020; 2:127-135. [PMID: 38630076 PMCID: PMC7769058 DOI: 10.1097/im9.0000000000000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 11/25/2022]
Abstract
Vibrio cholerae, the causative agent of the infectious disease, cholera, is commonly found in brackish waters and infects human hosts via the fecal-oral route. V. cholerae is a master of stress resistance as V. cholerae's dynamic lifestyle across different physical environments constantly exposes it to diverse stressful circumstances. Specifically, V. cholerae has dedicated genetic regulatory networks to sense different environmental cues and respond to these signals. With frequent outbreaks costing a tremendous amount of lives and increased global water temperatures providing more suitable aquatic habitats for V. cholerae, cholera pandemics remain a probable catastrophic threat to humanity. Understanding how V. cholerae copes with different environmental stresses broadens our repertoire of measures against infectious diseases and expands our general knowledge of prokaryotic stress responses. In this review, we summarize the regulatory mechanisms of how V. cholerae fights against stresses in vivo and in vitro.
Collapse
|
39
|
Morimoto Y, Takahashi S, Isoda Y, Nokami T, Fukamizo T, Suginta W, Ohnuma T. Kinetic and thermodynamic insights into the inhibitory mechanism of TMG-chitotriomycin on Vibrio campbellii GH20 exo-β-N-acetylglucosaminidase. Carbohydr Res 2020; 499:108201. [PMID: 33243428 DOI: 10.1016/j.carres.2020.108201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022]
Abstract
We investigated the inhibition kinetics of VhGlcNAcase, a GH20 exo-β-N-acetylglucosaminidase (GlcNAcase) from the marine bacterium Vibrio campbellii (formerly V. harveyi) ATCC BAA-1116, using TMG-chitotriomycin, a natural enzyme inhibitor specific for GH20 GlcNAcases from chitin-processing organisms, with p-nitrophenyl N-acetyl-β-d-glucosaminide (pNP-GlcNAc) as the substrate. TMG-chitotriomycin inhibited VhGlcNAcase with an IC50 of 3.0 ± 0.7 μM. Using Dixon plots, the inhibition kinetics indicated that TMG-chitotriomycin is a competitive inhibitor, with an inhibition constant Ki of 2.2 ± 0.3 μM. Isothermal titration calorimetry experiments provided the thermodynamic parameters for the binding of TMG-chitotriomycin to VhGlcNAcase and revealed that binding was driven by both favorable enthalpy and entropy changes (ΔH° = -2.5 ± 0.1 kcal/mol and -TΔS° = -5.8 ± 0.3 kcal/mol), resulting in a free energy change, ΔG°, of -8.2 ± 0.2 kcal/mol. Dissection of the entropic term showed that a favorable solvation entropy change (-TΔSsolv° = -16 ± 2 kcal/mol) is the main contributor to the entropic term.
Collapse
Affiliation(s)
- Yusuke Morimoto
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan
| | - Shuji Takahashi
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyama-minami, Tottori, 680-8552, Japan
| | - Yuta Isoda
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyama-minami, Tottori, 680-8552, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyama-minami, Tottori, 680-8552, Japan
| | - Tamo Fukamizo
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan; School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Tumbol Payupnai, Wangchan Valley, Rayong, 21210, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Tumbol Payupnai, Wangchan Valley, Rayong, 21210, Thailand
| | - Takayuki Ohnuma
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan.
| |
Collapse
|
40
|
Stutzmann S, Blokesch M. Comparison of chitin-induced natural transformation in pandemic Vibrio cholerae O1 El Tor strains. Environ Microbiol 2020; 22:4149-4166. [PMID: 32860313 PMCID: PMC7693049 DOI: 10.1111/1462-2920.15214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022]
Abstract
The human pathogen Vibrio cholerae serves as a model organism for many important processes ranging from pathogenesis to natural transformation, which has been extensively studied in this bacterium. Previous work has deciphered important regulatory circuits involved in natural competence induction as well as mechanistic details related to its DNA acquisition and uptake potential. However, since competence was first reported for V. cholerae in 2005, many researchers have struggled with reproducibility in certain strains. In this study, we therefore compare prominent seventh pandemic V. cholerae isolates, namely strains A1552, N16961, C6706, C6709, E7946, P27459, and the close relative MO10, for their natural transformability and decipher underlying defects that mask the high degree of competence conservation. Through a combination of experimental approaches and comparative genomics based on new whole-genome sequences and de novo assemblies, we identify several strain-specific defects, mostly in genes that encode key players in quorum sensing. Moreover, we provide evidence that most of these deficiencies might have recently occurred through laboratory domestication events or through the acquisition of mobile genetic elements. Lastly, we highlight that differing experimental approaches between research groups might explain more of the variations than strain-specific alterations.
Collapse
Affiliation(s)
- Sandrine Stutzmann
- Laboratory of Molecular Microbiology, Global Health InstituteSchool of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneCH‐1015Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health InstituteSchool of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneCH‐1015Switzerland
| |
Collapse
|
41
|
Species-Specific Quorum Sensing Represses the Chitobiose Utilization Locus in Vibrio cholerae. Appl Environ Microbiol 2020; 86:AEM.00915-20. [PMID: 32651201 DOI: 10.1128/aem.00915-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/04/2020] [Indexed: 01/30/2023] Open
Abstract
The marine facultative pathogen Vibrio cholerae forms complex multicellular communities on the chitinous shells of crustacean zooplankton in its aquatic reservoir. V. cholerae-chitin interactions are critical for the growth, evolution, and waterborne transmission of cholera. This is due, in part, to chitin-induced changes in gene expression in this pathogen. Here, we sought to identify factors that influence chitin-induced expression of one locus, the chitobiose utilization operon (chb), which is required for the uptake and catabolism of the chitin disaccharide. Through a series of genetic screens, we identified that the master regulator of quorum sensing, HapR, is a direct repressor of the chb operon. We also found that the levels of HapR in V. cholerae are regulated by the ClpAP protease. Furthermore, we show that the canonical quorum sensing cascade in V. cholerae regulates chb expression in an HapR-dependent manner. Through this analysis, we found that signaling via the species-specific autoinducer CAI-1, but not the interspecies autoinducer AI-2, influences chb expression. This phenomenon of species-specific regulation may enhance the fitness of this pathogen in its environmental niche.IMPORTANCE In nature, bacteria live in multicellular and multispecies communities. Microbial species can sense the density and composition of their community through chemical cues using a process called quorum sensing (QS). The marine pathogen Vibrio cholerae is found in communities on the chitinous shells of crustaceans in its aquatic reservoir. V. cholerae interactions with chitin are critical for the survival, evolution, and waterborne transmission of this pathogen. Here, we show that V. cholerae uses QS to regulate the expression of one locus required for V. cholerae-chitin interactions.
Collapse
|
42
|
Regulation of Chitin-Dependent Growth and Natural Competence in Vibrio parahaemolyticus. Microorganisms 2020; 8:microorganisms8091303. [PMID: 32859005 PMCID: PMC7564644 DOI: 10.3390/microorganisms8091303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Vibrios can degrade chitin surfaces to soluble N-acetyl glucosamine oligosaccharides (GlcNAcn) that can be utilized as a carbon source and also induce a state of natural genetic competence. In this study, we characterized chitin-dependent growth and natural competence in Vibrio parahaemolyticus and its regulation. We found that growth on chitin was regulated through chitin sensors ChiS (sensor histidine kinase) and TfoS (transmembrane transcriptional regulator) by predominantly controlling the expression of chitinase VPA0055 (ChiA2) in a TfoX-dependent manner. The reduced growth of ΔchiA2, ΔchiS and ΔtfoS mutants highlighted the critical role played by ChiA2 in chitin breakdown. This growth defect of ΔchiA2 mutant could be recovered when chitin oligosaccharides GlcNAc2 or GlcNAc6 were supplied instead of chitin. The ΔtfoS mutant was also able to grow on GlcNAc2 but the ΔchiS mutant could not, which indicates that GlcNAc2 catabolic operon is dependent on ChiS and independent of TfoS. However, the ΔtfoS mutant was unable to utilize GlcNAc6 because the periplasmic enzymes required for the breakdown of GlcNAc6 were found to be downregulated at the mRNA level. We also showed that natural competence can be induced only by GlcNAc6, not GlcNAc2, because the expression of competence genes was significantly higher in the presence of GlcNAc6 compared to GlcNAc2. Moreover, this might be an indication that GlcNAc2 and GlcNAc6 were detected by different receptors. Therefore, we speculate that GlcNAc2-dependent activation of ChiS and GlcNAc6-dependent activation of TfoS might be crucial for the induction of natural competence in V. parahaemolyticus through the upregulation of the master competence regulator TfoX.
Collapse
|
43
|
Aunkham A, Schulte A, Sim WC, Chumjan W, Suginta W. Vibrio campbellii chitoporin: Thermostability study and implications for the development of therapeutic agents against Vibrio infections. Int J Biol Macromol 2020; 164:3508-3522. [PMID: 32858106 DOI: 10.1016/j.ijbiomac.2020.08.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 02/02/2023]
Abstract
Vibrio campbellii (formerly Vibrio harveyi) is a bacterial pathogen that causes vibriosis, which devastates fisheries and aquaculture worldwide. V. campbellii expresses chitinolytic enzymes and chitin binding/transport proteins, which serve as excellent targets for antimicrobial agent development. We previously characterized VhChiP, a chitooligosaccharide-specific porin from the outer membrane of V. campbellii BAA-1116. This study employed far-UV circular dichroism and tryptophan fluorescence spectroscopy, together with single channel electrophysiology to demonstrate that the strong binding of chitoligosaccharides enhanced thermal stability of VhChiP. The alanine substitution of Trp136 at the center of the affinity sites caused a marked decrease in the binding affinity and decreased the thermal stability of VhChiP. Tryptophan fluorescence titrations over a range of temperatures showed greater free-energy changes on ligand binding (ΔG°binding) with increasing chain length of the chitooligosaccharides. Our findings suggest the possibility of designing stable channel-blockers, using sugar-based analogs that serve as antimicrobial agents, active against Vibrio infection.
Collapse
Affiliation(s)
- Anuwat Aunkham
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand; School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand
| | - Wei Chung Sim
- School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Watcharin Chumjan
- School of Chemistry, Faculty of Engineering, Rajamangala University of Technology, Khon Kaen 40000, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
44
|
ChiS is a noncanonical DNA-binding hybrid sensor kinase that directly regulates the chitin utilization program in Vibrio cholerae. Proc Natl Acad Sci U S A 2020; 117:20180-20189. [PMID: 32719134 DOI: 10.1073/pnas.2001768117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Two-component signal transduction systems (TCSs) represent a major mechanism that bacteria use to sense and respond to their environment. Prototypical TCSs are composed of a membrane-embedded histidine kinase, which senses an environmental stimulus and subsequently phosphorylates a cognate partner protein called a response regulator that regulates gene expression in a phosphorylation-dependent manner. Vibrio cholerae uses the hybrid histidine kinase ChiS to activate the expression of the chitin utilization program, which is critical for the survival of this facultative pathogen in its aquatic reservoir. A cognate response regulator for ChiS has not been identified and the mechanism of ChiS-dependent signal transduction remains unclear. Here, we show that ChiS is a noncanonical membrane-embedded one-component system that can both sense chitin and directly regulate gene expression via a cryptic DNA binding domain. Unlike prototypical TCSs, we find that ChiS DNA binding is diminished, rather than stimulated, by phosphorylation. Finally, we provide evidence that ChiS likely activates gene expression by directly recruiting RNA polymerase. This work addresses the mechanism of action for a major transcription factor in V. cholerae and highlights the versatility of signal transduction systems in bacterial species.
Collapse
|
45
|
Soysa HSM, Aunkham A, Schulte A, Suginta W. Single-channel properties, sugar specificity, and role of chitoporin in adaptive survival of Vibrio cholerae type strain O1. J Biol Chem 2020; 295:9421-9432. [PMID: 32409576 PMCID: PMC7363139 DOI: 10.1074/jbc.ra120.012921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/12/2020] [Indexed: 11/06/2022] Open
Abstract
Vibrio cholerae is a Gram-negative, facultative anaerobic bacterial species that causes serious disease and can grow on various carbon sources, including chitin polysaccharides. In saltwater, its attachment to chitin surfaces not only serves as the initial step of nutrient recruitment but is also a crucial mechanism underlying cholera epidemics. In this study, we report the first characterization of a chitooligosaccharide-specific chitoporin, VcChiP, from the cell envelope of the V. cholerae type strain O1. We modeled the structure of VcChiP, revealing a trimeric cylinder that forms single channels in phospholipid bilayers. The membrane-reconstituted VcChiP channel was highly dynamic and voltage induced. Substate openings O1', O2', and O3', between the fully open states O1, O2, and O3, were polarity selective, with nonohmic conductance profiles. Results of liposome-swelling assays suggested that VcChiP can transport monosaccharides, as well as chitooligosaccharides, but not other oligosaccharides. Of note, an outer-membrane porin (omp)-deficient strain of Escherichia coli expressing heterologous VcChiP could grow on M9 minimal medium supplemented with small chitooligosaccharides. These results support a crucial role of chitoporin in the adaptive survival of bacteria on chitinous nutrients. Our findings also suggest a promising means of vaccine development based on surface-exposed outer-membrane proteins and the design of novel anticholera agents based on chitooligosaccharide-mimicking analogs.
Collapse
Affiliation(s)
| | - Anuwat Aunkham
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Rayong, Thailand
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Rayong, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Rayong, Thailand
| |
Collapse
|
46
|
Sharma S, Kumar S, Khajuria A, Ohri P, Kaur R, Kaur R. Biocontrol potential of chitinases produced by newly isolated Chitinophaga sp. S167. World J Microbiol Biotechnol 2020; 36:90. [PMID: 32524202 DOI: 10.1007/s11274-020-02864-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/04/2020] [Indexed: 01/09/2023]
Abstract
A chitinolytic bacterium Chitinophaga sp. S167 producing extracellular chitinases was isolated from a soil sample in India. The extracellular chitinases produced by S167 were concentrated by ammonium sulphate precipitation (AS70) and seven bands corresponding to chitinases were observed by zymography. Optimum temperature and pH of AS70 were between 40 and 45 °C and pH 6.0 respectively with high stability at 20-40 °C and pH 5-7. AS70 inhibited the growth of Fusarium oxysporum, Alternaria alternata and Cladosporium sp. in vitro. The culture conditions for the high level production of extracellular chitinases were optimized resulting in 48-folds higher chitinase production. As the combination of chitinases could be more potent in biocontrol of plant diseases, it was checked if AS70 could control postharvest fungal infection caused by Fusarium oxysporum on tomatoes. AS70 treated tomatoes showed significant lower incidence of infection (11%) by F. oxysporum as compared with 100% in the control at 5 days post inoculation. Further, AS70 caused significant mortality in second stage juveniles of root knot nematode, Meloidogyne incognita, a major agriculture pest responsible for economic losses in agriculture. This study highlights the antifungal and nematicidal activity of chitinases produced by Chitinophaga sp. S167. To the best of our knowledge, this is the first report of the biocontrol potential of the chitinases produced by Chitinophaga sp.
Collapse
Affiliation(s)
- Sonia Sharma
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shiv Kumar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anjali Khajuria
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Ramandeep Kaur
- Department cum National Centre for Human Genome Studies and Research, Panjab University, Chandigarh, India.
| |
Collapse
|
47
|
Sivadon P, Barnier C, Urios L, Grimaud R. Biofilm formation as a microbial strategy to assimilate particulate substrates. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:749-764. [PMID: 31342619 DOI: 10.1111/1758-2229.12785] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
In most ecosystems, a large part of the organic carbon is not solubilized in the water phase. Rather, it occurs as particles made of aggregated hydrophobic and/or polymeric natural or man-made organic compounds. These particulate substrates are degraded by extracellular digestion/solubilization implemented by heterotrophic bacteria that form biofilms on them. Organic particle-degrading biofilms are widespread and have been observed in aquatic and terrestrial natural ecosystems, in polluted and man-driven environments and in the digestive tracts of animals. They have central ecological functions as they are major players in carbon recycling and pollution removal. The aim of this review is to highlight bacterial adhesion and biofilm formation as central mechanisms to exploit the nutritive potential of organic particles. It focuses on the mechanisms that allow access and assimilation of non-dissolved organic carbon, and considers the advantage provided by biofilms for gaining a net benefit from feeding on particulate substrates. Cooperative and competitive interactions taking place in biofilms feeding on particulate substrates are also discussed.
Collapse
Affiliation(s)
- Pierre Sivadon
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux UMR5254, Pau, 64000, France
| | - Claudie Barnier
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux UMR5254, Pau, 64000, France
| | - Laurent Urios
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux UMR5254, Pau, 64000, France
| | - Régis Grimaud
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux UMR5254, Pau, 64000, France
| |
Collapse
|
48
|
Chitin Heterodisaccharide, Released from Chitin by Chitinase and Chitin Oligosaccharide Deacetylase, Enhances the Chitin-Metabolizing Ability of Vibrio parahaemolyticus. J Bacteriol 2019; 201:JB.00270-19. [PMID: 31358611 DOI: 10.1128/jb.00270-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/24/2019] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus RIMD2210633 secretes both chitinase and chitin oligosaccharide deacetylase and produces β-N-acetyl-d-glucosaminyl-(1,4)-d-glucosamine (GlcNAc-GlcN) from chitin. Previously, we reported that GlcNAc-GlcN induces chitinase production by several strains of Vibrio harboring chitin oligosaccharide deacetylase genes (T. Hirano, K. Kadokura, T. Ikegami, Y. Shigeta, et al., Glycobiology 19:1046-1053, 2009). The metabolism of chitin by Vibrio was speculated on the basis of the findings of previous studies, and the role of chitin oligosaccharide produced from chitin has been well studied. However, the role of GlcNAc-GlcN in the Vibrio chitin degradation system, with the exception of the above-mentioned function as an inducer of chitinase production, remains unclear. N,N'-Diacetylchitobiose, a homodisaccharide produced from chitin, is known to induce the expression of genes encoding several proteins involved in chitin metabolism in Vibrio strains (K. L. Meibom, X. B. Li, A. Nielsen, C. Wu, et al., Proc Natl Acad Sci U S A 101:2524-2529, 2004). We therefore hypothesized that GlcNAc-GlcN also affects the expression of enzymes involved in chitin metabolism in the same manner. In this study, we examined the induction of protein expression by several sugars released from chitin using peptide mass fingerprinting and confirmed the expression of genes encoding enzymes involved in chitin metabolism using real-time quantitative PCR analysis. We then confirmed that GlcNAc-GlcN induces the expression of genes encoding many soluble enzymes involved in chitin degradation in Vibrio parahaemolyticus Here, we demonstrate that GlcNAc-GlcN enhances the chitin-metabolizing ability of V. parahaemolyticus IMPORTANCE We demonstrate that β-N-acetyl-d-glucosaminyl-(1,4)-d-glucosamine (GlcNAc-GlcN) enhances the chitin-metabolizing ability of V. parahaemolyticus Members of the genus Vibrio are chitin-degrading bacteria, and some species of this genus are associated with diseases affecting fish and animals, including humans (F. L. Thompson, T. Iida, and J. Swings, Microbiol Mol Biol Rev 68:403-431, 2004; M. Y. Ina-Salwany, N. Al-Saari, A. Mohamad, F.-A. Mursidi, et al., J Aquat Anim Health 31:3-22, 2019). Studies on Vibrio are considered important, as they may facilitate the development of solutions related to health, food, and aquaculture problems attributed to this genus. This report enhances the current understanding of chitin degradation by Vibrio bacteria.
Collapse
|
49
|
Matthey N, Stutzmann S, Stoudmann C, Guex N, Iseli C, Blokesch M. Neighbor predation linked to natural competence fosters the transfer of large genomic regions in Vibrio cholerae. eLife 2019; 8:e48212. [PMID: 31478834 PMCID: PMC6783263 DOI: 10.7554/elife.48212] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/03/2019] [Indexed: 01/28/2023] Open
Abstract
Natural competence for transformation is a primary mode of horizontal gene transfer. Competent bacteria are able to absorb free DNA from their surroundings and exchange this DNA against pieces of their own genome when sufficiently homologous. However, the prevalence of non-degraded DNA with sufficient coding capacity is not well understood. In this context, we previously showed that naturally competent Vibrio cholerae use their type VI secretion system (T6SS) to actively acquire DNA from non-kin neighbors. Here, we explored the conditions of the DNA released through T6SS-mediated killing versus passive cell lysis and the extent of the transfers that occur due to these conditions. We show that competent V. cholerae acquire DNA fragments with a length exceeding 150 kbp in a T6SS-dependent manner. Collectively, our data support the notion that the environmental lifestyle of V. cholerae fosters the exchange of genetic material with sufficient coding capacity to significantly accelerate bacterial evolution.
Collapse
Affiliation(s)
- Noémie Matthey
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne; EPFL)LausanneSwitzerland
| | - Sandrine Stutzmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne; EPFL)LausanneSwitzerland
| | - Candice Stoudmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne; EPFL)LausanneSwitzerland
| | - Nicolas Guex
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | | | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne; EPFL)LausanneSwitzerland
| |
Collapse
|
50
|
Microbial Succession of Anaerobic Chitin Degradation in Freshwater Sediments. Appl Environ Microbiol 2019; 85:AEM.00963-19. [PMID: 31285190 PMCID: PMC6715849 DOI: 10.1128/aem.00963-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/29/2019] [Indexed: 12/23/2022] Open
Abstract
Chitin is the most abundant biopolymer in aquatic environments, with a direct impact on the carbon and nitrogen cycles. Despite its massive production as a structural element of crustaceans, insects, or algae, it does not accumulate in sediments. Little is known about its turnover in predominantly anoxic freshwater sediments and the responsible microorganisms. We proved that chitin is readily degraded under anoxic conditions and linked this to a succession of the members of the responsible microbial community over a 43-day period. While Fibrobacteres and Firmicutes members were driving the early and late phases of chitin degradation, respectively, a more diverse community was involved in chitin degradation in the intermediate phase. Entirely different microorganisms responded toward the chitin monomer N-acetylglucosamine, which underscores that soluble monomers are poor and misleading substrates to study polymer-utilizing microorganisms. Our study provides quantitative insights into the microbial ecology driving anaerobic chitin degradation in freshwater sediments. Chitin is massively produced by freshwater plankton species as a structural element of their exoskeleton or cell wall. At the same time, chitin does not accumulate in the predominantly anoxic sediments, underlining its importance as carbon and nitrogen sources for sedimentary microorganisms. We studied chitin degradation in littoral sediment of Lake Constance, Central Europe’s third largest lake. Turnover of the chitin analog methyl-umbelliferyl-N,N-diacetylchitobioside (MUF-DC) was highest in the upper oxic sediment layer, with 5.4 nmol MUF-DC h−1 (g sediment [dry weight])−1. In the underlying anoxic sediment layers, chitin hydrolysis decreased with depth from 1.1 to 0.08 nmol MUF-DC h−1 (g sediment [dry weight])−1. Bacteria involved in chitin degradation were identified by 16S rRNA (gene) amplicon sequencing of anoxic microcosms incubated in the presence of chitin compared to microcosms amended either with N-acetylglucosamine as the monomer of chitin or no substrate. Chitin degradation was driven by a succession of bacteria responding specifically to chitin only. The early phase (0 to 9 days) was dominated by Chitinivibrio spp. (Fibrobacteres). The intermediate phase (9 to 21 days) was characterized by a higher diversity of chitin responders, including, besides Chitinivibrio spp., also members of the phyla Bacteroidetes, Proteobacteria, Spirochaetes, and Chloroflexi. In the late phase (21 to 43 days), the Chitinivibrio populations broke down with a parallel strong increase of Ruminiclostridium spp. (formerly Clostridium cluster III, Firmicutes), which became the dominating chitin responders. Our study provides quantitative insights into anaerobic chitin degradation in lake sediments and linked this to a model of microbial succession associated with this activity. IMPORTANCE Chitin is the most abundant biopolymer in aquatic environments, with a direct impact on the carbon and nitrogen cycles. Despite its massive production as a structural element of crustaceans, insects, or algae, it does not accumulate in sediments. Little is known about its turnover in predominantly anoxic freshwater sediments and the responsible microorganisms. We proved that chitin is readily degraded under anoxic conditions and linked this to a succession of the members of the responsible microbial community over a 43-day period. While Fibrobacteres and Firmicutes members were driving the early and late phases of chitin degradation, respectively, a more diverse community was involved in chitin degradation in the intermediate phase. Entirely different microorganisms responded toward the chitin monomer N-acetylglucosamine, which underscores that soluble monomers are poor and misleading substrates to study polymer-utilizing microorganisms. Our study provides quantitative insights into the microbial ecology driving anaerobic chitin degradation in freshwater sediments.
Collapse
|