1
|
Khawaja RR, Martín-Segura A, Santiago-Fernández O, Sereda R, Lindenau K, McCabe M, Macho-González A, Jafari M, Scrivo A, Gomez-Sintes R, Chavda B, Saez-Ibanez AR, Tasset I, Arias E, Xie X, Kim M, Kaushik S, Cuervo AM. Sex-specific and cell-type-specific changes in chaperone-mediated autophagy across tissues during aging. NATURE AGING 2025; 5:691-708. [PMID: 39910244 PMCID: PMC12003181 DOI: 10.1038/s43587-024-00799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/18/2024] [Indexed: 02/07/2025]
Abstract
Aging leads to progressive decline in organ and tissue integrity and function, partly due to loss of proteostasis and autophagy malfunctioning. A decrease with age in chaperone-mediated autophagy (CMA), a selective type of lysosomal degradation, has been reported in various organs and cells from rodents and humans. Disruption of CMA recapitulates features of aging, whereas activating CMA in mice protects against age-related diseases such as Alzheimer's, retinal degeneration and/or atherosclerosis. However, sex-specific and cell-type-specific differences in CMA with aging remain unexplored. Here, using CMA reporter mice and single-cell transcriptomic data, we report that most organs and cell types show CMA decline with age, with males exhibiting a greater decline with aging. Reduced CMA is often associated with fewer lysosomes competent for CMA. Transcriptional downregulation of CMA genes may further contribute to CMA decline, especially in males. These findings suggest that CMA differences may influence organ vulnerability to age-related degeneration.
Collapse
Affiliation(s)
- Rabia R Khawaja
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Adrián Martín-Segura
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- IMDEA Food, Madrid, Spain
| | - Olaya Santiago-Fernández
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rebecca Sereda
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristen Lindenau
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mericka McCabe
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adrián Macho-González
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maryam Jafari
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Bellvitge Biomedical Research Institute, IDIBELL, University of Barcelona, Barcelona, Spain
| | - Raquel Gomez-Sintes
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Bhakti Chavda
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Rosa Saez-Ibanez
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Inmaculada Tasset
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Esperanza Arias
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xianhong Xie
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mimi Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Miranda M, Navas MC, Zanoni Saad MB, Piromalli Girado D, Weisstaub N, Bekinschtein P. Environmental enrichment in middle age rats improves spatial and object memory discrimination deficits. Front Behav Neurosci 2024; 18:1478656. [PMID: 39494036 PMCID: PMC11528545 DOI: 10.3389/fnbeh.2024.1478656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Changes in memory performance are one of the main symptoms of normal aging. The storage of similar experiences as different memories (ie. behavioral pattern separation), becomes less efficient as aging progresses. Studies have focused on hippocampus dependent spatial memories and their role in the aging related deficits in behavioral pattern separation (BPS) by targeting high similarity interference conditions. However, parahippocampal cortices such as the perirhinal cortex are also particularly vulnerable to aging. Middle age is thought to be the stage where mild mnemonic deficits begin to emerge. Therefore, a better understanding of the timing of the spatial and object domain memory impairment could shed light over how plasticity changes in the parahipocampal-hippocampal system affects mnemonic function in early aging. In the present work, we compared the performance of young and middle-aged rats in both spatial (spontaneous location recognition) and non-spatial (spontaneous object recognition) behavioral pattern separation tasks to understand the comparative progression of these deficits from early stages of aging. Moreover, we explored the impact of environmental enrichment (EE) as an intervention with important translational value. Although a bulk of studies have examined the contribution of EE for preventing age related memory decline in diverse cognitive domains, there is limited knowledge of how this intervention could specifically impact on BPS function in middle-aged animals. Here we evaluate the effects of EE as modulator of BPS, and its ability to revert the deficits caused by normal aging at early stages. We reveal a domain-dependent impairment in behavioral pattern separation in middle-aged rats, with spatial memories affected independently of the similarity of the experiences and object memories only affected when the stimuli are similar, an effect that could be linked to the higher interference seen in this group. Moreover, we found that EE significantly enhanced behavioral performance in middle-aged rats in the spatial and object domain, and this improvement is specific of the high similarity load condition. In conclusion, these results suggest that memory is differentially affected by aging in the object and spatial domains, but that BPS function is responsive to an EE intervention in a multidomain manner.
Collapse
|
3
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Vicidomini C, Goode TD, McAvoy KM, Yu R, Beveridge CH, Iyer SN, Victor MB, Leary N, Evans L, Steinbaugh MJ, Lai ZW, Lyon MC, Silvestre MRFS, Bonilla G, Sadreyev RI, Walther TC, Sui SH, Saido T, Yamamoto K, Murakami M, Tsai LH, Chopra G, Sahay A. An aging-sensitive compensatory secretory phospholipase that confers neuroprotection and cognitive resilience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605338. [PMID: 39211220 PMCID: PMC11361190 DOI: 10.1101/2024.07.26.605338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Breakdown of lipid homeostasis is thought to contribute to pathological aging, the largest risk factor for neurodegenerative disorders such as Alzheimer's Disease (AD). Cognitive reserve theory posits a role for compensatory mechanisms in the aging brain in preserving neuronal circuit functions, staving off cognitive decline, and mitigating risk for AD. However, the identities of such mechanisms have remained elusive. A screen for hippocampal dentate granule cell (DGC) synapse loss-induced factors identified a secreted phospholipase, Pla2g2f, whose expression increases in DGCs during aging. Pla2g2f deletion in DGCs exacerbates aging-associated pathophysiological changes including synapse loss, inflammatory microglia, reactive astrogliosis, impaired neurogenesis, lipid dysregulation and hippocampal-dependent memory loss. Conversely, boosting Pla2g2f in DGCs during aging is sufficient to preserve synapses, reduce inflammatory microglia and reactive gliosis, prevent hippocampal-dependent memory impairment and modify trajectory of cognitive decline. Ex vivo, neuronal-PLA2G2F mediates intercellular signaling to decrease lipid droplet burden in microglia. Boosting Pla2g2f expression in DGCs of an aging-sensitive AD model reduces amyloid load and improves memory. Our findings implicate PLA2G2F as a compensatory neuroprotective factor that maintains lipid homeostasis to counteract aging-associated cognitive decline.
Collapse
Affiliation(s)
- Cinzia Vicidomini
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kathleen M McAvoy
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ruilin Yu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Conor H Beveridge
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjay N Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Noelle Leary
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Liam Evans
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael J Steinbaugh
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Zon Weng Lai
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina C Lyon
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Manuel Rico F S Silvestre
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Gracia Bonilla
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias C Walther
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Shannan Ho Sui
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198 Japan
| | - Kei Yamamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Li-Huei Tsai
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Navakkode S, Kennedy BK. Neural ageing and synaptic plasticity: prioritizing brain health in healthy longevity. Front Aging Neurosci 2024; 16:1428244. [PMID: 39161341 PMCID: PMC11330810 DOI: 10.3389/fnagi.2024.1428244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Ageing is characterized by a gradual decline in the efficiency of physiological functions and increased vulnerability to diseases. Ageing affects the entire body, including physical, mental, and social well-being, but its impact on the brain and cognition can have a particularly significant effect on an individual's overall quality of life. Therefore, enhancing lifespan and physical health in longevity studies will be incomplete if cognitive ageing is over looked. Promoting successful cognitive ageing encompasses the objectives of mitigating cognitive decline, as well as simultaneously enhancing brain function and cognitive reserve. Studies in both humans and animal models indicate that cognitive decline related to normal ageing and age-associated brain disorders are more likely linked to changes in synaptic connections that form the basis of learning and memory. This activity-dependent synaptic plasticity reorganises the structure and function of neurons not only to adapt to new environments, but also to remain robust and stable over time. Therefore, understanding the neural mechanisms that are responsible for age-related cognitive decline becomes increasingly important. In this review, we explore the multifaceted aspects of healthy brain ageing with emphasis on synaptic plasticity, its adaptive mechanisms and the various factors affecting the decline in cognitive functions during ageing. We will also explore the dynamic brain and neuroplasticity, and the role of lifestyle in shaping neuronal plasticity.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Brian K. Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Buck Institute for Research on Ageing, Novato, CA, United States
| |
Collapse
|
6
|
Liu AA, Barr WB. Overlapping and distinct phenotypic profiles in Alzheimer's disease and late onset epilepsy: a biologically-based approach. Front Neurol 2024; 14:1260523. [PMID: 38545454 PMCID: PMC10965692 DOI: 10.3389/fneur.2023.1260523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/18/2023] [Indexed: 04/05/2024] Open
Abstract
Due to shared hippocampal dysfunction, patients with Alzheimer's dementia and late-onset epilepsy (LOE) report memory decline. Multiple studies have described the epidemiological, pathological, neurophysiological, and behavioral overlap between Alzheimer's Disease and LOE, implying a bi-directional relationship. We describe the neurobiological decline occurring at different spatial in AD and LOE patients, which may explain why their phenotypes overlap and differ. We provide suggestions for clinical recognition of dual presentation and novel approaches for behavioral testing that reflect an "inside-out," or biologically-based approach to testing memory. New memory and language assessments could detect-and treat-memory impairment in AD and LOE at an earlier, actionable stage.
Collapse
Affiliation(s)
- Anli A. Liu
- Langone Medical Center, New York University, New York, NY, United States
- Department of Neurology, School of Medicine, New York University, New York, NY, United States
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, United States
| | - William B. Barr
- Department of Neurology, School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
7
|
Hernandez AR, Barrett ME, Lubke KN, Maurer AP, Burke SN. A long-term ketogenic diet in young and aged rats has dissociable effects on prelimbic cortex and CA3 ensemble activity. Front Aging Neurosci 2023; 15:1274624. [PMID: 38155737 PMCID: PMC10753023 DOI: 10.3389/fnagi.2023.1274624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Age-related cognitive decline has been linked to distinct patterns of cellular dysfunction in the prelimbic cortex (PL) and the CA3 subregion of the hippocampus. Because higher cognitive functions require both structures, selectively targeting a neurobiological change in one region, at the expense of the other, is not likely to restore normal behavior in older animals. One change with age that both the PL and CA3 share, however, is a reduced ability to utilize glucose, which can produce aberrant neural activity patterns. Methods The current study used a ketogenic diet (KD) intervention, which reduces the brain's reliance on glucose, and has been shown to improve cognition, as a metabolic treatment for restoring neural ensemble dynamics in aged rats. Expression of the immediate-early genes Arc and Homer1a were used to quantify the neural ensembles that were active in the home cage prior to behavior, during a working memory/biconditional association task, and a continuous spatial alternation task. Results Aged rats on the control diet had increased activity in CA3 and less ensemble overlap in PL between different task conditions than did the young animals. In the PL, the KD was associated with increased activation of neurons in the superficial cortical layers, establishing a clear link between dietary macronutrient content and frontal cortical activity. The KD did not lead to any significant changes in CA3 activity. Discussion These observations suggest that the availability of ketone bodies may permit the engagement of compensatory mechanisms in the frontal cortices that produce better cognitive outcomes.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Maya E. Barrett
- Department of Psychology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Katelyn N. Lubke
- Department of Neuroscience, McKnight Brain Institute, and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| | - Andrew P. Maurer
- Department of Neuroscience, McKnight Brain Institute, and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| | - Sara N. Burke
- Department of Neuroscience, McKnight Brain Institute, and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Brito DVC, Esteves F, Rajado AT, Silva N, Araújo I, Bragança J, Castelo-Branco P, Nóbrega C. Assessing cognitive decline in the aging brain: lessons from rodent and human studies. NPJ AGING 2023; 9:23. [PMID: 37857723 PMCID: PMC10587123 DOI: 10.1038/s41514-023-00120-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
As life expectancy continues to increase worldwide, age-related dysfunction will largely impact our societies in the future. Aging is well established to promote the deterioration of cognitive function and is the primary risk factor for the development of prevalent neurological disorders. Even in the absence of dementia, age-related cognitive decline impacts specific types of memories and brain structures in humans and animal models. Despite this, preclinical and clinical studies that investigate age-related changes in brain physiology often use largely different methods, which hinders the translational potential of findings. This review seeks to integrate what is known about age-related changes in the brain with analogue cognitive tests used in humans and rodent studies, ranging from "pen and paper" tests to virtual-reality-based paradigms. Finally, we draw parallels between the behavior paradigms used in research compared to the enrollment into clinical trials that aim to study age-related cognitive decline.
Collapse
Affiliation(s)
- D V C Brito
- Algarve Biomedical Center-Research Institute (ABC-RI), Campus Gambelas, Bld.2, Faro, Portugal
- Algarve Biomedical Center- (ABC), Campus Gambelas, Bld.2, Faro, Portugal
| | - F Esteves
- Algarve Biomedical Center-Research Institute (ABC-RI), Campus Gambelas, Bld.2, Faro, Portugal
- Algarve Biomedical Center- (ABC), Campus Gambelas, Bld.2, Faro, Portugal
| | - A T Rajado
- Algarve Biomedical Center-Research Institute (ABC-RI), Campus Gambelas, Bld.2, Faro, Portugal
- Algarve Biomedical Center- (ABC), Campus Gambelas, Bld.2, Faro, Portugal
| | - N Silva
- Algarve Biomedical Center-Research Institute (ABC-RI), Campus Gambelas, Bld.2, Faro, Portugal
- Algarve Biomedical Center- (ABC), Campus Gambelas, Bld.2, Faro, Portugal
| | - I Araújo
- Algarve Biomedical Center-Research Institute (ABC-RI), Campus Gambelas, Bld.2, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld.2, Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - J Bragança
- Algarve Biomedical Center-Research Institute (ABC-RI), Campus Gambelas, Bld.2, Faro, Portugal
- Algarve Biomedical Center- (ABC), Campus Gambelas, Bld.2, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld.2, Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - P Castelo-Branco
- Algarve Biomedical Center-Research Institute (ABC-RI), Campus Gambelas, Bld.2, Faro, Portugal
- Algarve Biomedical Center- (ABC), Campus Gambelas, Bld.2, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld.2, Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - C Nóbrega
- Algarve Biomedical Center-Research Institute (ABC-RI), Campus Gambelas, Bld.2, Faro, Portugal.
- Algarve Biomedical Center- (ABC), Campus Gambelas, Bld.2, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld.2, Faro, Portugal.
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
9
|
McDermott KD, Frechou MA, Jordan JT, Martin SS, Gonçalves JT. Delayed formation of neural representations of space in aged mice. Aging Cell 2023; 22:e13924. [PMID: 37491802 PMCID: PMC10497831 DOI: 10.1111/acel.13924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Aging is associated with cognitive deficits, with spatial memory being very susceptible to decline. The hippocampal dentate gyrus (DG) is important for processing spatial information in the brain and is particularly vulnerable to aging, yet its sparse activity has led to difficulties in assessing changes in this area. Using in vivo two-photon calcium imaging, we compared DG neuronal activity and representations of space in young and aged mice walking on an unfamiliar treadmill. We found that calcium activity was significantly higher and less tuned to location in aged mice, resulting in decreased spatial information encoded in the DG. However, with repeated exposure to the same treadmill, both spatial tuning and information levels in aged mice became similar to young mice, while activity remained elevated. Our results show that spatial representations of novel environments are impaired in the aged hippocampus and gradually improve with increased familiarity. Moreover, while the aged DG is hyperexcitable, this does not disrupt neural representations of familiar environments.
Collapse
Affiliation(s)
- Kelsey D. McDermott
- Dominick P. Purpura Department of Neuroscience and Gottesmann Institute for Stem Cell Biology and Regenerative MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
| | - M. Agustina Frechou
- Dominick P. Purpura Department of Neuroscience and Gottesmann Institute for Stem Cell Biology and Regenerative MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Jake T. Jordan
- Dominick P. Purpura Department of Neuroscience and Gottesmann Institute for Stem Cell Biology and Regenerative MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Sunaina S. Martin
- Dominick P. Purpura Department of Neuroscience and Gottesmann Institute for Stem Cell Biology and Regenerative MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
| | - J. Tiago Gonçalves
- Dominick P. Purpura Department of Neuroscience and Gottesmann Institute for Stem Cell Biology and Regenerative MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
10
|
Rafiei S, Khodagholi F, Gholami Pourbadie H, Dargahi L, Motamedi F. Hepatic Acyl CoA Oxidase1 Inhibition Modifies Brain Lipids and Electrical Properties of Dentate Gyrus. Basic Clin Neurosci 2023; 14:663-674. [PMID: 38628834 PMCID: PMC11016873 DOI: 10.32598/bcn.2021.3500.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/03/2021] [Accepted: 06/27/2023] [Indexed: 04/19/2024] Open
Abstract
Introduction Peroxisomes are essential organelles in lipid metabolism. They contain enzymes for β-oxidation of very long-chain fatty acids (VLCFA) that cannot be broken down in mitochondria. Reduced expression in hepatic acyl-CoA oxidase 1 (ACOX1), a peroxisome β-oxidation enzyme, followed by modification of the brain fatty acid profile has been observed in aged rodents. These studies have suggested a potential role for peroxisome β-oxidation in brain aging. This study was designed to examine the effect of hepatic ACOX1 inhibition on brain fatty acid composition and neuronal cell activities of young rats (200-250 g). Methods A specific ACOX1 inhibitor, 10, 12- tricosadiynoic acid (TDYA), 100 μg/kg (in olive oil) was administered by daily gavage for 25 days in male Wistar rats. The brain fatty acid composition and electrophysiological properties of dentate gyrus granule cells were determined using gas chromatography and whole-cell patch-clamp, respectively. Results A significant increase in C20, C22, C18:1, C20:1, and a decrease of C18, C24, C20:3n6, and C22:6n3 were found in 10, 12- tricosadiynoic acid (TDYA) treated rats compared to the control group. The results showed that ACOX1 inhibition changes fatty acid composition similar to old rats. ACOX1 inhibition caused hyperpolarization of resting membrane potential, and also reduction of input resistance, action potential duration, and spike firing. Moreover, ACOX1 inhibition increased rheobase current and afterhyperpolarization amplitude in granule cells. Conclusion The results indicated that systemic inhibition of ACOX1 causes hypo-excitability of neuronal cells. These results provide new evidence on the involvement of peroxisome function and hepatic ACOX1 activity in brain fatty acid profile and the electrophysiological properties of dentate gyrus cells.
Collapse
Affiliation(s)
- Shahrbanoo Rafiei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Gao Y, Syed M, Zhao X. Mechanisms underlying the effect of voluntary running on adult hippocampal neurogenesis. Hippocampus 2023; 33:373-390. [PMID: 36892196 PMCID: PMC10566571 DOI: 10.1002/hipo.23520] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
Adult hippocampal neurogenesis is important for preserving learning and memory-related cognitive functions. Physical exercise, especially voluntary running, is one of the strongest stimuli to promote neurogenesis and has beneficial effects on cognitive functions. Voluntary running promotes exit of neural stem cells (NSCs) from the quiescent stage, proliferation of NSCs and progenitors, survival of newborn cells, morphological development of immature neuron, and integration of new neurons into the hippocampal circuitry. However, the detailed mechanisms driving these changes remain unclear. In this review, we will summarize current knowledge with respect to molecular mechanisms underlying voluntary running-induced neurogenesis, highlighting recent genome-wide gene expression analyses. In addition, we will discuss new approaches and future directions for dissecting the complex cellular mechanisms driving change in adult-born new neurons in response to physical exercise.
Collapse
Affiliation(s)
- Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Moosa Syed
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
12
|
McDermott KD, Frechou MA, Jordan JT, Martin SS, Gonçalves JT. Delayed formation of neural representations of space in aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.531021. [PMID: 37034736 PMCID: PMC10081265 DOI: 10.1101/2023.03.03.531021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Aging is associated with cognitive deficits, with spatial memory being very susceptible to decline. The hippocampal dentate gyrus (DG) is important for processing spatial information in the brain and is particularly vulnerable to aging, yet its sparse activity has led to difficulties in assessing changes in this area. Using in vivo two-photon calcium imaging, we compared DG neuronal activity and representations of space in young and aged mice walking on an unfamiliar treadmill. We found that calcium activity was significantly higher and less tuned to location in aged mice, resulting in decreased spatial information encoded in the DG. However, with repeated exposure to the same treadmill, both spatial tuning and information levels in aged mice became similar to young mice, while activity remained elevated. Our results show that spatial representations of novel environments are impaired in the aged hippocampus and gradually improve with increased familiarity. Moreover, while the aged DG is hyperexcitable, this does not disrupt neural representations of familiar environments.
Collapse
Affiliation(s)
- Kelsey D. McDermott
- Dominick P. Purpura Department of Neuroscience and Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - M. Agustina Frechou
- Dominick P. Purpura Department of Neuroscience and Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Jake T. Jordan
- Dominick P. Purpura Department of Neuroscience and Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Sunaina S. Martin
- Dominick P. Purpura Department of Neuroscience and Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - J. Tiago Gonçalves
- Dominick P. Purpura Department of Neuroscience and Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
13
|
Chen L, Francisco TR, Baggetta AM, Zaki Y, Ramirez S, Clem RL, Shuman T, Cai DJ. Ensemble-specific deficit in neuronal intrinsic excitability in aged mice. Neurobiol Aging 2023; 123:92-97. [PMID: 36652783 PMCID: PMC9892234 DOI: 10.1016/j.neurobiolaging.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
With the prevalence of age-related cognitive deficits on the rise, it is essential to identify cellular and circuit alterations that contribute to age-related memory impairment. Increased intrinsic neuronal excitability after learning is important for memory consolidation, and changes to this process could underlie memory impairment in old age. Some studies find age-related deficits in hippocampal neuronal excitability that correlate with memory impairment but others do not, possibly due to selective changes only in activated neural ensembles. Thus, we tagged CA1 neurons activated during learning and recorded their intrinsic excitability 5 hours or 7 days post-training. Adult mice exhibited increased neuronal excitability 5 hours after learning, specifically in ensemble (learning-activated) CA1 neurons. As expected, ensemble excitability returned to baseline 7 days post-training. In aged mice, there was no ensemble-specific excitability increase after learning, which was associated with impaired hippocampal memory performance. These results suggest that CA1 may be susceptible to age-related impairments in post-learning ensemble excitability and underscore the need to selectively measure ensemble-specific changes in the brain.
Collapse
Affiliation(s)
- Lingxuan Chen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Taylor R Francisco
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Austin M Baggetta
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yosif Zaki
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steve Ramirez
- Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Roger L Clem
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tristan Shuman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Denise J Cai
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Damphousse CC, Medeiros JK, Micks NE, Marrone DF. Altered pattern separation in Goto-Kakizaki rats. CURRENT RESEARCH IN NEUROBIOLOGY 2023. [DOI: 10.1016/j.crneur.2023.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
15
|
Hernandez AR, Barrett ME, Lubke KN, Maurer AP, Burke SN. A long-term ketogenic diet in young and aged rats has dissociable effects on prelimbic cortex and CA3 ensemble activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529095. [PMID: 36824737 PMCID: PMC9949134 DOI: 10.1101/2023.02.18.529095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Age-related cognitive decline has been linked to distinct patterns of cellular dysfunction in the prelimbic cortex (PL) and the CA3 subregion of the hippocampus. Because higher cognitive functions require both structures, selectively targeting a neurobiological change in one region, at the expense of the other, is not likely to restore normal behavior in older animals. One change with age that both the PL and CA3 share, however, is a reduced ability to utilize glucose, which can produce aberrant neural activity patterns. The current study used a ketogenic diet (KD) intervention, which reduces the brain’s reliance on glucose, and has been shown to improve cognition, as a metabolic treatment for restoring neural ensemble dynamics in aged rats. Expression of the immediate-early genes Arc and Homer 1a were used to quantify the neural ensembles that were active in the home cage prior to behavior, during a working memory/biconditional association task, and a continuous spatial alternation task. Aged rats on the control diet had increased activity in CA3 and less ensemble overlap in PL between different task conditions than did the young animals. In the PL, the KD was associated with increased activation of neurons in the superficial cortical layers. The KD did not lead to any significant changes in CA3 activity. These observations suggest that the KD does not restore neuron activation patterns in aged animals, but rather the availability of ketone bodies in the frontal cortices may permit the engagement of compensatory mechanisms that produce better cognitive outcomes. Significance Statement This study extends understanding of how a ketogenic diet (KD) intervention may improve cognitive function in older adults. Young and aged rats were given 3 months of a KD or a calorie-match control diet and then expression of the immediate-early genes Arc and Homer 1a were measured to examine neural ensemble dynamics during cognitive testing. The KD diet was associated with increased activation of neurons in the superficial layers of the PL, but there were no changes in CA3. These observations are significant because they suggest that compensatory mechanisms for improving cognition are engaged in the presence of elevated ketone bodies. This metabolic shift away from glycolysis can meet the energetic needs of the frontal cortices when glucose utilization is compromised.
Collapse
|
16
|
Salta E, Lazarov O, Fitzsimons CP, Tanzi R, Lucassen PJ, Choi SH. Adult hippocampal neurogenesis in Alzheimer's disease: A roadmap to clinical relevance. Cell Stem Cell 2023; 30:120-136. [PMID: 36736288 PMCID: PMC10082636 DOI: 10.1016/j.stem.2023.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 02/05/2023]
Abstract
Adult hippocampal neurogenesis (AHN) drops sharply during early stages of Alzheimer's disease (AD), via unknown mechanisms, and correlates with cognitive status in AD patients. Understanding AHN regulation in AD could provide a framework for innovative pharmacological interventions. We here combine molecular, behavioral, and clinical data and critically discuss the multicellular complexity of the AHN niche in relation to AD pathophysiology. We further present a roadmap toward a better understanding of the role of AHN in AD by probing the promises and caveats of the latest technological advancements in the field and addressing the conceptual and methodological challenges ahead.
Collapse
Affiliation(s)
- Evgenia Salta
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, 808 S Wood St., Chicago, IL 60612, USA
| | - Carlos P Fitzsimons
- Brain Plasticity group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Rudolph Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, McCance Center for Brain Health, 114 16th Street, Boston, MA 02129, USA.
| | - Paul J Lucassen
- Brain Plasticity group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands; Center for Urban Mental Health, University of Amsterdam, Kruislaan 404, 1098 SM, Amsterdam, The Netherlands.
| | - Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, McCance Center for Brain Health, 114 16th Street, Boston, MA 02129, USA.
| |
Collapse
|
17
|
Rizvi B, Sathishkumar M, Kim S, Márquez F, Granger SJ, Larson MS, Miranda BA, Hollearn MK, McMillan L, Nan B, Tustison NJ, Lao PJ, Brickman AM, Greenia D, Corrada MM, Kawas CH, Yassa MA. Posterior white matter hyperintensities are associated with reduced medial temporal lobe subregional integrity and long-term memory in older adults. Neuroimage Clin 2022; 37:103308. [PMID: 36586358 PMCID: PMC9830310 DOI: 10.1016/j.nicl.2022.103308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
White matter hyperintensities are a marker of small vessel cerebrovascular disease that are strongly related to cognition in older adults. Similarly, medial temporal lobe atrophy is well-documented in aging and Alzheimer's disease and is associated with memory decline. Here, we assessed the relationship between lobar white matter hyperintensities, medial temporal lobe subregional volumes, and hippocampal memory in older adults. We collected MRI scans in a sample of 139 older adults without dementia (88 females, mean age (SD) = 76.95 (10.61)). Participants were administered the Rey Auditory Verbal Learning Test (RAVLT). Regression analyses tested for associations among medial temporal lobe subregional volumes, regional white matter hyperintensities and memory, while adjusting for age, sex, and education and correcting for multiple comparisons. Increased occipital white matter hyperintensities were related to worse RAVLT delayed recall performance, and to reduced CA1, dentate gyrus, perirhinal cortex (Brodmann area 36), and parahippocampal cortex volumes. These medial temporal lobe subregional volumes were related to delayed recall performance. The association of occipital white matter hyperintensities with delayed recall performance was fully mediated statistically only by perirhinal cortex volume. These results suggest that white matter hyperintensities may be associated with memory decline through their impact on medial temporal lobe atrophy. These findings provide new insights into the role of vascular pathologies in memory loss in older adults and suggest that future studies should further examine the neural mechanisms of these relationships in longitudinal samples.
Collapse
Affiliation(s)
- Batool Rizvi
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Mithra Sathishkumar
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Soyun Kim
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Freddie Márquez
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Steven J Granger
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Myra S Larson
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Blake A Miranda
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Martina K Hollearn
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Liv McMillan
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Bin Nan
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Statistics, University of California, Irvine, Irvine, CA, USA
| | - Nicholas J Tustison
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Patrick J Lao
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Dana Greenia
- Department of Neurology, School of Medicine, University of California, Irvine, CA, USA
| | - Maria M Corrada
- Department of Neurology, School of Medicine, University of California, Irvine, CA, USA; Department of Epidemiology, University of California, Irvine, CA, USA
| | - Claudia H Kawas
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA; Department of Neurology, School of Medicine, University of California, Irvine, CA, USA
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA; Department of Neurology, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
18
|
Szriber SJ, Novaes LS, Santos NBD, Munhoz CD, Leite-Dellova DCA. Imbalance in the ratio between mineralocorticoid and glucocorticoid receptors and neurodegeneration in the dentate gyrus of aged dogs. Vet World 2022; 15:2543-2550. [PMID: 36590120 PMCID: PMC9798053 DOI: 10.14202/vetworld.2022.2543-2550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background and Aim Cortisol binds to mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) found in the hippocampus. The balanced expression of these receptors is essential to neuronal survival as MR and GR activations have antiapoptotic and proapoptotic effects, respectively. Given the aging changes in dogs' dentate gyrus (DG) and the possible involvement of cortisol receptors in this process, this study aimed to evaluate the expression of MR and GR and neuronal degeneration in this hippocampal region of aged dogs. Materials and Methods This study included cadaveric histologic hippocampus sections from six dogs aged 10 years and older (AG group) and 12 young/adult dogs aged up to 8 years (YAd group). Nissl staining and immunohistochemistry were performed to identify cells and investigate MR and GR expression, respectively. Furthermore, fluorescent labeling (fluoro-Jade B) was used to detect degenerating neurons. Results The AG group's polymorphic layer of the DG had a lower cell count (16%) and more degenerating neurons than the YAd group. In addition to these cellular changes, the AG group had lower MR immunoreactivity and MR-to-GR ratio. Furthermore, the lowest MR expression was associated with neuronal degeneration in the polymorphic layer of the DG of dogs. Conclusion An imbalance in the MR-to-GR ratio was observed in the polymorphic layer of the DG of aged dogs, along with lower MR expression and a greater number of degenerating neurons. These findings have clinical implications for understanding the decline in hippocampal memory formation associated with cognitive changes in aged dogs.
Collapse
Affiliation(s)
- Shirley Jaqueline Szriber
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Duque de Caxias Norte Avenue, 225, 13635-900, Pirassununga, Brazil,Corresponding author: Shirley Jaqueline Szriber, e-mail: Co-authors: LSN: , NBDS: , CDM: , DCAL:
| | - Leonardo Santana Novaes
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Professor Lineu Prestes Avenue, 1524, Room 323, 05508-000, Sao Paulo, Brazil
| | - Nilton Barreto Dos Santos
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Professor Lineu Prestes Avenue, 1524, Room 323, 05508-000, Sao Paulo, Brazil
| | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Professor Lineu Prestes Avenue, 1524, Room 323, 05508-000, Sao Paulo, Brazil
| | - Deise Carla Almeida Leite-Dellova
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Duque de Caxias Norte Avenue, 225, 13635-900, Pirassununga, Brazil
| |
Collapse
|
19
|
Myrum C, Moreno-Castilla P, Rapp PR. 'Arc'-hitecture of normal cognitive aging. Ageing Res Rev 2022; 80:101678. [PMID: 35781092 PMCID: PMC9378697 DOI: 10.1016/j.arr.2022.101678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022]
Abstract
Arc is an effector immediate-early gene that is critical for forming long-term memories. Since its discovery 25 years ago, it has repeatedly surprised us with a number of intriguing properties, including the transport of its mRNA to recently-activated synapses, its master role in bidirectionally regulating synaptic strength, its evolutionary retroviral origins, its ability to mediate intercellular transfer between neurons via extracellular vesicles (EVs), and its exceptional regulation-both temporally and spatially. The current review discusses how Arc has been used as a tool to identify the neural networks involved in cognitive aging and how Arc itself may contribute to cognitive outcome in aging. In addition, we raise several outstanding questions, including whether Arc-containing EVs in peripheral blood might provide a noninvasive biomarker for memory-related synaptic failure in aging, and whether rectifying Arc dysregulation is likely to be an effective strategy for bending the arc of aging toward successful cognitive outcomes.
Collapse
Affiliation(s)
- Craig Myrum
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Perla Moreno-Castilla
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Peter R Rapp
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
20
|
Granger SJ, Colon-Perez L, Larson MS, Phelan M, Keator DB, Janecek JT, Sathishkumar MT, Smith AP, McMillan L, Greenia D, Corrada MM, Kawas CH, Yassa MA. Hippocampal dentate gyrus integrity revealed with ultrahigh resolution diffusion imaging predicts memory performance in older adults. Hippocampus 2022; 32:627-638. [PMID: 35838075 PMCID: PMC10510739 DOI: 10.1002/hipo.23456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 05/26/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022]
Abstract
Medial temporal lobe (MTL) atrophy is a core feature of age-related cognitive decline and Alzheimer's disease (AD). While regional volumes and thickness are often used as a proxy for neurodegeneration, they lack the sensitivity to serve as an accurate diagnostic test and indicate advanced neurodegeneration. Here, we used a submillimeter resolution diffusion weighted MRI sequence (ZOOMit) to quantify microstructural properties of hippocampal subfields in older adults (63-98 years old) using tensor derived measures: fractional anisotropy (FA) and mean diffusivity (MD). We demonstrate that the high-resolution sequence, and not a standard resolution sequence, identifies dissociable profiles for CA1, dentate gyrus (DG), and the collateral sulcus. Using ZOOMit, we show that advanced age is associated with increased MD of the CA1 and DG as well as decreased FA of the DG. Increased MD of the DG, reflecting decreased cellular density, mediated the relationship between age and word list recall. Further, increased MD in the DG, but not DG volume, was linked to worse spatial pattern separation. Our results demonstrate that ultrahigh-resolution diffusion imaging enables the detection of microstructural differences in hippocampal subfield integrity and will lead to novel insights into the mechanisms of age-related memory loss.
Collapse
Affiliation(s)
- Steven J. Granger
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697
- Department of Neurobiology and Behavior, University of California, Irvine 92697
| | - Luis Colon-Perez
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697
- Department of Neurobiology and Behavior, University of California, Irvine 92697
| | - Myra Saraí Larson
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697
- Department of Neurobiology and Behavior, University of California, Irvine 92697
| | - Michael Phelan
- UC Institute for Memory Impairments and Neurological Disorders, University of California, Irvine 92697
| | - David B. Keator
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
| | - John T. Janecek
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697
- Department of Neurobiology and Behavior, University of California, Irvine 92697
| | - Mithra T. Sathishkumar
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697
- Department of Neurobiology and Behavior, University of California, Irvine 92697
| | - Anna P. Smith
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697
- Department of Neurobiology and Behavior, University of California, Irvine 92697
| | - Liv McMillan
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697
- Department of Neurobiology and Behavior, University of California, Irvine 92697
| | - Dana Greenia
- Department of Neurology, University of California, Irvine 92697
| | | | - Claudia H. Kawas
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697
- Department of Neurobiology and Behavior, University of California, Irvine 92697
- Department of Neurology, University of California, Irvine 92697
| | - Michael A. Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697
- Department of Neurobiology and Behavior, University of California, Irvine 92697
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
- Department of Neurology, University of California, Irvine 92697
| |
Collapse
|
21
|
Liu C, Zhu N, Sun H, Zhang J, Feng X, Gjerswold-Selleck S, Sikka D, Zhu X, Liu X, Nuriel T, Wei HJ, Wu CC, Vaughan JT, Laine AF, Provenzano FA, Small SA, Guo J. Deep learning of MRI contrast enhancement for mapping cerebral blood volume from single-modal non-contrast scans of aging and Alzheimer's disease brains. Front Aging Neurosci 2022; 14:923673. [PMID: 36034139 PMCID: PMC9407020 DOI: 10.3389/fnagi.2022.923673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
While MRI contrast agents such as those based on Gadolinium are needed for high-resolution mapping of brain metabolism, these contrast agents require intravenous administration, and there are rising concerns over their safety and invasiveness. Furthermore, non-contrast MRI scans are more commonly performed than those with contrast agents and are readily available for analysis in public databases such as the Alzheimer's Disease Neuroimaging Initiative (ADNI). In this article, we hypothesize that a deep learning model, trained using quantitative steady-state contrast-enhanced structural MRI datasets, in mice and humans, can generate contrast-equivalent information from a single non-contrast MRI scan. The model was first trained, optimized, and validated in mice, and was then transferred and adapted to humans. We observe that the model can substitute for Gadolinium-based contrast agents in approximating cerebral blood volume, a quantitative representation of brain activity, at sub-millimeter granularity. Furthermore, we validate the use of our deep-learned prediction maps to identify functional abnormalities in the aging brain using locally obtained MRI scans, and in the brain of patients with Alzheimer's disease using publicly available MRI scans from ADNI. Since it is derived from a commonly-acquired MRI protocol, this framework has the potential for broad clinical utility and can also be applied retrospectively to research scans across a host of neurological/functional diseases.
Collapse
Affiliation(s)
- Chen Liu
- Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Nanyan Zhu
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Haoran Sun
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Junhao Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Xinyang Feng
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | - Dipika Sikka
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Xuemin Zhu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Xueqing Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Tal Nuriel
- Department of Radiation Oncology, Columbia University, New York, NY, United States
| | - Hong-Jian Wei
- Department of Radiation Oncology, Columbia University, New York, NY, United States
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University, New York, NY, United States
| | - J. Thomas Vaughan
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Andrew F. Laine
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | - Scott A. Small
- Department of Neurology, Columbia University, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, NY, United States
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- *Correspondence: Jia Guo
| |
Collapse
|
22
|
Culig L, Chu X, Bohr VA. Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res Rev 2022; 78:101636. [PMID: 35490966 PMCID: PMC9168971 DOI: 10.1016/j.arr.2022.101636] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
Adult neurogenesis, the process by which neurons are generated in certain areas of the adult brain, declines in an age-dependent manner and is one potential target for extending cognitive healthspan. Aging is a major risk factor for neurodegenerative diseases and, as lifespans are increasing, these health challenges are becoming more prevalent. An age-associated loss in neural stem cell number and/or activity could cause this decline in brain function, so interventions that reverse aging in stem cells might increase the human cognitive healthspan. In this review, we describe the involvement of adult neurogenesis in neurodegenerative diseases and address the molecular mechanistic aspects of neurogenesis that involve some of the key aggregation-prone proteins in the brain (i.e., tau, Aβ, α-synuclein, …). We summarize the research pertaining to interventions that increase neurogenesis and regulate known targets in aging research, such as mTOR and sirtuins. Lastly, we share our outlook on restoring the levels of neurogenesis to physiological levels in elderly individuals and those with neurodegeneration. We suggest that modulating neurogenesis represents a potential target for interventions that could help in the fight against neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Luka Culig
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xixia Chu
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
23
|
Dietary Restriction and Rapamycin Affect Brain Aging in Mice by Attenuating Age-Related DNA Methylation Changes. Genes (Basel) 2022; 13:genes13040699. [PMID: 35456505 PMCID: PMC9030181 DOI: 10.3390/genes13040699] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023] Open
Abstract
The fact that dietary restriction (DR) and long-term rapamycin treatment (RALL) can ameliorate the aging process has been reported by many researchers. As the interface between external and genetic factors, epigenetic modification such as DNA methylation may have latent effects on the aging rate at the molecular level. To understand the mechanism behind the impacts of dietary restriction and rapamycin on aging, DNA methylation and gene expression changes were measured in the hippocampi of different-aged mice. Examining the single-base resolution of DNA methylation, we discovered that both dietary restriction and rapamycin treatment can maintain DNA methylation in a younger state compared to normal-aged mice. Through functional enrichment analysis of genes in which DNA methylation or gene expression can be affected by DR/RALL, we found that DR/RALL may retard aging through a relationship in which DNA methylation and gene expression work together not only in the same gene but also in the same biological process. This study is instructive for understanding the maintenance of DNA methylation by DR/RALL in the aging process, as well as the role of DR and RALL in the amelioration of aging.
Collapse
|
24
|
Fowler C, Goerzen D, Madularu D, Devenyi GA, Chakravarty MM, Near J. Longitudinal characterization of neuroanatomical changes in the Fischer 344 rat brain during normal aging and between sexes. Neurobiol Aging 2022; 109:216-228. [PMID: 34775212 DOI: 10.1016/j.neurobiolaging.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/23/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Animal models are widely used to study the pathophysiology of disease and to evaluate the efficacy of novel interventions, crucial steps towards improving disease outcomes in humans. The Fischer 344 (F344) wildtype rat is a common experimental background strain for transgenic models of disease and is one of the most frequently used models in aging research. Despite frequency of use, characterization of agerelated neuroanatomical change has not been performed in the F344 rat. To this end, we present a comprehensive longitudinal examination of morphometric change in 73 brain regions and at a voxel-wise level during normative aging in vivo in a mixed-sexcohort of F344 rats. We identified the greatest vulnerability to aging within the cortex, caudoputamen, hindbrain, and internal capsule, while the influence of sex was strongest in the caudoputamen, hippocampus, nucleus accumbens, and thalamus, many of which are implicated in memory and motor control circuits frequently affected by aging and neurodegenerative disease. These findings provide a baseline for neuroanatomical changes associated with aging in male and female F344 rats, to which data from transgenic models or other background strains can be compared.
Collapse
Affiliation(s)
- Caitlin Fowler
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Dana Goerzen
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Dan Madularu
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriel A Devenyi
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - M Mallar Chakravarty
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Jamie Near
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Steventon JJ, Foster C, Furby H, Helme D, Wise RG, Murphy K. Hippocampal Blood Flow Is Increased After 20 min of Moderate-Intensity Exercise. Cereb Cortex 2021; 30:525-533. [PMID: 31216005 PMCID: PMC7703728 DOI: 10.1093/cercor/bhz104] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 01/17/2023] Open
Abstract
Long-term exercise interventions have been shown to be a potent trigger for both neurogenesis and vascular plasticity. However, little is known about the underlying temporal dynamics and specifically when exercise-induced vascular adaptations first occur, which is vital for therapeutic applications. In this study, we investigated whether a single session of moderate-intensity exercise was sufficient to induce changes in the cerebral vasculature. We employed arterial spin labeling magnetic resonance imaging to measure global and regional cerebral blood flow (CBF) before and after 20 min of cycling. The blood vessels’ ability to dilate, measured by cerebrovascular reactivity (CVR) to CO2 inhalation, was measured at baseline and 25-min postexercise. Our data showed that CBF was selectively increased by 10–12% in the hippocampus 15, 40, and 60 min after exercise cessation, whereas CVR to CO2 was unchanged in all regions. The absence of a corresponding change in hippocampal CVR suggests that the immediate and transient hippocampal adaptations observed after exercise are not driven by a mechanical vascular change and more likely represents an adaptive metabolic change, providing a framework for exploring the therapeutic potential of exercise-induced plasticity (neural, vascular, or both) in clinical and aged populations.
Collapse
Affiliation(s)
- J J Steventon
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.,School of Physics and Astronomy, The Parade, Cardiff University, Cardiff, CF24 3AA, UK.,Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - C Foster
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - H Furby
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.,Institute of Neurology, University College London, London, WC1B 5EH, UK
| | - D Helme
- Department of Anaesthetics and Intensive Care Medicine, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - R G Wise
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - K Murphy
- School of Physics and Astronomy, The Parade, Cardiff University, Cardiff, CF24 3AA, UK.,Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| |
Collapse
|
26
|
Joo SY, Park CH, Cho YS, Seo CH, Ohn SH. Plastic Changes in Pain and Motor Network Induced by Chronic Burn Pain. J Clin Med 2021; 10:jcm10122592. [PMID: 34208281 PMCID: PMC8230805 DOI: 10.3390/jcm10122592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Musculoskeletal diseases with chronic pain are difficult to control because of their association with both central as well as the peripheral nervous system. In burn patients, chronic pain is one of the major complications that cause persistent discomfort. The peripheral mechanisms of chronic pain by burn have been greatly revealed through studies, but the central mechanisms have not been identified. Our study aimed to characterize the cerebral plastic changes secondary to electrical burn (EB) and non-electrical burn (NEB) by measuring cerebral blood volume (CBV). Sixty patients, twenty with electrical burn (EB) and forty with non-electrical burn (NEB), having chronic pain after burn, along with twenty healthy controls, participated in the study. Voxel-wise comparisons of relative CBV maps were made among EB, NEB, and control groups over the entire brain volume. The CBV was measured as an increase and decrease in the pain and motor network including postcentral gyrus, frontal lobe, temporal lobe, and insula in the hemisphere associated with burned limbs in the whole burn group. In the EB group, CBV was decreased in the frontal and temporal lobes in the hemisphere associated with the burned side. In the NEB group, the CBV was measured as an increase or decrease in the pain and motor network in the postcentral gyrus, precentral gyrus, and frontal lobe of the hemisphere associated with the burn-affected side. Among EB and NEB groups, the CBV changes were not different. Our findings provide evidence of plastic changes in pain and motor network in patients with chronic pain by burn.
Collapse
Affiliation(s)
- So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07024, Korea; (S.Y.J.); (Y.S.C.); (C.H.S.)
| | - Chang-hyun Park
- Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland;
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07024, Korea; (S.Y.J.); (Y.S.C.); (C.H.S.)
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07024, Korea; (S.Y.J.); (Y.S.C.); (C.H.S.)
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea
- Correspondence: or
| |
Collapse
|
27
|
Gulmez Karaca K, Brito DVC, Kupke J, Zeuch B, Oliveira AMM. Engram reactivation during memory retrieval predicts long-term memory performance in aged mice. Neurobiol Aging 2021; 101:256-261. [PMID: 33647524 DOI: 10.1016/j.neurobiolaging.2021.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Age-related cognitive decline preferentially targets long-lasting episodic memories that require intact hippocampal function. Memory traces (or engrams) are believed to be encoded within the neurons activated during learning (neuronal ensembles), and recalled by reactivation of the same population. However, whether engram reactivation dictates memory performance late in life is not known. Here, we labeled neuronal ensembles formed during object location recognition learning in the dentate gyrus, and analyzed the reactivation of this population during long-term memory recall in young adult, cognitively impaired- and unimpaired-aged mice. We found that reactivation of memory-encoding neuronal ensembles at long-term memory recall was disrupted in impaired but not unimpaired-aged mice. Furthermore, we showed that the memory performance in the aged population correlated with the degree of engram reactivation at long-term memory recall. Overall, our data implicates recall-induced engram reactivation as a prediction factor of memory performance in aging. Moreover, our findings suggest impairments in neuronal ensemble stabilization and/or reactivation as an underlying mechanism in age-dependent cognitive decline.
Collapse
Affiliation(s)
- Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - David V C Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Janina Kupke
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Benjamin Zeuch
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
28
|
Amani M, Lauterborn JC, Le AA, Cox BM, Wang W, Quintanilla J, Cox CD, Gall CM, Lynch G. Rapid Aging in the Perforant Path Projections to the Rodent Dentate Gyrus. J Neurosci 2021; 41:2301-2312. [PMID: 33514675 PMCID: PMC8018768 DOI: 10.1523/jneurosci.2376-20.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022] Open
Abstract
Why layers II/III of entorhinal cortex (EC) deteriorate in advance of other regions during the earliest stages of Alzheimer's disease is poorly understood. Failure of retrograde trophic support from synapses to cell bodies is a common cause of neuronal atrophy, and we accordingly tested for early-life deterioration in projections of rodent layer II EC neurons. Using electrophysiology and quantitative imaging, changes in EC terminals during young adulthood were evaluated in male rats and mice. Field excitatory postsynaptic potentials, input/output curves, and frequency following capacity by lateral perforant path (LPP) projections from lateral EC to dentate gyrus were unchanged from 3 to 8-10 months of age. In contrast, the unusual presynaptic form of long-term potentiation (LTP) expressed by the LPP was profoundly impaired by 8 months in rats and mice. This impairment was accompanied by a reduction in the spine to terminal endocannabinoid signaling needed for LPP-LTP induction and was offset by an agent that enhances signaling. There was a pronounced age-related increase in synaptophysin within LPP terminals, an effect suggestive of incipient pathology. Relatedly, presynaptic levels of TrkB-receptors mediating retrograde trophic signaling-were reduced in the LPP terminal field. LTP and TrkB content were also reduced in the medial perforant path of 8- to 10-month-old rats. As predicted, performance on an LPP-dependent episodic memory task declined by late adulthood. We propose that memory-related synaptic plasticity in EC projections is unusually sensitive to aging, which predisposes EC neurons to pathogenesis later in life.SIGNIFICANCE STATEMENT Neurons within human superficial entorhinal cortex are particularly vulnerable to effects of aging and Alzheimer's disease, although why this is the case is not understood. Here we report that perforant path projections from layer II entorhinal cortex to the dentate gyrus exhibit rapid aging in rodents, including reduced synaptic plasticity and abnormal protein content by 8-10 months of age. Moreover, there was a substantial decline in the performance of an episodic memory task that depends on entorhinal cortical projections at the same ages. Overall, the results suggest that the loss of plasticity and related trophic signaling predispose the entorhinal neurons to functional decline in relatively young adulthood.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gary Lynch
- Departments of Anatomy & Neurobiology
- Psychiatry & Human Behavior, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
29
|
Heterogeneity of Age-Related Neural Hyperactivity along the CA3 Transverse Axis. J Neurosci 2021; 41:663-673. [PMID: 33257325 DOI: 10.1523/jneurosci.2405-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Age-related memory deficits are correlated with neural hyperactivity in the CA3 region of the hippocampus. Abnormal CA3 hyperactivity in aged rats has been proposed to contribute to an imbalance between pattern separation and pattern completion, resulting in overly rigid representations. Recent evidence of functional heterogeneity along the CA3 transverse axis suggests that proximal CA3 supports pattern separation while distal CA3 supports pattern completion. It is not known whether age-related CA3 hyperactivity is uniformly represented along the CA3 transverse axis. We examined the firing rates of CA3 neurons from young and aged, male, Long-Evans rats along the CA3 transverse axis. Consistent with prior studies, young CA3 cells showed an increasing gradient in mean firing rate from proximal to distal CA3. However, aged CA3 cells showed an opposite, decreasing trend, in that CA3 cells in aged rats were hyperactive in proximal CA3, but possibly hypoactive in distal CA3, compared with young (Y) rats. We suggest that, in combination with altered inputs from the entorhinal cortex and dentate gyrus (DG), the proximal CA3 region of aged rats may switch from its normal function that reflects the pattern separation output of the DG and instead performs a computation that reflects an abnormal bias toward pattern completion. In parallel, distal CA3 of aged rats may create weaker attractor basins that promote abnormal, bistable representations under certain conditions.SIGNIFICANCE STATEMENT Prior work suggested that age-related CA3 hyperactivity enhances pattern completion, resulting in rigid representations. Implicit in prior studies is the notion that hyperactivity is present throughout a functionally homogeneous CA3 network. However, more recent work has demonstrated functional heterogeneity along the CA3 transverse axis, in that proximal CA3 is involved in pattern separation and distal CA3 is involved in pattern completion. Here, we show that age-related hyperactivity is present only in proximal CA3, with potential hypoactivity in distal CA3. This result provides new insight in the role of CA3 in age-related memory impairments, suggesting that the rigid representations in aging result primarily from dysfunction of computational circuits involving the dentate gyrus (DG) and proximal CA3.
Collapse
|
30
|
McQuail JA, Dunn AR, Stern Y, Barnes CA, Kempermann G, Rapp PR, Kaczorowski CC, Foster TC. Cognitive Reserve in Model Systems for Mechanistic Discovery: The Importance of Longitudinal Studies. Front Aging Neurosci 2021; 12:607685. [PMID: 33551788 PMCID: PMC7859530 DOI: 10.3389/fnagi.2020.607685] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
The goal of this review article is to provide a resource for longitudinal studies, using animal models, directed at understanding and modifying the relationship between cognition and brain structure and function throughout life. We propose that forthcoming longitudinal studies will build upon a wealth of knowledge gleaned from prior cross-sectional designs to identify early predictors of variability in cognitive function during aging, and characterize fundamental neurobiological mechanisms that underlie the vulnerability to, and the trajectory of, cognitive decline. Finally, we present examples of biological measures that may differentiate mechanisms of the cognitive reserve at the molecular, cellular, and network level.
Collapse
Affiliation(s)
- Joseph A. McQuail
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Amy R. Dunn
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Carol A. Barnes
- Departments of Psychology and Neuroscience, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Gerd Kempermann
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers (HZ), Dresden, Germany
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, Baltimore, MD, United States
| | | | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
31
|
Delgorio PL, Hiscox LV, Daugherty AM, Sanjana F, Pohlig RT, Ellison JM, Martens CR, Schwarb H, McGarry MDJ, Johnson CL. Effect of Aging on the Viscoelastic Properties of Hippocampal Subfields Assessed with High-Resolution MR Elastography. Cereb Cortex 2021; 31:2799-2811. [PMID: 33454745 DOI: 10.1093/cercor/bhaa388] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related memory impairments have been linked to differences in structural brain parameters, including the integrity of the hippocampus (HC) and its distinct hippocampal subfields (HCsf). Imaging methods sensitive to the underlying tissue microstructure are valuable in characterizing age-related HCsf structural changes that may relate to cognitive function. Magnetic resonance elastography (MRE) is a noninvasive MRI technique that can quantify tissue viscoelasticity and may provide additional information about aging effects on HCsf health. Here, we report a high-resolution MRE protocol to quantify HCsf viscoelasticity through shear stiffness, μ, and damping ratio, ξ, which reflect the integrity of tissue composition and organization. HCsf exhibit distinct mechanical properties-the subiculum had the lowest μ and both subiculum and entorhinal cortex had the lowest ξ. Both measures correlated with age: HCsf μ was lower with age (P < 0.001) whereas ξ was higher (P = 0.002). The magnitude of age-related differences in ξ varied across HCsf (P = 0.011), suggesting differential patterns of brain aging. This study demonstrates the feasibility of using MRE to assess HCsf microstructural integrity and suggests incorporation of these metrics to evaluate HC health in neurocognitive disorders.
Collapse
Affiliation(s)
- Peyton L Delgorio
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Lucy V Hiscox
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ana M Daugherty
- Department of Psychology, Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI 48202, USA.,Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| | - Faria Sanjana
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Ryan T Pohlig
- Biostatistics Core Facility, College of Health Sciences, University of Delaware, Newark, DE 19713, USA
| | - James M Ellison
- Swank Center for Memory Care and Geriatric Consultation, ChristianaCare, Wilmington, DE 19801, USA
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Hillary Schwarb
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
32
|
Stark SM, Frithsen A, Stark CE. Age-related alterations in functional connectivity along the longitudinal axis of the hippocampus and its subfields. Hippocampus 2021; 31:11-27. [PMID: 32918772 PMCID: PMC8354549 DOI: 10.1002/hipo.23259] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Hippocampal circuit alterations that differentially affect hippocampal subfields are associated with age-related memory decline. Additionally, functional organization along the longitudinal axis of the hippocampus has revealed distinctions between anterior and posterior (A-P) connectivity. Here, we examined the functional connectivity (FC) differences between young and older adults at high-resolution within the medial temporal lobe network (entorhinal, perirhinal, and parahippocampal cortices), allowing us to explore how hippocampal subfield connectivity across the longitudinal axis of the hippocampus changes with age. Overall, we found reliably greater connectivity for younger adults than older adults between the hippocampus and parahippocampal cortex (PHC) and perirhinal cortex (PRC). This drop in functional connectivity was more pronounced in the anterior regions of the hippocampus than the posterior ones, consistent for each of the hippocampal subfields. Further, intra-hippocampal connectivity also reflected an age-related decrease in functional connectivity within the anterior hippocampus in older adults that was offset by an increase in posterior hippocampal functional connectivity. Interestingly, the anterior-posterior dysfunction in older adults between hippocampus and PHC was predictive of lure discrimination performance on the Mnemonic similarity task (MST), suggesting a role in memory performance. While age-related dysfunction within the hippocampal subfields has been well-documented, these results suggest that the age-related dysfunction in hippocampal connectivity across the longitudinal axis may also contribute significantly to memory decline in older adults.
Collapse
Affiliation(s)
- Shauna M. Stark
- Department of Neurobiology and Behavior, University of California Irvine
| | - Amy Frithsen
- Department of Neurobiology and Behavior, University of California Irvine
| | - Craig E.L. Stark
- Department of Neurobiology and Behavior, University of California Irvine
| |
Collapse
|
33
|
Kern KL, Storer TW, Schon K. Cardiorespiratory fitness, hippocampal subfield volumes, and mnemonic discrimination task performance in aging. Hum Brain Mapp 2020; 42:871-892. [PMID: 33325614 PMCID: PMC7856657 DOI: 10.1002/hbm.25259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Aging and exercise have opposing effects on mnemonic discrimination task performance, which putatively taxes pattern separation mechanisms reliant on the dentate gyrus (DG) subfield of the hippocampus. In young adults, increasing cardiorespiratory fitness (CRF) has been shown to improve mnemonic discrimination task performance and increase left anterior DG/CA3 volume. It is unknown how these variables interact in cognitive aging, yet this knowledge is critical, given the established effects of aging on hippocampal plasticity. To investigate these relationships, 65 older adults (aged 55–85 years) completed a submaximal treadmill test to estimate CRF, a mnemonic discrimination task, and a high‐resolution MRI scan to determine hippocampal subfield volumes. Our older adult sample demonstrated the lowest task accuracy in the condition with the greatest stimuli similarity and left DG/CA3 body volume significantly predicted accuracy in this condition. Our results did not provide support for relationships between CRF and task accuracy or CRF and DG/CA3 volume as evidenced in studies of young adults. Instead, CRF predicted bilateral subiculum volume in older adult women, not men. Altogether, these findings provide further support for a role of the DG in behavioral pattern separation in humans and suggest that CRF may have differential effects on hippocampal subfield integrity in older adult men and women. ClinicalTrials.gov identifiers: (a) Neuroimaging Study of Exercise and Memory Function, NCT02057354; (b) The Entorhinal Cortex and Aerobic Exercise in Aging, NCT02775760; (c) Physical Activity and Cognition Study, NCT02773121.
Collapse
Affiliation(s)
- Kathryn L Kern
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Thomas W Storer
- Men's Health, Aging, and Metabolism Unit, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Karin Schon
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA.,Center for Memory and Brain, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Brain regions vulnerable and resistant to aging without Alzheimer's disease. PLoS One 2020; 15:e0234255. [PMID: 32726311 PMCID: PMC7390259 DOI: 10.1371/journal.pone.0234255] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/21/2020] [Indexed: 11/19/2022] Open
Abstract
'Normal aging' in the brain refers to age-related changes that occur independent of disease, in particular Alzheimer's disease. A major barrier to mapping normal brain aging has been the difficulty in excluding the earliest preclinical stages of Alzheimer's disease. Here, before addressing this issue we first imaged a mouse model and learn that the best MRI measure of dendritic spine loss, a known pathophysiological driver of normal aging, is one that relies on the combined use of functional and structural MRI. In the primary study, we then deployed the combined functional-structural MRI measure to investigate over 100 cognitively-normal people from 20-72 years of age. Next, to cover the tail end of aging, in secondary analyses we investigated structural MRI acquired from cognitively-normal people, 60-84 years of age, who were Alzheimer's-free via biomarkers. Collectively, the results from the primary functional-structural study, and the secondary structural studies revealed that the dentate gyrus is a hippocampal region differentially affected by aging, and that the entorhinal cortex is a region most resistant to aging. Across the cortex, the primary functional-structural study revealed and that the inferior frontal gyrus is differentially affected by aging, however, the secondary structural studies implicated other frontal cortex regions. Together, the results clarify how normal aging may affect the brain and has possible mechanistic and therapeutic implications.
Collapse
|
35
|
Carlson ML, DiGiacomo PS, Fan AP, Goubran M, Khalighi MM, Chao SZ, Vasanawala M, Wintermark M, Mormino E, Zaharchuk G, James ML, Zeineh MM. Simultaneous FDG-PET/MRI detects hippocampal subfield metabolic differences in AD/MCI. Sci Rep 2020; 10:12064. [PMID: 32694602 PMCID: PMC7374580 DOI: 10.1038/s41598-020-69065-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022] Open
Abstract
The medial temporal lobe is one of the most well-studied brain regions affected by Alzheimer’s disease (AD). Although the spread of neurofibrillary pathology in the hippocampus throughout the progression of AD has been thoroughly characterized and staged using histology and other imaging techniques, it has not been precisely quantified in vivo at the subfield level using simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI). Here, we investigate alterations in metabolism and volume using [18F]fluoro-deoxyglucose (FDG) and simultaneous time-of-flight (TOF) PET/MRI with hippocampal subfield analysis of AD, mild cognitive impairment (MCI), and healthy subjects. We found significant structural and metabolic changes within the hippocampus that can be sensitively assessed at the subfield level in a small cohort. While no significant differences were found between groups for whole hippocampal SUVr values (p = 0.166), we found a clear delineation in SUVr between groups in the dentate gyrus (p = 0.009). Subfield analysis may be more sensitive for detecting pathological changes using PET-MRI in AD compared to global hippocampal assessment.
Collapse
Affiliation(s)
| | | | - Audrey P Fan
- Department of Radiology, Stanford University, Stanford, USA.,Department of Biomedical Engineering, University of California, Davis, Davis, USA.,Department of Neurology, University of California, Davis, Davis, USA
| | - Maged Goubran
- Department of Radiology, Stanford University, Stanford, USA
| | | | - Steven Z Chao
- Department of Neurology, Stanford University, Stanford, USA
| | - Minal Vasanawala
- Department of Radiology, Stanford University, Stanford, USA.,Nuclear Medicine Service, VA Palo Alto Health Care System, Palo Alto, USA
| | - Max Wintermark
- Department of Radiology, Stanford University, Stanford, USA
| | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, USA
| | - Michelle L James
- Department of Radiology, Stanford University, Stanford, USA.,Department of Neurology, Stanford University, Stanford, USA
| | | |
Collapse
|
36
|
Adult-Born Hippocampal Neurons Undergo Extended Development and Are Morphologically Distinct from Neonatally-Born Neurons. J Neurosci 2020; 40:5740-5756. [PMID: 32571837 DOI: 10.1523/jneurosci.1665-19.2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/28/2020] [Accepted: 05/04/2020] [Indexed: 11/21/2022] Open
Abstract
During immature stages, adult-born neurons pass through critical periods for survival and plasticity. It is generally assumed that by 2 months of age adult-born neurons are mature and equivalent to the broader neuronal population, raising questions of how they might contribute to hippocampal function in old age when neurogenesis has declined. However, few have examined adult-born neurons beyond the critical period or directly compared them to neurons born in infancy. Here, we used a retrovirus to visualize functionally relevant morphological features of 2- to 24-week-old adult-born neurons in male rats. From 2 to 7 weeks, neurons grew and attained a relatively mature phenotype. However, several features of 7-week-old neurons suggested a later wave of growth: these neurons had larger nuclei, thicker dendrites, and more dendritic filopodia than all other groups. Indeed, between 7 and 24 weeks, adult-born neurons gained additional dendritic branches, formed a second primary dendrite, acquired more mushroom spines, and had enlarged mossy fiber presynaptic terminals. Compared with neonatal-born neurons, old adult-born neurons had greater spine density, larger presynaptic terminals, and more putative efferent filopodial contacts onto inhibitory neurons. By integrating rates of cell birth and growth across the life span, we estimate that adult neurogenesis ultimately produces half of the cells and the majority of spines in the dentate gyrus. Critically, protracted development contributes to the plasticity of the hippocampus through to the end of life, even after cell production declines. Persistent differences from neonatal-born neurons may additionally endow adult-born neurons with unique functions even after they have matured.SIGNIFICANCE STATEMENT Neurogenesis occurs in the hippocampus throughout adult life and contributes to memory and emotion. It is generally assumed that new neurons have the greatest impact on behavior when they are immature and plastic. However, since neurogenesis declines dramatically with age, it is unclear how they might contribute to behavior later in life when cell proliferation has slowed. Here we find that newborn neurons mature over many months in rats and may end up with distinct morphological features compared with neurons born in infancy. Using a mathematical model, we estimate that a large fraction of neurons is added in adulthood. Moreover, their extended growth produces a reserve of plasticity that persists even after neurogenesis has declined to low rates.
Collapse
|
37
|
Hayek D, Thams F, Flöel A, Antonenko D. Dentate Gyrus Volume Mediates the Effect of Fornix Microstructure on Memory Formation in Older Adults. Front Aging Neurosci 2020; 12:79. [PMID: 32265687 PMCID: PMC7098987 DOI: 10.3389/fnagi.2020.00079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Age-related deterioration in white and gray matter is linked to cognitive deficits. Reduced microstructure of the fornix, the major efferent pathway of the hippocampus, and volume of the dentate gyrus (DG), may cause age-associated memory decline. However, the linkage between these anatomical determinants and memory retrieval in healthy aging are poorly understood. In 30 older adults, we acquired diffusion tensor and T1-weighted images for individual deterministic tractography and volume estimation. A memory task, administered outside of the scanner to assess retrieval of learned associations, required discrimination of previously acquired picture-word pairs. The results showed that fornix fractional anisotropy (FA) and left DG volumes were related to successful retrieval. These brain-behavior associations were observed for correct rejections, but not hits, indicating specificity of memory network functioning for detecting false associations. Mediation analyses showed that left DG volume mediated the effect of fornix FA on memory (48%), but not vice versa. These findings suggest that reduced microstructure induces volume loss and thus negatively affects retrieval of learned associations, complementing evidence of a pivotal role of the fornix in healthy aging. Our study offers a neurobehavioral model to explain variability in memory retrieval in older adults, an important prerequisite for the development of interventions to counteract cognitive decline.
Collapse
Affiliation(s)
- Dayana Hayek
- Department of Neurology, NeuroCure Clinical Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, NeuroCure Clinical Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, NeuroCure Clinical Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
38
|
Liang X, Hsu LM, Lu H, Ash JA, Rapp PR, Yang Y. Functional Connectivity of Hippocampal CA3 Predicts Neurocognitive Aging via CA1-Frontal Circuit. Cereb Cortex 2020; 30:4297-4305. [PMID: 32239141 DOI: 10.1093/cercor/bhaa008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/08/2019] [Accepted: 01/08/2020] [Indexed: 01/06/2023] Open
Abstract
The CA3 and CA1 principal cell fields of the hippocampus are vulnerable to aging, and age-related dysfunction in CA3 may be an early seed event closely linked to individual differences in memory decline. However, whether the differential vulnerability of CA3 and CA1 is associated with broader disruption in network-level functional interactions in relation to age-related memory impairment, and more specifically, whether CA3 dysconnectivity contributes to the effects of aging via CA1 network connectivity, has been difficult to test. Here, using resting-state fMRI in a group of aged rats uncontaminated by neurodegenerative disease, aged rats displayed widespread reductions in functional connectivity of CA3 and CA1 fields. Age-related memory deficits were predicted by connectivity between left CA3 and hippocampal circuitry along with connectivity between left CA1 and infralimbic prefrontal cortex. Notably, the effects of CA3 connectivity on memory performance were mediated by CA1 connectivity with prefrontal cortex. We additionally found that spatial learning and memory were associated with functional connectivity changes lateralized to the left CA3 and CA1 divisions. These results provide novel evidence that network-level dysfunction involving interactions of CA3 with CA1 is an early marker of poor cognitive outcome in aging.
Collapse
Affiliation(s)
- Xia Liang
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China.,Neuroimaging Research Branch, National Institute on Drug Abuse, Biomedical Research Center, National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Li-Ming Hsu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Biomedical Research Center, National Institutes of Health (NIH), Baltimore, MD 21224, USA.,Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Biomedical Research Center, National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Jessica A Ash
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Biomedical Research Center, NIH, Baltimore, MD 21224, USA
| | - Peter R Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Biomedical Research Center, NIH, Baltimore, MD 21224, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Biomedical Research Center, National Institutes of Health (NIH), Baltimore, MD 21224, USA
| |
Collapse
|
39
|
Brown EM, Pierce ME, Clark DC, Fischl BR, Iglesias JE, Milberg WP, McGlinchey RE, Salat DH. Test-retest reliability of FreeSurfer automated hippocampal subfield segmentation within and across scanners. Neuroimage 2020; 210:116563. [DOI: 10.1016/j.neuroimage.2020.116563] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 11/26/2022] Open
|
40
|
Pretsch G, Sanadgol N, Smidak R, Lubec J, Korz V, Höger H, Zappe K, Cichna‑Markl M, Lubec G. Doublecortin and IGF-1R protein levels are reduced in spite of unchanged DNA methylation in the hippocampus of aged rats. Amino Acids 2020; 52:543-553. [DOI: 10.1007/s00726-020-02834-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 03/04/2020] [Indexed: 11/24/2022]
|
41
|
Uddin MS, Kabir MT, Niaz K, Jeandet P, Clément C, Mathew B, Rauf A, Rengasamy KR, Sobarzo-Sánchez E, Ashraf GM, Aleya L. Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer's Disease. Molecules 2020; 25:1267. [PMID: 32168835 PMCID: PMC7143946 DOI: 10.3390/molecules25061267] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is one of the utmost chronic neurodegenerative disorders, which is characterized from a neuropathological point of view by the aggregates of amyloid beta (Aβ) peptides that are deposited as senile plaques and tau proteins which form neurofibrillary tangles (NFTs). Even though advancement has been observed in order to understand AD pathogenesis, currently available therapeutic methods can only deliver modest symptomatic relief. Interestingly, naturally occurring dietary flavonoids have gained substantial attention due to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties as alternative candidates for AD therapy. Experimental proof provides support to the idea that some flavonoids might protect AD by interfering with the production and aggregation of Aβ peptides and/or decreasing the aggregation of tau. Flavonoids have the ability to promote clearance of Aβ peptides and inhibit tau phosphorylation by the mTOR/autophagy signaling pathway. Moreover, due to their cholinesterase inhibitory potential, flavonoids can represent promising symptomatic anti-Alzheimer agents. Several processes have been suggested for the aptitude of flavonoids to slow down the advancement or to avert the onset of Alzheimer's pathogenesis. To enhance cognitive performance and to prevent the onset and progress of AD, the interaction of flavonoids with various signaling pathways is proposed to exert their therapeutic potential. Therefore, this review elaborates on the probable therapeutic approaches of flavonoids aimed at averting or slowing the progression of the AD pathogenesis.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Christophe Clément
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala 678557, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | | | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon, France
| |
Collapse
|
42
|
Amiri S, Azadmanesh K, Dehghan Shasaltaneh M, Mayahi V, Naghdi N. The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction. IRANIAN BIOMEDICAL JOURNAL 2020; 24:64-80. [PMID: 31677609 PMCID: PMC6984714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/10/2019] [Indexed: 03/29/2024]
Abstract
Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mechanism. Androgens and cortisol regulate PKC signaling pathways, affecting the modulation of receptor for activated C kinase 1. Mitogen-activated protein kinase/ERK signaling pathway depends on CREB activity in hippocampal neurons and is involved in regulatory processes via PKC and androgens. Therefore, testosterone and PKC contribute in the neuronal apoptosis. The present review summarizes the current status of androgens, PKC, and their influence on cognitive learning. Inconsistencies in experimental investigations related to this fundamental correlation are also discussed, with emphasis on the mentioned contributors as the probable potent candidates for learning and memory improvement.
Collapse
Affiliation(s)
- Sara Amiri
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Vafa Mayahi
- Department of Microbiology, Islamic Azad University, Karaj, Iran
| | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
43
|
Kosmidis S, Polyzos A, Harvey L, Youssef M, Denny CA, Dranovsky A, Kandel ER. RbAp48 Protein Is a Critical Component of GPR158/OCN Signaling and Ameliorates Age-Related Memory Loss. Cell Rep 2019; 25:959-973.e6. [PMID: 30355501 PMCID: PMC7725275 DOI: 10.1016/j.celrep.2018.09.077] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022] Open
Abstract
Precisely deciphering the molecular mechanisms of age-related memory loss is crucial to create appropriate therapeutic interventions. We have previously shown that the histone-binding protein RbAp48/Rbbp4 is a molecular determinant of Age-Related Memory Loss. By exploring how this protein regulates the genomic landscape of the hippocampal circuit, we find that RbAp48 controls the expression of BDNF and GPR158 proteins, both critical components of osteocalcin (OCN) signaling in the mouse hippocampus. We show that inhibition of RbAp48 in the hippocampal formation inhibits OCN's beneficial functions in cognition and causes deficits in discrimination memory. In turn, disruption of OCN/GPR158 signaling leads to the downregulation of RbAp48 protein, mimicking the discrimination memory deficits observed in the aged hippocampus. We also show that activation of the OCN/GPR158 pathway increases the expression of RbAp48 in the aged dentate gyrus and rescues age-related memory loss.
Collapse
Affiliation(s)
- Stylianos Kosmidis
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Alexandros Polyzos
- Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lucas Harvey
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Mary Youssef
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Systems Neuroscience, New York State Psychiatric Institute (NYSPI)/Research Foundation for Mental Hygiene, Inc. (RFMH), New York, NY 10032, USA
| | - Alex Dranovsky
- New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
44
|
Lee CH, Park JH, Won MH. Protein expression changes of HCN1 and HCN2 in hippocampal subregions of gerbils during the normal aging process. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:1308-1313. [PMID: 32128096 PMCID: PMC7038419 DOI: 10.22038/ijbms.2019.35760.8520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/14/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play essential roles in various hippocampal functions, including regulation of long-term potentiation, synaptic plasticity, and hippocampal-dependent cognitive process. The objective of this study was to investigate age-related changes in HCN1 and HCN2 protein expressions in gerbil hippocampus at various ages. MATERIALS AND METHODS In this study, the protein expressions of HCN1 and HCN2 were compared in the hippocampus at the ages of 1, 3, 12, and 24 months using Western blot analysis and immunohistochemistry. RESULTS Immunoreactivity of both HCN1 and HCN2 was shown primarily in cells of the pyramidal cell layer in the hippocampus proper and in cells of the granule cell layer in the dentate gyrus. HCN1 and HCN2 protein expression levels and immunoreactivity were significantly increased at three months (3 M) of age compared with those at 1 M of age. After that, both HCN1 and HCN2 expression levels in the hippocampus were gradually decreased with age. CONCLUSION Our results show that the normal aging process affects the expression levels of HCN1 and HCN2 in hippocampal cells in gerbils. There are marked reductions in HCN1 and HCN2 expressions in the aged hippocampus compared to the young hippocampus. Such reductions might be related to aging in the hippocampus.
Collapse
Affiliation(s)
- Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungnam 31116, Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
45
|
Trinchero MF, Herrero M, Monzón-Salinas MC, Schinder AF. Experience-Dependent Structural Plasticity of Adult-Born Neurons in the Aging Hippocampus. Front Neurosci 2019; 13:739. [PMID: 31379489 PMCID: PMC6651579 DOI: 10.3389/fnins.2019.00739] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 12/28/2022] Open
Abstract
Synaptic modification in cortical structures underlies the acquisition of novel information that results in learning and memory formation. In the adult dentate gyrus, circuit remodeling is boosted by the generation of new granule cells (GCs) that contribute to specific aspects of memory encoding. These forms of plasticity decrease in the aging brain, where both the rate of adult neurogenesis and the speed of morphological maturation of newly generated neurons decline. In the young-adult brain, a brief novel experience accelerates the integration of new neurons. The extent to which such degree of plasticity is preserved in the aging hippocampus remains unclear. In this work, we characterized the time course of functional integration of adult-born GCs in middle-aged mice. We performed whole-cell recordings in developing GCs from Ascl1CreERT2;CAGfloxStopTom mice and found a late onset of functional excitatory synaptogenesis, which occurred at 4 weeks (vs. 2 weeks in young-adult mice). Overall mature excitability and maximal glutamatergic connectivity were achieved at 10 weeks. In contrast, large mossy fiber boutons (MFBs) in CA3 displayed mature morphological features including filopodial extensions at 4 weeks, suggesting that efferent connectivity develops faster than afference. Notably, new GCs from middle-aged mice exposed to enriched environment for 7 days showed an advanced degree of maturity at 3 weeks, revealed by the high frequency of excitatory postsynaptic responses, complex dendritic trees, and large size of MFBs with filopodial extensions. These findings demonstrate that adult-born neurons act as sensors that transduce behavioral stimuli into major network remodeling in the aging brain.
Collapse
Affiliation(s)
| | | | | | - Alejandro F. Schinder
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Buenos Aires, Argentina
| |
Collapse
|
46
|
Ayaz M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I, Ahmed J, Shahid M. Flavonoids as Prospective Neuroprotectants and Their Therapeutic Propensity in Aging Associated Neurological Disorders. Front Aging Neurosci 2019; 11:155. [PMID: 31293414 PMCID: PMC6606780 DOI: 10.3389/fnagi.2019.00155] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/11/2019] [Indexed: 01/13/2023] Open
Abstract
Modern research has revealed that dietary consumption of flavonoids and flavonoids-rich foods significantly improve cognitive capabilities, inhibit or delay the senescence process and related neurodegenerative disorders including Alzheimer’s disease (AD). The flavonoids rich foods such as green tea, cocoa, blue berry and other foods improve the various states of cognitive dysfunction, AD and dementia-like pathological alterations in different animal models. The mechanisms of flavonoids have been shown to be mediated through the inhibition of cholinesterases including acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), β-secretase (BACE1), free radicals and modulation of signaling pathways, that are implicated in cognitive and neuroprotective functions. Flavonoids interact with various signaling protein pathways like ERK and PI3-kinase/Akt and modulate their actions, thereby leading to beneficial neuroprotective effects. Moreover, they enhance vascular blood flow and instigate neurogenesis particularly in the hippocampus. Flavonoids also hamper the progression of pathological symptoms of neurodegenerative diseases by inhibiting neuronal apoptosis induced by neurotoxic substances including free radicals and β-amyloid proteins (Aβ). All these protective mechanisms contribute to the maintenance of number, quality of neurons and their synaptic connectivity in the brain. Thus flavonoids can thwart the progression of age-related disorders and can be a potential source for the design and development of new drugs effective in cognitive disorders.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Junaid
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan.,Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Ovais
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Ikram Ullah
- Suliman Bin Abdullah Aba-Alkhail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Jawad Ahmed
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology (SUIT), Peshawar, Pakistan
| |
Collapse
|
47
|
Chao F, Jiang L, Zhang Y, Zhou C, Zhang L, Tang J, Liang X, Qi Y, Zhu Y, Ma J, Tang Y. Stereological Investigation of the Effects of Treadmill Running Exercise on the Hippocampal Neurons in Middle-Aged APP/PS1 Transgenic Mice. J Alzheimers Dis 2019; 63:689-703. [PMID: 29689723 DOI: 10.3233/jad-171017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The risk of cognitive decline during Alzheimer's disease (AD) can be reduced if physical activity is maintained; however, the specific neural events underlying this beneficial effect are still uncertain. To quantitatively investigate the neural events underlying the effect of running exercise on middle-aged AD subjects, 12-month-old male APP/PS1 mice were randomly assigned to a control group or running group, and age-matched non-transgenic littermates were used as a wild-type group. AD running group mice were subjected to a treadmill running protocol (regular and moderate intensity) for four months. Spatial learning and memory abilities were assessed using the Morris water maze. Hippocampal amyloid plaques were observed using Thioflavin S staining and immunohistochemistry. Hippocampal volume, number of neurons, and number of newborn cells (BrdU+ cells) in the hippocampus were estimated using stereological techniques, and newborn neurons were observed using double-labelling immunofluorescence. Marked neuronal loss in both the CA1 field and dentate gyrus (DG) and deficits in both the neurogenesis and survival of new neurons in the DG of middle-aged APP/PS1 mice were observed. Running exercise could improve the spatial learning and memory abilities, reduce amyloid plaques in the hippocampi, delay neuronal loss, induce neurogenesis, and promote the survival of newborn neurons in the DG of middle-aged APP/PS1 mice. Exercise-induced protection of neurons and adult neurogenesis within the DG might be part of the important structural basis of the improved spatial learning and memory abilities observed in AD mice.
Collapse
Affiliation(s)
- Fenglei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Lin Jiang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Yi Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Chunni Zhou
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Jing Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Xin Liang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Yingqiang Qi
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Yanqing Zhu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Jing Ma
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| |
Collapse
|
48
|
Regional Molecular Mapping of Primate Synapses during Normal Healthy Aging. Cell Rep 2019; 27:1018-1026.e4. [PMID: 31018120 PMCID: PMC6486486 DOI: 10.1016/j.celrep.2019.03.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 09/03/2018] [Accepted: 03/26/2019] [Indexed: 01/09/2023] Open
Abstract
Normal mammalian brain aging is characterized by the selective loss of discrete populations of dendritic spines and synapses, particularly affecting neuroanatomical regions such as the hippocampus. Although previous investigations have quantified this morphologically, the molecular pathways orchestrating preferential synaptic vulnerability remain to be elucidated. Using quantitative proteomics and healthy rhesus macaque and human patient brain regional tissues, we have comprehensively profiled the temporal expression of the synaptic proteome throughout the adult lifespan in differentially vulnerable brain regions. Comparative profiling of hippocampal (age vulnerable) and occipital cortex (age resistant) synapses revealed discrete and dynamic alterations in the synaptic proteome, which appear unequivocally conserved between species. The generation of these unique and important datasets will aid in delineating the molecular mechanisms underpinning primate brain aging, in addition to deciphering the regulatory biochemical cascades governing neurodegenerative disease pathogenesis.
Collapse
|
49
|
Augusto-Oliveira M, Arrifano GPF, Malva JO, Crespo-Lopez ME. Adult Hippocampal Neurogenesis in Different Taxonomic Groups: Possible Functional Similarities and Striking Controversies. Cells 2019; 8:cells8020125. [PMID: 30764477 PMCID: PMC6406791 DOI: 10.3390/cells8020125] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis occurs in many species, from fish to mammals, with an apparent reduction in the number of both neurogenic zones and new neurons inserted into established circuits with increasing brain complexity. Although the absolute number of new neurons is high in some species, the ratio of these cells to those already existing in the circuit is low. Continuous replacement/addition plays a role in spatial navigation (migration) and other cognitive processes in birds and rodents, but none of the literature relates adult neurogenesis to spatial navigation and memory in primates and humans. Some models developed by computational neuroscience attribute a high weight to hippocampal adult neurogenesis in learning and memory processes, with greater relevance to pattern separation. In contrast to theories involving neurogenesis in cognitive processes, absence/rarity of neurogenesis in the hippocampus of primates and adult humans was recently suggested and is under intense debate. Although the learning process is supported by plasticity, the retention of memories requires a certain degree of consolidated circuitry structures, otherwise the consolidation process would be hampered. Here, we compare and discuss hippocampal adult neurogenesis in different species and the inherent paradoxical aspects.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
- Laboratory of Research on Neurodegeneration and Infection, University Hospital João de Barros Barreto, Federal University of Pará, Belém 66073-005, Brazil.
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - Gabriela P F Arrifano
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - João O Malva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), and Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal.
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
| |
Collapse
|
50
|
Johnson SA, Turner SM, Lubke KN, Cooper TL, Fertal KE, Bizon JL, Maurer AP, Burke SN. Experience-Dependent Effects of Muscimol-Induced Hippocampal Excitation on Mnemonic Discrimination. Front Syst Neurosci 2019; 12:72. [PMID: 30687032 PMCID: PMC6335355 DOI: 10.3389/fnsys.2018.00072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Memory requires similar episodes with overlapping features to be represented distinctly, a process that is disrupted in many clinical conditions as well as normal aging. Data from humans have linked this ability to activity in hippocampal CA3 and dentate gyrus (DG). While animal models have shown the perirhinal cortex is critical for disambiguating similar stimuli, hippocampal activity has not been causally linked to discrimination abilities. The goal of the current study was to determine how disrupting CA3/DG activity would impact performance on a rodent mnemonic discrimination task. Rats were surgically implanted with bilateral guide cannulae targeting dorsal CA3/DG. In Experiment 1, the effect of intra-hippocampal muscimol on target-lure discrimination was assessed within subjects in randomized blocks. Muscimol initially impaired discrimination across all levels of target-lure similarity, but performance improved on subsequent test blocks irrespective of stimulus similarity and infusion condition. To clarify these results, Experiment 2 examined whether prior experience with objects influenced the effect of muscimol on target-lure discrimination. Rats that received vehicle infusions in a first test block, followed by muscimol in a second block, did not show discrimination impairments for target-lure pairs of any similarity. In contrast, rats that received muscimol infusions in the first test block were impaired across all levels of target-lure similarity. Following discrimination tests, rats from Experiment 2 were trained on a spatial alternation task. Muscimol infusions increased the number of spatial errors made, relative to vehicle infusions, confirming that muscimol remained effective in disrupting behavioral performance. At the conclusion of behavioral experiments, fluorescence in situ hybridization for the immediate-early genes Arc and Homer1a was used to determine the proportion of neurons active following muscimol infusion. Contrary to expectations, muscimol increased neural activity in DG. An additional experiment was carried out to quantify neural activity in naïve rats that received an intra-hippocampal infusion of vehicle or muscimol. Results confirmed that muscimol led to DG excitation, likely through its actions on interneuron populations in hilar and molecular layers of DG and consequent disinhibition of principal cells. Taken together, our results suggest disruption of coordinated neural activity across the hippocampus impairs mnemonic discrimination when lure stimuli are novel.
Collapse
Affiliation(s)
- Sarah A Johnson
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sean M Turner
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Katelyn N Lubke
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Tara L Cooper
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Kaeli E Fertal
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jennifer L Bizon
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew P Maurer
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Sara N Burke
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Institute on Aging, University of Florida, Gainesville, FL, United States
| |
Collapse
|