1
|
Otsuka K, Sakashita A, Maezawa S, Schultz RM, Namekawa SH. KRAB zinc-finger proteins regulate endogenous retroviruses to sculpt germline transcriptomes and genome evolution. Genome Res 2025; 35:gr.279924.124. [PMID: 40074296 PMCID: PMC11960466 DOI: 10.1101/gr.279924.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
As transposable elements (TEs) coevolved with the host genome, the host genome exploited TEs as functional regulatory elements of gene expression. Here we show that a subset of KRAB domain-containing zinc-finger proteins (KZFPs), which are highly expressed in mitotically dividing spermatogonia, repress the enhancer function of endogenous retroviruses (ERVs) and that the release from KZFP-mediated repression allows activation of ERV enhancers upon entry into meiosis. This regulatory feature is observed for independently evolved KZFPs and ERVs in mice and humans, suggesting evolutionary conservation in mammals. Further, we show that KZFP-targeted ERVs are underrepresented on the sex chromosomes in meiosis, suggesting that meiotic sex chromosome inactivation (MSCI) may antagonize the coevolution of KZFPs and ERVs in mammals. Our study uncovers a mechanism by which a subset of KZFPs regulate ERVs to sculpt germline transcriptomes. We propose that epigenetic programming during the transition from mitotic spermatogonia to meiotic spermatocytes facilitates the coevolution of KZFPs and TEs on autosomes and is antagonized by MSCI.
Collapse
Affiliation(s)
- Kai Otsuka
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akihiko Sakashita
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - So Maezawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Richard M Schultz
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616, USA;
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| |
Collapse
|
2
|
Krchlikova V, Lu Y, Sauter D. Viral influencers: deciphering the role of endogenous retroviral LTR12 repeats in cellular gene expression. J Virol 2025; 99:e0135124. [PMID: 39887236 PMCID: PMC11853044 DOI: 10.1128/jvi.01351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
The human genome is like a museum of ancient retroviral infections. It contains a large number of endogenous retroviruses (ERVs) that bear witness to past integration events. About 5,000 of them are so-called long terminal repeat 12 (LTR12) elements. Compared with 20,000 human genes, this is a remarkable number. Although LTR12 elements can act as promoters or enhancers of cellular genes, the function of most of these retroviral elements has remained unclear. In our mini-review, we show that different LTR12 elements share many similarities, including common transcription factor binding sites. Furthermore, we summarize novel insights into the epigenetic mechanisms governing their silencing and activation. Specific examples of genes and pathways that are regulated by LTR12 loci are used to illustrate the regulatory network built by these repetitive elements. A particular focus is on their role in the regulation of antiviral immune responses, tumor cell proliferation, and senescence. Finally, we describe how a targeted activation of this fascinating ERV family could be used for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Veronika Krchlikova
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Yueshuang Lu
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Song Y, Wen H, Zhai X, Jia L, Li L. Functional Bidirectionality of ERV-Derived Long Non-Coding RNAs in Humans. Int J Mol Sci 2024; 25:10481. [PMID: 39408810 PMCID: PMC11476766 DOI: 10.3390/ijms251910481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are widely recognized as the result of exogenous retroviruses infecting the ancestral germline, stabilizing integration and vertical transmission during human genetic evolution. To date, endogenous retroviruses (ERVs) appear to have been selected for human physiological functions with the loss of retrotransposable capabilities. ERV elements were previously regarded as junk DNA for a long time. Since then, the aberrant activation and expression of ERVs have been observed in the development of many kinds of human diseases, and their role has been explored in a variety of human disorders such as cancer. The results show that specific ERV elements play respective crucial roles. Among them, long non-coding RNAs (lncRNAs) transcribed from specific long-terminal repeat regions of ERVs are often key factors. lncRNAs are over 200 nucleotides in size and typically bind to DNA, RNA, and proteins to perform biological functions. Dysregulated lncRNAs have been implicated in a variety of diseases. In particular, studies have shown that the aberrant expression of some ERV-derived lncRNAs has a tumor-suppressive or oncogenic effect, displaying significant functional bidirectionality. Therefore, theses lncRNAs have a promising future as novel biomarkers and therapeutic targets to explore the concise relationship between ERVs and cancers. In this review, we first summarize the role of ERV-derived lncRNAs in physiological regulation, mainly including immunomodulation, the maintenance of pluripotency, and erythropoiesis. In addition, pathological regulation examples of their aberrant activation and expression leading to carcinogenesis are highlighted, and specific mechanisms of occurrence are discussed.
Collapse
Affiliation(s)
- Yanmei Song
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
| | - Xiuli Zhai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| |
Collapse
|
4
|
Chen M, Huang X, Wang C, Wang S, Jia L, Li L. Endogenous retroviral solo-LTRs in human genome. Front Genet 2024; 15:1358078. [PMID: 38606358 PMCID: PMC11007075 DOI: 10.3389/fgene.2024.1358078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are derived from the infection and integration of exogenetic retroviruses. HERVs account for 8% of human genome, and the majority of HERVs are solitary LTRs (solo-LTRs) due to homologous recombination. Multiple findings have showed that solo-LTRs could provide an enormous reservoir of transcriptional regulatory sequences involved in diverse biological processes, especially carcinogenesis and cancer development. The link between solo-LTRs and human diseases still remains poorly understood. This review focuses on the regulatory modules of solo-LTRs, which contribute greatly to the diversification and evolution of human genes. More importantly, although inactivating mutations, insertions and deletions have been identified in solo-LTRs, the inherited regulatory elements of solo-LTRs initiate the expression of chimeric lncRNA transcripts, which have been reported to play crucial roles in human health and disease. These findings provide valuable insights into the evolutionary and functional mechanisms underlying the presence of HERVs in human genome. Taken together, in this review, we will present evidences showing the regulatory and encoding capacity of solo-LTRs as well as the significant impact on various aspects of human biology.
Collapse
Affiliation(s)
- Mingyue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Xiaolong Huang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Chunlei Wang
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Shibo Wang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Lei Jia
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Lin Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| |
Collapse
|
5
|
Hossain MJ, Nyame P, Monde K. Species-Specific Transcription Factors Associated with Long Terminal Repeat Promoters of Endogenous Retroviruses: A Comprehensive Review. Biomolecules 2024; 14:280. [PMID: 38540701 PMCID: PMC10968565 DOI: 10.3390/biom14030280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 11/11/2024] Open
Abstract
Endogenous retroviruses (ERVs) became a part of the eukaryotic genome through endogenization millions of years ago. Moreover, they have lost their innate capability of virulence or replication. Nevertheless, in eukaryotic cells, they actively engage in various activities that may be advantageous or disadvantageous to the cells. The mechanisms by which transcription is triggered and implicated in cellular processes are complex. Owing to the diversity in the expression of transcription factors (TFs) in cells and the TF-binding motifs of viruses, the comprehensibility of ERV initiation and its impact on cellular functions are unclear. Currently, several factors are known to be related to their initiation. TFs that bind to the viral long-terminal repeat (LTR) are critical initiators. This review discusses the TFs shown to actively associate with ERV stimulation across species such as humans, mice, pigs, monkeys, zebrafish, Drosophila, and yeast. A comprehensive summary of the expression of previously reported TFs may aid in identifying similarities between animal species and endogenous viruses. Moreover, an in-depth understanding of ERV expression will assist in elucidating their physiological roles in eukaryotic cell development and in clarifying their relationship with endogenous retrovirus-associated diseases.
Collapse
Affiliation(s)
| | | | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.J.H.); (P.N.)
| |
Collapse
|
6
|
Karttunen K, Patel D, Xia J, Fei L, Palin K, Aaltonen L, Sahu B. Transposable elements as tissue-specific enhancers in cancers of endodermal lineage. Nat Commun 2023; 14:5313. [PMID: 37658059 PMCID: PMC10474299 DOI: 10.1038/s41467-023-41081-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Transposable elements (TE) are repetitive genomic elements that harbor binding sites for human transcription factors (TF). A regulatory role for TEs has been suggested in embryonal development and diseases such as cancer but systematic investigation of their functions has been limited by their widespread silencing in the genome. Here, we utilize unbiased massively parallel reporter assay data using a whole human genome library to identify TEs with functional enhancer activity in two human cancer types of endodermal lineage, colorectal and liver cancers. We show that the identified TE enhancers are characterized by genomic features associated with active enhancers, such as epigenetic marks and TF binding. Importantly, we identify distinct TE subfamilies that function as tissue-specific enhancers, namely MER11- and LTR12-elements in colon and liver cancers, respectively. These elements are bound by distinct TFs in each cell type, and they have predicted associations to differentially expressed genes. In conclusion, these data demonstrate how different cancer types can utilize distinct TEs as tissue-specific enhancers, paving the way for comprehensive understanding of the role of TEs as bona fide enhancers in the cancer genomes.
Collapse
Affiliation(s)
- Konsta Karttunen
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Divyesh Patel
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Jihan Xia
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Liangru Fei
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Lauri Aaltonen
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Biswajyoti Sahu
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Otsuka K, Sakashita A, Maezawa S, Schultz RM, Namekawa SH. KRAB-zinc-finger proteins regulate endogenous retroviruses to sculpt germline transcriptomes and genome evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.24.546405. [PMID: 37720031 PMCID: PMC10503828 DOI: 10.1101/2023.06.24.546405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
As transposable elements (TEs) coevolved with the host genome, the host genome exploited TEs as functional regulatory elements. What remains largely unknown are how the activity of TEs, namely, endogenous retroviruses (ERVs), are regulated and how TEs evolved in the germline. Here we show that KRAB domain-containing zinc-finger proteins (KZFPs), which are highly expressed in mitotically dividing spermatogonia, bind to suppressed ERVs that function following entry into meiosis as active enhancers. These features are observed for independently evolved KZFPs and ERVs in mice and humans, i.e., are evolutionarily conserved in mammals. Further, we show that meiotic sex chromosome inactivation (MSCI) antagonizes the coevolution of KZFPs and ERVs in mammals. Our study uncovers a mechanism by which KZFPs regulate ERVs to sculpt germline transcriptomes. We propose that epigenetic programming in the mammalian germline during the mitosis-to-meiosis transition facilitates coevolution of KZFPs and TEs on autosomes and is antagonized by MSCI.
Collapse
Affiliation(s)
- Kai Otsuka
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, 95616, USA
| | - Akihiko Sakashita
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - So Maezawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Richard M. Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104 USA
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, 95616, USA
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| |
Collapse
|
8
|
Modzelewski AJ, Gan Chong J, Wang T, He L. Mammalian genome innovation through transposon domestication. Nat Cell Biol 2022; 24:1332-1340. [PMID: 36008480 PMCID: PMC9729749 DOI: 10.1038/s41556-022-00970-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/27/2022] [Indexed: 01/13/2023]
Abstract
Since the discovery of transposons, their sheer abundance in host genomes has puzzled many. While historically viewed as largely harmless 'parasitic' DNAs during evolution, transposons are not a mere record of ancient genome invasion. Instead, nearly every element of transposon biology has been integrated into host biology. Here we review how host genome sequences introduced by transposon activities provide raw material for genome innovation and document the distinct evolutionary path of each species.
Collapse
Affiliation(s)
- Andrew J Modzelewski
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, CA, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Johnny Gan Chong
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, CA, USA
| | - Ting Wang
- Department of Genetics, Edison Family Center for Genome Science and System Biology, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Lin He
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, CA, USA.
| |
Collapse
|
9
|
Rutherford HA, Clarke A, Chambers EV, Petts JJ, Carson EG, Isles HM, Duque-Jaramillo A, Renshaw SA, Levraud JP, Hamilton N. A zebrafish reporter line reveals immune and neuronal expression of endogenous retrovirus. Dis Model Mech 2022; 15:dmm048921. [PMID: 35142349 PMCID: PMC9016899 DOI: 10.1242/dmm.048921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/01/2022] [Indexed: 01/12/2023] Open
Abstract
Endogenous retroviruses (ERVs) are fossils left in our genome from retrovirus infections of the past. Their sequences are part of every vertebrate genome and their random integrations are thought to have contributed to evolution. Although ERVs are mainly silenced by the host genome, they have been found to be activated in multiple disease states, such as auto-inflammatory disorders and neurological diseases. However, the numerous copies in mammalian genomes and the lack of tools to study them make defining their role in health and diseases challenging. In this study, we identified eight copies of the zebrafish endogenous retrovirus zferv. We created and characterised the first in vivo ERV reporter line in any species. Using a combination of live imaging, flow cytometry and single-cell RNA sequencing, we mapped zferv expression to early T cells and neurons. Thus, this new tool identified tissues expressing ERV in zebrafish, highlighting a potential role of ERV during brain development and strengthening the hypothesis that ERV play a role in immunity and neurological diseases. This transgenic line is therefore a suitable tool to study the function of ERV in health and diseases.
Collapse
Affiliation(s)
- Holly A. Rutherford
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Amy Clarke
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Emily V. Chambers
- The Bioinformatics Core, Faculty of Medicine and Dentistry, University of Sheffield, Sheffield S10 2TN, UK
| | - Jessica J. Petts
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Euan G. Carson
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Hannah M. Isles
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Alejandra Duque-Jaramillo
- Institute of Microbiology (IMUL), Lausanne University Hospital and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| | - Stephen A. Renshaw
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Jean-Pierre Levraud
- Macrophages et Développement de l'Immunité, Institut Pasteur, CNRS UMR3738, 25 Rue du Docteur Roux, 75015 Paris,France
| | - Noémie Hamilton
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
- The Institute of Neuroscience, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
10
|
Iouranova A, Grun D, Rossy T, Duc J, Coudray A, Imbeault M, de Tribolet-Hardy J, Turelli P, Persat A, Trono D. KRAB zinc finger protein ZNF676 controls the transcriptional influence of LTR12-related endogenous retrovirus sequences. Mob DNA 2022; 13:4. [PMID: 35042549 PMCID: PMC8767690 DOI: 10.1186/s13100-021-00260-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Transposable element-embedded regulatory sequences (TEeRS) and their KRAB-containing zinc finger protein (KZFP) controllers are increasingly recognized as modulators of gene expression. We aim to characterize the contribution of this system to gene regulation in early human development and germ cells. RESULTS Here, after studying genes driven by the long terminal repeat (LTR) of endogenous retroviruses, we identify the ape-restricted ZNF676 as the sequence-specific repressor of a subset of contemporary LTR12 integrants responsible for a large fraction of transpochimeric gene transcripts (TcGTs) generated during human early embryogenesis. We go on to reveal that the binding of this KZFP correlates with the epigenetic marking of these TEeRS in the germline, and is crucial to the control of genes involved in ciliogenesis/flagellogenesis, a biological process that dates back to the last common ancestor of eukaryotes. CONCLUSION These results illustrate how KZFPs and their TE targets contribute to the evolutionary turnover of transcription networks and participate in the transgenerational inheritance of epigenetic traits.
Collapse
Affiliation(s)
| | - Delphine Grun
- School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Tamara Rossy
- School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, EPFL, Lausanne, Switzerland
| | | | - Michael Imbeault
- School of Life Sciences, EPFL, Lausanne, Switzerland
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | | | - Didier Trono
- School of Life Sciences, EPFL, Lausanne, Switzerland.
| |
Collapse
|
11
|
Genome-Wide Characterization of Zebrafish Endogenous Retroviruses Reveals Unexpected Diversity in Genetic Organizations and Functional Potentials. Microbiol Spectr 2021; 9:e0225421. [PMID: 34908463 PMCID: PMC8672886 DOI: 10.1128/spectrum.02254-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Endogenous retroviruses (ERVs) occupy a substantial fraction of mammalian genomes. However, whether ERVs extensively exist in ancient vertebrates remains unexplored. Here, we performed a genome-wide characterization of ERVs in a zebrafish (Danio rerio) model. Approximately 3,315 ERV-like elements (DrERVs) were identified as Gypsy, Copia, Bel, and class I−III groups. DrERVs accounted for approximately 2.3% of zebrafish genome and were distributed in all 25 chromosomes, with a remarkable bias on chromosome 4. Gypsy and class I are the two most abundant groups with earlier insertion times. The vast majority of the DrERVs have varied structural defects. A total of 509 gag and 71 env genes with coding potentials were detected. The env-coding elements were well-characterized and classified into four subgroups. A ERV-E4.8.43-DanRer element shows high similarity with HERV9NC-int in humans and analogous sequences were detected in species spanning from fish to mammals. RNA-seq data showed that hundreds of DrERVs were expressed in embryos and tissues under physiological conditions, and most of them exhibited stage and tissue specificity. Additionally, 421 DrERVs showed strong responsiveness to virus infection. A unique group of DrERVs with immune-relevant genes, such as fga, ddx41, ftr35, igl1c3, and tbk1, instead of intrinsic viral genes were identified. These DrERVs are regulated by transcriptional factors binding at the long terminal repeats. This study provided a survey of the composition, phylogeny, and potential functions of ERVs in a fish model, which benefits the understanding of the evolutionary history of ERVs from fish to mammals. IMPORTANCE Endogenous retroviruses (ERVs) are relics of past infection that constitute up to 8% of the human genome. Understanding the genetic evolution of the ERV family and the interplay of ERVs and encoded RNAs and proteins with host function has become a new frontier in biology. Fish, as the most primitive vertebrate host for retroviruses, is an indispensable integral part for such investigations. In the present study, we report the genome-wide characterization of ERVs in zebrafish, an attractive model organism of ancient vertebrates from multiple perspectives, including composition, genomic organization, chromosome distribution, classification, phylogeny, insertion time, characterization of gag and env genes, and expression profiles in embryos and tissues. The result helps uncover the evolutionarily conserved and fish-specific ERVs, as well as the immune-relevant ERVs in response to virus infection. This study demonstrates the previously unrecognized abundance, diversification, and extensive activity of ERVs at the early stage of ERV evolution.
Collapse
|
12
|
Wang T, Doucet-O’Hare TT, Henderson L, Abrams RPM, Nath A. Retroviral Elements in Human Evolution and Neural Development. JOURNAL OF EXPERIMENTAL NEUROLOGY 2021; 2:1-9. [PMID: 33693440 PMCID: PMC7943042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tongguang Wang
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Tara T. Doucet-O’Hare
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Lisa Henderson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Rachel P. M. Abrams
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Avindra Nath
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA,Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA,Correspondence should be addressed to Avindra Nath;
| |
Collapse
|
13
|
Srinivasachar Badarinarayan S, Shcherbakova I, Langer S, Koepke L, Preising A, Hotter D, Kirchhoff F, Sparrer KMJ, Schotta G, Sauter D. HIV-1 infection activates endogenous retroviral promoters regulating antiviral gene expression. Nucleic Acids Res 2020; 48:10890-10908. [PMID: 33021676 PMCID: PMC7641743 DOI: 10.1093/nar/gkaa832] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Although endogenous retroviruses (ERVs) are known to harbor cis-regulatory elements, their role in modulating cellular immune responses remains poorly understood. Using an RNA-seq approach, we show that several members of the ERV9 lineage, particularly LTR12C elements, are activated upon HIV-1 infection of primary CD4+ T cells. Intriguingly, HIV-1-induced ERVs harboring transcription start sites are primarily found in the vicinity of immunity genes. For example, HIV-1 infection activates LTR12C elements upstream of the interferon-inducible genes GBP2 and GBP5 that encode for broad-spectrum antiviral factors. Reporter assays demonstrated that these LTR12C elements drive gene expression in primary CD4+ T cells. In line with this, HIV-1 infection triggered the expression of a unique GBP2 transcript variant by activating a cryptic transcription start site within LTR12C. Furthermore, stimulation with HIV-1-induced cytokines increased GBP2 and GBP5 expression in human cells, but not in macaque cells that naturally lack the GBP5 gene and the LTR12C element upstream of GBP2. Finally, our findings suggest that GBP2 and GBP5 have already been active against ancient viral pathogens as they suppress the maturation of the extinct retrovirus HERV-K (HML-2). In summary, our findings uncover how human cells can exploit remnants of once-infectious retroviruses to regulate antiviral gene expression.
Collapse
Affiliation(s)
| | - Irina Shcherbakova
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Simon Langer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Andrea Preising
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | | | - Gunnar Schotta
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| |
Collapse
|
14
|
Regulation of stem cell function and neuronal differentiation by HERV-K via mTOR pathway. Proc Natl Acad Sci U S A 2020; 117:17842-17853. [PMID: 32669437 DOI: 10.1073/pnas.2002427117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Stem cells are capable of unlimited proliferation but can be induced to form brain cells. Factors that specifically regulate human development are poorly understood. We found that human stem cells expressed high levels of the envelope protein of an endogenized human-specific retrovirus (HERV-K, HML-2) from loci in chromosomes 12 and 19. The envelope protein was expressed on the cell membrane of the stem cells and was critical in maintaining the stemness via interactions with CD98HC, leading to triggering of human-specific signaling pathways involving mammalian target of rapamycin (mTOR) and lysophosphatidylcholine acyltransferase (LPCAT1)-mediated epigenetic changes. Down-regulation or epigenetic silencing of HML-2 env resulted in dissociation of the stem cell colonies and enhanced differentiation along neuronal pathways. Thus HML-2 regulation is critical for human embryonic and neurodevelopment, while it's dysregulation may play a role in tumorigenesis and neurodegeneration.
Collapse
|
15
|
Jin X, Xu XE, Jiang YZ, Liu YR, Sun W, Guo YJ, Ren YX, Zuo WJ, Hu X, Huang SL, Shen HJ, Lan F, He YF, Hu GH, Di GH, He XH, Li DQ, Liu S, Yu KD, Shao ZM. The endogenous retrovirus-derived long noncoding RNA TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation. SCIENCE ADVANCES 2019; 5:eaat9820. [PMID: 30854423 PMCID: PMC6402854 DOI: 10.1126/sciadv.aat9820] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 01/23/2019] [Indexed: 05/03/2023]
Abstract
Human endogenous retroviruses (HERVs) play pivotal roles in the development of breast cancer. However, the detailed mechanisms of noncoding HERVs remain elusive. Here, our genome-wide transcriptome analysis of HERVs revealed that a primate long noncoding RNA, which we dubbed TROJAN, was highly expressed in human triple-negative breast cancer (TNBC). TROJAN promoted TNBC proliferation and invasion and indicated poor patient outcomes. We further confirmed that TROJAN could bind to ZMYND8, a metastasis-repressing factor, and increase its degradation through the ubiquitin-proteasome pathway by repelling ZNF592. TROJAN also epigenetically up-regulated metastasis-related genes in multiple cell lines. Correlations between TROJAN and ZMYND8 were subsequently confirmed in clinical samples. Furthermore, our study verified that antisense oligonucleotide therapy targeting TROJAN substantially suppressed TNBC progression in vivo. In conclusion, the long noncoding RNA TROJAN promotes TNBC progression and serves as a potential therapeutic target.
Collapse
Affiliation(s)
- Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Xiao-En Xu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Corresponding author. (Z.-M.S.); (X.-E.X.); (K.-D.Y.); (S.L.)
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Yi-Rong Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Wei Sun
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Ya-Jie Guo
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Yi-Xing Ren
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Wen-Jia Zuo
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Xin Hu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Sheng-Lin Huang
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Hong-Jie Shen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Fei Lan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Yun-Fei He
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Guo-Hong Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Gen-Hong Di
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Xiang-Huo He
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Da-Qiang Li
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Suling Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
- Corresponding author. (Z.-M.S.); (X.-E.X.); (K.-D.Y.); (S.L.)
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Corresponding author. (Z.-M.S.); (X.-E.X.); (K.-D.Y.); (S.L.)
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Corresponding author. (Z.-M.S.); (X.-E.X.); (K.-D.Y.); (S.L.)
| |
Collapse
|
16
|
Hu T, Pi W, Zhu X, Yu M, Ha H, Shi H, Choi JH, Tuan D. Long non-coding RNAs transcribed by ERV-9 LTR retrotransposon act in cis to modulate long-range LTR enhancer function. Nucleic Acids Res 2017; 45:4479-4492. [PMID: 28132025 PMCID: PMC5416847 DOI: 10.1093/nar/gkx055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
LTR retrotransposons are repetitive DNA elements comprising ∼10% of the human genome. However, LTR sequences are disproportionately present in human long, non-coding RNAs (lncRNAs). Whether and how the LTR lncRNAs serve biological functions are largely unknown. Here we show that in primary human erythroblasts, lncRNAs transcribed from the LTR retrotransposons of ERV-9 human endogenous retrovirus activated transcription of key erythroid genes and modulated ex vivo erythropoiesis. To dissect the functional mechanism of ERV-9 lncRNAs, we performed genome-wide RNA and ChIRP analyses before and after global knockdown or locus-specific deletion of ERV-9 lncRNAs in human erythroblasts carrying ∼4000 copies of the ERV-9 LTRs and in transgenic mouse erythroblasts carrying a single copy of the primate-specific ERV-9 LTR in the 100 kb human β-globin gene locus. We found that ERV-9 lncRNAs acted in cis to stabilize assembly of the ERV-9 LTR enhancer complex and facilitate long-range LTR enhancer function in activating transcription of downstream, cis-linked globin genes. Our findings suggested that LTR lncRNAs transcribed from many of the 4000 copies of ERV-9 LTR retrotransposons acted by a similar cis mechanism to modulate LTR enhancer function in activating transcription of downstream genes critical to cellular processes including erythropoiesis.
Collapse
Affiliation(s)
- Tianxiang Hu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Wenhu Pi
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Xingguo Zhu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Miao Yu
- Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Hongseok Ha
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Huidong Shi
- Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Jeong-Hyeon Choi
- Department of Biostatics and Epidemiology, Augusta University, Augusta, GA 30912, USA
| | - Dorothy Tuan
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
17
|
Hu T, Zhu X, Pi W, Yu M, Shi H, Tuan D. Hypermethylated LTR retrotransposon exhibits enhancer activity. Epigenetics 2017; 12:226-237. [PMID: 28165867 DOI: 10.1080/15592294.2017.1289300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
LTR retrotransposons are repetitive DNA elements comprising ∼10% of the human genome. They are silenced by hypermethylation of cytosines in CpG dinucleotides and are considered parasitic DNA serving no useful function for the host genome. However, hypermethylated LTRs contain enhancer and promoter sequences and can promote tissue-specific transcription of cis-linked genes. To resolve the apparent paradox of hypermethylated LTRs possessing transcriptional activities, we studied the ERV-9 LTR retrotransposon located at the 5' border of the transcriptionally active β-globin gene locus in human erythroid progenitor and erythroleukemia K562 cells. We found that the ERV-9 LTR, containing 65 CpGs in 1.7 kb DNA, was hypermethylated (with > 90% methylated CpGs). Hypermethylated LTR possessed transcriptional enhancer activity, since in vivo deletion of the LTR by CRISPR-cas9 suppressed transcription of the globin genes by > 50%. ChIP-qPCR and ChIP-seq studies showed that the hypermethylated LTR enhancer spanning recurrent CCAATCG and GATA motifs associated respectively with key transcription factors (TFs) NF-Y and GATA-1 and -2 at reduced levels, compared with the unmethylated LTR in transfected LTR-reporter gene plasmids. Electrophoretic mobility shift assays with methylated LTR enhancer probe showed that the methylated probe bound both NF-Y and GATA-1 and -2 with lower affinities than the unmethylated enhancer probe. Thus, hypermethylation drastically reduced, but did not totally abolish, the binding affinities of the enhancer motifs to the key TFs to assemble the LTR-pol II transcription complex that activated transcription of cis-linked genes at reduced efficiency.
Collapse
Affiliation(s)
- Tianxiang Hu
- a Department of Biochemistry and Molecular Biology , Medical College of Georgia, Augusta University , Augusta , GA , USA
| | - Xingguo Zhu
- a Department of Biochemistry and Molecular Biology , Medical College of Georgia, Augusta University , Augusta , GA , USA
| | - Wenhu Pi
- a Department of Biochemistry and Molecular Biology , Medical College of Georgia, Augusta University , Augusta , GA , USA
| | - Miao Yu
- b Georgia Cancer Center , Medical College of Georgia, Augusta University , Augusta , GA , USA
| | - Huidong Shi
- b Georgia Cancer Center , Medical College of Georgia, Augusta University , Augusta , GA , USA
| | - Dorothy Tuan
- a Department of Biochemistry and Molecular Biology , Medical College of Georgia, Augusta University , Augusta , GA , USA
| |
Collapse
|
18
|
Warren IA, Naville M, Chalopin D, Levin P, Berger CS, Galiana D, Volff JN. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 2016; 23:505-31. [PMID: 26395902 DOI: 10.1007/s10577-015-9493-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.
Collapse
Affiliation(s)
- Ian A Warren
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - Perrine Levin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chloé Suzanne Berger
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
19
|
Sherrill-Mix S, Ocwieja KE, Bushman FD. Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats. Retrovirology 2015; 12:79. [PMID: 26377088 PMCID: PMC4574318 DOI: 10.1186/s12977-015-0205-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023] Open
Abstract
Background HIV infection has been reported to alter cellular gene activity, but published studies have commonly assayed transformed cell lines and lab-adapted HIV strains, yielding inconsistent results. Here we carried out a deep RNA-Seq analysis of primary human T cells infected with the low passage HIV isolate HIV89.6. Results Seventeen percent of cellular genes showed altered activity 48 h after infection. In a meta-analysis including four other studies, our data differed from studies of HIV infection in cell lines but showed more parallels with infections of primary cells. We found a global trend toward retention of introns after infection, suggestive of a novel cellular response to infection. HIV89.6 infection was also associated with activation of several human endogenous retroviruses (HERVs) and retrotransposons, of interest as possible novel antigens that could serve as vaccine targets. The most highly activated group of HERVs was a subset of the ERV-9. Analysis showed that activation was associated with a particular variant of ERV-9 long terminal repeats that contains an indel near the U3-R border. These data also allowed quantification of >70 splice forms of the HIV89.6 RNA and specified the main types of chimeric HIV89.6-host RNAs. Comparison to over 100,000 integration site sequences from the same infected cell populations allowed quantification of authentic versus artifactual chimeric reads, showing that 5′ read-in, splicing out of HIV89.6 from the D4 donor and 3′ read-through were the most common HIV89.6-host cell chimeric RNA forms. Conclusions Analysis of RNA abundance after infection of primary T cells with the low passage HIV89.6 isolate disclosed multiple novel features of HIV-host interactions, notably intron retention and induction of transcription of retrotransposons and endogenous retroviruses. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0205-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, 425 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| | - Karen E Ocwieja
- Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, 425 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Comprehensive identification of genes driven by ERV9-LTRs reveals TNFRSF10B as a re-activatable mediator of testicular cancer cell death. Cell Death Differ 2015; 23:64-75. [PMID: 26024393 DOI: 10.1038/cdd.2015.68] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/04/2015] [Accepted: 04/16/2015] [Indexed: 12/21/2022] Open
Abstract
The long terminal repeat (LTR) of human endogenous retrovirus type 9 (ERV9) acts as a germline-specific promoter that induces the expression of a proapoptotic isoform of the tumor suppressor homologue p63, GTAp63, in male germline cells. Testicular cancer cells silence this promoter, but inhibitors of histone deacetylases (HDACs) restore GTAp63 expression and give rise to apoptosis. We show here that numerous additional transcripts throughout the genome are driven by related ERV9-LTRs. 3' Rapid amplification of cDNA ends (3'RACE) was combined with next-generation sequencing to establish a large set of such mRNAs. HDAC inhibitors induce these ERV9-LTR-driven genes but not the LTRs from other ERVs. In particular, a transcript encoding the death receptor DR5 originates from an ERV9-LTR inserted upstream of the protein coding regions of the TNFRSF10B gene, and it shows an expression pattern similar to GTAp63. When treating testicular cancer cells with HDAC inhibitors as well as the death ligand TNF-related apoptosis-inducing ligand (TRAIL), rapid cell death was observed, which depended on TNFRSF10B expression. HDAC inhibitors also cooperate with cisplatin (cDDP) to promote apoptosis in testicular cancer cells. ERV9-LTRs not only drive a large set of human transcripts, but a subset of them acts in a proapoptotic manner. We propose that this avoids the survival of damaged germ cells. HDAC inhibition represents a strategy of restoring the expression of a class of ERV9-LTR-mediated genes in testicular cancer cells, thereby re-enabling tumor suppression.
Collapse
|
21
|
Blanc S, Ruggiero F, Birot AM, Acloque H, Décimo D, Lerat E, Ohlmann T, Samarut J, Mey A. Subcellular localization of ENS-1/ERNI in chick embryonic stem cells. PLoS One 2014; 9:e92039. [PMID: 24643087 PMCID: PMC3958431 DOI: 10.1371/journal.pone.0092039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/19/2014] [Indexed: 11/18/2022] Open
Abstract
The protein of retroviral origin ENS-1/ERNI plays a major role during neural plate development in chick embryos by controlling the activity of the epigenetic regulator HP1γ, but its function in the earlier developmental stages is still unknown. ENS-1/ERNI promoter activity is down-regulated upon differentiation but the resulting protein expression has never been examined. In this study, we present the results obtained with custom-made antibodies to gain further insights into ENS-1 protein expression in Chicken embryonic stem cells (CES) and during their differentiation. First, we show that ENS-1 controls the activity of HP1γ in CES and we examined the context of its interaction with HP1γ. By combining immunofluorescence and western blot analysis we show that ENS-1 is localized in the cytoplasm and in the nucleus, in agreement with its role on gene's promoter activity. During differentiation, ENS-1 decreases in the cytoplasm but not in the nucleus. More precisely, three distinct forms of the ENS-1 protein co-exist in the nucleus and are differently regulated during differentiation, revealing a new level of control of the protein ENS-1. In silico analysis of the Ens-1 gene copies and the sequence of their corresponding proteins indicate that this pattern is compatible with at least three potential regulation mechanisms, each accounting only partially. The results obtained with the anti-ENS-1 antibodies presented here reveal that the regulation of ENS-1 expression in CES is more complex than expected, providing new tracks to explore the integration of ENS-1 in CES cells regulatory networks.
Collapse
Affiliation(s)
- Sophie Blanc
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Anne-Marie Birot
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Hervé Acloque
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire de Génétique Cellulaire-INRA, ENVT, Castanet Tolosan, France
| | - Didier Décimo
- CIRI, International Center for Infectiology Research, Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Emmanuelle Lerat
- Université de Lyon, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jacques Samarut
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail: (JS); (AM)
| | - Anne Mey
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail: (JS); (AM)
| |
Collapse
|
22
|
de Souza FS, Franchini LF, Rubinstein M. Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong? Mol Biol Evol 2013; 30:1239-51. [PMID: 23486611 PMCID: PMC3649676 DOI: 10.1093/molbev/mst045] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic sequences that can jump around the genome from one location to another, behaving as genomic parasites. TEs have been particularly effective in colonizing mammalian genomes, and such heavy TE load is expected to have conditioned genome evolution. Indeed, studies conducted both at the gene and genome levels have uncovered TE insertions that seem to have been co-opted--or exapted--by providing transcription factor binding sites (TFBSs) that serve as promoters and enhancers, leading to the hypothesis that TE exaptation is a major factor in the evolution of gene regulation. Here, we critically review the evidence for exaptation of TE-derived sequences as TFBSs, promoters, enhancers, and silencers/insulators both at the gene and genome levels. We classify the functional impact attributed to TE insertions into four categories of increasing complexity and argue that so far very few studies have conclusively demonstrated exaptation of TEs as transcriptional regulatory regions. We also contend that many genome-wide studies dealing with TE exaptation in recent lineages of mammals are still inconclusive and that the hypothesis of rapid transcriptional regulatory rewiring mediated by TE mobilization must be taken with caution. Finally, we suggest experimental approaches that may help attributing higher-order functions to candidate exapted TEs.
Collapse
Affiliation(s)
- Flávio S.J. de Souza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
23
|
Rowe HM, Kapopoulou A, Corsinotti A, Fasching L, Macfarlan TS, Tarabay Y, Viville S, Jakobsson J, Pfaff SL, Trono D. TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. Genome Res 2013; 23:452-61. [PMID: 23233547 PMCID: PMC3589534 DOI: 10.1101/gr.147678.112] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/06/2012] [Indexed: 02/03/2023]
Abstract
TRIM28 is critical for the silencing of endogenous retroviruses (ERVs) in embryonic stem (ES) cells. Here, we reveal that an essential impact of this process is the protection of cellular gene expression in early embryos from perturbation by cis-acting activators contained within these retroelements. In TRIM28-depleted ES cells, repressive chromatin marks at ERVs are replaced by histone modifications typical of active enhancers, stimulating transcription of nearby cellular genes, notably those harboring bivalent promoters. Correspondingly, ERV-derived sequences can repress or enhance expression from an adjacent promoter in transgenic embryos depending on their TRIM28 sensitivity in ES cells. TRIM28-mediated control of ERVs is therefore crucial not just to prevent retrotransposition, but more broadly to safeguard the transcriptional dynamics of early embryos.
Collapse
Affiliation(s)
- Helen M. Rowe
- School of Life Sciences and Frontiers in Genetics Program, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Adamandia Kapopoulou
- School of Life Sciences and Frontiers in Genetics Program, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Swiss Bioinformatics Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andrea Corsinotti
- School of Life Sciences and Frontiers in Genetics Program, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Liana Fasching
- Wallenberg Neuroscience Center, Lund University, BMC A11, 221 84 Lund, Sweden
| | - Todd S. Macfarlan
- Gene Expression Laboratory and the Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Yara Tarabay
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, BP10142, Illkirch Cedex, France
| | - Stéphane Viville
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, BP10142, Illkirch Cedex, France
| | - Johan Jakobsson
- Wallenberg Neuroscience Center, Lund University, BMC A11, 221 84 Lund, Sweden
| | - Samuel L. Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Didier Trono
- School of Life Sciences and Frontiers in Genetics Program, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Ward M, Wilson M, Barbosa-Morais N, Schmidt D, Stark R, Pan Q, Schwalie P, Menon S, Lukk M, Watt S, Thybert D, Kutter C, Kirschner K, Flicek P, Blencowe B, Odom D. Latent regulatory potential of human-specific repetitive elements. Mol Cell 2013; 49:262-72. [PMID: 23246434 PMCID: PMC3560060 DOI: 10.1016/j.molcel.2012.11.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/28/2012] [Accepted: 11/09/2012] [Indexed: 12/26/2022]
Abstract
At least half of the human genome is derived from repetitive elements, which are often lineage specific and silenced by a variety of genetic and epigenetic mechanisms. Using a transchromosomic mouse strain that transmits an almost complete single copy of human chromosome 21 via the female germline, we show that a heterologous regulatory environment can transcriptionally activate transposon-derived human regulatory regions. In the mouse nucleus, hundreds of locations on human chromosome 21 newly associate with activating histone modifications in both somatic and germline tissues, and influence the gene expression of nearby transcripts. These regions are enriched with primate and human lineage-specific transposable elements, and their activation corresponds to changes in DNA methylation at CpG dinucleotides. This study reveals the latent regulatory potential of the repetitive human genome and illustrates the species specificity of mechanisms that control it.
Collapse
Affiliation(s)
- Michelle C. Ward
- University of Cambridge, Cancer Research UK-Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Michael D. Wilson
- University of Cambridge, Cancer Research UK-Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Nuno L. Barbosa-Morais
- Banting and Best Department of Medical Research and Department of Molecular Genetics, Donnelly Centre, Toronto, ON M5S 3E1, Canada
| | - Dominic Schmidt
- University of Cambridge, Cancer Research UK-Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Rory Stark
- University of Cambridge, Cancer Research UK-Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Qun Pan
- Banting and Best Department of Medical Research and Department of Molecular Genetics, Donnelly Centre, Toronto, ON M5S 3E1, Canada
| | - Petra C. Schwalie
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Suraj Menon
- University of Cambridge, Cancer Research UK-Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Margus Lukk
- University of Cambridge, Cancer Research UK-Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Stephen Watt
- University of Cambridge, Cancer Research UK-Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - David Thybert
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Claudia Kutter
- University of Cambridge, Cancer Research UK-Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Kristina Kirschner
- University of Cambridge, Cancer Research UK-Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Paul Flicek
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Benjamin J. Blencowe
- Banting and Best Department of Medical Research and Department of Molecular Genetics, Donnelly Centre, Toronto, ON M5S 3E1, Canada
| | - Duncan T. Odom
- University of Cambridge, Cancer Research UK-Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
25
|
A novel function of RNAs arising from the long terminal repeat of human endogenous retrovirus 9 in cell cycle arrest. J Virol 2012; 87:25-36. [PMID: 23097441 DOI: 10.1128/jvi.01648-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The human genome contains approximately 50 copies of the replication-defective human endogenous retrovirus 9 (ERV-9) and thousands of copies of its solitary long term repeat (sLTR) element. While some sLTRs are located upstream of critical genes and have enhancer activity, other sLTRs are located within introns and may be transcribed as RNAs. We found that intronic RNAs arising from U3 sLTRs of ERV-9 were expressed as both sense (S) and antisense (AS) transcripts in all human cells tested but that expression levels differed in malignant versus nonmalignant cells. In nonmalignant cells, AS was expressed at higher levels than S and at higher levels than in malignant cells; in malignant cells, AS was expressed at amounts equivalent to those of S RNA. Critically, U3 AS RNA was found to physically bind to key transcription factors for cellular proliferation, including NF-Y, p53, and sp1, indicating that such RNA transcripts may function as decoy targets or traps for NF-Y and thus inhibit the growth of human cancer cells. Indeed, short U3 oligodeoxynucleotides (ODNs) based on these RNA sequences ably inhibited proliferation of cancer cell lines driven by cyclins B1/B2, the gene targets of NF-Y.
Collapse
|
26
|
Liu M, Eiden MV. Role of human endogenous retroviral long terminal repeats (LTRs) in maintaining the integrity of the human germ line. Viruses 2011; 3:901-5. [PMID: 21994760 PMCID: PMC3185768 DOI: 10.3390/v3060901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/10/2011] [Accepted: 06/15/2011] [Indexed: 12/22/2022] Open
Abstract
Retroviruses integrate a reverse transcribed double stranded DNA copy of their viral genome into the chromosomal DNA of cells they infect. Occasionally, exogenous retroviruses infect germ cells and when this happens a profound shift in the virus host dynamic occurs. Retroviruses maintained as hereditable viral genetic material are referred to as endogenous retroviruses (ERVs). After millions of years of co-evolution with their hosts many human ERVs retain some degree of function and a few have even become symbionts. Thousands of copies of endogenous retrovirus long terminal repeats (LTRs) exist in the human genome. There are approximately 3000 to 4000 copies of the ERV-9 LTRs in the human genome and like other solo LTRs, ERV-9 LTRs can exhibit distinct promoter/enhancer activity in different cell lineages. It has been recently reported that a novel transcript of p63, a primordial member of the p53 family, is under the transcriptional control of an ERV-9 LTR [1]. The expression of different p63 transcript isoforms has been previously shown to have an important role in replenishing cutaneous epithelial stem cells and maintaining the fidelity of the female germ line [2]. In this recent report, a novel p63 transcript, designated GTAp63, is described as specifically expressed in healthy human testes and germ cell precursors of human testes but not in testicular cancer cells. The ability of ERV-9 regulatory regions to contribute to the maintenance of male germ line stability is yet another example of how ERVs have evolved to serve an important function in the physiology of their human hosts.
Collapse
Affiliation(s)
- Meihong Liu
- Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
27
|
Endogenous retrovirus drives hitherto unknown proapoptotic p63 isoforms in the male germ line of humans and great apes. Proc Natl Acad Sci U S A 2011; 108:3624-9. [PMID: 21300884 DOI: 10.1073/pnas.1016201108] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TAp63, but not its homolog p53, eliminates oocytes that suffered DNA damage. An equivalent gene for guarding the male germ line is currently not known. Here we identify hitherto unknown human p63 transcripts with unique 5'-ends derived from incorporated exons upstream of the currently mapped TP63 gene. These unique p63 transcripts are highly and specifically expressed in testis. Their most upstream region corresponds to a LTR of the human endogenous retrovirus 9 (ERV9). The insertion of this LTR upstream of the TP63 locus occurred only recently in evolution and is unique to humans and great apes (Hominidae). A corresponding p63 protein is the sole p63 species in healthy human testis, and is strongly expressed in spermatogenic precursors but not in mature spermatozoa. In response to DNA damage, this human male germ-cell-encoded TAp63 protein (designated GTAp63) is activated by caspase cleavage near its carboxyterminal domain and induces apoptosis. Human testicular cancer tissues and cell lines largely lost p63 expression. However, pharmacological inhibition of histone deacetylases completely restores p63 expression in testicular cancer cells (>3,000-fold increase). Our data support a model whereby testis-specific GTAp63 protects the genomic integrity of the male germ line and acts as a tumor suppressor. In Hominidae, this guardian function was greatly enhanced by integration of an endogenous retrovirus upstream of the TP63 locus that occurred 15 million years ago. By providing increased germ-line stability, this event may have contributed to the evolution of hominids and enabled their long reproductive periods.
Collapse
|
28
|
Abstract
Retrotransposons including endogenous retroviruses and their solitary long terminal repeats (LTRs) compose >40% of the human genome. Many of them are located in intergenic regions far from genes. Whether these intergenic retrotransposons serve beneficial host functions is not known. Here we show that an LTR retrotransposon of ERV-9 human endogenous retrovirus located 40-70 kb upstream of the human fetal gamma- and adult beta-globin genes serves a long-range, host function. The ERV-9 LTR contains multiple CCAAT and GATA motifs and competitively recruits a high concentration of NF-Y and GATA-2 present in low abundance in adult erythroid cells to assemble an LTR/RNA polymerase II complex. The LTR complex transcribes intergenic RNAs unidirectionally through the intervening DNA to loop with and modulate transcription factor occupancies at the far downstream globin promoters, thereby modulating globin gene switching by a competitive mechanism.
Collapse
|
29
|
Sciamanna I, Vitullo P, Curatolo A, Spadafora C. Retrotransposons, reverse transcriptase and the genesis of new genetic information. Gene 2009; 448:180-6. [PMID: 19631262 DOI: 10.1016/j.gene.2009.07.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/30/2009] [Accepted: 07/14/2009] [Indexed: 01/18/2023]
Abstract
Spermatozoa of virtually all species can take up exogenous DNA or RNA molecules and internalize them into nuclei. A sperm endogenous reverse transcriptase activity can reverse-transcribe the internalized molecules in cDNA copies: exogenous RNA is reverse-transcribed in a one-step reaction, whereas DNA is first transcribed into RNA and subsequently reverse-transcribed. In either case, the newly synthesized cDNAs are delivered from sperm cells to oocytes at fertilization and are further propagated throughout embryogenesis and in tissues of adult animals. The reverse-transcribed sequences are underrepresented (below 1 copy/genome), mosaic distributed in tissues of adult individuals, transmitted in a non-Mendelian fashion from founders to F1 progeny, transcriptionally competent, variably expressed in different tissues and temporally transient, as they progressively disappear in aged animals. Based on these features, the reverse-transcribed sequences behave as extrachromosomal, biologically active retrogenes and induce novel phenotypic traits in animals. This RT-dependent mechanism, presumably originating from LINE-1 retroelements, generates transcriptionally competent retrogenes in sperm cells. These data strengthen the emerging view of a novel transgenerational genetics as the source of a continuous flow of novel epigenetic and phenotypic traits, independent from those associated to chromosomes. The distinctive features of this retrotransposon-based phenomenon share analogies with a recently discovered form of RNA-mediated inheritance, compatible with a Lamarckian-type adaptation.
Collapse
Affiliation(s)
- Ilaria Sciamanna
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | |
Collapse
|
30
|
Abstract
Infection of germline cells with retroviruses initiates permanent proviral colonization of the germline genome. The germline-integrated proviruses, called endogenous retroviruses (ERVs), are inherited to offspring in a Mendelian order and belong to the transposable element family. Endogenous retroviruses and other long terminal repeat retroelements constitute ~8% and ~10% of the human and mouse genomes, respectively. It is likely that each individual has a distinct genomic ERV profile. Recent studies have revealed that a substantial fraction of ERVs retains the coding potentials necessary for virion assembly and replication. There are several layers of potential mechanisms controlling ERV expression: intracellular transcription environment (e.g., transcription factor pool, splicing machinery, hormones), epigenetic status of the genome (e.g., proviral methylation, histone acetylation), profile of transcription regulatory elements on each ERV's promoter, and a range of stress signals (e.g., injury, infection, environment). Endogenous retroviruses may exert pathophysiologic effects by infection followed by random reintegration into the genome, by their gene products (e.g., envelope, superantigen), and by altering the expression of neighboring genes. Several studies have provided evidence that ERVs are associated with a range of pathogenic processes involving multiple sclerosis, systemic lupus erythematosus, breast cancer, and the response to burn injury. For instance, the proinflammatory properties of the human ERV-W envelope protein play a central role in demyelination of oligodendrocytes. As reviewed in this article, recent advances in ERV biology and mammalian genomics suggest that ERVs may have a profound influence on various pathogenic processes including the response to injury and infection. Understanding the roles of ERVs in the pathogenesis of injury and infection will broaden insights into the underlying mechanisms of systemic immune disorder and organ failure in these patients.
Collapse
|
31
|
Pessina A, Bonomi A, Baglio C, Cavicchini L, Sisto F, Neri MG, Gribaldo L. Microbiological risk assessment in stem cell manipulation. Crit Rev Microbiol 2008; 34:1-12. [PMID: 18259977 DOI: 10.1080/10408410701683599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell therapy based on the use of human stem cells is more complicated than transfusion or organ transplantation because cells may undergo many additional manipulations due to different treatments for isolation, expansion, differentiation, and other types of biological changes. These manipulations require the approval of regulatory agencies (other than ethical) and the processes must be monitored with more tests than the ones applied for minimally manipulated cells. The clinical safety and efficacy of transplanted cells depend on several factors such as homologous or non-homologous sources, extent of manipulation, and culture conditions. Moreover, the kind of information needed to address these issues may differ depending on whether the cells are to be used for tissue reconstruction or repair, or to recover metabolic functions. Also anatomical site, functional integration as well as duration of therapy, are crucial points that indirectly can influence safety. Many important assays have been suggested for environmental monitoring as well as to standardize microbiological controls in stem cell banks to prevent contamination. In order to guarantee safety two main aspects must be considered: one is related to the source of cells (the donor) and the other is depending on cell collection and processing. In this review we critically analyze the steps of the processes (from collection to banking) and consider the main factors involved in the clinical research (continuously in evolution) by suggesting a standardized facsimile form to use in the laboratory for the assessment of the microbiological risk related to the cell manipulations.
Collapse
Affiliation(s)
- Augusto Pessina
- Department of Public Health-Microbiology-Virology, University of Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhu X, Ling J, Zhang L, Pi W, Wu M, Tuan D. A facilitated tracking and transcription mechanism of long-range enhancer function. Nucleic Acids Res 2007; 35:5532-44. [PMID: 17704132 PMCID: PMC2018613 DOI: 10.1093/nar/gkm595] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the human ε−globin gene locus, the HS2 enhancer in the Locus Control Region regulates transcription of the embryonic ε-globin gene located over 10 kb away. The mechanism of long-range HS2 enhancer function was not fully established. Here we show that the HS2 enhancer complex containing the enhancer DNA together with RNA polymerase II (pol II) and TBP tracks along the intervening DNA, synthesizing short, polyadenylated, intergenic RNAs to ultimately loop with the ε-globin promoter. Guided by this facilitated tracking and transcription mechanism, the HS2 enhancer delivers pol II and TBP to the cis-linked globin promoter to activate mRNA synthesis from the target gene. An insulator inserted in the intervening DNA between the enhancer and the promoter traps the enhancer DNA and the associated pol II and TBP at the insulator site, blocking mid-stream the facilitated tracking and transcription mechanism of the enhancer complex, thereby blocking long-range enhancer function.
Collapse
Affiliation(s)
| | | | | | | | | | - Dorothy Tuan
- *To whom correspondence should be addressed. 706 721 0272706 721 6608
| |
Collapse
|
33
|
Chung H, Bogwitz MR, McCart C, Andrianopoulos A, Ffrench-Constant RH, Batterham P, Daborn PJ. Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics 2006; 175:1071-7. [PMID: 17179088 PMCID: PMC1840086 DOI: 10.1534/genetics.106.066597] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Transposable elements are a major mutation source and powerful agents of adaptive change. Some transposable element insertions in genomes increase to a high frequency because of the selective advantage the mutant phenotype provides. Cyp6g1-mediated insecticide resistance in Drosophila melanogaster is due to the upregulation of the cytochrome P450 gene Cyp6g1, leading to the resistance to a variety of insecticide classes. The upregulation of Cyp6g1 is correlated with the presence of the long terminal repeat (LTR) of an Accord retrotransposon inserted 291bp upstream of the Cyp6g1 transcription start site. This resistant allele (DDT-R) is currently at a high frequency in D. melanogaster populations around the world. Here, we characterize the spatial expression of Cyp6g1 in insecticide-resistant and -susceptible strains. We show that the Accord LTR insertion is indeed the resistance-associated mutation and demonstrate that the Accord LTR carries regulatory sequences that increase the expression of Cyp6g1 in tissues important for detoxification, the midgut, Malpighian tubules, and the fat body. This study provides a significant example of how changes in tissue-specific gene expression caused by transposable-element insertions can contribute to adaptation.
Collapse
Affiliation(s)
- Henry Chung
- Centre for Environmental and Stress Adaptation Research, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Illarionova AE, Vinogradova TV, Sverdlov ED. Only those genes of the KIAA1245 gene subfamily that contain HERV(K) LTRs in their introns are transcriptionally active. Virology 2006; 358:39-47. [PMID: 16997346 DOI: 10.1016/j.virol.2006.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 04/13/2006] [Accepted: 06/21/2006] [Indexed: 11/26/2022]
Abstract
Insertion of LTRs into some genome locations might seriously affect regulation of the neighboring genes expression. This hypothesis is widely accepted but, however, not confirmed directly. Earlier, we have identified a family of closely related genes highly similar to the KIAA1245 mRNA counterpart. This family included a subfamily of genes some of which contained and the others lacked an LTR in their structure. We compared transcription of several closely related genes of the subfamily differing in the presence or absence of LTRs. Only LTR-containing genes were transcribed in transformed cell lines, tumorous and embryonic human tissues, whereas LTR-lacking genes remained silent. Since the genes were in the same intracellular microenvironment, we suggested that this effect was most probably due to intrinsic cis-characteristics of integrated LTRs and confirmed this by demonstrating high enhancer activity of KIAA1245 LTRs. The expression of the LTR-containing genes in embryonic tissues might suggest their involvement in evolutionary events during primate speciation.
Collapse
Affiliation(s)
- A E Illarionova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow 117997, Russia
| | | | | |
Collapse
|
35
|
Holmquist GP, Ashley T. Chromosome organization and chromatin modification: influence on genome function and evolution. Cytogenet Genome Res 2006; 114:96-125. [PMID: 16825762 DOI: 10.1159/000093326] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 12/15/2005] [Indexed: 11/19/2022] Open
Abstract
Histone modifications of nucleosomes distinguish euchromatic from heterochromatic chromatin states, distinguish gene regulation in eukaryotes from that of prokaryotes, and appear to allow eukaryotes to focus recombination events on regions of highest gene concentrations. Four additional epigenetic mechanisms that regulate commitment of cell lineages to their differentiated states are involved in the inheritance of differentiated states, e.g., DNA methylation, RNA interference, gene repositioning between interphase compartments, and gene replication time. The number of additional mechanisms used increases with the taxon's somatic complexity. The ability of siRNA transcribed from one locus to target, in trans, RNAi-associated nucleation of heterochromatin in distal, but complementary, loci seems central to orchestration of chromatin states along chromosomes. Most genes are inactive when heterochromatic. However, genes within beta-heterochromatin actually require the heterochromatic state for their activity, a property that uniquely positions such genes as sources of siRNA to target heterochromatinization of both the source locus and distal loci. Vertebrate chromosomes are organized into permanent structures that, during S-phase, regulate simultaneous firing of replicon clusters. The late replicating clusters, seen as G-bands during metaphase and as meiotic chromomeres during meiosis, epitomize an ontological utilization of all five self-reinforcing epigenetic mechanisms to regulate the reversible chromatin state called facultative (conditional) heterochromatin. Alternating euchromatin/heterochromatin domains separated by band boundaries, and interphase repositioning of G-band genes during ontological commitment can impose constraints on both meiotic interactions and mammalian karyotype evolution.
Collapse
Affiliation(s)
- G P Holmquist
- Biology Department, City of Hope Medical Center, Duarte, CA, USA.
| | | |
Collapse
|
36
|
Papachatzopoulou A, Kourakli A, Makropoulou P, Kakagianne T, Sgourou A, Papadakis M, Athanassiadou A. Genotypic heterogeneity and correlation to intergenic haplotype within high HbF beta-thalassemia intermedia. Eur J Haematol 2006; 76:322-30. [PMID: 16519704 DOI: 10.1111/j.1600-0609.2005.00618.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES A molecular study was carried out of beta-thalassemia intermedia patients, compound heterozygotes for mutations usually found in beta-thalassemia major, with high levels of HbF in the absence of hereditary persistence of fetal hemoglobin (HPFH) syndrome. Our objective was to locate cis-DNA structures, DNA haplotypes, motifs, or polymorphisms that may correlate with the presence of high HbF. METHODS Allele-specific oligonucleotide (ASO) hybridization was used for the detection of mutations and restriction fragment length polymorphism (RFLP) analysis and automated sequencing for motifs, haplotypes, and polymorphisms. Southern blot was used for investigating alpha-thalassemia and/or alpha- or gamma-globin genes triplications. RNA extracted from burst forming unit-erythroid (BFU-e) colonies of peripheral blood mononuclear cell cultures was used in reverse transcriptase-polymerase chain reaction (RT-PCR) to investigate intergenic transcription. RESULTS We established that (i) the combination: T haplotype of the Agamma-delta-globin intergenic region, the motif (TA)9N10(TA)10 in the HS2 site of locus control region (LCR), and TAG pre-Ggamma haplotype is sufficient but not necessary for high HbF, (ii) the genetic determinant(s) for high HbF involves an element associated with this combination and must be present in the specific R haplotype occurring in beta-thalassemia intermedia and (iii) the genetic determinant(s) for high HbF does not involve the abolition of intergenic transcription in the Agamma-delta-globin intergenic region. CONCLUSIONS The genetic determinant(s) of high HbF in the absence of HPFH is linked to intergenic haplotype T and does not disrupt intergenic transcription.
Collapse
|
37
|
Pauler FM, Stricker SH, Warczok KE, Barlow DP. Long-range DNase I hypersensitivity mapping reveals the imprinted Igf2r and Air promoters share cis-regulatory elements. Genome Res 2006; 15:1379-87. [PMID: 16204191 PMCID: PMC1240080 DOI: 10.1101/gr.3783805] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epigenetic mechanisms restrict the expression of imprinted genes to one parental allele in diploid cells. At the Igf2r/Air imprinted cluster on mouse chromosome 17, paternal-specific expression of the Air noncoding RNA has been shown to silence three genes in cis: Igf2r, Slc22a2, and Slc22a3. By an unbiased mapping of DNase I hypersensitive sites (DHS) in a 192-kb region flanking Igf2r and Air, we identified 21 DHS, of which nine mapped to evolutionarily conserved sequences. Based on the hypothesis that silencing effects of Air would be directed towards cis regulatory elements used to activate genes, DHS are potential key players in the control of imprinted expression. However, in this 192-kb region only the two DHS mapping to the Igf2r and Air promoters show parental specificity. The remaining 19 DHS were present on both parental alleles and, thus, have the potential to activate Igf2r on the maternal allele and Air on the paternal allele. The possibility that the Igf2r and Air promoters share the same cis-acting regulatory elements, albeit on opposite parental chromosomes, was supported by the similar expression profiles of Igf2r and Air in vivo. These results refine our understanding of the onset of imprinted silencing at this cluster and indicate the Air noncoding RNA may specifically target silencing to the Igf2r promoter.
Collapse
Affiliation(s)
- Florian M Pauler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Institute of Genetics, Max F. Perutz Laboratories, Vienna Biocenter, A1030 Vienna, Austria
| | | | | | | |
Collapse
|
38
|
Yu X, Zhu X, Pi W, Ling J, Ko L, Takeda Y, Tuan D. The long terminal repeat (LTR) of ERV-9 human endogenous retrovirus binds to NF-Y in the assembly of an active LTR enhancer complex NF-Y/MZF1/GATA-2. J Biol Chem 2005; 280:35184-94. [PMID: 16105833 DOI: 10.1074/jbc.m508138200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The solitary ERV-9 long terminal repeat (LTR) located upstream of the HS5 site in the human beta-globin locus control region exhibits prominent enhancer activity in embryonic and erythroid cells. The LTR enhancer contains 14 tandemly repeated subunits with recurrent CCAAT, GTGGGGA, and GATA motifs. Here we showed that in erythroid K562 cells these DNA motifs bound the following three transcription factors: ubiquitous NF-Y and hematopoietic MZF1 and GATA-2. These factors and their target DNA motifs exhibited a hierarchy of DNA/protein and protein/protein binding affinities: NF-Y/CCAAT > NF-Y/GATA-2 > NF-Y/MZF1 > MZF1/GTGGGGA; GATA-2/GATA. Through protein/protein interactions, NF-Y bound at the CCAAT motif recruited MZF1 and GATA-2, but not Sp1 and GATA-1, and stabilized their binding to the neighboring GTGGGGA and GATA sites to assemble a novel LTR enhancer complex, NF-Y/MZF1/GATA-2. In the LTR-HS5-epsilonp-GFP plasmid integrated into K562 cells, mutation of the CCAAT motif in the LTR enhancer to abolish NF-Y binding inactivated the enhancer, closed down the chromatin structure of the epsilon-globin promoter, and silenced transcription of the green fluorescent protein gene. The results indicated that NF-Y bound at the CCAAT motifs assembled a robust LTR enhancer complex, which could act over the intervening DNA to remodel the chromatin structure and to stimulate the transcription of the downstream gene locus.
Collapse
Affiliation(s)
- Xiuping Yu
- Department of Biochemistry and Molecular Biology and Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Herrera L, Ottolenghi C, Garcia-Ortiz JE, Pellegrini M, Manini F, Ko MSH, Nagaraja R, Forabosco A, Schlessinger D. Mouse ovary developmental RNA and protein markers from gene expression profiling. Dev Biol 2005; 279:271-90. [PMID: 15733658 DOI: 10.1016/j.ydbio.2004.11.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 11/17/2004] [Indexed: 11/25/2022]
Abstract
To identify genes involved in morphogenetic events during mouse ovary development, we started with microarray analyses of whole organ RNA. Transcripts for 60% of the 15,000 gene NIA panel were detected, and about 2000 were differentially expressed in nascent newborn compared to adult ovary. Highly differentially expressed transcripts included noncoding RNAs and newly detected genes involved in transcription regulation and signal transduction. The phased pattern of newborn mouse ovary differentiation allowed us to (1) extend information on activity and stage specificity of cell type-specific genes; and (2) generate a list of candidate genes involved in primordial follicle formation, including podocalyxin (Podxl), PDGFR-beta, and a follistatin-domain-encoding gene Flst1. Oocyte-specific transcripts included many (e.g., Deltex2, Bicd2, and Zfp37) enriched in growing oocytes, as well as a novel family of untranslated RNA's (RLTR10) that is selectively expressed in early stage follicles. The results indicate that global expression profiling of whole organ RNA provides sensitive first-line information about ovarian histogenesis for which no in vitro cell models are currently available.
Collapse
Affiliation(s)
- Luisa Herrera
- Laboratory of Genetics, Gerentalogy Research Centre, National Institute on Aging, Suite 3000, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Closely related RNA silencing phenomena such as posttranscriptional and transcriptional gene silencing (PTGS and TGS), quelling and RNA interference (RNAi) represent different forms of a conserved ancestral process. The biological relevance of these RNA-directed mechanisms of silencing in gene regulation, genome defence and chromosomal structure is rapidly being unravelled. Here, we review the recent developments in the field of RNA silencing in relation to other epigenetic phenomena and discuss the significance of this process and its targets in the regulation of modern eukaryotic genomes.
Collapse
Affiliation(s)
- Ricardo Almeida
- Wellcome Trust Centre for Cell Biology, 6.34 Swann Building, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
41
|
Ling J, Zhang L, Jin H, Pi W, Kosteas T, Anagnou NP, Goodman M, Tuan D. Dynamic retrotransposition of ERV-9 LTR and L1 in the beta-globin gene locus during primate evolution. Mol Phylogenet Evol 2004; 30:867-71. [PMID: 15012967 DOI: 10.1016/j.ympev.2003.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 09/23/2003] [Indexed: 11/25/2022]
Affiliation(s)
- Jianhua Ling
- Department of Biochemistry and Molecular Biology, School of Medicine, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Solter D, Hiiragi T, Evsikov AV, Moyer J, De Vries WN, Peaston AE, Knowles BB. Epigenetic mechanisms in early mammalian development. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:11-7. [PMID: 16117628 DOI: 10.1101/sqb.2004.69.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- D Solter
- Max-Planck Institute of Immunobiology, 79108 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|