1
|
Ray PE, Li J, Das J, Xu L, Yu J, Han Z. Pathogenesis of HIV-associated nephropathy in children and adolescents: taking a hard look 40 years later in the era of gene-environment interactions. Am J Physiol Renal Physiol 2024; 327:F1049-F1066. [PMID: 39323389 PMCID: PMC11687833 DOI: 10.1152/ajprenal.00208.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
HIV-associated nephropathy (HIVAN) is a kidney disease that affects mainly people of African ancestry with a high HIV-1 viral load. New antiretroviral therapies (ART) have been highly efficient in preventing and improving the outcome of HIVAN. However, providing chronic ART to children and adolescents living with HIV (CALWH) remains a significant challenge all over the world. More than 2.5 million CALWH, including those living in Sub-Saharan Africa, continue to be at high risk of developing HIVAN. Much of our understanding of the pathogenesis of HIVAN is based on studies conducted in transgenic mice and adults with HIVAN. However, CALWH may experience different health outcomes, risk factors, and susceptibilities to HIVAN in comparison to adults. This article reviews the progress made over the last 40 years in understanding the pathogenesis of HIVAN in CALWH, focusing on how the HIV virus, alongside genetic and environmental factors, contributes to the development of this disease. The landmark discovery that two risk alleles of the apolipoprotein-1 (APOL1) gene play a critical role in HIVAN has significantly advanced our understanding of the disease's pathogenesis. However, we still need to understand why renal inflammation persists despite ART and determine whether the kidney may harbor HIV reservoirs that need to be eliminated to cure HIV permanently. For these reasons, we emphasize reviewing how HIV-1 infects renal cells, affects their growth and regeneration, and discussing how inflammatory cytokines and APOL1 affect the outcome of childhood HIVAN.
Collapse
Affiliation(s)
- Patricio E Ray
- Department of Pediatrics and Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Jinliang Li
- Children's National Hospital, Washington, District of Columbia, United States
| | - Jharna Das
- Children's National Hospital, Washington, District of Columbia, United States
| | - Lian Xu
- Children's National Hospital, Washington, District of Columbia, United States
| | - Jing Yu
- Department of Pediatrics and Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
2
|
Yoshida T, Latt KZ, Santo BA, Shrivastav S, Zhao Y, Fenaroli P, Chung JY, Hewitt SM, Tutino VM, Sarder P, Rosenberg AZ, Winkler CA, Kopp JB. Single-Cell Transcriptional Signatures of Glomerular Disease in Transgenic Mice with APOL1 Variants. J Am Soc Nephrol 2024; 35:1058-1075. [PMID: 38709562 PMCID: PMC11377807 DOI: 10.1681/asn.0000000000000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/26/2024] [Indexed: 05/08/2024] Open
Abstract
Key Points Apolipoprotein L1 (APOL1)-G1 induced kidney disease in the two APOL1 transgenic mouse models, HIV-associated nephropathy and IFN-γ administration. Glomerular single-nuclear RNA-sequencing identified genes differentially expressed among mice with APOL1-G1 and G0 variants at single-cell resolution. Background Apolipoprotein L1 (APOL1 ) high-risk variants contribute to kidney disease among individuals with African ancestry. We sought to describe cell-specific APOL1 variant–induced pathways using two mouse models. Methods We characterized bacterial artificial chromosome/APOL1 transgenic mice crossed with HIV-associated nephropathy (HIVAN) Tg26 mice and bacterial artificial chromosome/APOL1 transgenic mice given IFN-γ . Results Both mouse models showed more severe glomerular disease in APOL1-G1 compared with APOL1-G0 mice. Synergistic podocyte-damaging pathways activated by APOL1-G1 and by the HIV transgene were identified by glomerular bulk RNA sequencing (RNA-seq) of HIVAN model. Single-nuclear RNA-seq revealed podocyte-specific patterns of differentially expressed genes as a function of APOL1 alleles. Shared activated pathways, for example, mammalian target of rapamycin, and differentially expressed genes, for example, Ccn2 , in podocytes in both models suggest novel markers of APOL1-associated kidney disease. HIVAN mouse-model podocyte single-nuclear RNA-seq data showed similarity to human focal segmental glomerulosclerosis glomerular RNA-seq data. Differential effects of the APOL1 -G1 variant on the eukaryotic initiation factor 2 pathway highlighted differences between the two models. Conclusions These findings in two mouse models demonstrated both shared and distinct cell type–specific transcriptomic signatures induced by APOL1 variants. These findings suggest novel therapeutic opportunities for APOL1 glomerulopathies.
Collapse
Affiliation(s)
- Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland
| | - Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland
| | - Briana A. Santo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland
| | - Yongmei Zhao
- Frederick National Laboratory for Cancer Research, NCI, NIH, Frederick, Maryland
| | - Paride Fenaroli
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- S.C. Nefrologia e Dialisi, AUSL-IRCCS, Reggio Emilia, Italy
| | | | | | - Vincent M. Tutino
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, New York
- College of Medicine, University of Florida, Gainesville, Florida
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Cheryl A. Winkler
- Frederick National Laboratory for Cancer Research, NCI, NIH, Frederick, Maryland
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland
| |
Collapse
|
3
|
Zhu JY, Fu Y, van de Leemput J, Yu Y, Li J, Ray PE, Han Z. HIV-1 Nef acts in synergy with APOL1-G1 to induce nephrocyte cell death in a new Drosophila model of HIV-related kidney diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584069. [PMID: 38496548 PMCID: PMC10942446 DOI: 10.1101/2024.03.08.584069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background: People carrying two APOL1 risk alleles (RA) G1 or G2 are at greater risk of developing HIV-associated nephropathy (HIVAN). Studies in transgenic mice showed that the expression of HIV-1 genes in podocytes, and nef in particular, led to HIVAN. However, it remains unclear whether APOL1-RA and HIV-1 Nef interact to induce podocyte cell death. Method: We generated transgenic (Tg) flies that express APOL1-G1 (derived from a child with HIVAN) and HIV-1 nef specifically in the nephrocytes, the fly equivalent of mammalian podocytes, and assessed their individual and combined effects on the nephrocyte filtration structure and function. Results: We found that HIV-1 Nef acts in synergy with APOL1-G1 resulting in nephrocyte structural and functional defects. Specifically, HIV-1 Nef itself can induce endoplasmic reticulum (ER) stress without affecting autophagy. Furthermore, Nef exacerbates the organelle acidification defects and autophagy reduction induced by APOL1-G1. The synergy between HIV-1 Nef and APOL1-G1 is built on their joint effects on elevating ER stress, triggering nephrocyte dysfunction and ultimately cell death. Conclusions: Using a new Drosophila model of HIV-1-related kidney diseases, we identified ER stress as the converging point for the synergy between HIV-1 Nef and APOL1-G1 in inducing nephrocyte cell death. Given the high relevance between Drosophila nephrocytes and human podocytes, this finding suggests ER stress as a new therapeutic target for HIV-1 and APOL1-associated nephropathies.
Collapse
|
4
|
Watanabe M, Ishii Y, Hashimoto K, Takimoto HR, Sasaki N. Development and Characterization of a Novel FVB- PrkdcR2140C Mouse Model for Adriamycin-Induced Nephropathy. Genes (Basel) 2024; 15:456. [PMID: 38674390 PMCID: PMC11049318 DOI: 10.3390/genes15040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The Adriamycin (ADR) nephropathy model, which induces podocyte injury, is limited to certain mouse strains due to genetic susceptibilities, such as the PrkdcR2140C polymorphism. The FVB/N strain without the R2140C mutation resists ADR nephropathy. Meanwhile, a detailed analysis of the progression of ADR nephropathy in the FVB/N strain has yet to be conducted. Our research aimed to create a novel mouse model, the FVB-PrkdcR2140C, by introducing PrkdcR2140C into the FVB/NJcl (FVB) strain. Our study showed that FVB-PrkdcR2140C mice developed severe renal damage when exposed to ADR, as evidenced by significant albuminuria and tubular injury, exceeding the levels observed in C57BL/6J (B6)-PrkdcR2140C. This indicates that the FVB/N genetic background, in combination with the R2140C mutation, strongly predisposes mice to ADR nephropathy, highlighting the influence of genetic background on disease susceptibility. Using RNA sequencing and subsequent analysis, we identified several genes whose expression is altered in response to ADR nephropathy. In particular, Mmp7, Mmp10, and Mmp12 were highlighted for their differential expression between strains and their potential role in influencing the severity of kidney damage. Further genetic analysis should lead to identifying ADR nephropathy modifier gene(s), aiding in early diagnosis and providing novel approaches to kidney disease treatment and prevention.
Collapse
Affiliation(s)
| | | | | | | | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| |
Collapse
|
5
|
Buerger F, Salmanullah D, Liang L, Gauntner V, Krueger K, Qi M, Sharma V, Rubin A, Ball D, Lemberg K, Saida K, Merz LM, Sever S, Issac B, Sun L, Guerrero-Castillo S, Gomez AC, McNulty MT, Sampson MG, Al-Hamed MH, Saleh MM, Shalaby M, Kari J, Fawcett JP, Hildebrandt F, Majmundar AJ. Recessive variants in the intergenic NOS1AP-C1orf226 locus cause monogenic kidney disease responsive to anti-proteinuric treatment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.17.24303374. [PMID: 38562757 PMCID: PMC10984069 DOI: 10.1101/2024.03.17.24303374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In genetic disease, an accurate expression landscape of disease genes and faithful animal models will enable precise genetic diagnoses and therapeutic discoveries, respectively. We previously discovered that variants in NOS1AP , encoding nitric oxide synthase 1 (NOS1) adaptor protein, cause monogenic nephrotic syndrome (NS). Here, we determined that an intergenic splice product of N OS1AP / Nos1ap and neighboring C1orf226/Gm7694 , which precludes NOS1 binding, is the predominant isoform in mammalian kidney transcriptional and proteomic data. Gm7694 -/- mice, whose allele exclusively disrupts the intergenic product, developed NS phenotypes. In two human NS subjects, we identified causative NOS1AP splice variants, including one predicted to abrogate intergenic splicing but initially misclassified as benign based on the canonical transcript. Finally, by modifying genetic background, we generated a faithful mouse model of NOS1AP -associated NS, which responded to anti-proteinuric treatment. This study highlights the importance of intergenic splicing and a potential treatment avenue in a mendelian disorder.
Collapse
|
6
|
Martino J, Liu Q, Vukojevic K, Ke J, Lim TY, Khan A, Gupta Y, Perez A, Yan Z, Milo Rasouly H, Vena N, Lippa N, Giordano JL, Saraga M, Saraga-Babic M, Westland R, Bodria M, Piaggio G, Bendapudi PK, Iglesias AD, Wapner RJ, Tasic V, Wang F, Ionita-Laza I, Ghiggeri GM, Kiryluk K, Sampogna RV, Mendelsohn CL, D'Agati VD, Gharavi AG, Sanna-Cherchi S. Mouse and human studies support DSTYK loss of function as a low-penetrance and variable expressivity risk factor for congenital urinary tract anomalies. Genet Med 2023; 25:100983. [PMID: 37746849 DOI: 10.1016/j.gim.2023.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023] Open
Abstract
PURPOSE Previous work identified rare variants in DSTYK associated with human congenital anomalies of the kidney and urinary tract (CAKUT). Here, we present a series of mouse and human studies to clarify the association, penetrance, and expressivity of DSTYK variants. METHODS We phenotypically characterized Dstyk knockout mice of 3 separate inbred backgrounds and re-analyzed the original family segregating the DSTYK c.654+1G>A splice-site variant (referred to as "SSV" below). DSTYK loss of function (LOF) and SSVs were annotated in individuals with CAKUT, epilepsy, or amyotrophic lateral sclerosis vs controls. A phenome-wide association study analysis was also performed using United Kingdom Biobank (UKBB) data. RESULTS Results demonstrate ∼20% to 25% penetrance of obstructive uropathy, at least, in C57BL/6J and FVB/NJ Dstyk-/- mice. Phenotypic penetrance increased to ∼40% in C3H/HeJ mutants, with mild-to-moderate severity. Re-analysis of the original family segregating the rare SSV showed low penetrance (43.8%) and no alternative genetic causes for CAKUT. LOF DSTYK variants burden showed significant excess for CAKUT and epilepsy vs controls and an exploratory phenome-wide association study supported association with neurological disorders. CONCLUSION These data support causality for DSTYK LOF variants and highlights the need for large-scale sequencing studies (here >200,000 cases) to accurately assess causality for genes and variants to lowly penetrant traits with common population prevalence.
Collapse
Affiliation(s)
- Jeremiah Martino
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Qingxue Liu
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Katarina Vukojevic
- Department of Medicine, Columbia University Irving Medical Center, New York, NY; Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Juntao Ke
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Tze Y Lim
- Department of Medicine, Columbia University Irving Medical Center, New York, NY; Unit of Genomic Variability and Complex Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Atlas Khan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Yask Gupta
- Department of Medicine, Columbia University Irving Medical Center, New York, NY; Institute for Inflammation Medicine, University of Lubeck, Germany
| | - Alejandra Perez
- Department of Medicine, Columbia University Irving Medical Center, New York, NY; Department of Urology, Mount Sinai Medical Center, Miami, FL
| | - Zonghai Yan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Hila Milo Rasouly
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Natalie Vena
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Natalie Lippa
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Jessica L Giordano
- Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY
| | - Marijan Saraga
- Department of Pediatrics, University Hospital of Split, Split, Croatia; School of Medicine, University of Split, Split, Croatia
| | - Mirna Saraga-Babic
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Rik Westland
- Department of Pediatric Nephrology, Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Monica Bodria
- Division of Nephrology and Renal Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratory on Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giorgio Piaggio
- Division of Nephrology and Renal Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratory on Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Pavan K Bendapudi
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA; Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA; Harvard Medical School, Boston, MA
| | - Alejandro D Iglesias
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Ronald J Wapner
- Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY
| | - Velibor Tasic
- Medical Faculty of Skopje, University Children's Hospital, Skopje, Macedonia
| | - Fan Wang
- Department of Biostatistics, Columbia University, New York, NY
| | | | - Gian Marco Ghiggeri
- Division of Nephrology and Renal Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Laboratory on Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Krzysztof Kiryluk
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Rosemary V Sampogna
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Cathy L Mendelsohn
- Department of Urology, Columbia University Irving Medical Center, New York, NY; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY
| | - Vivette D D'Agati
- The Renal Pathology Laboratory of the Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Ali G Gharavi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Simone Sanna-Cherchi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
7
|
Namba MD, Xie Q, Barker JM. Advancing the preclinical study of comorbid neuroHIV and substance use disorders: Current perspectives and future directions. Brain Behav Immun 2023; 113:453-475. [PMID: 37567486 PMCID: PMC10528352 DOI: 10.1016/j.bbi.2023.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains a persistent public health concern throughout the world. Substance use disorders (SUDs) are a common comorbidity that can worsen treatment outcomes for people living with HIV. The relationship between HIV infection and SUD outcomes is likely bidirectional, making clear interrogation of neurobehavioral outcomes challenging in clinical populations. Importantly, the mechanisms through which HIV and addictive drugs disrupt homeostatic immune and CNS function appear to be highly overlapping and synergistic within HIV-susceptible reward and motivation circuitry in the central nervous system. Decades of animal research have revealed invaluable insights into mechanisms underlying the pathophysiology SUDs and HIV, although translational studies examining comorbid SUDs and HIV are very limited due to the technical challenges of modeling HIV infection preclinically. In this review, we discuss preclinical animal models of HIV and highlight key pathophysiological characteristics of each model, with a particular emphasis on rodent models of HIV. We then review the implementation of these models in preclinical SUD research and identify key gaps in knowledge in the field. Finally, we discuss how cutting-edge behavioral neuroscience tools, which have revealed key insights into the neurobehavioral mechanisms of SUDs, can be applied to preclinical animal models of HIV to reveal potential, novel treatment avenues for comorbid HIV and SUDs. Here, we argue that future preclinical SUD research would benefit from incorporating comorbidities such as HIV into animal models and would facilitate the discovery of more refined, subpopulation-specific mechanisms and effective SUD prevention and treatment targets.
Collapse
Affiliation(s)
- Mark D Namba
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jacqueline M Barker
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Hu C, Priceputu E, Cool M, Chrobak P, Bouchard N, Forestier C, Lowell CA, Bénichou S, Hanna Z, Royal V, Jolicoeur P. NEF-Induced HIV-Associated Nephropathy Through HCK/LYN Tyrosine Kinases. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:702-724. [PMID: 36868467 PMCID: PMC10284032 DOI: 10.1016/j.ajpath.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023]
Abstract
HIV-1-associated nephropathy (HIVAN) is a severe complication of HIV-1 infection. To gain insight into the pathogenesis of kidney disease in the setting of HIV, a transgenic (Tg) mouse model [CD4C/HIV-negative regulator factor (Nef)] was used in which HIV-1 nef expression is under control of regulatory sequences (CD4C) of the human CD4 gene, thus allowing expression in target cells of the virus. These Tg mice develop a collapsing focal segmental glomerulosclerosis associated with microcystic dilatation, similar to human HIVAN. To identify kidney cells permissive to the CD4C promoter, CD4C reporter Tg lines were used. They showed preferential expression in glomeruli, mainly in mesangial cells. Breeding CD4C/HIV Tg mice on 10 different mouse backgrounds showed that HIVAN was modulated by host genetic factors. Studies of gene-deficient Tg mice revealed that the presence of B and T cells and that of several genes was dispensable for the development of HIVAN: those involved in apoptosis (Trp53, Tnfsf10, Tnf, Tnfrsf1b, and Bax), in immune cell recruitment (Ccl3, Ccl2, Ccr2, Ccr5, and Cx3cr1), in nitric oxide (NO) formation (Nos3 and Nos2), or in cell signaling (Fyn, Lck, and Hck/Fgr). However, deletion of Src partially and that of Hck/Lyn largely abrogated its development. These data suggest that Nef expression in mesangial cells through hematopoietic cell kinase (Hck)/Lck/Yes novel tyrosine kinase (Lyn) represents important cellular and molecular events for the development of HIVAN in these Tg mice.
Collapse
Affiliation(s)
- Chunyan Hu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Elena Priceputu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Marc Cool
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Pavel Chrobak
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Nathalie Bouchard
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Clara Forestier
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Serge Bénichou
- Insitut Cochin, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes and INSERM U1016, Paris, France
| | - Zaher Hanna
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada; Department of Medicine, University of Montreal, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Virginie Royal
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, Quebec, Canada
| | - Paul Jolicoeur
- Department of Microbiology/Immunology, University of Montreal, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Lucas A, Wyatt CM. HIV at 40: kidney disease in HIV treatment, prevention, and cure. Kidney Int 2022; 102:740-749. [PMID: 35850290 PMCID: PMC9509437 DOI: 10.1016/j.kint.2022.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/06/2022] [Accepted: 06/03/2022] [Indexed: 10/17/2022]
Abstract
Four decades after the first cases of HIV were reported, kidney disease remains an important comorbidity in people with HIV (PWH). Both HIV-associated nephropathy and immune complex kidney disease were recognized as complications of HIV infection in the early years before treatment was available. Although the introduction of effective antiretroviral therapy in the late 1990s resulted in dramatic improvements in survival and health in PWH, several commonly used antiretroviral agents have been associated with kidney injury. HIV infection and treatment may also promote the progression of comorbid chronic kidney disease due to traditional risk factors such as diabetes, and HIV is one of the strongest "second hits" for the high-risk APOL1 genotype. Unique considerations in the management of chronic kidney disease in PWH are largely related to the need for lifelong antiretroviral therapy, with potential for toxicity, drug-drug interactions, and polypharmacy. PWH who develop progressive chronic kidney disease are candidates for all modalities of kidney replacement therapy, including kidney transplantation, and at some centers, PWH may be candidates to serve as donors for recipients with HIV. Transplantation of kidney allografts from donors with HIV also offers a unique opportunity to study viral dynamics in the kidney, with implications for kidney health and for research toward HIV cure. In addition, HIV-transgenic animal models have provided important insights into kidney disease pathogenesis beyond HIV, and experience with HIV and HIV-related kidney disease has provided important lessons for future pandemics.
Collapse
Affiliation(s)
- Anika Lucas
- Department of Medicine, Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christina M Wyatt
- Department of Medicine, Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
10
|
Medrano-Garcia S, Morales-Cano D, Barreira B, Vera-Zambrano A, Kumar R, Kosanovic D, Schermuly RT, Graham BB, Perez-Vizcaino F, Mathie A, Savai R, Pullamseti S, Butrous G, Fernández-Malavé E, Cogolludo A. HIV and Schistosoma Co-Exposure Leads to Exacerbated Pulmonary Endothelial Remodeling and Dysfunction Associated with Altered Cytokine Landscape. Cells 2022; 11:cells11152414. [PMID: 35954255 PMCID: PMC9368261 DOI: 10.3390/cells11152414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
HIV and Schistosoma infections have been individually associated with pulmonary vascular disease. Co-infection with these pathogens is very common in tropical areas, with an estimate of six million people co-infected worldwide. However, the effects of HIV and Schistosoma co-exposure on the pulmonary vasculature and its impact on the development of pulmonary vascular disease are largely unknown. Here, we have approached these questions by using a non-infectious animal model based on lung embolization of Schistosoma mansoni eggs in HIV-1 transgenic (HIV) mice. Schistosome-exposed HIV mice but not wild-type (Wt) counterparts showed augmented pulmonary arterial pressure associated with markedly suppressed endothelial-dependent vasodilation, increased endothelial remodeling and vessel obliterations, formation of plexiform-like lesions and a higher degree of perivascular fibrosis. In contrast, medial wall muscularization was similarly increased in both types of mice. Moreover, HIV mice displayed an impaired immune response to parasite eggs in the lung, as suggested by decreased pulmonary leukocyte infiltration, small-sized granulomas, and augmented residual egg burden. Notably, vascular changes in co-exposed mice were associated with increased expression of proinflammatory and profibrotic cytokines, including IFN-γ and IL-17A in CD4+ and γδ T cells and IL-13 in myeloid cells. Collectively, our study shows for the first time that combined pulmonary persistence of HIV proteins and Schistosoma eggs, as it may occur in co-infected people, alters the cytokine landscape and targets the vascular endothelium for aggravated pulmonary vascular pathology. Furthermore, it provides an experimental model for the understanding of pulmonary vascular disease associated with HIV and Schistosoma co-morbidity.
Collapse
Affiliation(s)
- Sandra Medrano-Garcia
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Daniel Morales-Cano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28040 Madrid, Spain
- Correspondence: (D.M.-C.); (A.C.); Tel.: +34-913947120 (A.C.)
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Alba Vera-Zambrano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Rahul Kumar
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ralph Theo Schermuly
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Brian B. Graham
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham ME4 4BF, UK
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Soni Pullamseti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Ghazwan Butrous
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham ME4 4BF, UK
| | - Edgar Fernández-Malavé
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
- Correspondence: (D.M.-C.); (A.C.); Tel.: +34-913947120 (A.C.)
| |
Collapse
|
11
|
Walker K, Kalra D, Lowdon R, Chen G, Molik D, Soto DC, Dabbaghie F, Khleifat AA, Mahmoud M, Paulin LF, Raza MS, Pfeifer SP, Agustinho DP, Aliyev E, Avdeyev P, Barrozo ER, Behera S, Billingsley K, Chong LC, Choubey D, De Coster W, Fu Y, Gener AR, Hefferon T, Henke DM, Höps W, Illarionova A, Jochum MD, Jose M, Kesharwani RK, Kolora SRR, Kubica J, Lakra P, Lattimer D, Liew CS, Lo BW, Lo C, Lötter A, Majidian S, Mendem SK, Mondal R, Ohmiya H, Parvin N, Peralta C, Poon CL, Prabhakaran R, Saitou M, Sammi A, Sanio P, Sapoval N, Syed N, Treangen T, Wang G, Xu T, Yang J, Zhang S, Zhou W, Sedlazeck FJ, Busby B. The third international hackathon for applying insights into large-scale genomic composition to use cases in a wide range of organisms. F1000Res 2022; 11:530. [PMID: 36262335 PMCID: PMC9557141 DOI: 10.12688/f1000research.110194.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 01/25/2023] Open
Abstract
In October 2021, 59 scientists from 14 countries and 13 U.S. states collaborated virtually in the Third Annual Baylor College of Medicine & DNANexus Structural Variation hackathon. The goal of the hackathon was to advance research on structural variants (SVs) by prototyping and iterating on open-source software. This led to nine hackathon projects focused on diverse genomics research interests, including various SV discovery and genotyping methods, SV sequence reconstruction, and clinically relevant structural variation, including SARS-CoV-2 variants. Repositories for the projects that participated in the hackathon are available at https://github.com/collaborativebioinformatics.
Collapse
Affiliation(s)
- Kimberly Walker
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Guangyi Chen
- Drug Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - David Molik
- Tropical Crop and Commodity Protection Research Unit, Pacific Basin Agricultural Research Center, Hilo, HI, 96720, USA
| | - Daniela C. Soto
- Biochemistry & Molecular Medicine, Genome Center, MIND Institute, University of California, Davis, Davis, CA, 95616, USA
| | - Fawaz Dabbaghie
- Drug Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- Institute for Medical Biometry and Bioinformatics, University hospital Düsseldorf, Düsseldorf, Germany
| | - Ahmad Al Khleifat
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Luis F Paulin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Muhammad Sohail Raza
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Beijing, China
| | - Susanne P. Pfeifer
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Daniel Paiva Agustinho
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Elbay Aliyev
- Research Department, Sidra Medicine, Doha, Qatar
| | - Pavel Avdeyev
- Computational Biology Institute, The George Washington University, Washington, DC, 20052, USA
| | - Enrico R. Barrozo
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sairam Behera
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kimberley Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Li Chuin Chong
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, Istanbul, Turkey
| | - Deepak Choubey
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Wouter De Coster
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yilei Fu
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Alejandro R. Gener
- Association of Public Health Labs, Centers for Disease Control and Prevention, Downey, CA, USA
| | - Timothy Hefferon
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Morgan Henke
- Department Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wolfram Höps
- EMBL Heidelberg, Genome Biology Unit, Heidelberg, Germany
| | | | - Michael D. Jochum
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria Jose
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India
| | - Rupesh K. Kesharwani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | | | - Priya Lakra
- Department of Zoology, University of Delhi, Delhi, India
| | - Damaris Lattimer
- University of Applied Sciences Upper Austria - FH Hagenberg, Mühlkreis, Austria
| | - Chia-Sin Liew
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Bai-Wei Lo
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Chunhsuan Lo
- Human Genetics Laboratory, National Institute of Genetics, Japan, Mishima City, Japan
| | - Anneri Lötter
- Department of Biochemistry, University of Pretoria, Pretoria, South Africa
| | - Sina Majidian
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Rajarshi Mondal
- Department of Biotechnology, The University of Burdwan, West Bengal, India
| | - Hiroko Ohmiya
- Genetic Reagent Development Unit, Medical & Biological Laboratories Co., Ltd., Tokoyo, Japan
| | - Nasrin Parvin
- Department of Biotechnology, The University of Burdwan, West Bengal, India
| | | | | | | | - Marie Saitou
- Center of Integrative Genetics (CIGENE),Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Aditi Sammi
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Philippe Sanio
- University of Applied Sciences Upper Austria - FH Hagenberg, Hagenberg im Mühlkreis, Austria
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Najeeb Syed
- Research Department, Sidra Medicine, Doha, Qatar
| | - Todd Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | - Tiancheng Xu
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Jianzhi Yang
- Department of Quantitative and Computational Biology,, University of Southern California, Los Angeles, CA, USA
| | - Shangzhe Zhang
- School of Biology, University of St Andrews, St Andrews, UK
| | - Weiyu Zhou
- Department of Statistical Science, George Mason University, Fairfax, Virginia, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | |
Collapse
|
12
|
Steers NJ, Gupta Y, D’Agati VD, Lim TY, DeMaria N, Mo A, Liang J, Stevens KO, Ahram DF, Lam WY, Gagea M, Nagarajan L, Sanna-Cherchi S, Gharavi AG. GWAS in Mice Maps Susceptibility to HIV-Associated Nephropathy to the Ssbp2 Locus. J Am Soc Nephrol 2022; 33:108-120. [PMID: 34893534 PMCID: PMC8763192 DOI: 10.1681/asn.2021040543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND To gain insight into the pathogenesis of collapsing glomerulopathy, a rare form of FSGS that often arises in the setting of viral infections, we performed a genome-wide association study (GWAS) among inbred mouse strains using a murine model of HIV-1 associated nephropathy (HIVAN). METHODS We first generated F1 hybrids between HIV-1 transgenic mice on the FVB/NJ background and 20 inbred laboratory strains. Analysis of histology, BUN, and urinary NGAL demonstrated marked phenotypic variation among the transgenic F1 hybrids, providing strong evidence for host genetic factors in the predisposition to nephropathy. A GWAS in 365 transgenic F1 hybrids generated from these 20 inbred strains was performed. RESULTS We identified a genome-wide significant locus on chromosome 13-C3 and multiple additional suggestive loci. Crossannotation of the Chr. 13 locus, including single-cell transcriptomic analysis of wildtype and HIV-1 transgenic mouse kidneys, nominated Ssbp2 as the most likely candidate gene. Ssbp2 is highly expressed in podocytes, encodes a transcriptional cofactor that interacts with LDB1 and LMX1B, which are both previously implicated in FSGS. Consistent with these data, older Ssbp2 null mice spontaneously develop glomerulosclerosis, tubular casts, interstitial fibrosis, and inflammation, similar to the HIVAN mouse model. CONCLUSIONS These findings demonstrate the utility of GWAS in mice to uncover host genetic factors for rare kidney traits and suggest Ssbp2 as susceptibility gene for HIVAN, potentially acting via the LDB1-LMX1B transcriptional network.
Collapse
Affiliation(s)
- Nicholas J. Steers
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Yask Gupta
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Vivette D. D’Agati
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Tze Y. Lim
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Natalia DeMaria
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Anna Mo
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Judy Liang
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Kelsey O. Stevens
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Dina F. Ahram
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Wan Yee Lam
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Lalitha Nagarajan
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
13
|
Ray PE, Li J, Das JR, Tang P. Childhood HIV-associated nephropathy: 36 years later. Pediatr Nephrol 2021; 36:2189-2201. [PMID: 33044676 PMCID: PMC8061423 DOI: 10.1007/s00467-020-04756-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 11/10/2022]
Abstract
HIV-associated nephropathy (HIVAN) predominantly affects people of African ancestry living with HIV who do not receive appropriate antiretroviral therapy (ART). Childhood HIVAN is characterized by heavy proteinuria and decreased kidney function. Kidney histology shows mesangial expansion, classic or collapsing glomerulosclerosis, and microcystic renal tubular dilatation leading to kidney enlargement. The pathogenesis of HIVAN involves the kidney recruitment of inflammatory cells and the infection of kidney epithelial cells. In addition, both viral and genetic factors play key roles in this disease. Modern ART has improved the outcome and decreased the prevalence of childhood HIVAN. However, physicians have had modest success providing chronic ART to children and adolescents, and we continue to see children with HIVAN all over the world. This article discusses the progress made during the last decade in our understanding of the pathogenesis and treatment of childhood HIVAN, placing particular emphasis on the mechanisms that mediate the infection of kidney epithelial cells, and the roles of cytokines, the HIV-Tat gene, and the Apolipoprotein-1 (APOL1) gene risk variants in this disease. In view of the large number of children living with HIV at risk of developing HIVAN, better prevention and treatment programs are needed to eradicate this disease.
Collapse
Affiliation(s)
- Patricio E Ray
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Room 2120, MR4 Building, 409 Lane Road, Charlottesville, VA, 22908, USA. .,Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA.
| | - Jinliang Li
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA.,The George Washington University Health Center, Washington, DC, 20010, USA
| | - Jharna R Das
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA.,The George Washington University Health Center, Washington, DC, 20010, USA
| | - Pingtao Tang
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA.,The George Washington University Health Center, Washington, DC, 20010, USA
| |
Collapse
|
14
|
Cao A, Li J, Asadi M, Basgen JM, Zhu B, Yi Z, Jiang S, Doke T, El Shamy O, Patel N, Cravedi P, Azeloglu EU, Campbell KN, Menon M, Coca S, Zhang W, Wang H, Zen K, Liu Z, Murphy B, He JC, D’Agati VD, Susztak K, Kaufman L. DACH1 protects podocytes from experimental diabetic injury and modulates PTIP-H3K4Me3 activity. J Clin Invest 2021; 131:141279. [PMID: 33998601 PMCID: PMC8121508 DOI: 10.1172/jci141279] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/23/2021] [Indexed: 01/15/2023] Open
Abstract
Dachshund homolog 1 (DACH1), a key cell-fate determinant, regulates transcription by DNA sequence-specific binding. We identified diminished Dach1 expression in a large-scale screen for mutations that convert injury-resistant podocytes into injury-susceptible podocytes. In diabetic kidney disease (DKD) patients, podocyte DACH1 expression levels are diminished, a condition that strongly correlates with poor clinical outcomes. Global Dach1 KO mice manifest renal hypoplasia and die perinatally. Podocyte-specific Dach1 KO mice, however, maintain normal glomerular architecture at baseline, but rapidly exhibit podocyte injury after diabetes onset. Furthermore, podocyte-specific augmentation of DACH1 expression in mice protects from DKD. Combined RNA sequencing and in silico promoter analysis reveal conversely overlapping glomerular transcriptomic signatures between podocyte-specific Dach1 and Pax transactivation-domain interacting protein (Ptip) KO mice, with upregulated genes possessing higher-than-expected numbers of promoter Dach1-binding sites. PTIP, an essential component of the activating histone H3 lysine 4 trimethylation (H3K4Me3) complex, interacts with DACH1 and is recruited by DACH1 to its promoter-binding sites. DACH1-PTIP recruitment represses transcription and reduces promoter H3K4Me3 levels. DACH1 knockdown in podocytes combined with hyperglycemia triggers target gene upregulation and increases promoter H3K4Me3. These findings reveal that in DKD, diminished DACH1 expression enhances podocyte injury vulnerability via epigenetic derepression of its target genes.
Collapse
Affiliation(s)
- Aili Cao
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Li
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Morad Asadi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John M. Basgen
- Life Science Institute, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| | - Bingbing Zhu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengzi Yi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Tomohito Doke
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Osama El Shamy
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Niralee Patel
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paolo Cravedi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Evren U. Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kirk N. Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madhav Menon
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Steve Coca
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hao Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Zen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Barbara Murphy
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John C. He
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vivette D. D’Agati
- Department of Pathology, Columbia University Medical Center, New York, New York, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lewis Kaufman
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
15
|
Sil S, Thangaraj A, Chivero ET, Niu F, Kannan M, Liao K, Silverstein PS, Periyasamy P, Buch S. HIV-1 and drug abuse comorbidity: Lessons learned from the animal models of NeuroHIV. Neurosci Lett 2021; 754:135863. [PMID: 33794296 DOI: 10.1016/j.neulet.2021.135863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Various research studies that have investigated the association between HIV infection and addiction underpin the role of various drugs of abuse in impairing immunological and non-immunological pathways of the host system, ultimately leading to augmentation of HIV infection and disease progression. These studies have included both in vitro and in vivo animal models wherein investigators have assessed the effects of various drugs on several disease parameters to decipher the impact of drugs on both HIV infection and progression of HIV-associated neurocognitive disorders (HAND). However, given the inherent limitations in the existing animal models of HAND, these investigations only recapitulated specific aspects of the disease but not the complex human syndrome. Despite the inability of HIV to infect rodents over the last 30 years, multiple strategies have been employed to develop several rodent models of HAND. While none of these models can accurately mimic the overall pathophysiology of HAND, they serve the purpose of modeling some unique aspects of HAND. This review provides an overview of various animal models used in the field and a careful evaluation of methodological strengths and limitations inherent in both the model systems and study designs to understand better how the various animal models complement one another.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter S Silverstein
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
16
|
Barbe MF, Loomis R, Lepkowsky AM, Forman S, Zhao H, Gordon J. A longitudinal characterization of sex-specific somatosensory and spatial memory deficits in HIV Tg26 heterozygous mice. PLoS One 2020; 15:e0244725. [PMID: 33382797 PMCID: PMC7775086 DOI: 10.1371/journal.pone.0244725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of human immunodeficiency virus associated neurological disorders is still not well understood, yet is known to result in neurological declines despite combination anti-retroviral therapy. HIV-1 transgenic (Tg26) mice contain integrated non-infectious HIV-1 proviral DNA. We sought to assess the integrity of neurocognitive function and sensory systems in HIV-1 Tg26 mice using a longitudinal design, in both sexes, to examine both age- and sex-related disease progression. General neurological reflexive testing showed only acclimation to repeated testing by all groups. Yet, at 2.5 months of age, female Tg26 +/- mice showed hyposensitivity to noxious hot temperatures, compared to wild types (both sexes) and male Tg26 +/- mice, that worsened by 10 months of age. Female Tg26 +/- mice had short-term spatial memory losses in novel object location memory testing at 2.5 and 7 months, compared to female wild types; changes not observed in male counterparts. Female Tg26 +/- mice showed mild learning deficits and short- and long-term spatial memory deficits in olfactory and visually cued Barnes Maze testing at 3 months of age, yet greater learning and memory deficits by 8 months. In contrast, male Tg26 +/- mice displayed no learning deficits and fewer spatial memory deficits (mainly heading errors in nontarget holes). Thus, greater sex-specific temperature hyposensitivity and spatial memory declines were observed in female HIV Tg26 +/- mice, than in male Tg26 +/- mice, or their wild type littermates, that increased with aging. Additionally, tibial bones were examined using ex vivo micro-CT after tissue collection at 11 months. Sex-dependent increases in bone volume and trabecular number were seen in males, matching their greater weights at this age. These results indicate that HIV-1 Tg26 mice is a promising model in which to study neuropathic mechanisms underlying peripheral pathology as well as cognitive deficits seen with HIV.
Collapse
Affiliation(s)
- Mary F. Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
- Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
- * E-mail: ,
| | - Regina Loomis
- Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - Adam M. Lepkowsky
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - Steven Forman
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - Jennifer Gordon
- Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
17
|
Tang P, Das JR, Li J, Yu J, Ray PE. An HIV-Tat inducible mouse model system of childhood HIV-associated nephropathy. Dis Model Mech 2020; 13:dmm045641. [PMID: 32917744 PMCID: PMC7648609 DOI: 10.1242/dmm.045641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
Modern antiretroviral therapies (ART) have decreased the prevalence of HIV-associated nephropathy (HIVAN). Nonetheless, we continue to see children and adolescents with HIVAN all over the world. Furthermore, once HIVAN is established in children, it is difficult to revert its long-term progression, and we need better animal models of childhood HIVAN to test new treatments. To define whether the HIV-1 trans-activator (Tat) gene precipitates HIVAN in young mice, and to develop an inducible mouse model of childhood HIVAN, an HIV-Tat gene cloned from a child with HIVAN was used to generate recombinant adenoviral vectors (rAd-Tat). rAd-Tat and LacZ control vectors (2×109) were expressed in the kidney of newborn wild-type and HIV-transgenic (Tg26) FVB/N mice without significant proteinuria (n=5; 8 per group). Mice were sacrificed 7 and 35 days later to assess their renal outcome, the expression of HIV-genes and growth factors, and markers of cell growth and differentiation by RT-qPCR, immunohistochemistry and/or western blots. HIV-Tat induced the expression of HIV-1 genes and heparin-binding growth factors in the kidney of HIV-Tg26 mice, and precipitated HIVAN in the first month of life. No significant renal changes were detected in wild-type mice infected with rAd-Tat vectors, suggesting that HIV-Tat alone does not induce renal disease. This new mouse model of childhood HIVAN highlights the critical role that HIV-Tat plays in the pathogenesis of HIVAN, and could be used to study the pathogenesis and treatment of HIVAN in children and adolescents.
Collapse
Affiliation(s)
- Pingtao Tang
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Jharna R Das
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Jinliang Li
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Jing Yu
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Patricio E Ray
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
18
|
Bruggeman LA, Wu Z, Luo L, Madhavan S, Drawz PE, Thomas DB, Barisoni L, O'Toole JF, Sedor JR. APOL1-G0 protects podocytes in a mouse model of HIV-associated nephropathy. PLoS One 2019; 14:e0224408. [PMID: 31661509 PMCID: PMC6818796 DOI: 10.1371/journal.pone.0224408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/11/2019] [Indexed: 11/21/2022] Open
Abstract
African polymorphisms in the gene for Apolipoprotein L1 (APOL1) confer a survival advantage against lethal trypanosomiasis but also an increased risk for several chronic kidney diseases (CKD) including HIV-associated nephropathy (HIVAN). APOL1 is expressed in renal cells, however, the pathogenic events that lead to renal cell damage and kidney disease are not fully understood. The podocyte function of APOL1-G0 versus APOL1-G2 in the setting of a known disease stressor was assessed using transgenic mouse models. Transgene expression, survival, renal pathology and function, and podocyte density were assessed in an intercross of a mouse model of HIVAN (Tg26) with two mouse models that express either APOL1-G0 or APOL1-G2 in podocytes. Mice that expressed HIV genes developed heavy proteinuria and glomerulosclerosis, and had significant losses in podocyte numbers and reductions in podocyte densities. Mice that co-expressed APOL1-G0 and HIV had preserved podocyte numbers and densities, with fewer morphologic manifestations typical of HIVAN pathology. Podocyte losses and pathology in mice co-expressing APOL1-G2 and HIV were not significantly different from mice expressing only HIV. Podocyte hypertrophy, a known compensatory event to stress, was increased in the mice co-expressing HIV and APOL1-G0, but absent in the mice co-expressing HIV and APOL1-G2. Mortality and renal function tests were not significantly different between groups. APOL1-G0 expressed in podocytes may have a protective function against podocyte loss or injury when exposed to an environmental stressor. This was absent with APOL1-G2 expression, suggesting APOL1-G2 may have lost this protective function.
Collapse
Affiliation(s)
- Leslie A. Bruggeman
- Departments of Inflammation & Immunity and Nephrology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| | - Zhenzhen Wu
- Departments of Inflammation & Immunity and Nephrology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Liping Luo
- Departments of Inflammation & Immunity and Nephrology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sethu Madhavan
- Department of Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Paul E. Drawz
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David B. Thomas
- Departments of Pathology, University of Miami, Miami, Florida, United States of America
| | - Laura Barisoni
- Departments of Pathology and Medicine, Duke University, Durham, North Carolina, United States of America
| | - John F. O'Toole
- Departments of Inflammation & Immunity and Nephrology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - John R. Sedor
- Departments of Inflammation & Immunity and Nephrology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
19
|
Elevated indoleamine-2,3-dioxygenase enzyme activity in a novel mouse model of HIV-associated atherosclerosis. AIDS 2019; 33:1557-1564. [PMID: 31306164 DOI: 10.1097/qad.0000000000002255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE HIV atherosclerosis and cardiovascular disease (CVD) represent a significant human health burden in the era of combination antiretroviral therapy (cART). The pathogenesis of HIV atherosclerosis is still poorly understood, due, in part, to the lack of a suitable small animal model. Indoleamine-2,3-dioxygenase (IDO) enzyme activity is the first and rate-limiting step in tryptophan catabolism and is measured by the kynurenine to tryptophan ratio (KTR). The serum KTR is a biomarker of inflammation and has recently been implicated as an important risk factor for CVD in patients living with HIV (PLWH) who are virologically suppressed under cART. However, IDO activity in HIV-associated CVD has not been studied in mouse model before. DESIGN A novel mouse model of HIV atherosclerosis (Tg26/ApoE) was generated and examined for IDO activity and atherogenesis throughout 8 weeks on a high-fat diet. Tg26/ApoE mice were compared with Tg26 and ApoE single transgenic mice, before and during a high-fat diet. METHOD Serum kynurenine, tryptophan and percentage of aortic plaque formation were measured. Additionally, levels of relevant cytokines were investigated in Tg26/ApoE and ApoE. RESULTS Tg26/ApoE developed an accelerated atherosclerosis with increasing levels of KTR that were associated with plaque progression. This accelerated plaque was potentially driven by elevated levels of circulating IL-6. CONCLUSION These results indicate that Tg26/ApoE serve as a new mouse model for HIV-induced atherogenesis, and aid in understanding the role of tryptophan catabolism in the pathogenesis of HIV atherosclerosis/CVD.
Collapse
|
20
|
Sex-specific neurogenic deficits and neurocognitive disorders in middle-aged HIV-1 Tg26 transgenic mice. Brain Behav Immun 2019; 80:488-499. [PMID: 30999016 PMCID: PMC6660421 DOI: 10.1016/j.bbi.2019.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 11/23/2022] Open
Abstract
Varying degrees of cognitive deficits affect over half of all HIV-1 infected patients. Because of antiretroviral treatment (ART) regimens, the HIV-1 patient population is increasing in age. Very few epidemiological studies have focused on sex-specific differences in HIV-1-associated neurocognitive disorders (HAND). The purpose of this study is to examine any possible differences between male and female mice in the progression of cognitive dementia during persistent low-level HIV-1 protein exposure, mimicking the typical clinical setting in the post-ART era. Eight to ten-month old HIV-1 Tg26(+/-) transgenic mice were utilized to assess for specific learning and memory modalities. Initial physiological screening and fear conditioning assessments revealed that Tg26 mice exhibited no significant differences in general behavioral function, contextual fear conditioning, or cued fear conditioning responses when compared to their wild-type (WT) littermates, regardless of sex. However, Barnes maze testing revealed significantly impaired short and long-term spatial memory in males, while females had impaired spatial learning abilities and short-term spatial memory. The potential cellular mechanism underlying these sex-specific neurocognitive deficits was explored with hippocampal neurogenic analysis. Compared to WT mice, both male and female Tg26(+/-) mice had fewer quiescent neural stem cells and neuroblasts in their hippocampi. Male Tg26(+/-) mice had a more robust reduction of the quiescent neural stem cell pool than female Tg26(+/-) mice. While female WT mice had a higher number of neural progenitor cells than male WT mice, only female Tg26(+/-) mice exhibited a robust reduction in the number of neural progenitor cells. Altogether, these results suggest that middle-aged male and female Tg26(+/-) mice manifest differing impairments in cognitive functioning and hippocampal neurogenesis. This study emphasizes the importance of understanding sex related differences in HAND pathology, which would aid in designing more optimized therapeutic regimens for the treatment of HAND.
Collapse
|
21
|
Putatunda R, Zhang Y, Li F, Yang XF, Barbe MF, Hu W. Adult neurogenic deficits in HIV-1 Tg26 transgenic mice. J Neuroinflammation 2018; 15:287. [PMID: 30314515 PMCID: PMC6182864 DOI: 10.1186/s12974-018-1322-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/24/2018] [Indexed: 02/08/2023] Open
Abstract
Background Even in the antiretroviral treatment (ART) era, HIV-1-infected patients suffer from milder forms of HIV-1-associated neurocognitive disorders (HAND). While the viral proteins Tat and gp120 have been shown to individually inhibit the proliferation and neural differentiation of neural stem cells (NSCs), no studies have characterized the effects of all the combined viral proteins on adult neurogenesis. Methods The HIV-1 Tg26 transgenic mouse model was used due to its clinical relevance to ART-controlled HIV-1-infected patients who lack active viral replication but suffer from continuous stress from the viral proteins. Quantitative RT-PCR analysis was performed to validate the expression of viral genes in the neurogenic zones. In vitro stemness and lineage differentiation assays were performed in cultured NSCs from HIV-1 Tg26 transgenic mice and their wild-type littermates. Hippocampal neurogenic lineage analysis was performed to determine potential changes in initial and late differentiation of NSCs in the subgranular zone (SGZ). Finally, fluorescent retroviral labeling of mature dentate granule neurons was performed to assess dendritic complexity and dendritic spine densities. Results Varying copy numbers of partial gag (p17), tat (unspliced and spliced variants), env (gp120), vpu, and nef transcripts were detected in the neurogenic zones of Tg26 mice. Significantly fewer primary neurospheres and a higher percentage of larger sized primary neurospheres were generated from Tg26 NSCs than from littermated wild-type mouse NSCs, implying that Tg26 mouse NSCs exhibit deficits in initial differentiation. In vitro differentiation assays revealed that Tg26 mouse NSCs have reduced neuronal differentiation and increased astrocytic differentiation. In the SGZs of Tg26 mice, significantly higher amounts of quiescent NSCs, as well as significantly lower levels of active NSCs, proliferating neural progenitor cells, and neuroblasts, were observed. Finally, newborn mature granule neurons in the dentate gyri of Tg26 mice had deficiencies in dendritic arborization, dendritic length, and dendritic spine density. Conclusions Both in vitro and in vivo studies demonstrate that HIV-1 Tg26 mice have early- and late-stage neurogenesis deficits, which could possibly contribute to the progression of HAND. Future therapies should be targeting this process to ameliorate, if not eliminate HAND-like symptoms in HIV-1-infected patients.
Collapse
Affiliation(s)
- Raj Putatunda
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Yonggang Zhang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Fang Li
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA. .,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
22
|
Jotwani V, Atta MG, Estrella MM. Kidney Disease in HIV: Moving beyond HIV-Associated Nephropathy. J Am Soc Nephrol 2017; 28:3142-3154. [PMID: 28784698 PMCID: PMC5661296 DOI: 10.1681/asn.2017040468] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In developed countries, remarkable advances in antiretroviral therapy have transformed HIV infection into a chronic condition. As a result, HIV-associated nephropathy, the classic HIV-driven kidney lesion among individuals of African descent, has largely disappeared in these regions. However, HIV-positive blacks continue to have much higher rates of ESRD than HIV-positive whites, which could be attributed to the APOL1 renal risk variants. Additionally, HIV-positive individuals face adverse consequences beyond HIV itself, including traditional risk factors for CKD and nephrotoxic effects of antiretroviral therapy. Concerns for nephrotoxicity also extend to HIV-negative individuals using tenofovir disoproxil fumarate-based pre-exposure prophylaxis for the prevention of HIV infection. Therefore, CKD remains an important comorbid condition in the HIV-positive population and an emerging concern among HIV-negative persons receiving pre-exposure prophylaxis. With the improved longevity of HIV-positive individuals, a kidney transplant has become a viable option for many who have progressed to ESRD. Herein, we review the growing knowledge regarding the APOL1 renal risk variants in the context of HIV infection, antiretroviral therapy-related nephrotoxicity, and developments in kidney transplantation among HIV-positive individuals.
Collapse
Affiliation(s)
- Vasantha Jotwani
- Kidney Health Research Collaborative, Department of Medicine, University of California, San Francisco, California
- Department of Medicine, San Francisco Veterans Affairs Health Care System, San Francisco, California; and
| | - Mohamed G Atta
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Michelle M Estrella
- Kidney Health Research Collaborative, Department of Medicine, University of California, San Francisco, California;
- Department of Medicine, San Francisco Veterans Affairs Health Care System, San Francisco, California; and
| |
Collapse
|
23
|
Papeta N, Patel A, D’Agati VD, Gharavi AG. Refinement of the HIVAN1 Susceptibility Locus on Chr. 3A1-A3 via Generation of Sub-Congenic Strains. PLoS One 2016; 11:e0163860. [PMID: 27736906 PMCID: PMC5063463 DOI: 10.1371/journal.pone.0163860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/15/2016] [Indexed: 01/19/2023] Open
Abstract
HIV-1 transgenic mice on the FVB/NJ background (TgFVB) represent a validated model of HIV-associated nephropathy (HIVAN). A major susceptibility locus, HIVAN1, was previously mapped to chromosome 3A1-A3 in a cross between TgFVB and CAST/EiJ (CAST) strains, and introgression of a 51.9 Mb segment encompassing HIVAN1 from CAST into TgFVB resulted in accelerated development of nephropathy. We generated three sub-congenic strains carrying CAST alleles in the proximal or distal regions of the HIVAN1 locus (Sub-II, 3.02–38.93 Mb; Sub-III, 38.45–55.1 Mb and Sub-IV, 47.7–55.1 Mb, build 38). At 5–10 weeks of age, histologic injury and proteinuria did not differ between HIV-1 transgenic Sub-II and TgFVB mice. In contrast, HIV-1 transgenic Sub-III and Sub-IV mice displayed up to 4.4 fold more histopathologic injury and 6-fold more albuminuria compared to TgFVB mice, similar in severity to the full-length congenic mice. The Sub-IV segment defines a maximal 7.4 Mb interval for HIVAN1, and encodes 31 protein coding genes: 15 genes have missense variants differentiating CAST from FVB, and 14 genes show differential renal expression. Of these, Frem1, Foxo1, and Setd7 have been implicated in the pathogenesis of nephropathy. HIVAN1 congenic kidneys are histologically normal without the HIV-1 transgene, yet their global transcriptome is enriched for molecular signatures of apoptosis, adenoviral infection, as well as genes repressed by histone H3 lysine 27 trimethylation, a histone modification associated with HIV-1 life cycle. These data refine HIVAN1to 7.4 Mb and identify latent molecular derangements that may predispose to nephropathy upon exposure to HIV-1.
Collapse
Affiliation(s)
- Natalia Papeta
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Ami Patel
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Vivette D. D’Agati
- Department of Pathology, Columbia University, New York, New York, United States of America
| | - Ali G. Gharavi
- Department of Medicine, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Raij L, Tian R, Wong JS, He JC, Campbell KN. Podocyte injury: the role of proteinuria, urinary plasminogen, and oxidative stress. Am J Physiol Renal Physiol 2016; 311:F1308-F1317. [PMID: 27335373 DOI: 10.1152/ajprenal.00162.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022] Open
Abstract
Podocytes are the key target for injury in proteinuric glomerular diseases that result in podocyte loss, progressive focal segmental glomerular sclerosis (FSGS), and renal failure. Current evidence suggests that the initiation of podocyte injury and associated proteinuria can be separated from factors that drive and maintain these pathogenic processes leading to FSGS. In nephrotic urine aberrant glomerular filtration of plasminogen (Plg) is activated to the biologically active serine protease plasmin by urokinase-type plasminogen activator (uPA). In vivo inhibition of uPA mitigates Plg activation and development of FSGS in several proteinuric models of renal disease including 5/6 nephrectomy. Here, we show that Plg is markedly increased in the urine in two murine models of proteinuric kidney disease associated with podocyte injury: Tg26 HIV-associated nephropathy and the Cd2ap-/- model of FSGS. We show that human podocytes express uPA and three Plg receptors: uPAR, tPA, and Plg-RKT. We demonstrate that Plg treatment of podocytes specifically upregulates NADPH oxidase isoforms NOX2/NOX4 and increases production of mitochondrial-dependent superoxide anion (O2-) that promotes endothelin-1 synthesis. Plg via O2- also promotes expression of the B scavenger receptor CD36 and subsequent increased intracellular cholesterol uptake resulting in podocyte apoptosis. Taken together, our findings suggest that following disruption of the glomerular filtration barrier at the onset of proteinuric disease, podocytes are exposed to Plg resulting in further injury mediated by oxidative stress. We suggest that chronic exposure to Plg could serve as a "second hit" in glomerular disease and that Plg is potentially an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Leopoldo Raij
- Renal and Hypertension Division, University of Miami Miller School of Medicine, Miami, Florida; .,Nephrology and Hypertension Section Miami Veterans Affairs Medical Center (111C1), Miami, Florida; and
| | - Runxia Tian
- Nephrology and Hypertension Section Miami Veterans Affairs Medical Center (111C1), Miami, Florida; and
| | - Jenny S Wong
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John C He
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
25
|
Abstract
The longstanding focus in chronic kidney disease (CKD) research has been on the glomerulus, which is sensible because this is where glomerular filtration occurs, and a large proportion of progressive CKD is associated with significant glomerular pathology. However, it has been known for decades that tubular atrophy is also a hallmark of CKD and that it is superior to glomerular pathology as a predictor of glomerular filtration rate decline in CKD. Nevertheless, there are vastly fewer studies that investigate the causes of tubular atrophy, and fewer still that identify potential therapeutic targets. The purpose of this review is to discuss plausible mechanisms of tubular atrophy, including tubular epithelial cell apoptosis, cell senescence, peritubular capillary rarefaction and downstream tubule ischemia, oxidative stress, atubular glomeruli, epithelial-to-mesenchymal transition, interstitial inflammation, lipotoxicity and Na(+)/H(+) exchanger-1 inactivation. Once a a better understanding of tubular atrophy (and interstitial fibrosis) pathophysiology has been obtained, it might then be possible to consider tandem glomerular and tubular therapeutic strategies, in a manner similar to cancer chemotherapy regimens, which employ multiple drugs to simultaneously target different mechanistic pathways.
Collapse
|
26
|
Lan X, Rao TKS, Chander PN, Skorecki K, Singhal PC. Apolipoprotein L1 (APOL1) Variants (Vs) a possible link between Heroin-associated Nephropathy (HAN) and HIV-associated Nephropathy (HIVAN). Front Microbiol 2015; 6:571. [PMID: 26106375 PMCID: PMC4460807 DOI: 10.3389/fmicb.2015.00571] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/24/2015] [Indexed: 11/26/2022] Open
Abstract
In 1970s, Heroin-associated Nephropathy (HAN), one form of focal and segmental glomerulosclerosis (FSGS), was a predominant cause of End-stage Kidney Disease (ESKD) in African-Americans (AAs). In 1980s, with the surge of Acquired Immune Deficiency Syndrome (AIDS) in AAs, HAN more or less disappeared, and the incidence of Human Immunodeficiency Virus associated Nephropathy (HIVAN) markedly increased. Recent studies in AAs have identified APOL1 variants (Vs) as a major risk factor for the development and progression of non-diabetic kidney diseases including idiopathic FSGS and hypertension-attributed nephrosclerosis. These observations have also offered partial insights into the mechanisms of development, and higher rate of occurrence of both HAN and HIVAN in AAs. AAs with APOL1Vs develop idiopathic FSGS at four-fold higher rate compared to European Americans (EAs). Similarly, HIV infected AAs with APOL1Vs (if not on antiviral therapy), risk a 50% (10-fold greater) chance of developing HIVAN. It has been suggested that APOL1Vs expression may render podocytes more vulnerable to various types of injury: bacterial, viral, and others. However, in addition to genetic variants, additional factors such as persistence of a second hit may determine the nature and severity of glomerular disease. In patients with HAN, heroin or contaminants may have been the offending second insult(s) which caused renal disease in susceptible AA patients. In the 80's, since heroin-induced second hit was neither consistent nor sustained (depending on drug availability in the street), the disease was masked or replaced HIV infected patients (especially in untreated subjects), by an overwhelming second hit by the virus which was both intense as well as persistent. It appears that APOL1Vs may be one of the links between the disappearance of HAN and emergence of HIVAN in AA patients.
Collapse
Affiliation(s)
- Xiqian Lan
- Hofstra North Shore-LIJ School of MedicineLong Island, NY, USA
| | - T. K. S. Rao
- Department of Medicine, State University of New York Downstate Medical CenterBrooklyn, NY, USA
| | | | - Karl Skorecki
- Technion Institute of Technology and Rambam Medical CenterHaifa, Israel
| | | |
Collapse
|
27
|
Abstract
Background Human immunodeficiency virus type 1 (HIV-1)-seropositive patients are at a high risk for the development of a variety of acute and chronic renal diseases. Most patients with HIVAN are of African descent, presenting late in the course of their HIV-1 infection. The only reliable test to establish or rule out the presence of HIVAN (HIV associated nephropathy) is renal biopsy. The most common lesion associated with HIV is a focal segmental glomeruloscelerosis, but several times, other biopsy findings may also be seen. Our patient had lupus nephritis like pathology picture. The therapeutic agents with the most promise are angiotensin-converting enzyme inhibitors and antiretroviral medications. Role of steroids are less well-defined although they have been used with success many times. Case Details Our patient was a young male who presented with a pulmonary renal syndrome like picture and wasting. On evaluation, he was found to be HIV-1 positive, and renal biopsy showed lupus nephritis like pathological picture. The patient was treated with HAART (Highly active anti retroviral therapy) , steroids and ACE inhibitors and showed an excellent response. Conclusion The case highlights the fact that immune mediated glomerulonephritis, although rare, can be the presenting feature of HIV infection and can be controlled, if not cured, with proper treatment.
Collapse
Affiliation(s)
- Changal Khalid Hamid
- Department of Internal Medicine, Sher-i-Kashimir Institute of Medical Sciences, Srinangar, Kashimir, India
| | - Raina Abdul Hameed
- Department of Internal Medicine, Sher-i-Kashimir Institute of Medical Sciences, Srinangar, Kashimir, India
| | - Baba Iqbal Khaliq
- Department of Pathology, Sher-i-Kashimir Institute of Medical Sciences, Srinangar, Kashimir, India
| | - Raina Manzoor
- Department of Biochemistry, Sher-i-Kashimir Institute of Medical Sciences, Srinangar, Kashimir, India
| | - Changal Qayum Hamid
- Department of Medicine, University of Science and Technology, Chittagong, Bangladesh
| |
Collapse
|
28
|
Mbita Z, Hull R, Dlamini Z. Human immunodeficiency virus-1 (HIV-1)-mediated apoptosis: new therapeutic targets. Viruses 2014; 6:3181-227. [PMID: 25196285 PMCID: PMC4147692 DOI: 10.3390/v6083181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/12/2014] [Accepted: 07/08/2014] [Indexed: 12/18/2022] Open
Abstract
HIV has posed a significant challenge due to the ability of the virus to both impair and evade the host’s immune system. One of the most important mechanisms it has employed to do so is the modulation of the host’s native apoptotic pathways and mechanisms. Viral proteins alter normal apoptotic signaling resulting in increased viral load and the formation of viral reservoirs which ultimately increase infectivity. Both the host’s pro- and anti-apoptotic responses are regulated by the interactions of viral proteins with cell surface receptors or apoptotic pathway components. This dynamic has led to the development of therapies aimed at altering the ability of the virus to modulate apoptotic pathways. These therapies are aimed at preventing or inhibiting viral infection, or treating viral associated pathologies. These drugs target both the viral proteins and the apoptotic pathways of the host. This review will examine the cell types targeted by HIV, the surface receptors exploited by the virus and the mechanisms whereby HIV encoded proteins influence the apoptotic pathways. The viral manipulation of the hosts’ cell type to evade the immune system, establish viral reservoirs and enhance viral proliferation will be reviewed. The pathologies associated with the ability of HIV to alter apoptotic signaling and the drugs and therapies currently under development that target the ability of apoptotic signaling within HIV infection will also be discussed.
Collapse
Affiliation(s)
- Zukile Mbita
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| | - Rodney Hull
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| | - Zodwa Dlamini
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| |
Collapse
|
29
|
Plagov A, Lan X, Rai P, Kumar D, Lederman R, Rehman S, Malhotra A, Ding G, Chander PN, Singhal PC. Modulation of renin angiotensin system predominantly alters sclerotic phenotype of glomeruli in HIVAN. Histol Histopathol 2014; 29:1575-81. [PMID: 24892944 DOI: 10.14670/hh-29.1575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HIV-associated nephropathy (HIVAN) is a common complication of HIV-1 infection in patients with African ancestry in general and with APOL1 gene risk variants in particular. Although collapsing glomerulopathy is considered a hallmark of HIVAN, significant numbers of glomeruli in patients with HIVAN also display other variants of focal segmental glomerulosclerosis (FSGS). We propose that collapsed glomeruli as well as glomeruli with other variants of FSGS are manifestations of HIVAN and their prevalence depends on associated host factors. We explored the role of the renin-angiotensin system (RAS) in the manifestation of any specific glomerular phenotype in HIVAN. To evaluate the role of the RAS we have used a genetically engineered mouse model of HIVAN (Tg26) with two and four copies of angiotensinogen (Agt) gene (Tg26/Agt2 and Tg26/Agt4). In Tg26/Agt2, 1 out of 6 glomeruli exhibited sclerosed phenotype, whereas 1 out of 25 glomeruli displayed collapsed phenotype; on the other hand, in Tg26/Agt4, 1 out of 3 glomeruli exhibited sclerotic phenotype and only 1 out of 7 glomeruli showed collapsed phenotype. To inhibit the effect of RAS, Tg26/Agt2 were administered captopril, aliskiren, aliskiren plus captopril or aliskiren plus telmisartan by miniosmotic pumps for 4 weeks. In all experimental groups there was a significant reduction in percentage of sclerosed glomeruli and only minimal reduction in collapsed glomeruli compared to normal saline receiving Tg26/Agt2. These findings suggest that the manifestation of the sclerosed phenotype in HIVAN is predominantly dependent on activation of the RAS.
Collapse
Affiliation(s)
- Andrei Plagov
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Xiqian Lan
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Partab Rai
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Dileep Kumar
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Rivka Lederman
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Shabina Rehman
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Ashwani Malhotra
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Guohua Ding
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Praveen N Chander
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Pravin C Singhal
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
30
|
Advances in the pathogenesis of HIV-associated kidney diseases. Kidney Int 2014; 86:266-74. [PMID: 24827777 DOI: 10.1038/ki.2014.167] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 12/17/2022]
Abstract
Despite improved outcomes among persons living with HIV who are treated with antiretroviral therapy, they remain at increased risk for acute and chronic kidney diseases. Moreover, since HIV can infect renal epithelial cells, the kidney might serve as a viral reservoir that would need to be eradicated when attempting to achieve full virologic cure. In recent years, much progress has been made in elucidating the mechanism by which HIV infects renal epithelial cells and the viral and host factors that promote development of kidney disease. Polymorphisms in APOL1 confer markedly increased risk of HIV-associated nephropathy; however, the mechanism by which ApoL1 variants may promote kidney disease remains unclear. HIV-positive persons are at increased risk of acute kidney injury, which may be a result of a high burden of subclinical kidney disease and/or viral factors and frequent exposure to nephrotoxins. Despite the beneficial effect of antiretroviral therapy in preventing and treating HIVAN, and possibly other forms of kidney disease in persons living with HIV, some of these medications, including tenofovir, indinavir, and atazanavir can induce acute and/or chronic kidney injury via mitochondrial toxicity or intratubular crystallization. Further research is needed to better understand factors that contribute to acute and chronic kidney injury in HIV-positive patients and to develop more effective strategies to prevent and treat kidney disease in this vulnerable population.
Collapse
|
31
|
Potla U, Ni J, Vadaparampil J, Yang G, Leventhal JS, Campbell KN, Chuang PY, Morozov A, He JC, D'Agati VD, Klotman PE, Kaufman L. Podocyte-specific RAP1GAP expression contributes to focal segmental glomerulosclerosis-associated glomerular injury. J Clin Invest 2014; 124:1757-69. [PMID: 24642466 DOI: 10.1172/jci67846] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/16/2014] [Indexed: 01/17/2023] Open
Abstract
Injury to the specialized epithelial cells of the glomerulus (podocytes) underlies the pathogenesis of all forms of proteinuric kidney disease; however, the specific genetic changes that mediate podocyte dysfunction after injury are not fully understood. Here, we performed a large-scale insertional mutagenic screen of injury-resistant podocytes isolated from mice and found that increased expression of the gene Rap1gap, encoding a RAP1 activation inhibitor, ameliorated podocyte injury resistance. Furthermore, injured podocytes in murine models of disease and kidney biopsies from glomerulosclerosis patients exhibited increased RAP1GAP, resulting in diminished glomerular RAP1 activation. In mouse models, podocyte-specific inactivation of Rap1a and Rap1b induced massive glomerulosclerosis and premature death. Podocyte-specific Rap1a and Rap1b haploinsufficiency also resulted in severe podocyte damage, including features of podocyte detachment. Over-expression of RAP1GAP in cultured podocytes induced loss of activated β1 integrin, which was similarly observed in kidney biopsies from patients. Furthermore, preventing elevation of RAP1GAP levels in injured podocytes maintained β1 integrin-mediated adhesion and prevented cellular detachment. Taken together, our findings suggest that increased podocyte expression of RAP1GAP contributes directly to podocyte dysfunction by a mechanism that involves loss of RAP1-mediated activation of β1 integrin.
Collapse
|
32
|
Atta MG, Lucas GM, Fine DM. HIV-associated nephropathy: epidemiology, pathogenesis, diagnosis and management. Expert Rev Anti Infect Ther 2014; 6:365-71. [DOI: 10.1586/14787210.6.3.365] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Rai P, Plagov A, Lan X, Chandel N, Singh T, Lederman R, Ayasolla KR, Mathieson PW, Saleem MA, Husain M, Malhotra A, Chander PN, Singhal PC. mTOR plays a critical role in p53-induced oxidative kidney cell injury in HIVAN. Am J Physiol Renal Physiol 2013; 305:F343-54. [PMID: 23678040 PMCID: PMC3742868 DOI: 10.1152/ajprenal.00135.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/08/2013] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress has been implicated to contribute to HIV-induced kidney cell injury; however, the role of p53, a modulator of oxidative stress, has not been evaluated in the development of HIV-associated nephropathy (HIVAN). We hypothesized that mammalian target of rapamycin (mTOR) may be critical for the induction of p53-mediated oxidative kidney cell injury in HIVAN. To test our hypothesis, we evaluated the effect of an mTOR inhibitor, rapamycin, on kidney cell p53 expression, downstream signaling, and kidney cell injury in both in vivo and in vitro studies. Inhibition of the mTOR pathway resulted in downregulation of renal tissue p53 expression, associated downstream signaling, and decreased number of sclerosed glomeruli, tubular microcysts, and apoptosed and 8-hydroxy deoxyguanosine (8-OHdG)-positive (+ve) cells in Tg26 mice. mTOR inhibition not only attenuated kidney cell expression of p66ShcA and phospho-p66ShcA but also reactivated the redox-sensitive stress response program in the form of enhanced expression of manganese superoxide dismutase (MnSOD) and catalase. In in vitro studies, the mTOR inhibitor also provided protection against HIV-induced podocyte apoptosis. Moreover, mTOR inhibition downregulated HIV-induced podocyte (HP/HIV) p53 expression. Since HP/HIV silenced for mTOR displayed a lack of expression of p53 as well as attenuated podocyte apoptosis, this suggests that mTOR is critical for kidney cell p53 activation and associated oxidative kidney cell injury in the HIV milieu.
Collapse
Affiliation(s)
- Partab Rai
- Department of Medicine, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, Great Neck, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Our understanding of the pathogenesis of most primary glomerular diseases, including IgA nephropathy, membranous nephropathy and focal segmental glomerulosclerosis, is limited. Advances in molecular technology now permit genome-wide, high-throughput characterization of genes and gene products from biological samples. Comprehensive examinations of the genome, transcriptome, proteome and metabolome (collectively known as omics analyses), have been applied to the study of IgA nephropathy, membranous nephropathy and focal segmental glomerulosclerosis in both animal models and human patients. However, most omics studies of primary glomerular diseases, with the exception of large genomic studies, have been limited by inadequate sample sizes and the lack of kidney-specific data sets derived from kidney biopsy samples. Collaborative efforts to develop a standardized approach for prospective recruitment of patients, scheduled monitoring of clinical outcomes, and protocols for sampling of kidney tissues will be instrumental in uncovering the mechanisms that drive these diseases. Integration of molecular data sets with the results of clinical and histopathological studies will ultimately enable these diseases to be characterized in a comprehensive and systematic manner, and is expected to improve the diagnosis and treatment of these diseases.
Collapse
|
35
|
Background strain and the differential susceptibility of podocyte-specific deletion of Myh9 on murine models of experimental glomerulosclerosis and HIV nephropathy. PLoS One 2013; 8:e67839. [PMID: 23874454 PMCID: PMC3707882 DOI: 10.1371/journal.pone.0067839] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
We previously reported that podocyte-specific deletion of Myh9 (conventional myosin heavy chain 2A) in C57BL/6 mice does not cause spontaneous kidney disease but instead results in a predisposition to glomerulosclerosis in response to a second model of glomerular injury. In contrast, other investigators reported that podocyte-specific deletion of Myh9 (PodΔMyh9) resulted in spontaneous glomerulosclerosis in mice on a mixed background, suggesting that the glomerulosclerosis is dependent on background strain. In order to elucidate the cause of this strain dependent effect Podocin::Cre and Myh9(flox) alleles were backcrossed to mouse strain FVB/N, which is highly susceptible to glomerulosclerosis, with the aim of intercrossing susceptible FVB/N and resistant C57BL/6 mice in subsequent congenic analyses. However, after backcrossing mice to FVB/N and aging mice to 28 weeks, we found no evidence of glomerular disease in PodΔMyh9 mice vs control littermates (urine MAC ratio all p>0.05). We also tested C57BL/6 PodΔMyh9 mice for a predisposition to injury from models other than Adriamycin including HIV nephropathy (HIVAN), puromycin nephropathy, and sheep nephrotoxic serum. In the Tg26 model of HIVAN, we found that podocyte-specific deletion of Myh9 resulted in a modest hypersensitivity in adults compared to Tg26+ control littermates (urine MAC ratio, p<0.05 or less). In contrast, we found that PodΔMyh9 mice were not predisposed to injury in response to other injury models including puromycin nephropathy and sheep nephrotoxic serum. While the mechanism of injury in these models is not fully understood, we conclude that PodΔMyh9 results in a variable susceptibility to glomerulosclerosis in response to different models of glomerular injury. In addition, based on the lack of a spontaneous phenotype of glomerulosclerosis in both C57BL/6 and FVB/N mice, we propose that Myh9 is not absolutely required in adult podocytes.
Collapse
|
36
|
Klopfleisch R. Multiparametric and semiquantitative scoring systems for the evaluation of mouse model histopathology--a systematic review. BMC Vet Res 2013; 9:123. [PMID: 23800279 PMCID: PMC3693904 DOI: 10.1186/1746-6148-9-123] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/19/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Histopathology has initially been and is still used to diagnose infectious, degenerative or neoplastic diseases in humans or animals. In addition to qualitative diagnoses semiquantitative scoring of a lesion`s magnitude on an ordinal scale is a commonly demanded task for histopathologists. Multiparametric, semiquantitative scoring systems for mouse models histopathology are a common approach to handle these questions and to include histopathologic information in biomedical research. RESULTS Inclusion criteria for scoring systems were a first description of a multiparametric, semiquantiative scoring systems which comprehensibly describe an approach to evaluate morphologic lesion. A comprehensive literature search using these criteria identified 153 originally designed semiquantitative scoring systems for the analysis of morphologic changes in mouse models covering almost all organs systems and a wide variety of disease models. Of these, colitis, experimental autoimmune encephalitis, lupus nephritis and collagen induced osteoarthritis colitis were the disease models with the largest number of different scoring systems. Closer analysis of the identified scoring systems revealed a lack of a rationale for the selection of the scoring parameters or a correlation between scoring parameter value and the magnitude of the clinical symptoms in most studies. CONCLUSION Although a decision for a particular scoring system is clearly dependent on the respective scientific question this review gives an overview on currently available systems and may therefore allow for a better choice for the respective project.
Collapse
Affiliation(s)
- Robert Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
37
|
Abstract
With the widespread use of combination antiretroviral agents, the incidence of HIV-associated nephropathy has decreased. Currently, HIV-infected patients live much longer and often suffer from comorbidities such as diabetes mellitus. Recent epidemiological studies suggest that concurrent HIV infection and diabetes mellitus may have a synergistic effect on the incidence of chronic kidney disease. To address this, we determined whether HIV-1 transgene expression accelerates diabetic kidney injury using a diabetic HIV-1 transgenic (Tg26) murine model. Diabetes was initially induced with low-dose streptozotocin in both Tg26 and wild-type mice on a C57BL/6 background, which is resistant to classic HIV-associated nephropathy. Although diabetic nephropathy is minimally observed on the C57BL/6 background, diabetic Tg26 mice exhibited a significant increase in glomerular injury compared with nondiabetic Tg26 mice and diabetic wild-type mice. Validation of microarray gene expression analysis from isolated glomeruli showed a significant upregulation of proinflammatory pathways in diabetic Tg26 mice. Thus, our study found that expression of HIV-1 genes aggravates diabetic kidney disease.
Collapse
|
38
|
Laouari D, Burtin M, Phelep A, Bienaime F, Noel LH, Lee DC, Legendre C, Friedlander G, Pontoglio M, Terzi F. A transcriptional network underlies susceptibility to kidney disease progression. EMBO Mol Med 2012; 4:825-39. [PMID: 22711280 PMCID: PMC3494079 DOI: 10.1002/emmm.201101127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 01/28/2023] Open
Abstract
The molecular networks that control the progression of chronic kidney diseases (CKD) are poorly defined. We have recently shown that the susceptibility to development of renal lesions after nephron reduction is controlled by a locus on mouse chromosome 6 and requires epidermal growth factor receptor (EGFR) activation. Here, we identified microphthalmia-associated transcription factor A (MITF-A), a bHLH-Zip transcription factor, as a modifier of CKD progression. Sequence analysis revealed a strain-specific mutation in the 5' UTR that decreases MITF-A protein synthesis in lesion-prone friend virus B NIH (FVB/N) mice. More importantly, we dissected the molecular pathway by which MITF-A modulates CKD progression. MITF-A interacts with histone deacetylases to repress the transcription of TGF-α, a ligand of EGFR, and antagonizes transactivation by its related partner, transcription factor E3 (TFE3). Consistent with the key role of this network in CKD, Tgfa gene inactivation protected FVB/N mice from renal deterioration after nephron reduction. These data are relevant to human CKD, as we found that the TFE3/MITF-A ratio was increased in patients with damaged kidneys. Our study uncovers a novel transcriptional network and unveils novel potential prognostic and therapeutic targets for preventing human CKD progression.
Collapse
Affiliation(s)
- Denise Laouari
- INSERM U845, Centre de Recherche "Croissance et Signalisation", Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
HIV-associated nephropathy patients with and without apolipoprotein L1 gene variants have similar clinical and pathological characteristics. Kidney Int 2012; 82:338-43. [PMID: 22495294 PMCID: PMC3463138 DOI: 10.1038/ki.2012.111] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recently, an association was found between non-diabetic kidney disease in African Americans and two independent sequence variants in the APOL1 gene, encoding apolipoprotein L1. In this study we determined the frequency of APOL1 risk variants in patients with biopsy-proven HIV-associated nephropathy (HIVAN) and distinctive pathological characteristics potentially driven by those risk variants. Among 76 patients with HIVAN, 60 were successfully genotyped for APOL1 G1 and G2 polymorphisms. In this cohort, 37 had two risk alleles, 18 were heterozygous and 5 had neither risk variant. There were no differences in the pathological findings of HIVAN and the number of APOL1 risk alleles. Further, the progression to end stage kidney disease or death did not differ by the number of risk alleles. Median renal survival was 9.3 months in patients with none or one risk allele compared to 11.7 months in patients with two APOL1 risk alleles. Thus, our study suggests that although the majority of African American patients with HIVAN have two APOL1 risk alleles, other as yet unknown factors in the host including genetic risk variants and environmental or viral factors may influence the development of this disorder in those with none or one APOL1 risk allele.
Collapse
|
40
|
Abstract
The classic kidney disease of HIV infection, HIV-associated nephropathy (HIVAN), is an aggressive form of collapsing focal segmental glomerulosclerosis with accompanying tubular and interstitial lesions. HIVAN was first described among African-Americans and Haitian immigrants with advanced HIV disease, an early suggestion of a strong genetic association. This genetic susceptibility was recently linked to polymorphisms on chromosome 22 in individuals of African descent. The association with advanced HIV infection and evidence from HIV-transgenic mice suggested the possibility that HIV directly infects the kidney and that specific HIV gene expression induces host cellular pathways that are responsible for HIVAN pathogenesis. Although combination antiretroviral therapy has substantially reduced the impact of HIVAN in the United States, continued growth of the HIV epidemic in susceptible African populations may have important public health implications. This article reviews recent progress in the pathogenesis and treatment of HIVAN and describes the changing epidemiology of HIV-related kidney disease.
Collapse
Affiliation(s)
- Christina M Wyatt
- Department of Medicine, Division of Nephrology, Mount Sinai School Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
41
|
Prakash S, Papeta N, Sterken R, Zheng Z, Thomas RL, Wu Z, Sedor JR, D′Agati VD, Bruggeman LA, Gharavi AG. Identification of the nephropathy-susceptibility locus HIVAN4. J Am Soc Nephrol 2011; 22:1497-504. [PMID: 21784893 PMCID: PMC3148704 DOI: 10.1681/asn.2011020209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/13/2011] [Indexed: 11/03/2022] Open
Abstract
HIVAN1, HIVAN2, and HIVAN3 are nephropathy-susceptibility loci previously identified in the HIV-1 transgenic mouse, a model of collapsing glomerulopathy. The HIVAN1 and HIVAN2 loci modulate expression of Nphs2, which encodes podocin and several other podocyte-expressed genes. To identify additional loci predisposing to nephropathy, we performed a genome-wide scan in 165 backcross mice generated between the nephropathy-sensitive HIV-1-transgenic FVB/NJ (TgFVB) strain and the resistant Balb/cJ (BALB) strain. We identified a major susceptibility locus (HIVAN4) on chromosome 6 G3-F3, with BALB alleles conferring a twofold reduction in severity (peak LOD score = 4.0). Similar to HIVAN1 and HIVAN2, HIVAN4 modulated expression of Nphs2, indicating a common pathway underlying these loci. We independently confirmed the HIVAN4 locus in a sister TgFVB colony that experienced a dramatic loss of nephropathy subsequent to a breeding bottleneck. In this low-penetrance line, 3% of the genome was admixed with BALB alleles, suggesting a remote contamination event. The admixture localized to discrete segments on chromosome 2 and at the HIVAN4 locus. HIVAN4 candidate genes include killer lectin-like receptor genes as well as A2m and Ptpro, whose gene products are enriched in the glomerulus and interact with HIV-1 proteins. In summary, these data identify HIVAN4 as a major quantitative trait locus for nephropathy and a transregulator of Nphs2. Furthermore, similar selective breeding strategies may help identify further susceptibility loci.
Collapse
Affiliation(s)
| | | | | | | | - Robert L. Thomas
- Department of Medicine and the Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44109
| | - Zhenzhen Wu
- Department of Medicine and the Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44109
| | - John R. Sedor
- Department of Medicine and the Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44109
| | - Vivette D. D′Agati
- Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Leslie A. Bruggeman
- Department of Medicine and the Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44109
| | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW HIV-associated nephropathy (HIVAN) is characterized histologically by a collapsing form of focal segmental glomerulosclerosis (FSGS), microcystic tubular dilation, interstitial inflammation and fibrosis. In this review, we provide a summary of the current state of knowledge about the mechanisms involved in the pathogenesis of HIVAN. RECENT FINDINGS Two variants in the ApoL1 gene have been identified as the susceptibility alleles that account for a majority of the increased risk of FSGS and nondiabetic end-stage renal disease in blacks. HIVAN1 and HIVAN2 are the other host susceptibility genes that have been identified in animal models for HIVAN. HIV infects renal tubular epithelial cells likely through direct cell-cell transmission. Both in-vivo and in-vitro evidence suggests that Nef and Vpr are the key viral genes mediating HIVAN. Nef induces podocyte dysfunction, whereas Vpr induces renal tubular epithelial cell apoptosis. SUMMARY HIVAN results from direct infection by HIV-1 and expression of viral genes, especially Nef and Vpr, in renal epithelial cells in a genetically susceptible host. The infected renal epithelium acts as a separate viral compartment from the blood and facilitates evolution of strains distant from blood. Dysregulation of several host cellular pathways, including those involved in cell cycle and apoptosis, ultimately results in the unique histopathological syndrome of HIVAN.
Collapse
Affiliation(s)
- Raj K Medapalli
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
43
|
Bruggeman LA, Drawz PE, Kahoud N, Lin K, Barisoni L, Nelson PJ. TNFR2 interposes the proliferative and NF-κB-mediated inflammatory response by podocytes to TNF-α. J Transl Med 2011; 91:413-25. [PMID: 21221075 PMCID: PMC3075956 DOI: 10.1038/labinvest.2010.199] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The development of proliferative podocytopathies has been linked to ligation of tumor necrosis factor receptor 2 (TNFR2) expressed on the renal parenchyma; however, the TNFR2-positive cells within the kidney responsible for podocyte injury are unknown. We detected de novo expression of TNFR2 on podocytes before hyperplastic injury in crescentic glomerulonephritis of mice with nephrotoxic nephritis, and in collapsing glomerulopathy of Tg26(HIV/nl) mice, kd/kd mice, and human beings. We further found that serum levels of soluble TNF-α and TNFR2 correlated significantly with renal injury in Tg26(HIV/nl) mice. Thus, we asked whether ligand binding of TNFR2 on podocytes ex vivo precipitates the characteristic proliferative and pro-inflammatory diseased podocyte phenotypes. Soluble TNF-α activated NF-κB and dose-dependently induced podocyte proliferation, marked by the expression of the podocyte G(1) cyclin and NF-κB target gene, cyclin D1. Microarray gene and chemokine protein expression profiling showed a marked pro-inflammatory NF-κB signature, and activated podocytes secreting CCL2- and CCL5-induced macrophage migration in transwell assays. Neutralization of TNFR2 on podocytes with blocking antibodies abrogated NF-κB activation and the induction of cyclin D1 by TNF-α, and identified TNFR2 as the primary receptor that induced IκBα degradation, the initiating event in NF-κB activation. These results suggest that TNFR2 expressed on podocytes and its canonical NF-κB signaling may directly interpose the compound pathogenic responses by podocytes to TNF-α, in the absence of other TNFR2-positive renal cell types in proliferative podocytopathies.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cells, Cultured
- Chemokines/genetics
- Chemokines/metabolism
- Cyclins/genetics
- Cyclins/metabolism
- Gene Expression Profiling
- Humans
- I-kappa B Proteins/genetics
- I-kappa B Proteins/metabolism
- Kidney/metabolism
- Kidney/pathology
- Ligands
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- NF-KappaB Inhibitor alpha
- NF-kappa B/metabolism
- Nephritis/blood
- Nephritis/metabolism
- Nephritis/pathology
- Nephritis/virology
- Oligonucleotide Array Sequence Analysis
- Podocytes/metabolism
- Podocytes/pathology
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor, Type II/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type II/blood
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Signal Transduction
- Specific Pathogen-Free Organisms
- Tumor Necrosis Factor-alpha/blood
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Leslie A Bruggeman
- Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Papeta N, Sterken R, Kiryluk K, Kalyesubula R, Gharavi AG. The molecular pathogenesis of HIV-1 associated nephropathy: recent advances. J Mol Med (Berl) 2011; 89:429-36. [PMID: 21221512 DOI: 10.1007/s00109-010-0719-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 02/07/2023]
Abstract
HIV-1-associated nephropathy (HIVAN) is a major complication of HIV-1 infection, frequently resulting in kidney failure. HIVAN arises due to HIV-1-induced dysregulation of podocytes, the glomerular epithelial cells that establish and maintain the kidney filtration barrier. Host genetic factors are important for the development of HIVAN. The risk of HIVAN is greatest in populations of African ancestry, and is attributable to a genetic variation at the APOL1 locus on chromosome 22. Mouse models of HIVAN enable delineation of dysregulated pathways underlying disease. Identification of HIVAN susceptibility loci in a mouse model, combined with expression quantitative trait locus mapping, has demonstrated that murine HIVAN loci transregulate podocyte gene expression. HIV-1 induces perturbations in podocyte expression response, suggesting that HIV-1 potentially interferes with compensatory pathways that normally restore cellular homeostasis in the face of genetic mutations. These findings present a framework for identification of podocyte transregulators and reconstruction of the molecular networks connecting susceptibility genes to the development of nephropathy.
Collapse
Affiliation(s)
- Natalia Papeta
- Department of Medicine, Columbia University College of Physicians and Surgeons, 1150 St Nicholas Ave., New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
45
|
Laouari D, Burtin M, Phelep A, Martino C, Pillebout E, Montagutelli X, Friedlander G, Terzi F. TGF-alpha mediates genetic susceptibility to chronic kidney disease. J Am Soc Nephrol 2010; 22:327-35. [PMID: 21183591 DOI: 10.1681/asn.2010040356] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The mechanisms of progression of chronic kidney disease (CKD) are poorly understood. Epidemiologic studies suggest a strong genetic component, but the genes that contribute to the onset and progression of CKD are largely unknown. Here, we applied an experimental model of CKD (75% excision of total renal mass) to six different strains of mice and found that only the FVB/N strain developed renal lesions. We performed a genome-scan analysis in mice generated by back-crossing resistant and sensitive strains; we identified a major susceptibility locus (Ckdp1) on chromosome 6, which corresponds to regions on human chromosome 2 and 3 that link with CKD progression. In silico analysis revealed that the locus includes the gene encoding the EGF receptor (EGFR) ligand TGF-α. TGF-α protein levels markedly increased after nephron reduction exclusively in FVB/N mice, and this increase preceded the development of renal lesions. Furthermore, pharmacologic inhibition of EGFR prevented the development of renal lesions in the sensitive FVB/N strain. These data suggest that variable TGF-α expression may explain, in part, the genetic susceptibility to CKD progression. EGFR inhibition may be a therapeutic strategy to counteract the genetic predisposition to CKD.
Collapse
Affiliation(s)
- Denise Laouari
- INSERM U845, Université Paris Descartes, Team: Mechanisms and therapeutic strategies in chronic nephropathies, Hôpital Necker Enfants Malades, Tour Lavoisier, 6ème étage, 149 Rue de Sèvres, 75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Although kidney disease has been a recognized complication of HIV infection since the beginning of the HIV epidemic, its epidemiology, underlying causes and treatment have evolved in developed countries where HAART has been widely available. HIV-associated nephropathy and HIV immune complex-mediated kidney disease were the prominent renal diagnoses in the earlier period of the HIV epidemic. While HIV immune complex-mediated kidney disease remains a common finding among HIV-infected individuals with kidney disease, the incidence of HIV-associated nephropathy has been diminishing in developed countries. The role of the metabolic effects of long-term HAART exposure and nephrotoxicity of certain antiretroviral medications on the development and progression of chronic kidney disease is now of increasing concern. The long-term clinical implications of acute kidney injury among HIV-infected persons are increasingly recognized. Kidney disease in HIV-infected persons continues to be a major risk factor for morbidity and mortality in this patient population; therefore, early recognition and treatment of kidney disease are imperative in lessening the impact of kidney disease on the health of HIV-infected individuals. This review focuses on recent developments and ongoing challenges in the understanding, diagnosis and management of HIV-related kidney disease.
Collapse
Affiliation(s)
- Michelle M Estrella
- Johns Hopkins University School of Medicine, Division of Nephrology, 1830 E Monument Street, Suite 416, Baltimore, MD 21205, USA
| | - Derek M Fine
- Johns Hopkins University School of Medicine, Division of Nephrology, 1830 E Monument Street, Suite 416, Baltimore, MD 21205, USA
| | - Mohamed G Atta
- Johns Hopkins University School of Medicine, Division of Nephrology, 1830 E Monument Street, Suite 416, Baltimore, MD 21205, USA
| |
Collapse
|
47
|
Kumar D, Konkimalla S, Yadav A, Sataranatarajan K, Kasinath BS, Chander PN, Singhal PC. HIV-associated nephropathy: role of mammalian target of rapamycin pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:813-21. [PMID: 20581056 PMCID: PMC2913356 DOI: 10.2353/ajpath.2010.100131] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/16/2010] [Indexed: 12/22/2022]
Abstract
Both glomerular and tubular lesions are characterized by a proliferative phenotype in HIV-associated nephropathy. We hypothesized that mammalian target of rapamycin (mTOR) contributes to the development of the HIVAN phenotype. Both glomerular and tubular epithelial cells showed enhanced expression of phospho (p)-mTOR in HIV-1 transgenic mice (Tgs). In addition, renal tissues of transgenic mice (RT-Tg) showed enhanced phosphorylation of p70S6 kinase and an associated diminished phosphorylation of eEF2. Moreover, RT-Tgs showed enhanced phosphorylation of 4EBP1 and eIF4B; these findings indicated activation of the mTOR pathway in RT-Tgs. To test our hypothesis, age- and sex-matched control mice and Tgs were administered either saline or rapamycin (an inhibitor of the mTOR pathway) for 4 weeks. Tgs receiving rapamycin not only showed inhibition of the mTOR-associated downstream signaling but also displayed attenuated renal lesions. RT-Tgs showed enhanced expression of hypoxia-inducible factor-alpha and also displayed increased expression of vascular endothelial growth factor; on the other hand, rapamycin inhibited RT-Tg expression of both hypoxia-inducible factor-alpha and vascular endothelial growth factor. We conclude that the mTOR pathway contributes to the HIVAN phenotype and that inhibition of the mTOR pathway can be used as a therapeutic strategy to alter the course of HIVAN.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Immunology, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Gelegen C, Pjetri E, Campbell IC, Collier DA, Oppelaar H, Kas MJH. Chromosomal mapping of excessive physical activity in mice in response to a restricted feeding schedule. Eur Neuropsychopharmacol 2010; 20:317-26. [PMID: 19896807 DOI: 10.1016/j.euroneuro.2009.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 09/02/2009] [Accepted: 10/04/2009] [Indexed: 12/21/2022]
Abstract
Excessive physical activity plays an important role in the progression of anorexia nervosa (AN) by accelerating weight loss during dietary restriction. To search for mechanisms underlying this trait, a panel of mouse chromosome substitution strains derived from C57BL/6J and A/J strains was exposed to a scheduled feeding paradigm and to voluntary running wheel (RW) access. Here, we showed that A/J chromosomes 4, 12 and 13 contribute to the development of a disrupted RW activity in response to daily restricted feeding. This pattern is characterized by intense RW activity during the habitual rest phase and leads to accelerated body weight loss. Regions on mouse chromosomes 4, 12 and 13 display homology with regions on human chromosomes linked with anxiety and obsessionality in AN cohorts. Therefore, our data open new roads for interspecies genetic studies of AN and for unraveling novel mechanisms and potential effective treatment strategies for these neurobehavioral traits.
Collapse
Affiliation(s)
- C Gelegen
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Centre Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Atta MG. Diagnosis and natural history of HIV-associated nephropathy. Adv Chronic Kidney Dis 2010; 17:52-8. [PMID: 20005489 DOI: 10.1053/j.ackd.2009.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/10/2009] [Accepted: 08/14/2009] [Indexed: 11/11/2022]
Abstract
HIV-associated nephropathy (HIVAN) is a largely distinctive phenotype induced by HIV-1 infection and is the most recognized and detrimental kidney disease in HIV-infected patients. Host and viral characteristics have been implicated in the pathogenesis of HIVAN that may explain its exclusive predilection to patients of African descent. In untreated patients, the disorder is clinically manifested by an acute decline in kidney function, most often in conjunction with high-grade proteinuria and uncontrolled HIV-1 infection. Histologically, proliferating glomerular epithelial cells are the prominent feature of the disease. Data have evolved over the past decade suggesting that highly active antiretroviral therapy (HAART) can change the natural history of HIVAN, not only by preventing its development but also by halting its progression once developed. Consequently, with the widespread use of HAART, the prevalence of HIVAN is declining in Western countries. In contrast, the epidemiology of the disease is not well defined in the poorest areas in the world, which bear a disproportionate share of the HIV-1 epidemic's burden. Corticosteroids and inhibition of the renin-angiotensin axis are recommended as adjunctive agents in treating patients with established HIVAN and are potentially helpful in delaying the need for renal replacement therapy. However, the long-term value and potential risks of using corticosteroids in this population are unclear.
Collapse
|
50
|
Núñez M, Saran AM, Freedman BI. Gene-gene and gene-environment interactions in HIV-associated nephropathy: A focus on the MYH9 nephropathy susceptibility gene. Adv Chronic Kidney Dis 2010; 17:44-51. [PMID: 20005488 DOI: 10.1053/j.ackd.2009.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/29/2009] [Accepted: 08/10/2009] [Indexed: 11/11/2022]
Abstract
HIV-associated nephropathy (HIVAN) is a leading cause of ESRD in African Americans. The HIV-1 virus infects podocytes, cells integral to formation of the glomerular filtration barrier, often leading to focal segmental glomerulosclerosis. HIVAN is typically a complication of late-stage HIV infection, associated with low CD4 cell counts and elevated serum HIV RNA levels. Highly active antiretroviral therapy is partially protective and has altered the natural history of HIV-associated kidney disease. Nonetheless, HIVAN remains an important public health concern among HIV-infected African Americans. Although polymorphisms in the MYH9 gene on chromosome 22 are strongly associated with HIVAN, as well as with idiopathic focal segmental glomerulosclerosis and global glomerulosclerosis (historically labeled "hypertensive nephrosclerosis"), the majority of HIV-infected patients who are genetically at risk from MYH9 do not appear to develop severe kidney disease. Therefore, we postulate that additional environmental exposures and/or inherited factors are necessary to initiate human HIVAN. Gene-environment interactions have also been proposed as necessary for the initiation of HIVAN in murine models. It is important that these novel risk factors be identified because prevention of environmental exposures and targeting of additional gene products may reduce the risk for HIVAN, even among those harboring 2 risk alleles in MYH9.
Collapse
|