1
|
Guo L, Zong Y, Yang W, Lin Y, Feng Q, Yu C, Liu X, Li C, Zhang W, Wang R, Li L, Pei Y, Wang H, Liu D, Niu H, Nie L. DCBLD2 deletion increases hyperglycemia and induces vascular remodeling by inhibiting insulin receptor recycling in endothelial cells. FEBS J 2024; 291:4076-4095. [PMID: 38872483 DOI: 10.1111/febs.17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/02/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Discoidin, CUB, LCCL domain-containing 2 (DCBLD2) is a type I transmembrane protein with a similar structure to neuropilin, which acts as a co-receptor for certain receptor tyrosine kinases (RTKs). The insulin receptor is an RTK and plays a critical role in endothelial cell function and glycolysis. However, how and whether DCBLD2 regulates insulin receptor activity in endothelial cells is poorly understood. Diabetes was induced through treatment of Dcbld2 global-genome knockout mice and endothelium-specific knockout mice with streptozotocin. Vascular ultrasound, vascular tension test, and hematoxylin and eosin staining were performed to assess endothelial function and aortic remodeling. Glycolytic rate assays, real-time PCR and western blotting were used to investigate the effects of DCBLD2 on glycolytic activity and insulin receptor (InsR)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in endothelial cells. Co-immunoprecipitation was used to assess the effects of DCBLD2 on insulin receptor endocytosis and recycling. Membrane and cytoplasmic proteins were isolated to determine whether DCBLD2 could affect the localization of the insulin receptor. We found that Dcbld2 deletion exacerbated endothelial dysfunction and vascular remodeling in diabetic mice. Both Dcbld2 knockdown and Dcbld2 deletion inhibited glycolysis and the InsR/PI3K/Akt signaling pathway in endothelial cells. Furthermore, Dcbld2 deletion inhibited insulin receptor recycling. Taken together, Dcbld2 deficiency exacerbated diabetic endothelial dysfunction and vascular remodeling by inhibiting the InsR/PI3K/Akt pathway in endothelial cells through the inhibition of Rab11-dependent insulin receptor recycling. Our data suggest that DCBLD2 is a potential therapeutic target for diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Lingling Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yanhong Zong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Weiwei Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yanling Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Qi Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Chao Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Xiaoning Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Chenyang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Wenjun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Runtao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Lijing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yunli Pei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Huifang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Demin Liu
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Honglin Niu
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Lei Nie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- Key Laboratory of Vascular Biology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Lee J, Gonzalez-Hernandez AJ, Kristt M, Abreu N, Roßmann K, Arefin A, Marx DC, Broichhagen J, Levitz J. Distinct beta-arrestin coupling and intracellular trafficking of metabotropic glutamate receptor homo- and heterodimers. SCIENCE ADVANCES 2023; 9:eadi8076. [PMID: 38055809 PMCID: PMC10699790 DOI: 10.1126/sciadv.adi8076] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
The metabotropic glutamate receptors (mGluRs) are family C, dimeric G protein-coupled receptors (GPCRs), which play critical roles in synaptic transmission. Despite an increasing appreciation of the molecular diversity of this family, how distinct mGluR subtypes are regulated remains poorly understood. We reveal that different group II/III mGluR subtypes show markedly different beta-arrestin (β-arr) coupling and endocytic trafficking. While mGluR2 is resistant to internalization and mGluR3 shows transient β-arr coupling, which enables endocytosis and recycling, mGluR8 and β-arr form stable complexes, which leads to efficient lysosomal targeting and degradation. Using chimeras and mutagenesis, we pinpoint carboxyl-terminal domain regions that control β-arr coupling and trafficking, including the identification of an mGluR8 splice variant with impaired internalization. We then use a battery of high-resolution fluorescence assays to find that heterodimerization further expands the diversity of mGluR regulation. Together, this work provides insight into the relationship between GPCR/β-arr complex formation and trafficking while revealing diversity and intricacy in the regulation of mGluRs.
Collapse
Affiliation(s)
- Joon Lee
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nohely Abreu
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kilian Roßmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dagan C. Marx
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
3
|
Essandoh K, Subramani A, Ferro OA, Teuber JP, Koripella S, Brody MJ. zDHHC9 Regulates Cardiomyocyte Rab3a Activity and Atrial Natriuretic Peptide Secretion Through Palmitoylation of Rab3gap1. JACC Basic Transl Sci 2023; 8:518-542. [PMID: 37325411 PMCID: PMC10264568 DOI: 10.1016/j.jacbts.2022.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 02/25/2023]
Abstract
Production and release of natriuretic peptides by the stressed heart reduce cardiac workload by promoting vasodilation, natriuresis, and diuresis, which has been leveraged in the recent development of novel heart-failure pharmacotherapies, yet the mechanisms regulating cardiomyocyte exocytosis and natriuretic peptide release remain ill defined. We found that the Golgi S-acyltransferase zDHHC9 palmitoylates Rab3gap1 resulting in its spatial segregation from Rab3a, elevation of Rab3a-GTP levels, formation of Rab3a-positive peripheral vesicles, and impairment of exocytosis that limits atrial natriuretic peptide release. This novel pathway potentially can be exploited for targeting natriuretic peptide signaling in the treatment of heart failure.
Collapse
Affiliation(s)
- Kobina Essandoh
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Olivia A. Ferro
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - James P. Teuber
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sribharat Koripella
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew J. Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
The Rab GTPase in the heart: Pivotal roles in development and disease. Life Sci 2022; 306:120806. [PMID: 35841978 DOI: 10.1016/j.lfs.2022.120806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022]
Abstract
Rab proteins are a family of small GTPases that function as molecular switches of intracellular vesicle formation and membrane trafficking. As a key factor, Rab GTPase participates in autophagy and protein transport and acts as the central hub of membrane trafficking in eukaryotes. The role of Rab GTPase in neurodegenerative disorders, such as Alzheimer's and Parkinson's, has been extensively investigated; however, its implication in cardiovascular embryogenesis and diseases remains largely unknown. In this review, we summarize previous findings and reveal their importance in the onset and progression of cardiac diseases, as well as their emergence as potential therapeutic targets for cardiovascular disease.
Collapse
|
5
|
Andersson L, Cinato M, Mardani I, Miljanovic A, Arif M, Koh A, Lindbom M, Laudette M, Bollano E, Omerovic E, Klevstig M, Henricsson M, Fogelstrand P, Swärd K, Ekstrand M, Levin M, Wikström J, Doran S, Hyötyläinen T, Sinisalu L, Orešič M, Tivesten Å, Adiels M, Bergo MO, Proia R, Mardinoglu A, Jeppsson A, Borén J, Levin MC. Glucosylceramide synthase deficiency in the heart compromises β1-adrenergic receptor trafficking. Eur Heart J 2021; 42:4481-4492. [PMID: 34297830 PMCID: PMC8599074 DOI: 10.1093/eurheartj/ehab412] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/05/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
AIMS Cardiac injury and remodelling are associated with the rearrangement of cardiac lipids. Glycosphingolipids are membrane lipids that are important for cellular structure and function, and cardiac dysfunction is a characteristic of rare monogenic diseases with defects in glycosphingolipid synthesis and turnover. However, it is not known how cardiac glycosphingolipids regulate cellular processes in the heart. The aim of this study is to determine the role of cardiac glycosphingolipids in heart function. METHODS AND RESULTS Using human myocardial biopsies, we showed that the glycosphingolipids glucosylceramide and lactosylceramide are present at very low levels in non-ischaemic human heart with normal function and are elevated during remodelling. Similar results were observed in mouse models of cardiac remodelling. We also generated mice with cardiomyocyte-specific deficiency in Ugcg, the gene encoding glucosylceramide synthase (hUgcg-/- mice). In 9- to 10-week-old hUgcg-/- mice, contractile capacity in response to dobutamine stress was reduced. Older hUgcg-/- mice developed severe heart failure and left ventricular dilatation even under baseline conditions and died prematurely. Using RNA-seq and cell culture models, we showed defective endolysosomal retrograde trafficking and autophagy in Ugcg-deficient cardiomyocytes. We also showed that responsiveness to β-adrenergic stimulation was reduced in cardiomyocytes from hUgcg-/- mice and that Ugcg knockdown suppressed the internalization and trafficking of β1-adrenergic receptors. CONCLUSIONS Our findings suggest that cardiac glycosphingolipids are required to maintain β-adrenergic signalling and contractile capacity in cardiomyocytes and to preserve normal heart function.
Collapse
Affiliation(s)
- Linda Andersson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Mathieu Cinato
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Ismena Mardani
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Azra Miljanovic
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Ara Koh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Malin Lindbom
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Marion Laudette
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Entela Bollano
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Martina Klevstig
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Matias Ekstrand
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Max Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Johannes Wikström
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Stephen Doran
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Tuulia Hyötyläinen
- School of Natural Sciences and Technology, Örebro University, Fakultetsgatan 1, SE-701 82 Örebro, Sweden
| | - Lisanna Sinisalu
- School of Natural Sciences and Technology, Örebro University, Fakultetsgatan 1, SE-701 82 Örebro, Sweden
| | - Matej Orešič
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
- Turku Bioscience Centre, University of Turku, FIN-20521 Turku, Finland
| | - Åsa Tivesten
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Martin O Bergo
- Department of Biosciences and Nutrition, Karolinska Institute, SE-141 83 Huddinge, Sweden
| | - Richard Proia
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| | - Malin C Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
6
|
Chung CG, Park SS, Park JH, Lee SB. Dysregulated Plasma Membrane Turnover Underlying Dendritic Pathology in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:556461. [PMID: 33192307 PMCID: PMC7580253 DOI: 10.3389/fncel.2020.556461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Due to their enormous surface area compared to other cell types, neurons face unique challenges in properly handling supply and retrieval of the plasma membrane (PM)-a process termed PM turnover-in their distal areas. Because of the length and extensiveness of dendritic branches in neurons, the transport of materials needed for PM turnover from soma to distal dendrites will be inefficient and quite burdensome for somatic organelles. To meet local demands, PM turnover in dendrites most likely requires local cellular machinery, such as dendritic endocytic and secretory systems, dysregulation of which may result in dendritic pathology observed in various neurodegenerative diseases (NDs). Supporting this notion, a growing body of literature provides evidence to suggest the pathogenic contribution of dysregulated PM turnover to dendritic pathology in certain NDs. In this article, we present our perspective view that impaired dendritic endocytic and secretory systems may contribute to dendritic pathology by encumbering PM turnover in NDs.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Soon Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jeong Hyang Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
7
|
Two barcodes encoded by the type-1 PDZ and by phospho-Ser312 regulate retromer/WASH-mediated sorting of the ß1-adrenergic receptor from endosomes to the plasma membrane. Cell Signal 2017; 29:192-208. [DOI: 10.1016/j.cellsig.2016.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 01/23/2023]
|
8
|
Uchida Y, Rutaganira FU, Jullié D, Shokat KM, von Zastrow M. Endosomal Phosphatidylinositol 3-Kinase Is Essential for Canonical GPCR Signaling. Mol Pharmacol 2017; 91:65-73. [PMID: 27821547 PMCID: PMC5198513 DOI: 10.1124/mol.116.106252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/04/2016] [Indexed: 02/04/2023] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of signaling receptors, are critically regulated by endosomal trafficking, suggesting that endosomes might provide new strategies for manipulating GPCR signaling. Here we test this hypothesis by focusing on class III phosphatidylinositol 3-kinase (Vps34), which is an essential regulator of endosomal trafficking. We verify that Vps34 is required for recycling of the β2-adrenoceptor (β2AR), a prototypical GPCR, and then investigate the effects of Vps34 inhibition on the canonical cAMP response elicited by β2AR activation. Vps34 inhibition impairs the ability of cells to recover this response after prolonged activation, which is in accord with the established role of recycling in GPCR resensitization. In addition, Vps34 inhibition also attenuates the short-term cAMP response, and its effect begins several minutes after initial agonist application. These results establish Vps34 as an essential determinant of both short-term and long-term canonical GPCR signaling, and support the potential utility of the endosomal system as a druggable target for signaling.
Collapse
Affiliation(s)
- Yasunori Uchida
- Department of Psychiatry (Y.U., D.J., and M.Z.), Department of Cellular and Molecular Pharmacology (F.U.R., K.M.S., and M.Z.), and Howard Hughes Medical Institute (F.U.R. and K.M.S.), University of California, San Francisco, San Francisco, California
| | - Florentine U Rutaganira
- Department of Psychiatry (Y.U., D.J., and M.Z.), Department of Cellular and Molecular Pharmacology (F.U.R., K.M.S., and M.Z.), and Howard Hughes Medical Institute (F.U.R. and K.M.S.), University of California, San Francisco, San Francisco, California
| | - Damien Jullié
- Department of Psychiatry (Y.U., D.J., and M.Z.), Department of Cellular and Molecular Pharmacology (F.U.R., K.M.S., and M.Z.), and Howard Hughes Medical Institute (F.U.R. and K.M.S.), University of California, San Francisco, San Francisco, California
| | - Kevan M Shokat
- Department of Psychiatry (Y.U., D.J., and M.Z.), Department of Cellular and Molecular Pharmacology (F.U.R., K.M.S., and M.Z.), and Howard Hughes Medical Institute (F.U.R. and K.M.S.), University of California, San Francisco, San Francisco, California
| | - Mark von Zastrow
- Department of Psychiatry (Y.U., D.J., and M.Z.), Department of Cellular and Molecular Pharmacology (F.U.R., K.M.S., and M.Z.), and Howard Hughes Medical Institute (F.U.R. and K.M.S.), University of California, San Francisco, San Francisco, California
| |
Collapse
|
9
|
Chapter Five - Ubiquitination of Ion Channels and Transporters. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:161-223. [DOI: 10.1016/bs.pmbts.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
IRAS Modulates Opioid Tolerance and Dependence by Regulating μ Opioid Receptor Trafficking. Mol Neurobiol 2015; 53:4918-30. [DOI: 10.1007/s12035-015-9417-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/01/2015] [Indexed: 01/25/2023]
|
11
|
Abstract
The endocytic network comprises a vast and intricate system of membrane-delimited cell entry and cargo sorting routes running between biochemically and functionally distinct intracellular compartments. The endocytic network caters to the organization and redistribution of diverse subcellular components, and mediates appropriate shuttling and processing of materials acquired from neighboring cells or the extracellular milieu. Such trafficking logistics, despite their importance, represent only one facet of endocytic function. The endocytic network also plays a key role in organizing, mediating, and regulating cellular signal transduction events. Conversely, cellular signaling processes tightly control the endocytic pathway at different steps. The present article provides a perspective on the intimate relationships that exist between particular endocytic and cellular signaling processes in mammalian cells, within the context of understanding the impact of this nexus on integrated physiology.
Collapse
Affiliation(s)
- Pier Paolo Di Fiore
- Department of Experimental Oncology, Istituto Europeo di Oncologia, 20141 Milan, Italy Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Mark von Zastrow
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94158 Department of Cellular & Molecular Pharmacology, University of California San Francisco School of Medicine, San Francisco, California 94158
| |
Collapse
|
12
|
Bukhari F, MacGillivray T, del Monte F, Hajjar RJ. Genetic maneuvers to ameliorate ventricular function in heart failure: therapeutic potential and future implications. Expert Rev Cardiovasc Ther 2014; 3:85-97. [PMID: 15723577 DOI: 10.1586/14779072.3.1.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gene therapy to treat heart failure has evolved into a growing field of investigation yielding remarkable results in preclinical models. Whether these results will persist in clinical trials remains to be seen. However, researchers still face a number of obstacles that need to be overcome before this treatment can be employed effectively. Efforts are required to identify better vectors with minimal side effects and maximal efficiency and durability. There is also a need to develop less invasive and more effective techniques to deliver these vectors. This review will discuss different methods to achieve these goals, the various pathologic mechanisms that have been targeted so far and those with strong potential for use in the future.
Collapse
Affiliation(s)
- Fariya Bukhari
- University of Arizona, Department of Medicine, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
13
|
Cui Z, Zhang S. Regulation of the human ether-a-go-go-related gene (hERG) channel by Rab4 protein through neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2). J Biol Chem 2013; 288:21876-86. [PMID: 23792956 DOI: 10.1074/jbc.m113.461715] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes the pore-forming α-subunit of the rapidly activating delayed rectifier K(+) channel in the heart, which plays a critical role in cardiac action potential repolarization. Dysfunction of IKr causes long QT syndrome, a cardiac electrical disorder that predisposes affected individuals to fatal arrhythmias and sudden death. The homeostasis of hERG channels in the plasma membrane depends on a balance between protein synthesis and degradation. Our recent data indicate that hERG channels undergo enhanced endocytic degradation under low potassium (hypokalemia) conditions. The GTPase Rab4 is known to mediate rapid recycling of various internalized proteins to the plasma membrane. In the present study, we investigated the effect of Rab4 on the expression level of hERG channels. Our data revealed that overexpression of Rab4 decreases the expression level of hERG in the plasma membrane. Rab4 does not affect the expression level of the Kv1.5 or EAG K(+) channels. Mechanistically, our data demonstrate that overexpression of Rab4 increases the expression level of endogenous Nedd4-2, a ubiquitin ligase that targets hERG but not Kv1.5 or EAG channels for ubiquitination and degradation. Nedd4-2 undergoes self- ubiquitination and degradation. Rab4 interferes with Nedd4-2 degradation, resulting in an increased expression level of Nedd4-2, which targets hERG. In summary, the present study demonstrates a novel pathway for hERG regulation; Rab4 decreases the hERG density at the plasma membrane by increasing the endogenous Nedd4-2 expression.
Collapse
Affiliation(s)
- Zhi Cui
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
14
|
Cheng J, Liu W, Duffney LJ, Yan Z. SNARE proteins are essential in the potentiation of NMDA receptors by group II metabotropic glutamate receptors. J Physiol 2013; 591:3935-47. [PMID: 23774277 DOI: 10.1113/jphysiol.2013.255075] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The group II metabotropic glutamate receptors (group II mGluRs) have emerged as the new drug targets for the treatment of mental disorders like schizophrenia. To understand the potential mechanisms underlying the antipsychotic effects of group II mGluRs, we examined their impact on NMDA receptors (NMDARs), since NMDAR hypofunction has been implicated in schizophrenia. The activation of group II mGluRs caused a significant enhancement of NMDAR currents in cortical pyramidal neurons, which was associated with increased NMDAR surface expression and synaptic localization. We further examined whether these effects of group II mGluRs are through the regulation of NMDAR exocytosis via SNARE proteins, a family of proteins involved in vesicle fusion. We found that the enhancing effect of APDC, a selective agonist of group II mGluRs, on NMDAR currents was abolished when botulinum toxin was delivered into the recorded neurons to disrupt the SNARE complex. Inhibiting the function of two key SNARE proteins, SNAP-25 and syntaxin 4, also eliminated the effect of APDC on NMDAR currents. Moreover, the application of APDC increased the activity of Rab4, a small Rab GTPase mediating fast recycling from early endosomes to the plasma membrane, and enhanced the interaction between syntaxin 4 and Rab4. Knockdown of Rab4 or expression of dominant-negative Rab4 attenuated the effect of APDC on NMDAR currents. Taken together, these results have identified key molecules involved in the group II mGluR-induced potentiation of NMDAR exocytosis and function.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Physiology and Biophysics, State University of New York at Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
15
|
Rab GTPases regulate endothelial cell protein C receptor-mediated endocytosis and trafficking of factor VIIa. PLoS One 2013; 8:e59304. [PMID: 23555015 PMCID: PMC3598704 DOI: 10.1371/journal.pone.0059304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 02/14/2013] [Indexed: 01/11/2023] Open
Abstract
Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa.
Collapse
|
16
|
von Zastrow M, Williams JT. Modulating neuromodulation by receptor membrane traffic in the endocytic pathway. Neuron 2012; 76:22-32. [PMID: 23040804 DOI: 10.1016/j.neuron.2012.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular responsiveness to many neuromodulators is controlled by endocytosis of the transmembrane receptors that transduce their effects. Endocytic membrane trafficking of particular neuromodulator receptors exhibits remarkable diversity and specificity, determined largely by molecular sorting operations that guide receptors at trafficking branchpoints after endocytosis. In this Review, we discuss recent progress in elucidating mechanisms mediating the molecular sorting of neuromodulator receptors in the endocytic pathway. There is emerging evidence that endocytic trafficking of neuromodulator receptors, in addition to influencing longer-term cellular responsiveness under conditions of prolonged or repeated activation, may also affect the acute response. Physiological and pathological consequences of defined receptor trafficking events are only now being elucidated, but it is already apparent that endocytosis of neuromodulator receptors has a significant impact on the actions of therapeutic drugs. The present data also suggest, conversely, that mechanisms of receptor endocytosis and molecular sorting may themselves represent promising targets for therapeutic manipulation.
Collapse
Affiliation(s)
- Mark von Zastrow
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158, USA.
| | | |
Collapse
|
17
|
Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes. Physiol Rev 2012; 92:1317-58. [DOI: 10.1152/physrev.00041.2011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Collapse
Affiliation(s)
- Elise Balse
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David F. Steele
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Alain Coulombe
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David Fedida
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Stéphane N. Hatem
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Mohan ML, Vasudevan NT, Gupta MK, Martelli EE, Naga Prasad SV. G-protein coupled receptor resensitization-appreciating the balancing act of receptor function. Curr Mol Pharmacol 2012:CMP-EPUB-20120530-2. [PMID: 22697395 PMCID: PMC4607669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 06/01/2023]
Abstract
G-protein coupled receptors (GPCRs) are seven transmembrane receptors that are pivotal regulators of cellular responses including vision, cardiac contractility, olfaction, and platelet activation. GPCRs have been a major target for drug discovery due to their role in regulating a broad range of physiological and pathological responses. GPCRs mediate these responses through a cyclical process of receptor activation (initiation of downstream signals), desensitization (inactivation that results in diminution of downstream signals), and resensitization (receptor reactivation for next wave of activation). Although these steps may be of equal importance in regulating receptor function, significant advances have been made in understanding activation and desensitization with limited effort towards resensitization. Inadequate importance has been given to resensitization due to the understanding that resensitization is a homeostasis maintaining process and is not acutely regulated. Evidence indicates that resensitization is a critical step in regulating GPCR function and may contribute towards receptor signaling and cellular responses. In light of these observations, it is imperative to discuss resensitization as a dynamic and mechanistic regulator of GPCR function. In this review we discuss components regulating GPCR function like activation, desensitization, and internalization with special emphasis on resensitization. Although we have used β-adrenergic receptor as a proto-type GPCR to discuss mechanisms regulating receptor function, other GPCRs are also described to put forth a view point on the universality of such mechanisms.
Collapse
Affiliation(s)
- Maradumane L Mohan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195.
| | | | | | | | | |
Collapse
|
19
|
Nguyen VT, Wu Y, Guillory AN, McConnell BK, Fujise K, Huang MH. Delta-opioid augments cardiac contraction through β-adrenergic and CGRP-receptor co-signaling. Peptides 2012; 33:77-82. [PMID: 22108711 PMCID: PMC3396132 DOI: 10.1016/j.peptides.2011.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 11/06/2011] [Accepted: 11/07/2011] [Indexed: 11/24/2022]
Abstract
Cardiac epinephrine and calcitonin gene-related peptide (CGRP) are produced by intrinsic cardiac adrenergic cells (ICA cells) residing in human and animal hearts. ICA cells are neuroparicine cells expressing δ-opioid receptors (DOR). We hypothesized that δ-opioid stimulation of ICA cells enhances epinephrine and CGRP release, which results in the augmentation of heart contraction. Rats were injected with DOR-agonist DPDPE (100 μg/kg) with or without 10-min pretreatment with either β-adrenergic receptor (β-AR) blocker propranolol (2mg/kg) or CGRP-receptor (CGRPR) blocker CGRP(8-37) (300 μg/kg), or their combination. Hemodynamics were monitored with echocardiogram and systolic blood pressure (SBP) was monitored via a tail arterial catheter. Changes in left ventricular fraction-shortening (LVFS) and heart rate (HR) were observed at 5-min after DPDPE infusion. At 5-min DPDPE induced a 36 ± 18% (p<0.001) increase of the LVFS, which continues to increase to 51 ± 24% (p<0.0001) by 10 min, and 68 ± 19% (p<0.001) by 20 min. The increase in LVFS was accompanied by the decrease of HR by 9±5% (p<0.01) by 5 min and 11 ± 6% (p<0.001) by 15 min post DPDPE infusion. This magnitude of HR reduction was observed for the remainder of the 20 min. Despite the HR-reduction, cardiac output was increased by 17 ± 8% (p<0.05) and 28±5% (p<0.001) by 5- and 20-min post DPDPE administration, respectively. There was a modest (9 ± 9%, p=0.03) decrease in SBP that was not apparent until 20 min post DPDPE infusion. The positive inotropism of DPDPE was abrogated in animals pretreated with propranolol, CGRP(8-37), or combined propranolol+CGRP(8-37). Furthermore, in whole animal and cardiomyocyte cell culture preparations, DPDPE induced myocardial protein-kinase A (PKA) activation which was abrogated in the animals pretreated with propranolol+CGRP(8-37). DOR agonists augment myocardial contraction through enhanced β-AR and CGRPR co-signaling.
Collapse
Affiliation(s)
- Vince T. Nguyen
- Department of Internal Medicine, Cardiology Division, University of Texas Medical Branch, Houston, Texas
| | - Yewen Wu
- Department of Internal Medicine, Cardiology Division, University of Texas Medical Branch, Houston, Texas
| | - Ashley N. Guillory
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Kenichi Fujise
- Department of Internal Medicine, Cardiology Division, University of Texas Medical Branch, Houston, Texas
| | - Ming-He Huang
- Department of Internal Medicine, Cardiology Division, University of Texas Medical Branch, Houston, Texas
- Gulf Coast Heart Clinic PLLC, League City, Texas
| |
Collapse
|
20
|
Abstract
Murine models have been utilized with increasing frequency mainly due to availability of genetically engineered models. With advancement in high spatial and temporal resolution, echocardiography is used extensively for the evaluation of cardiovascular function in murine models of cardiovascular disease. This review summarizes the general applications and methods involved in echocardiography used to study mouse models for cardiovascular research, based on 20 years of experience in our laboratory. The goal of this article is to provide a practical guide to the use of echo techniques in mice to evaluate cardiac systolic and diastolic function.
Collapse
Affiliation(s)
- Shumin Gao
- Department of Cell Biology & Molecular Medicine and The Cardiovascular Research Institute at the University of Medicine & Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, MSB G609, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
21
|
Esseltine JL, Dale LB, Ferguson SSG. Rab GTPases bind at a common site within the angiotensin II type I receptor carboxyl-terminal tail: evidence that Rab4 regulates receptor phosphorylation, desensitization, and resensitization. Mol Pharmacol 2011; 79:175-84. [PMID: 20943774 DOI: 10.1124/mol.110.068379] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The human angiotensin II type 1 receptor (AT₁R) is a member of the G protein-coupled receptor (GPCR) superfamily and represents an important target for cardiovascular therapeutic intervention. Agonist-activation of the AT₁R induces β-arrestin-dependent endocytosis to early endosomes in which the receptor resides as a protein complex with the Rab GTPase Rab5. In the present study, we examined whether other Rab GTPases that regulate receptor trafficking through endosomal compartments also bind to the AT₁R. We find that Rab4, Rab7, and Rab11 all bind to the last 10 amino acid residues of the AT₁R carboxyl-terminal tail. Rab11 binds AT₁R more effectively than Rab5, whereas Rab4 binds less effectively than Rab5. Alanine scanning mutagenesis reveals that proline 354 and cysteine 355 contribute to Rab protein binding, and mutation of these residues does not affect G protein coupling. We find that the Rab GTPases each compete with one another for receptor binding and that although Rab4 interacts poorly with the AT₁R, it effectively displaces Rab11 from the receptor. In contrast, Rab11 overexpression does not prevent Rab4 binding to the AT₁R. Overexpression of wild-type Rab4, but not Rab11, facilitates AT₁R dephosphorylation, and a constitutively active Rab4-Q67L mutant reduces AT₁R desensitization and promotes AT₁R resensitization. Taken together, our data indicate that multiple Rab GTPases bind to a motif localized to the distal end of the AT₁R tail and that increased Rab4 activity may contribute to the regulation AT₁R desensitization and dephosphorylation.
Collapse
Affiliation(s)
- Jessica L Esseltine
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
22
|
Ferrándiz-Huertas C, Fernández-Carvajal A, Ferrer-Montiel A. Rab4 interacts with the human P-glycoprotein and modulates its surface expression in multidrug resistant K562 cells. Int J Cancer 2010; 128:192-205. [PMID: 20209493 DOI: 10.1002/ijc.25310] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
P-glycoprotein (P-gp) is a plasma membrane glycoprotein that has been signaled as a primary cause of multidrug resistance (MDR) in tumors. We performed a yeast 2-hybrid screen using the C-terminal domain of P-gp and identified 2 small GTPases involved in vesicular trafficking, Rab4 and Rab14, which complex with P-gp. The overexpression of GFP-Rab4, either transiently or stably, but not of Rab14, in K562ADR cells decreased the presence of P-gp in the cell surface. As a result, expression of this GTPase reduced the MDR phenotype of K562ADR cells, by augmenting the intracellular accumulation of daunomycin (DNM). This effect was mimicked by the constitutively active Rab4Q72L mutant, but not by the dominant negative Rab4S27N mutant. Rab4 regulated excocytotic P-gp trafficking to the plasma membrane from intracellular compartments, and this modulation required the interaction of both proteins and the GTPase activity. Noteworthy, K562ADR cells exhibited a significant reduction of Rab4 levels, but not of other Rab GTPases, as compared with the sensitive parental cell line, suggesting that the development of the MDR phenotype in these cells involves upregulation of P-gp and a concomitant downregulation of proteins that regulate its surface expression. Attenuation of endogenous Rab4 levels in K562ADR by RNA interference enhanced the expression of P-gp in the cell surface, and reduced the uptake of DNM. Accordingly, these findings substantiate the notion that modulation of the temporal and spatial distribution of P-gp in cancer cells may be a valid therapeutic strategy to alleviate the MDR phenotype, and signal to Rab4 as a potential target.
Collapse
Affiliation(s)
- Clotilde Ferrándiz-Huertas
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Av de la Universidad s/n, 03202 Elche, Alicante, Spain
| | | | | |
Collapse
|
23
|
Sack MN. Rab4a signaling unmasks a pivotal link between myocardial homeostasis and metabolic remodeling in the diabetic heart. J Mol Cell Cardiol 2010; 49:908-10. [PMID: 20840849 PMCID: PMC2975788 DOI: 10.1016/j.yjmcc.2010.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 11/15/2022]
|
24
|
Etzion S, Etzion Y, DeBosch B, Crawford PA, Muslin AJ. Akt2 deficiency promotes cardiac induction of Rab4a and myocardial β-adrenergic hypersensitivity. J Mol Cell Cardiol 2010; 49:931-40. [PMID: 20728450 PMCID: PMC2975863 DOI: 10.1016/j.yjmcc.2010.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/12/2010] [Accepted: 08/12/2010] [Indexed: 12/20/2022]
Abstract
Patients with diabetes mellitus can develop cardiac dysfunction in the absence of underlying coronary artery disease or hypertension; a condition defined as diabetic cardiomyopathy. Mice lacking the intracellular protein kinase Akt2 develop a syndrome that is similar to diabetes mellitus type 2. Expression profiling of akt2(-/-) myocardium revealed that Rab4a, a GTPase involved in glucose transporter 4 translocation and β-adrenergic receptor (βAR) recycling to the plasma membrane, was significantly induced. We therefore hypothesized that Akt2 deficiency increases myocardial β-adrenergic sensitivity. Confirmatory analysis revealed up-regulation of Rab4a mRNA and protein in akt2(-/-) myocardium. In cultured cardiomyocyte experiments, Rab4a was induced by pharmacological inhibition of Akt as well as by specific knockdown of Akt2 with siRNA. Isolated akt2(-/-) hearts were hypersensitive to isoproterenol (ISO) but exhibited normal sensitivity to forskolin. Prolonged ISO treatment led to increased cardiac hypertrophy in akt2(-/-) mice compared to wild type mice. In addition, spontaneous hypertrophy was noted in aged akt2(-/-) hearts that was inhibited by treatment with the βAR blocker propranolol. In agreement with previous results demonstrating increased fatty acid oxidation rates in akt2(-/-) myocardium, we found increased peroxisome proliferator-activated receptor α (PPARα) activity in the hearts of these animals. Interestingly, increased myocardial Rab4a expression was present in mice with cardiac-specific overexpression of PPARα and was also observed upon stimulation of PPARα activity in cultured cardiomyocytes. Accordingly, propranolol attenuated the development of cardiac hypertrophy in the PPARα transgenic mice as well. Our results indicate that reduced Akt2 leads to up-regulation of Rab4a expression in cardiomyocytes in a cell-autonomous fashion that may involve activation of PPARα. This maladaptive response is associated with hypersensitivity of akt2(-/-) myocardium to β-adrenergic stimulation.
Collapse
Affiliation(s)
- Sharon Etzion
- Center for Cardiovascular Research, John Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Yoram Etzion
- Center for Cardiovascular Research, John Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Brian DeBosch
- Center for Cardiovascular Research, John Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Peter A. Crawford
- Center for Cardiovascular Research, John Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Anthony J. Muslin
- Center for Cardiovascular Research, John Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
25
|
Hislop JN, von Zastrow M. Role of ubiquitination in endocytic trafficking of G-protein-coupled receptors. Traffic 2010; 12:137-48. [PMID: 20854416 DOI: 10.1111/j.1600-0854.2010.01121.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lysyl ubiquitination has long been known to target cytoplasmic proteins for proteasomal degradation, and there is now extensive evidence that ubiquitination functions in vacuolar/lysosomal targeting of membrane proteins from both the biosynthetic and endocytic pathways. G-protein-coupled receptors (GPCRs) represent the largest and most diverse family of membrane proteins, whose function is of fundamental importance both physiologically and therapeutically. In this review, we discuss the role of ubiquitination in the vacuolar/lysosomal downregulation of GPCRs through the endocytic pathway, with a primary focus on lysosomal trafficking in mammalian cells. We will summarize evidence indicating that mammalian GPCRs are regulated by ubiquitin-dependent mechanisms conserved in budding yeast, and then consider evidence for additional ubiquitin-dependent and -independent regulation that may be specific to animal cells.
Collapse
Affiliation(s)
- James N Hislop
- Department of Psychiatry, Department of Cellular and Molecular Pharmacology, UCSF School of Medicine, San Francisco, CA 94158-2140, USA
| | | |
Collapse
|
26
|
Petrashevskaya N, Gaume BR, Mihlbachler KA, Dorn GW, Liggett SB. Bitransgenesis with beta(2)-adrenergic receptors or adenylyl cyclase fails to improve beta(1)-adrenergic receptor cardiomyopathy. Clin Transl Sci 2010; 1:221-7. [PMID: 20443853 DOI: 10.1111/j.1752-8062.2008.00061.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cardiomyopathic effects of beta-adrenergic receptor (betaAR) signaling are primarily due to the beta(1)AR subtype. beta(1)/beta(2)AR and beta(1)/adenylyl cyclase type 5 (AC5) bitransgenic mice were created to test the hypothesis that beta(2)AR or AC5 co-overexpression has beneficial effects in beta(1)AR-mediated cardiomyopathy. In young mice, beta(1)/beta(2) hearts had a greater increase in basal and isoproterenol-stimulated contractility compared to beta(1)/AC5 and beta(1)AR hearts. By 6 months, beta(1)AR and beta(1)/beta(2) hearts retained elevated basal contractility but were unresponsive to agonist. In contrast, beta(1)/AC5 hearts maintained a small degree of agonist responsiveness, which may be due to a lack of beta(1)AR downregulation that was noted in beta(1)- and beta(1)/beta(2) hearts. However, by 9 -months, beta(1), beta(1)/beta(2), and beta(1)/AC5 mice had all developed severely depressed fractional shortening in vivo and little response to agonist. p38 mitogen activated protein kinase (MAPK) was minimally activated by beta(1)AR, but was markedly enhanced in the bitransgenics. Akt activation was only found with the bitransgenics. The small increase in cystosolic second mitochondria-derived activator of caspase (Smac), indicative of apoptosis in 9-month beta(1)AR hearts, was suppressed in beta(1)/AC5, but not in beta(1)/beta(2), hearts. Taken together, the unique signaling effects of enhanced beta(2)AR and AC5, which have the potential to afford benefit in heart failure, failed to salvage ventricular function in beta(1)AR-mediated cardiomyopathy.
Collapse
Affiliation(s)
- Natalia Petrashevskaya
- Cardiopulmonary Genomics Program, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
27
|
Lu R, Chen Y, Cottingham C, Peng N, Jiao K, Limbird LE, Wyss JM, Wang Q. Enhanced hypotensive, bradycardic, and hypnotic responses to alpha2-adrenergic agonists in spinophilin-null mice are accompanied by increased G protein coupling to the alpha2A-adrenergic receptor. Mol Pharmacol 2010; 78:279-86. [PMID: 20430865 PMCID: PMC2917858 DOI: 10.1124/mol.110.065300] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 04/29/2010] [Indexed: 11/22/2022] Open
Abstract
We previously identified spinophilin as a regulator of alpha(2) adrenergic receptor (alpha(2)AR) trafficking and signaling in vitro and in vivo (Science 304:1940-1944, 2004). To assess the generalized role of spinophilin in regulating alpha(2)AR functions in vivo, the present study examined the impact of eliminating spinophilin on alpha(2)AR-evoked cardiovascular and hypnotic responses, previously demonstrated to be mediated by the alpha(2A)AR subtype, after systemic administration of the alpha(2)-agonists 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK14,304) and clonidine in spinophilin-null mice. Mice lacking spinophilin expression display dramatically enhanced and prolonged hypotensive, bradycardic, and sedative-hypnotic responses to alpha(2)AR stimulation. Whereas these changes in sensitivity to alpha(2)AR agonists occur independent of any changes in alpha(2A)AR density or intrinsic affinity for agonist in the brains of spinophilin-null mice compared with wild-type control mice, the coupling of the alpha(2A)AR to cognate G proteins is enhanced in spinophilin-null mice. Thus, brain preparations from spinophilin-null mice demonstrate enhanced guanine nucleotide regulation of UK14,304 binding and evidence of a larger fraction of alpha(2A)AR in the guanine-nucleotide-sensitive higher affinity state compared with those from wild-type mice. These findings suggest that eliminating spinophilin expression in native tissues leads to an enhanced receptor/G protein coupling efficiency that contributes to sensitization of receptor mediated responses in vivo.
Collapse
Affiliation(s)
- R Lu
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gu J, Faundez V, Werner E. Endosomal recycling regulates Anthrax Toxin Receptor 1/Tumor Endothelial Marker 8-dependent cell spreading. Exp Cell Res 2010; 316:1946-57. [PMID: 20382142 PMCID: PMC2886593 DOI: 10.1016/j.yexcr.2010.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 11/26/2022]
Abstract
Mechanisms for receptor-mediated anthrax toxin internalization and delivery to the cytosol are well understood. However, far less is known about the fate followed by anthrax toxin receptors prior and after cell exposure to the toxin. We report that Anthrax Toxin Receptor 1/Tumor Endothelial Marker 8 (TEM8) localized at steady state in Rab11a-positive and transferrin receptor-containing recycling endosomes. TEM8 followed a slow constitutive recycling route of approximately 30min as determined by pulsed surface biotinylation and chase experiments. A Rab11a dominant negative mutant and Myosin Vb tail expression impaired TEM8 recycling by sequestering TEM8 in intracellular compartments. Sequestration of TEM8 in intracellular compartments with monensin coincided with increased TEM8 association with a multi-protein complex isolated with antibodies against transferrin receptor. Addition of the cell-binding component of anthrax toxin, Protective Antigen, reduced TEM8 half-life from 7 to 3 hours, without preventing receptor recycling. Pharmacological and molecular perturbation of recycling endosome function using monensin, dominant negative Rab11a, or myosin Vb tail, reduced PA binding efficiency and TEM8-dependent cell spreading on PA-coated surfaces without affecting toxin delivery to the cytosol. These results indicate that the intracellular fate of TEM8 differentially affect its cell adhesion and cell intoxication functions.
Collapse
Affiliation(s)
| | | | - Erica Werner
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, 30322
| |
Collapse
|
29
|
Ampatzis K, Dermon CR. Regional distribution and cellular localization of beta2-adrenoceptors in the adult zebrafish brain (Danio rerio). J Comp Neurol 2010; 518:1418-41. [PMID: 20187137 DOI: 10.1002/cne.22278] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The beta(2)-adrenergic receptors (ARs) are G-protein-coupled receptors that mediate the physiological responses to adrenaline and noradrenaline. The present study aimed to determine the regional distribution of beta(2)-ARs in the adult zebrafish (Danio rerio) brain by means of in vitro autoradiographic and immunohistochemical methods. The immunohistochemical localization of beta(2)-ARs, in agreement with the quantitative beta-adrenoceptor autoradiography, showed a wide distribution of beta(2)-ARs in the adult zebrafish brain. The cerebellum and the dorsal zone of periventricular hypothalamus exhibited the highest density of [(3)H]CGP-12177 binding sites and beta(2)-AR immunoreactivity. Neuronal cells strongly stained for beta(2)-ARs were found in the periventricular ventral telencephalic area, magnocellular and parvocellular superficial pretectal nuclei (PSm, PSp), occulomotor nucleus (NIII), locus coeruleus (LC), medial octavolateral nucleus (MON), magnocellular octaval nucleus (MaON) reticular formation (SRF, IMRF, IRF), and ganglionic cell layer of cerebellum. Interestingly, in most cases (NIII, LC, MON, MaON, SRF, IMRF, ganglionic cerebellar layer) beta(2)-ARs were colocalized with alpha(2A)-ARs in the same neuron, suggesting their interaction for mediating the physiological functions of nor/adrenaline. Moderate to low labeling of beta(2)-ARs was found in neurons in dorsal telencephalic area, optic tectum (TeO), torus semicircularis (TS), and periventricular gray zone of optic tectum (PGZ). In addition to neuronal, glial expression of beta(2)-ARs was found in astrocytic fibers located in the central gray and dorsal rhombencephalic midline, in close relation to the ventricle. The autoradiographic and immunohistochemical distribution pattern of beta(2)-ARs in the adult zebrafish brain further support the conserved profile of adrenergic/noradrenergic system through vertebrate brain evolution.
Collapse
|
30
|
Liu W, Yuen EY, Yan Z. The stress hormone corticosterone increases synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors via serum- and glucocorticoid-inducible kinase (SGK) regulation of the GDI-Rab4 complex. J Biol Chem 2010; 285:6101-8. [PMID: 20051515 DOI: 10.1074/jbc.m109.050229] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Corticosterone, the major stress hormone, plays an important role in regulating neuronal functions of the limbic system, although the cellular targets and molecular mechanisms of corticosteroid signaling are largely unknown. Here we show that a short treatment of corticosterone significantly increases alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission and AMPAR membrane trafficking in pyramidal neurons of prefrontal cortex, a key region involved in cognition and emotion. This enhancing effect of corticosterone is through a mechanism dependent on Rab4, the small GTPase-controlling receptor recycling between early endosome and plasma membrane. Guanosine nucleotide dissociation inhibitor (GDI), which regulates the cycle of Rab proteins between membrane and cytosol, forms an increased complex with Rab4 after corticosterone treatment. Corticosterone also triggers an increased GDI phosphorylation at Ser-213 by the serum- and glucocorticoid-inducible kinase (SGK). Moreover, AMPAR synaptic currents and surface expression and their regulation by corticosterone are altered by mutating Ser-213 on GDI. These results suggest that corticosterone, via SGK phosphorylation of GDI at Ser-213, increases the formation of GDI-Rab4 complex, facilitating the functional cycle of Rab4 and Rab4-mediated recycling of AMPARs to the synaptic membrane. It provides a potential mechanism underlying the role of corticosteroid stress hormone in up-regulating excitatory synaptic efficacy in cortical neurons.
Collapse
Affiliation(s)
- Wenhua Liu
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
31
|
Abstract
Cell signalling and endocytic membrane trafficking have traditionally been viewed as distinct processes. Although our present understanding is incomplete and there are still great controversies, it is now recognized that these processes are intimately and bidirectionally linked in animal cells. Indeed, many recent examples illustrate how endocytosis regulates receptor signalling (including signalling from receptor tyrosine kinases and G protein-coupled receptors) and, conversely, how signalling regulates the endocytic pathway. The mechanistic and functional principles that underlie the relationship between signalling and endocytosis in cell biology are becoming increasingly evident across many systems.
Collapse
|
32
|
Abstract
Insulin stimulates GLUT4 (glucose transporter 4) translocation in adipocytes and muscles. An emerging picture is that Rab10 could bridge the gap between the insulin signalling cascade and GLUT4 translocation in adipocytes. In the present study, two potential effectors of Rab10, GDI (guanine-nucleotide-dissociation inhibitor)-1 and GDI-2, are characterized in respect to their roles in insulin-stimulated GLUT4 translocation. It is shown that both GDI-1 and GDI-2 exhibit similar distribution to GLUT4 and Rab10 at the TGN (trans-Golgi network) and periphery structures. Meanwhile, GDI-1 clearly interacts with Rab10 with higher affinity, as shown by both immunoprecipitation and in vivo FRET (fluorescence resonance energy transfer). In addition, the participation of GDIs in GLUT4 translocation is illustrated when overexpression of either GDI inhibits insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. Taken together, we propose that GDI-1 is preferentially involved in insulin-stimulated GLUT4 translocation through facilitating Rab10 recycling.
Collapse
|
33
|
Fayssoil A, Renault G, Fougerousse F. End-systolic stress–velocity relation and circumferential fiber velocity shortening for analysing left ventricular function in mice. Radiography (Lond) 2009. [DOI: 10.1016/j.radi.2008.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Huang MH, Nguyen V, Wu Y, Rastogi S, Lui CY, Birnbaum Y, Wang HQ, Ware DL, Chauhan M, Garg N, Poh KK, Ye L, Omar AR, Tan HC, Uretsky BF, Fujise K. Reducing ischaemia/reperfusion injury through -opioid-regulated intrinsic cardiac adrenergic cells: adrenopeptidergic co-signalling. Cardiovasc Res 2009; 84:452-60. [DOI: 10.1093/cvr/cvp233] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Berthouze M, Venkataramanan V, Li Y, Shenoy SK. The deubiquitinases USP33 and USP20 coordinate beta2 adrenergic receptor recycling and resensitization. EMBO J 2009; 28:1684-96. [PMID: 19424180 PMCID: PMC2699358 DOI: 10.1038/emboj.2009.128] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 04/09/2009] [Indexed: 12/30/2022] Open
Abstract
Agonist-induced ubiquitination of the beta(2) adrenergic receptor (beta(2)AR) functions as an important post-translational modification to sort internalized receptors to the lysosomes for degradation. We now show that this ubiquitination is reversed by two deubiquitinating enzymes, ubiquitin-specific proteases (USPs) 20 and 33, thus, inhibiting lysosomal trafficking when concomitantly promoting receptor recycling from the late-endosomal compartments as well as resensitization of recycled receptors at the cell surface. Dissociation of constitutively bound endogenously expressed USPs 20 and 33 from the beta(2)AR immediately after agonist stimulation and reassociation on prolonged agonist treatment allows receptors to first become ubiquitinated and then deubiquitinated, thus, providing a 'trip switch' between degradative and recycling pathways at the late-endosomal compartments. Thus, USPs 20 and 33 serve as novel regulators that dictate both post-endocytic sorting as well as the intensity and extent of beta(2)AR signalling from the cell surface.
Collapse
Affiliation(s)
- Magali Berthouze
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | - Yi Li
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Sudha K Shenoy
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
36
|
Yudowski GA, Puthenveedu MA, Henry AG, von Zastrow M. Cargo-mediated regulation of a rapid Rab4-dependent recycling pathway. Mol Biol Cell 2009; 20:2774-84. [PMID: 19369423 PMCID: PMC2688556 DOI: 10.1091/mbc.e08-08-0892] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 12/11/2022] Open
Abstract
Membrane trafficking is well known to regulate receptor-mediated signaling processes, but less is known about whether signaling receptors conversely regulate the membrane trafficking machinery. We investigated this question by focusing on the beta-2 adrenergic receptor (B2AR), a G protein-coupled receptor whose cellular signaling activity is controlled by ligand-induced endocytosis followed by recycling. We used total internal reflection fluorescence microscopy (TIR-FM) and tagging with a pH-sensitive GFP variant to image discrete membrane trafficking events mediating B2AR endo- and exocytosis. Within several minutes after initiating rapid endocytosis of B2ARs by the adrenergic agonist isoproterenol, we observed bright "puffs" of locally increased surface fluorescence intensity representing discrete Rab4-dependent recycling events. These events reached a constant frequency in the continuous presence of isoproterenol, and agonist removal produced a rapid (observed within 1 min) and pronounced (approximately twofold) increase in recycling event frequency. This regulation required receptor signaling via the cAMP-dependent protein kinase (PKA) and a specific PKA consensus site located in the carboxyl-terminal cytoplasmic tail of the B2AR itself. B2AR-mediated regulation was not restricted to this membrane cargo, however, as transferrin receptors packaged in the same population of recycling vesicles were similarly affected. In contrast, net recycling measured over a longer time interval (10 to 30 min) was not detectably regulated by B2AR signaling. These results identify rapid regulation of a specific recycling pathway by a signaling receptor cargo.
Collapse
Affiliation(s)
| | | | - Anastasia G. Henry
- Department of Biochemistry and Biophysics, and
- Program in Cell Biology, University of California San Francisco, San Francisco, CA 94158
| | - Mark von Zastrow
- *Department of Psychiatry
- Department of Cellular & Molecular Pharmacology
- Program in Cell Biology, University of California San Francisco, San Francisco, CA 94158
| |
Collapse
|
37
|
Huang HH, Brennan TC, Muir MM, Mason RS. Functional alpha1- and beta2-adrenergic receptors in human osteoblasts. J Cell Physiol 2009; 220:267-75. [PMID: 19334040 DOI: 10.1002/jcp.21761] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Central (hypothalamic) control of bone mass is proposed to be mediated through beta2-adrenergic receptors (beta2-ARs). While investigations in mouse bone cells suggest that epinephrine enhances both RANKL and OPG mRNA via both beta-ARs and alpha-ARs, whether alpha-ARs are expressed in human bone cells is controversial. The current study investigated the expression of alpha1-AR and beta2-AR mRNA and protein and the functional role of adrenergic stimulation in human osteoblasts (HOBs). Expression of alpha1B- and beta2-ARs was examined by RT-PCR, immunofluorescence microscopy and Western blot (for alpha1B-ARs). Proliferation in HOBs was assessed by (3)H-thymidine incorporation and expression of RANKL and OPG was determined by quantitative RT-PCR. RNA message for alpha1B- and beta2-ARs was expressed in HOBs and MG63 human osteosarcoma cells. alpha1B- and beta2-AR immunofluorescent localization in HOBs was shown for the first time by deconvolution microscopy. alpha1B-AR protein was identified in HOBs by Western blot. Both alpha1-agonists and propranolol (beta-blocker) increased HOB replication but fenoterol, a beta2-agonist, inhibited it. Fenoterol nearly doubled RANKL mRNA and this was inhibited by propranolol. The alpha1-agonist cirazoline increased OPG mRNA and this increase was abolished by siRNA knockdown of alpha1B-ARs in HOBs. These data indicate that both alpha1-ARs and beta2-ARs are present and functional in HOBs. In addition to beta2-ARs, alpha1-ARs in human bone cells may play a role in modulation of bone turnover by the sympathetic nervous system.
Collapse
Affiliation(s)
- H H Huang
- Department of Physiology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
38
|
Schonhoff CM, Thankey K, Webster CR, Wakabayashi Y, Wolkoff AW, Anwer MS. Rab4 facilitates cyclic adenosine monophosphate-stimulated bile acid uptake and Na+-taurocholate cotransporting polypeptide translocation. Hepatology 2008; 48:1665-70. [PMID: 18688880 PMCID: PMC2593787 DOI: 10.1002/hep.22495] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Cyclic adenosine monophosphate (cAMP) stimulates hepatic bile acid uptake by translocating sodium-taurocholate (TC) cotransporting polypeptide (Ntcp) from an endosomal compartment to the plasma membrane. Rab4 is associated with early endosomes and involved in vesicular trafficking. This study was designed to determine the role of Rab4 in cAMP-induced TC uptake and Ntcp translocation. HuH-Ntcp cells transiently transfected with empty vector, guanosine triphosphate (GTP) locked dominant active Rab4 (Rab4(GTP)), or guanosine diphosphate (GDP) locked dominant inactive Rab4 (Rab4(GDP)) were used to study the role of Rab4. Neither Rab4(GTP) nor Rab4(GDP) affected either basal TC uptake or plasma membrane Ntcp level. However, cAMP-induced increases in TC uptake and Ntcp translocation were enhanced by Rab4(GTP) and inhibited by Rab4(GDP). In addition, cAMP increased GTP binding to endogenous Rab4 in a time-dependent, but phosphoinositide-3-kinase-independent manner. CONCLUSION Taken together, these results suggest that cAMP-mediated phosphoinositide-3-kinase-independent activation of Rab4 facilitates Ntcp translocation in HuH-Ntcp cells.
Collapse
Affiliation(s)
- Christopher M. Schonhoff
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536
| | - Krishna Thankey
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536
| | - Cynthia R.L. Webster
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536
| | | | - Allan W. Wolkoff
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - M. Sawkat Anwer
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536
| |
Collapse
|
39
|
Zadeh AD, Xu H, Loewen ME, Noble GP, Steele DF, Fedida D. Internalized Kv1.5 traffics via Rab-dependent pathways. J Physiol 2008; 586:4793-813. [PMID: 18755741 DOI: 10.1113/jphysiol.2008.161570] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Little is known about the postinternalization trafficking of surface-expressed voltage-gated potassium channels. Here, for the first time, we investigate into which of four major trafficking pathways a voltage-gated potassium channel is targeted after internalization. In both a cardiac myoblast cell line and in HEK293 cells, channels were found to internalize and to recycle quickly. Upon internalization, Kv1.5 rapidly associated with Rab5-and Rab4-positive endosomes, suggesting that the channel is internalized via a Rab5-dependent pathway and rapidly targeted for recycling to the plasma membrane. Nevertheless, as indicated by colocalization with Rab7, a fraction of the channels are targeted for degradation. Recycling through perinuclear endosomes is limited; colocalization with Rab11 was evident only after 24 h postsurface labelling. Expression of dominant negative (DN) Rab constructs significantly increased Kv1.5 functional expression. In the myoblast line, Rab5DN increased Kv1.5 current densities to 1305 +/- 213 pA pF(-1) from control 675 +/- 81.6 pA pF(-1). Rab4DN similarly increased Kv1.5 currents to 1382 +/- 155 pA pF(-1) from the control 522 +/- 82.7 pA pF(-1) at +80 mV. Expression of the Rab7DN increased Kv1.5 currents 2.5-fold in HEK293 cells but had no significant effect in H9c2 myoblasts, and, unlike the other Rab GTPases tested, over-expression of wild-type Rab7 decreased Kv1.5 currents in the myoblast line. Densities fell to 573 +/- 96.3 pA pF(-1) from the control 869 +/- 135.5 pA pF(-1). The Rab11DN was slow to affect Kv1.5 currents but had comparable effects to other dominant negative constructs after 48 h. With the exception of Rab11DN and nocodazole, the effects of interference with microtubule-dependent trafficking by nocodazole or p50 overexpression were not additive with the Rab dominant negatives. The Rab GTPases thus constitute dynamic targets by which cells may modulate Kv1.5 functional expression.
Collapse
Affiliation(s)
- Alireza Dehghani Zadeh
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Augustus AS, Buchanan J, Addya S, Rengo G, Pestell RG, Fortina P, Koch WJ, Bensadoun A, Abel ED, Lisanti MP. Substrate uptake and metabolism are preserved in hypertrophic caveolin-3 knockout hearts. Am J Physiol Heart Circ Physiol 2008; 295:H657-66. [PMID: 18552160 DOI: 10.1152/ajpheart.00387.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caveolin-3 (Cav3), the primary protein component of caveolae in muscle cells, regulates numerous signaling pathways including insulin receptor signaling and facilitates free fatty acid (FA) uptake by interacting with several FA transport proteins. We previously reported that Cav3 knockout mice (Cav3KO) develop cardiac hypertrophy with diminished contractile function; however, the effects of Cav3 gene ablation on cardiac substrate utilization are unknown. The present study revealed that the uptake and oxidation of FAs and glucose were normal in hypertrophic Cav3KO hearts. Real-time PCR analysis revealed normal expression of lipid metabolism genes including FA translocase (CD36) and carnitine palmitoyl transferase-1 in Cav3KO hearts. Interestingly, myocardial cAMP content was significantly increased by 42%; however, this had no effect on PKA activity in Cav3KO hearts. Microarray expression analysis revealed a marked increase in the expression of genes involved in receptor trafficking to the plasma membrane, including Rab4a and the expression of WD repeat/FYVE domain containing proteins. We observed a fourfold increase in the expression of cellular retinol binding protein-III and a 3.5-fold increase in 17beta-hydroxysteroid dehydrogenase type 11, a member of the short-chain dehydrogenase/reductase family involved in the biosynthesis and inactivation of steroid hormones. In summary, a loss of Cav3 in the heart leads to cardiac hypertrophy with normal substrate utilization. Moreover, a loss of Cav3 mRNA altered the expression of several genes not previously linked to cardiac growth and function. Thus we have identified a number of new target genes associated with the pathogenesis of cardiac hypertrophy.
Collapse
Affiliation(s)
- Ayanna S Augustus
- Dept. of Cancer Biology, Thomas Jefferson Univ., 233 S. 10th St., BLSB 933, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liggett SB, Cresci S, Kelly RJ, Syed FM, Matkovich SJ, Hahn HS, Diwan A, Martini JS, Sparks L, Parekh RR, Spertus JA, Koch WJ, Kardia SLR, Dorn GW. A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nat Med 2008; 14:510-7. [PMID: 18425130 PMCID: PMC2596476 DOI: 10.1038/nm1750] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 03/06/2008] [Indexed: 01/04/2023]
Abstract
Beta-adrenergic receptor (betaAR) blockade is a standard therapy for cardiac failure and ischemia. G protein-coupled receptor kinases (GRKs) desensitize betaARs, suggesting that genetic GRK variants might modify outcomes in these syndromes. Re-sequencing of GRK2 and GRK5 revealed a nonsynonymous polymorphism of GRK5, common in African Americans, in which leucine is substituted for glutamine at position 41. GRK5-Leu41 uncoupled isoproterenol-stimulated responses more effectively than did GRK5-Gln41 in transfected cells and transgenic mice, and, like pharmacological betaAR blockade, GRK5-Leu41 protected against experimental catecholamine-induced cardiomyopathy. Human association studies showed a pharmacogenomic interaction between GRK5-Leu41 and beta-blocker treatment, in which the presence of the GRK5-Leu41 polymorphism was associated with decreased mortality in African Americans with heart failure or cardiac ischemia. In 375 prospectively followed African-American subjects with heart failure, GRK5-Leu41 protected against death or cardiac transplantation. Enhanced betaAR desensitization of excessive catecholamine signaling by GRK5-Leu41 provides a 'genetic beta-blockade' that improves survival in African Americans with heart failure, suggesting a reason for conflicting results of beta-blocker clinical trials in this population.
Collapse
Affiliation(s)
- Stephen B Liggett
- Department of Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lezoualc'h F, Métrich M, Hmitou I, Duquesnes N, Morel E. Small GTP-binding proteins and their regulators in cardiac hypertrophy. J Mol Cell Cardiol 2008; 44:623-32. [PMID: 18339399 DOI: 10.1016/j.yjmcc.2008.01.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/30/2008] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
Abstract
Small GTP-binding proteins (small G proteins) act as GDP-GTP-regulated molecular switches and are activated by guanine nucleotide exchange factors (GEFs) in response to diverse extracellular stimuli. During this last decade, numerous molecular and cellular studies, as well as genetically-modified animal models, have highlighted the role of small G proteins in the regulation of cardiac hypertrophy. The growing interest in small G protein signalling comes from the fact that chronic hypertrophic response is considered maladaptive and predisposes individuals to heart failure. Although some of the hypertrophic signalling pathways involving small G proteins have now been identified, a central question deals with the identity of the GEFs that modulate small G protein activation in the context of cardiac hypertrophy. Here, we discuss the precise regulation of Ras and Rho subfamilies of GTPases by GEFs and other regulatory proteins during cardiac hypertrophy. In addition, we summarize recent published data, mainly those describing the role of small G proteins in the development of myocardial hypertrophy and we further present the importance of their downstream effectors in myocardial remodelling.
Collapse
Affiliation(s)
- Frank Lezoualc'h
- Inserm, U769, Signalisation et Physiopathologie Cardiaque, Châtenay-Malabry, F-92296, France.
| | | | | | | | | |
Collapse
|
43
|
Hanyaloglu AC, von Zastrow M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol 2008; 48:537-68. [PMID: 18184106 DOI: 10.1146/annurev.pharmtox.48.113006.094830] [Citation(s) in RCA: 469] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The endocytic pathway tightly controls the activity of G protein-coupled receptors (GPCRs). Ligand-induced endocytosis can drive receptors into divergent lysosomal and recycling pathways, producing essentially opposite effects on the strength and duration of cellular signaling via heterotrimeric G proteins, and may also promote distinct signaling events from intracellular membranes. This chapter reviews recent developments toward understanding the molecular machinery and functional implications of GPCR sorting in the endocytic pathway, focusing on mammalian GPCRs whose ligand-induced endocytosis is mediated primarily by clathrin-coated pits. Lysosomal sorting of a number of GPCRs occurs via a highly conserved mechanism requiring covalent tagging of receptors with ubiquitin. There is increasing evidence that additional, noncovalent mechanisms control the sorting of endocytosed GPCRs to lysosomes in mammalian cells. Recycling of several GPCRs to the plasma membrane is also specifically sorted, via a mechanism requiring both receptor-specific and shared sorting proteins. The current data reveal an unprecedented degree of specificity and plasticity in the cellular regulation of mammalian GPCRs by endocytic membrane trafficking. These developments have fundamental implications for GPCR pharmacology, and suggest new mechanisms that could be exploited in GPCR-directed pharmacotherapy.
Collapse
Affiliation(s)
- Aylin C Hanyaloglu
- Institute of Reproductive Biology and Development, Imperial College London, Hammersmith Campus, London, United Kingdom
| | | |
Collapse
|
44
|
White DP, Caswell PT, Norman JC. alpha v beta3 and alpha5beta1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. ACTA ACUST UNITED AC 2007; 177:515-25. [PMID: 17485491 PMCID: PMC2064808 DOI: 10.1083/jcb.200609004] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accumulating evidence suggests that integrin recycling regulates cell migration. However, the lack of reagents to selectively target the trafficking of individual heterodimers, as opposed to endocytic transport as a whole, has made it difficult to define the contribution made by particular recycling pathways to directional cell movement. We show that autophosphorylation of protein kinase D1 (PKD1) at Ser916 is necessary for its association with αvβ3 integrin. Expression of PKD1916A or the use of mutants of β3 that do not bind to PKD1 selectively inhibits short-loop, Rab4-dependent recycling of αvβ3, and this suppresses the persistence of fibroblast migration. However, we report that short-loop recycling does not directly contribute to fibroblast migration by moving αvβ3 to the cell front, but by antagonizing α5β1 recycling, which, in turn, influences the cell's decision to migrate with persistence or to move randomly.
Collapse
Affiliation(s)
- Dominic P White
- Integrin Cell Biology Laboratory, Beatson Institute for Cancer Research, Bearsden, Glasgow, Scotland, UK
| | | | | |
Collapse
|
45
|
Abstract
G protein-coupled receptors (GPCRs) play an integral role in the signal transduction of an enormous array of biological phenomena, thereby serving to modulate at a molecular level almost all components of human biology. This role is nowhere more evident than in cardiovascular biology, where GPCRs regulate such core measures of cardiovascular function as heart rate, contractility, and vascular tone. GPCR/ligand interaction initiates signal transduction cascades, and requires the presence of the receptor at the plasma membrane. Plasma membrane localization is in turn a function of the delivery of a receptor to and removal from the cell surface, a concept defined most broadly as receptor trafficking. This review illuminates our current view of GPCR trafficking, particularly within the cardiovascular system, as well as highlights the recent and provocative finding that components of the GPCR trafficking machinery can facilitate GPCR signaling independent of G protein activation.
Collapse
Affiliation(s)
- Matthew T Drake
- Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
46
|
Matkovich SJ, Diwan A, Klanke JL, Hammer DJ, Marreez Y, Odley AM, Brunskill EW, Koch WJ, Schwartz RJ, Dorn GW. Cardiac-specific ablation of G-protein receptor kinase 2 redefines its roles in heart development and beta-adrenergic signaling. Circ Res 2006; 99:996-1003. [PMID: 17008600 DOI: 10.1161/01.res.0000247932.71270.2c] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
G-protein receptor kinase 2 (GRK2) is 1 of 7 mammalian GRKs that phosphorylate ligand-bound 7-transmembrane receptors, causing receptor uncoupling from G proteins and potentially activating non-G-protein signaling pathways. GRK2 is unique among members of the GRK family in that its genetic ablation causes embryonic lethality. Cardiac abnormalities in GRK2 null embryos implicated GRK2 in cardiac development but prevented studies of the knockout phenotype in adult hearts. Here, we created GRK2-loxP-targeted mice and used Cre recombination to generate germline and cardiac-specific GRK2 knockouts. GRK2 deletion in the preimplantation embryo with EIIa-Cre (germline null) resulted in developmental retardation and embryonic lethality between embryonic day 10.5 (E10.5) and E11.5. At E9.5, cardiac myocyte specification and cardiac looping were normal, but ventricular development was delayed. Cardiomyocyte-specific ablation of GRK2 in the embryo with Nkx2.5-driven Cre (cardiac-specific GRK2 knockout) produced viable mice with normal heart structure, function, and cardiac gene expression. Cardiac-specific GRK2 knockout mice exhibited enhanced inotropic sensitivity to the beta-adrenergic receptor agonist isoproterenol, with impairment of normal inotropic and lusitropic tachyphylaxis, and exhibited accelerated development of catecholamine toxicity with chronic isoproterenol treatment. These findings show that cardiomyocyte autonomous GRK2 is not essential for myocardial development after cardiac specification, suggesting that embryonic developmental abnormalities may be attributable to extracardiac effects of GRK2 ablation. In the adult heart, cardiac GRK2 is a major factor regulating inotropic and lusitropic tachyphylaxis to beta-adrenergic agonist, which likely contributes to its protective effects in catecholamine cardiomyopathy.
Collapse
Affiliation(s)
- Scot J Matkovich
- Center for Molecular Cardiovascular Research, University of Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jones MC, Caswell PT, Norman JC. Endocytic recycling pathways: emerging regulators of cell migration. Curr Opin Cell Biol 2006; 18:549-57. [PMID: 16904305 DOI: 10.1016/j.ceb.2006.08.003] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Accepted: 08/02/2006] [Indexed: 01/09/2023]
Abstract
The past five years have seen a steady accumulation of data reinforcing the view that Rab-regulated recycling pathways contribute to cell migration. In particular, detailed descriptions have emerged of the mechanisms that recruit integrins and growth factor receptors to Rab4- and Rab11-driven pathways. Recent work provides new insight into the importance of particular recycling events in cell migration within a variety of physiological contexts.
Collapse
Affiliation(s)
- Matthew C Jones
- Beatson Institute for Cancer Research, (Cancer Research UK), Garscube Estate, Switchback Rd, Glasgow, G61 1BD UK
| | | | | |
Collapse
|
48
|
Walwyn WM, Wei W, Xie CW, Chiu K, Kieffer BL, Evans CJ, Maidment NT. Mu opioid receptor-effector coupling and trafficking in dorsal root ganglia neurons. Neuroscience 2006; 142:493-503. [PMID: 16887280 DOI: 10.1016/j.neuroscience.2006.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 06/11/2006] [Accepted: 06/13/2006] [Indexed: 01/25/2023]
Abstract
Morphine induces profound analgesic tolerance in vivo despite inducing little internalization of the mu opioid receptor (muOR). Previously proposed explanations suggest that this lack of internalization could either lead to prolonged signaling and associated compensatory changes in downstream signaling systems, or that the receptor is unable to recycle and resensitize and so loses efficacy, either mechanism resulting in tolerance. We therefore examined, in cultured neurons, the relationship between muOR internalization and desensitization in response to two agonists, D-Ala2, N-MePhe4, Gly5-ol-enkephalin (DAMGO) and morphine. In addition, we studied the chimeric mu/delta opioid receptor (mu/ partial differentialOR) which could affect internalization and desensitization in neurons. Dorsal root ganglia neurons from muOR knockout mice were transduced with an adenovirus expressing either receptor and their respective internalization, desensitization and trafficking profiles determined. Both receptors desensitized equally, measured by Ca2+ current inhibition, during the first 5 min of agonist exposure to DAMGO or morphine treatment, although the mu/partial differentialOR desensitized more extensively. Such rapid desensitization was unrelated to internalization as DAMGO, but not morphine, internalized both receptors after 20 min. In response to DAMGO the mu/partial differentialOR internalized more rapidly than the muOR and was trafficked through Rab4-positive endosomes and lysosomal-associated membrane protein-1-labeled lysosomes whereas the muOR was trafficked through Rab4 and Rab11-positive endosomes. Chronic desensitization of the Ca2+ current response, after 24 h of morphine or DAMGO incubation, was seen in the DAMGO, but not morphine-treated, muOR-expressing cells. Such persistence of signaling after chronic morphine treatment suggests that compensation of downstream signaling systems, rather than loss of efficacy due to poor receptor recycling, is a more likely mechanism of morphine tolerance in vivo. In contrast to the muOR, the mu/partial differentialOR showed equivalent desensitization whether morphine or DAMGO treated, but internalized further with DAMGO than morphine. Such ligand-independent desensitization could be a result of the observed higher rate of synthesis and degradation of this chimeric receptor.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Analysis of Variance
- Animals
- Animals, Newborn
- Baclofen/pharmacology
- Cells, Cultured
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalins/pharmacology
- Flow Cytometry/methods
- GABA Agonists/pharmacology
- Ganglia, Spinal/cytology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Membrane Potentials/radiation effects
- Mice
- Mice, Knockout
- Morphine/pharmacology
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques/methods
- Protein Transport/drug effects
- Protein Transport/genetics
- Protein Transport/physiology
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/physiology
- Time Factors
- Transfection/methods
Collapse
Affiliation(s)
- W M Walwyn
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, NPI Box 77, 760 Westwood Plaza, Los Angeles, CA 90024-1759, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Perrino C, Rockman HA, Chiariello M. Targeted inhibition of phosphoinositide 3-kinase activity as a novel strategy to normalize beta-adrenergic receptor function in heart failure. Vascul Pharmacol 2006; 45:77-85. [PMID: 16807128 DOI: 10.1016/j.vph.2006.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2005] [Revised: 12/01/2005] [Accepted: 01/31/2006] [Indexed: 01/08/2023]
Abstract
Human heart failure is a complex clinical syndrome characterized by extensive abnormalities in the beta-adrenergic receptor (betaAR) system. Normalization of betaAR signalling consistently ameliorates cardiac dysfunction and survival in heart failure, suggesting that betaAR dysfunction may be intrinsically linked to the deterioration of cardiac performance. Agonist-dependent phosphorylation of betaARs by betaAR kinase 1 (betaARK1) initiates the processes of desensitization and downregulation, hallmarks of heart failure. Our recent studies have shown that betaARK1 forms a cytosolic complex with phosphoinositide 3-kinase (PI3K) and that translocation of betaARK1 to the plasma membrane also promotes the betaAR-targeting of PI3Ks. At the plasma membrane, the generation of 3'-phosphorylated phosphatidylinositols by PI3K is required in the process of endocytosis, a prodrome to receptor downregulation. A large body of data now indicates that betaAR-targeting of PI3Ks is consistently associated with abnormalities of betaAR signalling under pathological conditions, including pressure-overload hypertrophy and heart failure from different causes. In this review we will discuss the role of betaAR-targeted PI3K activity and novel experimental strategies to disrupt the betaARK1/PI3K complex and in turn ameliorate betaAR dysfunction and the progression of heart failure.
Collapse
Affiliation(s)
- Cinzia Perrino
- Division of Cardiology, University Federico II, Via Pansini 5, Naples, 80131, Italy.
| | | | | |
Collapse
|
50
|
Filipeanu CM, Zhou F, Lam ML, Kerut KE, Claycomb WC, Wu G. Enhancement of the recycling and activation of beta-adrenergic receptor by Rab4 GTPase in cardiac myocytes. J Biol Chem 2006; 281:11097-103. [PMID: 16484224 PMCID: PMC2735442 DOI: 10.1074/jbc.m511460200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigate the role of Rab4, a Ras-like small GTPase coordinating protein transport from the endosome to the plasma membrane, on the recycling and activation of endogenous beta-adrenergic receptor (beta-AR) in HL-1 cardiac myocytes in vitro and transgenic mouse hearts in vivo. Beta1-AR, the predominant subtype of beta-AR in HL-1 cardiac myocytes, was internalized after stimulation with isoproterenol (ISO) and fully recycled at 4 h upon ISO removal. Transient expression of Rab4 markedly facilitated recycling of internalized beta-AR to the cell surface and enhanced beta-AR signaling as measured by ISO-stimulated cAMP production. Transgenic overexpression of Rab4 in the mouse myocardium significantly increased the number of beta-AR in the plasma membrane and augmented cAMP production at the basal level and in response to ISO stimulation. Rab4 overexpression induced concentric cardiac hypertrophy with a moderate increase in ventricle/body weight ratio and posterior wall thickness and a selective up-regulation of the beta-myosin heavy chain gene. These data provide the first evidence indicating that Rab4 is a rate-limiting factor for the recycling of endogenous beta-AR and augmentation of Rab4-mediated traffic enhances beta-AR function in cardiac myocytes.
Collapse
Affiliation(s)
- Catalin M. Filipeanu
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Fuguo Zhou
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - May L. Lam
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Kenneth E. Kerut
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - William C. Claycomb
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Guangyu Wu
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|