1
|
Hawkins P, Dooley J, Rodda J, Gilbert C. Refining bone marrow ablation and reconstitution in mice. Immunol Cell Biol 2025; 103:293-306. [PMID: 39788714 PMCID: PMC11884310 DOI: 10.1111/imcb.12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
This report presents findings from a group of UK-based researchers with expertise in the use of animal models for bone marrow ablation and reconstitution. The primary aim is to facilitate the implementation of the Three Rs (Replacement, Reduction and Refinement), with an emphasis on refinement. Bone marrow ablation and reconstitution procedures are performed for a number of different purposes and conducted predominantly in mice. These procedures can induce significant suffering, classified as "severe", Category E or Category D/E under European, US and Canadian legislation, respectively. Although severity categorization is not mandated in countries such as Australia and New Zealand, legislation still requires that the level of animal suffering must be minimized to the greatest extent possible. This report identifies specific animal welfare issues and proposes practical measures aimed at reducing both animal use and suffering.
Collapse
Affiliation(s)
- Penny Hawkins
- Animals in Science DepartmentRoyal Society for the Prevention of Cruelty to AnimalsHorshamWest SussexUK
| | - James Dooley
- Department of PathologyUniversity of CambridgeCambridgeUK
| | - Jessica Rodda
- Animals in Science DepartmentRoyal Society for the Prevention of Cruelty to AnimalsHorshamWest SussexUK
| | | |
Collapse
|
2
|
Braunstein Z, Brammer JE. Maintenance Therapy Post-Stem Cell Transplantation for Patients with T-Cell Lymphomas. Curr Hematol Malig Rep 2024; 19:276-284. [PMID: 39425756 PMCID: PMC11568030 DOI: 10.1007/s11899-024-00743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE OF REVIEW Given the poor outcomes for peripheral T-cell lymphomas (PTCL), stem cell transplant (SCT) remains an important therapeutic approach. Post-SCT relapse is common and maintenance therapy post-SCT is increasingly being utilized. Here we review the use of post-SCT maintenance therapy for PTCL patients. RECENT FINDINGS Maintenance therapy is increasingly utilized to decrease post-SCT relapse and improve outcomes in PTCL. Ongoing and completed post-SCT maintenance trials utilizing agents such as romidepsin, brentuximab vedotin, duvelisib, and pembrolizumab have shown efficacy in decreasing relapse. Further, additional agents with efficacy in PTCL have emerged that may inform future maintenance approaches. Maintenance therapy is a promising approach to maintain response after SCT in PTCL. While several trials are ongoing to evaluate maintenance therapy in PTCL, current data suggests this may be an effective method to decrease post-SCT relapse.
Collapse
Affiliation(s)
- Zachary Braunstein
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 2121 Kenny Road, Room 7168, Columbus, OH, 43210, USA
| | - Jonathan E Brammer
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 2121 Kenny Road, Room 7168, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Jonkman I, Jacobs MME, Negishi Y, Yanginlar C, Martens JHA, Baltissen M, Vermeulen M, van den Hoogen MWF, Baas M, van der Vlag J, Fayad ZA, Teunissen AJP, Madsen JC, Ochando J, Joosten LAB, Netea MG, Mulder WJM, Mhlanga MM, Hilbrands LB, Rother N, Duivenvoorden R. Trained immunity suppression determines kidney allograft survival. Am J Transplant 2024; 24:2022-2033. [PMID: 39147201 PMCID: PMC11789421 DOI: 10.1016/j.ajt.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
The innate immune system plays an essential role in regulating the immune responses to kidney transplantation, but the mechanisms through which innate immune cells influence long-term graft survival are unclear. The current study highlights the vital role of trained immunity in kidney allograft survival. Trained immunity describes the epigenetic and metabolic changes that innate immune cells undergo following an initial stimulus, allowing them have a stronger inflammatory response to subsequent stimuli. We stimulated healthy peripheral blood mononuclear cells with pretransplant and posttransplant serum of kidney transplant patients and immunosuppressive drugs in an in vitro trained immunity assay and measured tumor necrosis factor and interleukin 6 cytokine levels in the supernatant as a readout for trained immunity. We show that the serum of kidney transplant recipients collected 1 week after transplantation can suppress trained immunity. Importantly, we found that kidney transplant recipients whose serum most strongly suppressed trained immunity rarely experienced graft loss. This suppressive effect of posttransplant serum is likely mediated by previously unreported effects of immunosuppressive drugs. Our findings provide mechanistic insights into the role of innate immunity in kidney allograft survival, uncovering trained immunity as a potential therapeutic target for improving graft survival.
Collapse
Affiliation(s)
- Inge Jonkman
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maaike M E Jacobs
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yutaka Negishi
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands; Department of Cell Biology, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Marijke Baltissen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Martijn W F van den Hoogen
- Department of Internal Medicine, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marije Baas
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zahi A Fayad
- Department of Radiology, Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Abraham J P Teunissen
- Department of Radiology, Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joren C Madsen
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA; Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Medical Genetics, University of Medicine and Pharmacy, Iuliu Haţieganu, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Willem J M Mulder
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Musa M Mhlanga
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands; Department of Cell Biology, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nils Rother
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Raphaël Duivenvoorden
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Radiology, Biomolecular Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
4
|
Ktena YP, Dionysiou M, Gondek LP, Cooke KR. The impact of epigenetic modifications on allogeneic hematopoietic stem cell transplantation. Front Immunol 2023; 14:1188853. [PMID: 37325668 PMCID: PMC10264773 DOI: 10.3389/fimmu.2023.1188853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
The field of epigenetics studies the complex processes that regulate gene expression without altering the DNA sequence itself. It is well established that epigenetic modifications are crucial to cellular homeostasis and differentiation and play a vital role in hematopoiesis and immunity. Epigenetic marks can be mitotically and/or meiotically heritable upon cell division, forming the basis of cellular memory, and have the potential to be reversed between cellular fate transitions. Hence, over the past decade, there has been increasing interest in the role that epigenetic modifications may have on the outcomes of allogeneic hematopoietic transplantation and growing enthusiasm in the therapeutic potential these pathways may hold. In this brief review, we provide a basic overview of the types of epigenetic modifications and their biological functions, summarizing the current literature with a focus on hematopoiesis and immunity specifically in the context of allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Yiouli P. Ktena
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | | | | |
Collapse
|
5
|
Kruchen A, Johann PD, Rekowski L, Müller I. Epigenetic Modification of Mesenchymal Stromal Cells Derived from Bone Marrow and Embryonal Tumors to Facilitate Immunotherapeutic Approaches in Pediatric Malignancies. Curr Issues Mol Biol 2023; 45:2121-2135. [PMID: 36975506 PMCID: PMC10047030 DOI: 10.3390/cimb45030136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Mesenchymal stromal cells (MSC) are part of the bone marrow architecture and contribute to the homeostasis of hematopoietic stem cells. Moreover, they are known to regulate immune effector cells. These properties of MSC are pivotal under physiologic conditions, and they may aberrantly also protect malignant cells. MSCs are also found in the leukemic stem cell niche of the bone marrow and as part of the tumor microenvironment. Here, they protect malignant cells from chemotherapeutic drugs and from immune effector cells in immunotherapeutic approaches. Modulation of these mechanisms may improve the efficacy of therapeutic regimens. We investigated the effect of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA, Vorinostat™) on the immunomodulatory effect and cytokine profile of MSC derived from bone marrow and pediatric tumors. The immune phenotype of MSC was not markedly affected. SAHA-treated MSC showed reduced immunomodulatory effects on T cell proliferation and NK cell cytotoxicity. This effect was accompanied by an altered cytokine profile of MSC. While untreated MSC inhibited the production of certain pro-inflammatory cytokines, SAHA treatment led to a partial increase in IFNγ and TNFα secretion. These alterations of the immunosuppressive milieu might be beneficial for immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anne Kruchen
- Division of Pediatric Stem Cell Transplantation and Immunology, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Pascal-David Johann
- Swabian Children’s Cancer Center, Children’s Hospital, Klinikum Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Laura Rekowski
- Division of Pediatric Stem Cell Transplantation and Immunology, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Martinistr. 52, 20251 Hamburg, Germany
| | - Ingo Müller
- Division of Pediatric Stem Cell Transplantation and Immunology, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Martinistr. 52, 20251 Hamburg, Germany
- Correspondence: ; Tel.: +49-40-7410-52720; Fax: +49-40-7410-40175
| |
Collapse
|
6
|
Pandey RV, Strobl J, Redl A, Unterluggauer L, Gail L, Kleissl L, Müller S, Atzmüller D, Fife-Gernedl V, Krausgruber T, Knaus H, Mitterbauer M, Wohlfarth P, Rabitsch W, Bock C, Stary G. Epigenetic regulation of T cell lineages in skin and blood following hematopoietic stem cell transplantation. Clin Immunol 2023; 248:109245. [PMID: 36702179 DOI: 10.1016/j.clim.2023.109245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Allogeneic hematopoietic stem-cell transplantation (HSCT) seeks to reconstitute the host's immune system from donor stem cells. The success of HSCT is threatened by complications including leukemia relapse or graft-versus-host-disease (GvHD). To investigate the underlying regulatory processes in central and peripheral T cell recovery, we performed sequential multi-omics analysis of T cells of the skin and blood during HSCT. We detected rapid effector T cell reconstitution, while emergence of regulatory T cells was delayed. Epigenetic and gene-regulatory programs were associated with recovering T cells and diverged greatly between skin and blood T cells. The BRG1/BRM-associated factor chromatin remodeling complex and histone deacetylases (HDACs) were epigenetic regulators involved in restoration of T cell homeostasis after transplantation. In isolated T cells of patients after HSCT, we observed class I HDAC-inhibitors to modulate their dysbalance. The present study highlights the importance of epigenetic regulation in the recovery of T cells following HSCT.
Collapse
Affiliation(s)
- Ram Vinay Pandey
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Anna Redl
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Luisa Unterluggauer
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Laura Gail
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
| | - Sophie Müller
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Denise Atzmüller
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
| | - Victoria Fife-Gernedl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Hanna Knaus
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, Vienna 1090, Austria
| | - Margit Mitterbauer
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, Vienna 1090, Austria
| | - Philipp Wohlfarth
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, Vienna 1090, Austria
| | - Werner Rabitsch
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, Vienna 1090, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria; Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria.
| |
Collapse
|
7
|
Wei Y, Wang L, Zhu C, Li H, Bo J, Zhang R, Lu N, Wu Y, Gao X, Dou L, Liu D, Gao C. A phase II study of chidamide, cytarabine, aclarubicin, granulocyte colony-stimulating factor, and donor lymphocyte infusion for relapsed acute myeloid leukemia and myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation. Med Oncol 2023; 40:77. [PMID: 36625951 PMCID: PMC9832090 DOI: 10.1007/s12032-022-01911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023]
Abstract
Chemotherapy followed by donor lymphocyte infusion (DLI) is a promising treatment for relapsed acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the best strategy for administering this therapy is still unclear. This study sought to explore the efficacy and safety of chidamide and CAG (cytarabine, aclarubicin, and granulocyte colony-stimulating factor) (CCAG) regimen followed by DLI in relapsed AML/MDS after allo-HSCT. This was a single-arm, phase II trial in patients with relapsed AML/MDS after allo-HSCT. CCAG regimen followed by DLI was given according to the inclusion and exclusion criteria. Twenty adult patients were enrolled. The median follow-up time was 12 months. The complete remission (CR) rate was 45% and the partial remission (PR) rate was 5%. The 1-year overall survival (OS) was 56.7% (95% confidence interval (95% CI), 31.6-75.6%), and the median OS was 19 months. The 1-year relapse-free survival (RFS) was 83.3% (95% CI, 27.3-97.5%). Patients relapsing more than 6 months after HSCT and achieving CR/PR after CCAG plus DLI regimen attained significantly higher survival rates. The cumulative incidence of grade III-IV acute graft-versus-host disease (aGVHD) was 9.4%. There was no treatment-related mortality (TRM). These data suggest that CCAG plus DLI regimen is safe and induces durable remission and superior survival in patients with relapsed AML/MDS after allo-HSCT. Trial registration number: ChiCTR.org identifier: ChiCTR1800017740 and date of registration: August 12, 2018.
Collapse
Affiliation(s)
- Yan Wei
- Medical School of Chinese PLA, Beijing, China
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Lijun Wang
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Chengying Zhu
- School of Medicine, Nankai University, Tianjin, China
| | - Honghua Li
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Jian Bo
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Ran Zhang
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Ning Lu
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Yongli Wu
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Xiaoning Gao
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Liping Dou
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Daihong Liu
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Chunji Gao
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China.
| |
Collapse
|
8
|
Ktena YP, Koldobskiy MA, Barbato MI, Fu HH, Luznik L, Llosa NJ, Haile A, Klein OR, Liu C, Gamper CJ, Cooke KR. Donor T cell DNMT3a regulates alloreactivity in mouse models of hematopoietic stem cell transplantation. J Clin Invest 2022; 132:e158047. [PMID: 35608905 PMCID: PMC9246380 DOI: 10.1172/jci158047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
DNA methyltransferase 3a (DNMT3a) is an important part of the epigenetic machinery that stabilizes patterns of activated T cell responses. We hypothesized that donor T cell DNMT3a regulates alloreactivity after allogeneic blood and marrow transplantation (allo-BMT). T cell conditional Dnmt3a KO mice were used as donors in allo-BMT models. Mice receiving allo-BMT from KO donors developed severe acute graft-versus-host disease (aGVHD), with increases in inflammatory cytokine levels and organ histopathology scores. KO T cells migrated and proliferated in secondary lymphoid organs earlier and demonstrated an advantage in trafficking to the small intestine. Donor T cell subsets were purified after BMT for whole-genome bisulfite sequencing (WGBS) and RNA-Seq. KO T cells had global methylation similar to that of WT cells, with distinct, localized areas of hypomethylation. Using a highly sensitive computational method, we produced a comprehensive profile of the altered epigenome landscape. Hypomethylation corresponded with changes in gene expression in several pathways of T cell signaling and differentiation. Additionally, Dnmt3a-KO T cells resulted in superior graft-versus-tumor activity. Our findings demonstrate a critical role for DNMT3a in regulating T cell alloreactivity and reveal pathways that control T cell tolerance. These results also provide a platform for deciphering clinical data that associate donor DNMT3a mutations with increased GVHD, decreased relapse, and improved survival.
Collapse
Affiliation(s)
- Yiouli P. Ktena
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michael A. Koldobskiy
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michael I. Barbato
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Han-Hsuan Fu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Leo Luznik
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nicolas J. Llosa
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Azeb Haile
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Orly R. Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher J. Gamper
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kenneth R. Cooke
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Zaiken MC, Flynn R, Paz KG, Rhee SY, Jin S, Mohamed FA, Saha A, Thangavelu G, Park PMC, Hemming ML, Sage PT, Sharpe AH, DuPage M, Bluestone JA, Panoskaltsis-Mortari A, Cutler CS, Koreth J, Antin JH, Soiffer RJ, Ritz J, Luznik L, Maillard I, Hill GR, MacDonald KPA, Munn DH, Serody JS, Murphy WJ, Kean LS, Zhang Y, Bradner JE, Qi J, Blazar BR. BET-bromodomain and EZH2 inhibitor-treated chronic GVHD mice have blunted germinal centers with distinct transcriptomes. Blood 2022; 139:2983-2997. [PMID: 35226736 PMCID: PMC9101246 DOI: 10.1182/blood.2021014557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/09/2022] [Indexed: 01/26/2023] Open
Abstract
Despite advances in the field, chronic graft-versus-host-disease (cGVHD) remains a leading cause of morbidity and mortality following allogenic hematopoietic stem cell transplant. Because treatment options remain limited, we tested efficacy of anticancer, chromatin-modifying enzyme inhibitors in a clinically relevant murine model of cGVHD with bronchiolitis obliterans (BO). We observed that the novel enhancer of zeste homolog 2 (EZH2) inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 each improved pulmonary function; impaired the germinal center (GC) reaction, a prerequisite in cGVHD/BO pathogenesis; and JQ5 reduced EZH2-mediated H3K27me3 in donor T cells. Using conditional EZH2 knockout donor cells, we demonstrated that EZH2 is obligatory for the initiation of cGVHD/BO. In a sclerodermatous cGVHD model, JQ5 reduced the severity of cutaneous lesions. To determine how the 2 drugs could lead to the same physiological improvements while targeting unique epigenetic processes, we analyzed the transcriptomes of splenic GCB cells (GCBs) from transplanted mice treated with either drug. Multiple inflammatory and signaling pathways enriched in cGVHD/BO GCBs were reduced by each drug. GCBs from JQ5- but not JQ1-treated mice were enriched for proproliferative pathways also seen in GCBs from bone marrow-only transplanted mice, likely reflecting their underlying biology in the unperturbed state. In conjunction with in vivo data, these insights led us to conclude that epigenetic targeting of the GC is a viable clinical approach for the treatment of cGVHD, and that the EZH2 inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 demonstrated clinical potential for EZH2i and BETi in patients with cGVHD/BO.
Collapse
Affiliation(s)
- Michael C Zaiken
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Ryan Flynn
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Katelyn G Paz
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Stephanie Y Rhee
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Sujeong Jin
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Fathima A Mohamed
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Asim Saha
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Govindarajan Thangavelu
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Paul M C Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Matthew L Hemming
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Peter T Sage
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Evergrande Center for Immunologic Diseases, Harvard Medical School-Brigham and Women's Hospital, Boston, MA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Evergrande Center for Immunologic Diseases, Harvard Medical School-Brigham and Women's Hospital, Boston, MA
| | - Michel DuPage
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA
| | | | - Angela Panoskaltsis-Mortari
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | | | | | | | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | - Leo Luznik
- Department of Oncology, Sidney Kimmel Cancer Center, Baltimore, MD
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, University of Washington, Seattle, WA
| | - Kelli P A MacDonald
- Department of Immunology, Queensland Institute of Medical Research (QIMR), University of Queensland, Brisbane, QLD, Australia
| | - David H Munn
- Georgia Cancer Center, Augusta University, Augusta, GA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA
| | - Leslie S Kean
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Department of Microbiology and Immunology, Temple University, Philadelphia, PA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; and
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Bruce R Blazar
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
10
|
Gut microbiota regulates acute myeloid leukaemia via alteration of intestinal barrier function mediated by butyrate. Nat Commun 2022; 13:2522. [PMID: 35534496 PMCID: PMC9085760 DOI: 10.1038/s41467-022-30240-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/20/2022] [Indexed: 01/16/2023] Open
Abstract
The gut microbiota has been linked to many cancers, yet its role in acute myeloid leukaemia (AML) progression remains unclear. Here, we show decreased diversity in the gut microbiota of AML patients or murine models. Gut microbiota dysbiosis induced by antibiotic treatment accelerates murine AML progression while faecal microbiota transplantation reverses this process. Butyrate produced by the gut microbiota (especially Faecalibacterium) significantly decreases in faeces of AML patients, while gavage with butyrate or Faecalibacterium postpones murine AML progression. Furthermore, we find the intestinal barrier is damaged in mice with AML, which accelerates lipopolysaccharide (LPS) leakage into the blood. The increased LPS exacerbates leukaemia progression in vitro and in vivo. Butyrate can repair intestinal barrier damage and inhibit LPS absorption in AML mice. Collectively, we demonstrate that the gut microbiota promotes AML progression in a metabolite-dependent manner and that targeting the gut microbiota might provide a therapeutic option for AML. The role of gut microbiota in acute myeloid leukaemia (AML) remains unclear. Here, the authors show disordered gut microbiota and reduced butyrate cause intestinal barrier damage in AML mice, with increased plasma LPS that accelerates AML progression.
Collapse
|
11
|
Larragoite ET, Nell RA, Martins LJ, Barrows LR, Planelles V, Spivak AM. Histone deacetylase inhibition reduces deleterious cytokine release induced by ingenol stimulation. Biochem Pharmacol 2022; 195:114844. [PMID: 34801521 PMCID: PMC8712404 DOI: 10.1016/j.bcp.2021.114844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Latency reversing agents (LRAs), such as protein kinase C (PKC) agonists, constitute a promising strategy for exposing and eliminating the HIV-1 latent reservoir. PKC agonists activate NF-κB and induce deleterious pro-inflammatory cytokine production. Adjuvant pharmacological agents, such as ruxolitinib, a JAK inhibitor, have previously been combined with LRAs to reduce deleterious pro-inflammatory cytokine secretion without inhibiting HIV-1 reactivation in vitro. Histone deacetylase inhibitors (HDACi) are known to dampen pro-inflammatory cytokine secretion in the context of other diseases and synergize with LRAs to reactivate latent HIV-1. This study investigates whether a panel of epigenetic modifiers, including HDACi, could dampen PKC-induced pro-inflammatory cytokine secretion during latency reversal. We screened an epigenetic modifier library for compounds that reduced intracellular IL-6 production induced by the PKC agonist Ingenol-3,20-dibenzoate. We further tested the most promising epigenetic inhibitor class, HDACi, for their ability to reduce pro-inflammatory cytokines and reactivate latent HIV-1 ex vivo. We identified nine epigenetic modulators that reduced PKC-induced intracellular IL-6. In cells from aviremic individuals living with HIV-1, the HDAC1-3 inhibitor, suberohydroxamic acid (SBHA), reduced secretion of pro-inflammatory cytokines TNF-α, IL-5, IL-2r, and IL-17 but did not significantly reactivate latent HIV-1 when combined with Ingenol-3,20-dibenzoate. Combining SBHA and Ingenol-3,20-dibenzoate reduces deleterious cytokine production during latency reversal but does not induce significant viral reactivation in aviremic donor PBMCs. The ability of SBHA to reduce PKC-induced pro-inflammatory cytokines when combined with Ingenol-3,20-dibenzoate suggests SBHA can be used to reduced PKC induced pro-inflammatory cytokines but not to achieve latency reversal in the context of HIV-1.
Collapse
Affiliation(s)
- Erin T. Larragoite
- Department of Pathology, University of Utah, Salt Lake City, United States
| | - Racheal A. Nell
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, United States
| | - Laura J. Martins
- Department of Pathology, University of Utah, Salt Lake City, United States
| | - Louis R. Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, United States
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, United States
| | - Adam M. Spivak
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, United States, Corresponding Author: Adam M. Spivak, 50 North Medical Drive, Division of Infectious Diseases, Room 4B319, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, Phone: 801-587-1964, Fax: 801-585-3377,
| |
Collapse
|
12
|
Rayasam A, Drobyski WR. Translational Clinical Strategies for the Prevention of Gastrointestinal Tract Graft Versus Host Disease. Front Immunol 2021; 12:779076. [PMID: 34899738 PMCID: PMC8662938 DOI: 10.3389/fimmu.2021.779076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 11/15/2022] Open
Abstract
Graft versus host disease (GVHD) is the major non-relapse complication associated with allogeneic hematopoietic stem cell transplantation (HSCT). Unfortunately, GVHD occurs in roughly half of patients following this therapy and can induce severe life-threatening side effects and premature mortality. The pathophysiology of GVHD is driven by alloreactive donor T cells that induce a proinflammatory environment to cause pathological damage in the skin, gastrointestinal (GI) tract, lung, and liver during the acute phase of this disease. Recent work has demonstrated that the GI tract is a pivotal target organ and a primary driver of morbidity and mortality in patients. Prevention of this complication has therefore emerged as an important goal of prophylaxis strategies given the primacy of this tissue site in GVHD pathophysiology. In this review, we summarize foundational pre-clinical studies that have been conducted in animal models to prevent GI tract GVHD and examine the efficacy of these approaches upon subsequent translation into the clinic. Specifically, we focus on therapies designed to block inflammatory cytokine pathways, inhibit cellular trafficking of alloreactive donor T cells to the GI tract, and reconstitute impaired regulatory networks for the prevention of GVHD in the GI tract.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - William R Drobyski
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Bone Marrow Transplant Program, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
13
|
Abd-Rabboh HM, Amr AEGE, Almehizia AA, Kamel AH. Paper-Based Potentiometric Device for Rapid and Selective Determination of Salicylhydroxamate as a Urinary Struvite Stone Inhibitor. ACS OMEGA 2021; 6:27755-27762. [PMID: 34722975 PMCID: PMC8552353 DOI: 10.1021/acsomega.1c03135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/29/2021] [Indexed: 05/28/2023]
Abstract
Novel paper-based potentiometric platforms for rapid, cost-effective, and simple determination of the salicylhydroxamic acid (SHAM) drug are presented. Both the SHAM sensor and the reference Ag/AgCl electrode were integrated together on the miniaturized paper platforms. The ion-sensing membrane for the presented sensor is based on the use of SnIV-tetraphenylporphyrin (SnIVTPP) as a charged carrier within a plasticized poly(vinyl chloride) (PVC) matrix. Multiwalled carbon nanotubes (MWCNTs) were used as an ion-to-electron transducer. The resulting sensor revealed a rapid and stable response with a Nernstian slope of -59.3 ± 0.7 mV/decade over the linear range of 1.0 × 10-6 to 1.0 × 10-3 M and a detection limit of 0.7 μM. All measurements were carried out in 30 mM phosphate-buffered solution (PBS) at pH 7.2. Intra- and interday precision were measured and found to be 1.7%. The relative standard deviation (RSD%) ( = 5) was calculated as 2.43% after utilizing five different electrodes (n = 5). The selectivity behavior of the prepared electrodes in the absence and presence of ionic additives was evaluated. The selectivity pattern showed a non-Hofmeister selectivity pattern in the existence of anionic additives with enhanced potentiometric selectivity for SHAM over different lipophilic anions (e.g., ClO4 -, SCN-, and I-). The presented device was successfully applied for SHAM determination in pharmaceutical preparations. This paper-based analytical device can be potentially manufactured at large scales and provides a portable, rapid, disposable, and cost-effective analytical tool for measuring the SHAM drug.
Collapse
Affiliation(s)
- Hisham
S. M. Abd-Rabboh
- Chemistry
Department, Faculty of Science, King Khalid
University, Abha 61413, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Ain Shams
University, Cairo 11566, Egypt
| | - Abd El-Galil E. Amr
- Pharmaceutical
Chemistry Department, Drug Exploration & Development Chair (DEDC),
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Applied
Organic Chemistry Department, National Research
Center, Dokki 12622, Giza, Egypt
| | - Abdulrahman A. Almehizia
- Pharmaceutical
Chemistry Department, Drug Exploration & Development Chair (DEDC),
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman H. Kamel
- Department
of Chemistry, Faculty of Science, Ain Shams
University, Cairo 11566, Egypt
- Chemistry
Department, College of Science, University
of Bahrain, Sakheer 32038, Kingdom of Bahrain
| |
Collapse
|
14
|
Wu HW, Zhao YM, Huang H. [Mechanism of relapse and its therapeutic strategies after allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:869-877. [PMID: 34788930 PMCID: PMC8607022 DOI: 10.3760/cma.j.issn.0253-2727.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 11/19/2022]
Affiliation(s)
- H W Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University; Institute of Hematology, Zhejiang University, Hangzhou 310006, China
| | - Y M Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University; Institute of Hematology, Zhejiang University, Hangzhou 310006, China
| | - H Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University; Institute of Hematology, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
15
|
Zhang S, Zhan L, Li X, Yang Z, Luo Y, Zhao H. Preclinical and clinical progress for HDAC as a putative target for epigenetic remodeling and functionality of immune cells. Int J Biol Sci 2021; 17:3381-3400. [PMID: 34512154 PMCID: PMC8416716 DOI: 10.7150/ijbs.62001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Genetic changes are difficult to reverse; thus, epigenetic aberrations, including changes in DNA methylation, histone modifications, and noncoding RNAs, with potential reversibility, have attracted attention as pharmaceutical targets. The current paradigm is that histone deacetylases (HDACs) regulate gene expression via deacetylation of histone and nonhistone proteins or by forming corepressor complexes with transcription factors. The emergence of epigenetic tools related to HDACs can be used as diagnostic and therapeutic markers. HDAC inhibitors that block specific or a series of HDACs have proven to be a powerful therapeutic treatment for immune-related diseases. Here, we summarize the various roles of HDACs and HDAC inhibitors in the development and function of innate and adaptive immune cells and their implications for various diseases and therapies.
Collapse
Affiliation(s)
- Sijia Zhang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lingjun Zhan
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and National Clinical Research Center for Geriatric Disorders, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
16
|
Tian Y, Meng L, Wang Y, Li B, Yu H, Zhou Y, Bui T, Abraham C, Li A, Zhang Y, Wang J, Zhao C, Mineishi S, Gallucci S, Porter D, Hexner E, Zheng H, Zhang Y, Hu S, Zhang Y. Graft-versus-host disease depletes plasmacytoid dendritic cell progenitors to impair tolerance induction. J Clin Invest 2021; 131:136774. [PMID: 33090973 DOI: 10.1172/jci136774] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022] Open
Abstract
Graft-versus-host disease (GVHD) causes failed reconstitution of donor plasmacytoid dendritic cells (pDCs) that are critical for immune protection and tolerance. We used both murine and human systems to uncover the mechanisms whereby GVHD induces donor pDC defects. GVHD depleted Flt3-expressing donor multipotent progenitors (MPPs) that sustained pDCs, leading to impaired generation of pDCs. MPP loss was associated with decreased amounts of MPP-producing hematopoietic stem cells (HSCs) and oxidative stress-induced death of proliferating MPPs. Additionally, alloreactive T cells produced GM-CSF to inhibit MPP expression of Tcf4, the transcription factor essential for pDC development, subverting MPP production of pDCs. GM-CSF did not affect the maturation of pDC precursors. Notably, enhanced recovery of donor pDCs upon adoptive transfer early after allogeneic HSC transplantation repressed GVHD and restored the de novo generation of donor pDCs in recipient mice. pDCs suppressed the proliferation and expansion of activated autologous T cells via a type I IFN signaling-dependent mechanism. They also produced PD-L1 and LILRB4 to inhibit T cell production of IFN-γ. We thus demonstrate that GVHD impairs the reconstitution of tolerogenic donor pDCs by depleting DC progenitors rather than by preventing pDC maturation. MPPs are an important target to effectively bolster pDC reconstitution for controlling GVHD.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Lijun Meng
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Ying Wang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania, USA
| | - Bohan Li
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Hongshuang Yu
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Tien Bui
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Ciril Abraham
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Alicia Li
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yongping Zhang
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Jian Wang
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Chenchen Zhao
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Shin Mineishi
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Stefania Gallucci
- Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania, USA
| | - David Porter
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Hexner
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hong Zheng
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Yanyun Zhang
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyan Hu
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Metheny L, Eid S, Wuttisarnwattana P, Auletta JJ, Liu C, Van Dervort A, Paez C, Lee Z, Wilson D, Lazarus HM, Deans R, Vant Hof W, Ktena Y, Cooke KR. Human multipotent adult progenitor cells effectively reduce graft-vs-host disease while preserving graft-vs-leukemia activity. STEM CELLS (DAYTON, OHIO) 2021; 39:1506-1519. [PMID: 34255899 PMCID: PMC8596993 DOI: 10.1002/stem.3434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/24/2021] [Indexed: 11/13/2022]
Abstract
Graft‐vs‐host disease (GvHD) limits successful outcomes following allogeneic blood and marrow transplantation (allo‐BMT). We examined whether the administration of human, bone marrow‐derived, multipotent adult progenitor cells (MAPCs™) could regulate experimental GvHD. The immunoregulatory capacity of MAPC cells was evaluated in vivo using established murine GvHD models. Injection of MAPC cells on day +1 (D1) and +4 (D4) significantly reduced T‐cell expansion and the numbers of donor‐derived, Tumor Necrosis Factor Alpha (TNFα) and Interferon Gamma (IFNγ)‐producing, CD4+ and CD8+ cells by D10 compared with untreated controls. These findings were associated with reductions in serum levels of TNFα and IFNγ, intestinal and hepatic inflammation and systemic GvHD as measured by survival and clinical score. Biodistribution studies showed that MAPC cells tracked from the lung and to the liver, spleen, and mesenteric nodes within 24 hours after injection. MAPC cells inhibited mouse T‐cell proliferation in vitro and this effect was associated with reduced T‐cell activation and inflammatory cytokine secretion and robust increases in the concentrations of Prostaglandin E2 (PGE2) and Transforming Growth Factor Beta (TGFβ). Indomethacin and E‐prostanoid 2 (EP2) receptor antagonism both reversed while EP2 agonism restored MAPC cell‐mediated in vitro T‐cell suppression, confirming the role for PGE2. Furthermore, cyclo‐oxygenase inhibition following allo‐BMT abrogated the protective effects of MAPC cells. Importantly, MAPC cells had no effect on the generation cytotoxic T lymphocyte activity in vitro, and the administration of MAPC cells in the setting of leukemic challenge resulted in superior leukemia‐free survival. Collectively, these data provide valuable information regarding the biodistribution and regulatory capacity of MAPC cells, which may inform future clinical trial design.
Collapse
Affiliation(s)
- Leland Metheny
- University Hospitals Seidman Cancer CenterClevelandOhioUSA
- Case Comprehensive Cancer CenterClevelandOhioUSA
| | - Saada Eid
- Department of PediatricsCase Western Reserve UniversityClevelandOhioUSA
| | - Patiwet Wuttisarnwattana
- Department of Computer EngineeringChiang Mai UniversityChiang MaiThailand
- Department of Biomedical Engineering CenterChiang Mai UniversityChiang MaiThailand
| | - Jeffery J. Auletta
- Host Defense Program, Hematology, Oncology, and Infectious DiseasesNationwide Children's HospitalColumbusOhioUSA
| | - Chen Liu
- Department of PathologyYale School of MedicineNew HavenConnecticutUSA
| | - Alana Van Dervort
- Department of PediatricsCase Western Reserve UniversityClevelandOhioUSA
| | - Conner Paez
- Department of PediatricsCase Western Reserve UniversityClevelandOhioUSA
| | - ZhengHong Lee
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - David Wilson
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | | | | | | | - Yiouli Ktena
- Department of OncologyJohns Hopkins Sidney Kimmel Comprehensive Cancer CenterBaltimoreMarylandUSA
| | - Kenneth R. Cooke
- Department of OncologyJohns Hopkins Sidney Kimmel Comprehensive Cancer CenterBaltimoreMarylandUSA
| |
Collapse
|
18
|
Zhao C, Zhang Y, Zheng H. The Effects of Interferons on Allogeneic T Cell Response in GVHD: The Multifaced Biology and Epigenetic Regulations. Front Immunol 2021; 12:717540. [PMID: 34305954 PMCID: PMC8297501 DOI: 10.3389/fimmu.2021.717540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies. This beneficial effect is derived mainly from graft-versus-leukemia (GVL) effects mediated by alloreactive T cells. However, these alloreactive T cells can also induce graft-versus-host disease (GVHD), a life-threatening complication after allo-HSCT. Significant progress has been made in the dissociation of GVL effects from GVHD by modulating alloreactive T cell immunity. However, many factors may influence alloreactive T cell responses in the host undergoing allo-HSCT, including the interaction of alloreactive T cells with both donor and recipient hematopoietic cells and host non-hematopoietic tissues, cytokines, chemokines and inflammatory mediators. Interferons (IFNs), including type I IFNs and IFN-γ, primarily produced by monocytes, dendritic cells and T cells, play essential roles in regulating alloreactive T cell differentiation and function. Many studies have shown pleiotropic effects of IFNs on allogeneic T cell responses during GVH reaction. Epigenetic mechanisms, such as DNA methylation and histone modifications, are important to regulate IFNs’ production and function during GVHD. In this review, we discuss recent findings from preclinical models and clinical studies that characterize T cell responses regulated by IFNs and epigenetic mechanisms, and further discuss pharmacological approaches that modulate epigenetic effects in the setting of allo-HSCT.
Collapse
Affiliation(s)
- Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
19
|
Cheung BB, Kleynhans A, Mittra R, Kim PY, Holien JK, Nagy Z, Ciampa OC, Seneviratne JA, Mayoh C, Raipuria M, Gadde S, Massudi H, Wong IPL, Tan O, Gong A, Suryano A, Diakiw SM, Liu B, Arndt GM, Liu T, Kumar N, Sangfelt O, Zhu S, Norris MD, Haber M, Carter DR, Parker MW, Marshall GM. A novel combination therapy targeting ubiquitin-specific protease 5 in MYCN-driven neuroblastoma. Oncogene 2021; 40:2367-2381. [PMID: 33658627 PMCID: PMC8016666 DOI: 10.1038/s41388-021-01712-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 01/31/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are effective in MYCN-driven cancers, because of a unique need for HDAC recruitment by the MYCN oncogenic signal. However, HDAC inhibitors are much more effective in combination with other anti-cancer agents. To identify novel compounds which act synergistically with HDAC inhibitor, such as suberanoyl hydroxamic acid (SAHA), we performed a cell-based, high-throughput drug screen of 10,560 small molecule compounds from a drug-like diversity library and identified a small molecule compound (SE486-11) which synergistically enhanced the cytotoxic effects of SAHA. Effects of drug combinations on cell viability, proliferation, apoptosis and colony forming were assessed in a panel of neuroblastoma cell lines. Treatment with SAHA and SE486-11 increased MYCN ubiquitination and degradation, and markedly inhibited tumorigenesis in neuroblastoma xenografts, and, MYCN transgenic zebrafish and mice. The combination reduced ubiquitin-specific protease 5 (USP5) levels and increased unanchored polyubiquitin chains. Overexpression of USP5 rescued neuroblastoma cells from the cytopathic effects of the combination and reduced unanchored polyubiquitin, suggesting USP5 is a therapeutic target of the combination. SAHA and SE486-11 directly bound to USP5 and the drug combination exhibited a 100-fold higher binding to USP5 than individual drugs alone in microscale thermophoresis assays. MYCN bound to the USP5 promoter and induced USP5 gene expression suggesting that USP5 and MYCN expression created a forward positive feedback loop in neuroblastoma cells. Thus, USP5 acts as an oncogenic cofactor with MYCN in neuroblastoma and the novel combination of HDAC inhibitor with SE486-11 represents a novel therapeutic approach for the treatment of MYCN-driven neuroblastoma.
Collapse
Affiliation(s)
- Belamy B Cheung
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Ane Kleynhans
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Rituparna Mittra
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Patrick Y Kim
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Jessica K Holien
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Zsuzsanna Nagy
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Olivia C Ciampa
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Janith A Seneviratne
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Mukesh Raipuria
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Satyanarayana Gadde
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Chemistry, UNSW Sydney, Sydney, NSW, Australia
| | - Hassina Massudi
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Iris Poh Ling Wong
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Owen Tan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew Gong
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Aldwin Suryano
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Sonya M Diakiw
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Bing Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Greg M Arndt
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Tao Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney, Sydney, NSW, Australia
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Cancer Center and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Daniel R Carter
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Michael W Parker
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia.
| |
Collapse
|
20
|
Xu X, Li X, Zhao Y, Huang H. Immunomodulatory Effects of Histone Deacetylation Inhibitors in Graft-vs.-Host Disease After Allogeneic Stem Cell Transplantation. Front Immunol 2021; 12:641910. [PMID: 33732262 PMCID: PMC7959724 DOI: 10.3389/fimmu.2021.641910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 01/14/2023] Open
Abstract
Histone deacetylase inhibitors are currently the most studied drugs because of their beneficial effects on inflammatory response. Emerging data from numerous basic studies and clinical trials have shown that histone deacetylase inhibitors can suppress immune-mediated diseases, such as graft-vs.-host disease (GVHD), while retaining beneficial graft-vs.-leukemia (GVL) effects. These drugs prevent and/or treat GVHD by modifying gene expression and inhibiting the production of proinflammatory cytokines, regulating the function of alloreactive T cells, and upregulating the function and number of regulatory T cells. Some of these drugs may become new immunotherapies for GVHD and other immune diseases.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoqin Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Masetti R, Zama D, Leardini D, Muratore E, Turroni S, Brigidi P, Pession A. Microbiome-Derived Metabolites in Allogeneic Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2021; 22:1197. [PMID: 33530464 PMCID: PMC7865777 DOI: 10.3390/ijms22031197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome has emerged as a major character in the context of hematopoietic stem cell transplantation. The biology underpinning this relationship is still to be defined. Recently, mounting evidence has suggested a role for microbiome-derived metabolites in mediating crosstalk between intestinal microbial communities and the host. Some of these metabolites, such as fiber-derived short-chain fatty acids or amino acid-derived compounds, were found to have a role also in the transplant setting. New interesting data have been published on this topic, posing a new intriguing perspective on comprehension and treatment. This review provides an updated comprehensive overview of the available evidence in the field of gut microbiome-derived metabolites and hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (R.M.); (D.Z.); (E.M.); (A.P.)
| | - Daniele Zama
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (R.M.); (D.Z.); (E.M.); (A.P.)
| | - Davide Leardini
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (R.M.); (D.Z.); (E.M.); (A.P.)
| | - Edoardo Muratore
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (R.M.); (D.Z.); (E.M.); (A.P.)
| | - Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Andrea Pession
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (R.M.); (D.Z.); (E.M.); (A.P.)
| |
Collapse
|
22
|
Li A, Abraham C, Wang Y, Zhang Y. New insights into the basic biology of acute graft-versus-host-disease. Haematologica 2020; 105:2540-2549. [PMID: 33131244 PMCID: PMC7604569 DOI: 10.3324/haematol.2019.240291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/20/2020] [Indexed: 12/03/2022] Open
Abstract
Although allogeneic hematopoietic stem cell transplantation is an important therapy for many hematological and non-hematological diseases, acute graft-versus-host-disease (aGVHD) is a major obstacle to its success. The pathogenesis of aGVHD is divided into three distinct phases which occur largely as the result of interactions between infused donor T cells and numerous cell types of both hematopoietic and non-hematopoietic origin. In light of the disease's immensely complex biology, epigenetics has emerged as a framework with which to examine aGVHD. This review focuses on new findings that clarify the roles specific epigenetic regulators play in T cell-mediated aGVHD development and discusses how their modulation could disrupt that process to beneficial effects. DNA methyltransferases, histone methyltransferases and histone deacetylases are the most closely studied regulators across aGVHD priming, induction and effector phases and have been manipulated using drugs and other methods in both murine models and clinical trials to varying degrees of success. Antigen-presenting cells, effector T cells and memory T cells, among others, are targeted and affected by these regulators in different ways. Finally, our review highlights new directions for study and potential novel targets for modulation to abrogate aGVHD.
Collapse
Affiliation(s)
- Alicia Li
- Fels Institute for Cancer Research & Molecular Biology
| | - Ciril Abraham
- Fels Institute for Cancer Research & Molecular Biology
| | - Ying Wang
- Fels Institute for Cancer Research & Molecular Biology
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yi Zhang
- Fels Institute for Cancer Research & Molecular Biology
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
23
|
Kim S, Santhanam S, Lim S, Choi J. Targeting Histone Deacetylases to Modulate Graft-Versus-Host Disease and Graft-Versus-Leukemia. Int J Mol Sci 2020; 21:ijms21124281. [PMID: 32560120 PMCID: PMC7349873 DOI: 10.3390/ijms21124281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the main therapeutic strategy for patients with both malignant and nonmalignant disorders. The therapeutic benefits of allo-HSCT in malignant disorders are primarily derived from the graft-versus-leukemia (GvL) effect, in which T cells in the donor graft recognize and eradicate residual malignant cells. However, the same donor T cells can also recognize normal host tissues as foreign, leading to the development of graft-versus-host disease (GvHD), which is difficult to separate from GvL and is the most frequent and serious complication following allo-HSCT. Inhibition of donor T cell toxicity helps in reducing GvHD but also restricts GvL activity. Therefore, developing a novel therapeutic strategy that selectively suppresses GvHD without affecting GvL is essential. Recent studies have shown that inhibition of histone deacetylases (HDACs) not only inhibits the growth of tumor cells but also regulates the cytotoxic activity of T cells. Here, we compile the known therapeutic potential of HDAC inhibitors in preventing several stages of GvHD pathogenesis. Furthermore, we will also review the current clinical features of HDAC inhibitors in preventing and treating GvHD as well as maintaining GvL.
Collapse
Affiliation(s)
- Sena Kim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Correspondence: (S.K.); (J.C.)
| | | | - Sora Lim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Jaebok Choi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Correspondence: (S.K.); (J.C.)
| |
Collapse
|
24
|
Kim S, Reddy P. Targeting Signal 3 Extracellularly and Intracellularly in Graft-Versus-Host Disease. Front Immunol 2020; 11:722. [PMID: 32411139 PMCID: PMC7198807 DOI: 10.3389/fimmu.2020.00722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) holds curative potential for many hematological disorders. However, the pathophysiology of the desired graft-versus-tumor effect is linked to life-threatening complications of acute graft-versus-host disease (GVHD). Allogeneic donor T lymphocytes are essential for causing GVHD, and their activation relies on the coordination of TCR engagement and co-stimulation, also known as Signal 1 and Signal 2. In addition to these signals, a network of secreted cytokines by immune cells provides a third signal, Signal 3, that is critical for the initiation and maintenance of GVHD. Strategies to target Signal 3 in human diseases have shown therapeutic benefit for inflammatory disorders such as Rheumatoid Arthritis and Inflammatory Bowel Disease. However, despite our growing understanding of their role in GVHD, the success of targeting individual cytokines has been modest with some notable exceptions. This review aims to describe current approaches toward targeting Signal 3 in clinical GVHD, and to highlight emerging studies in immune cell biology that may be harnessed for better clinical translation.
Collapse
Affiliation(s)
- Stephanie Kim
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States
| | - Pavan Reddy
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
25
|
Snyder KJ, Zitzer NC, Gao Y, Choe HK, Sell NE, Neidemire-Colley L, Ignaci A, Kale C, Devine RD, Abad MG, Pietrzak M, Wang M, Lin H, Zhang YW, Behbehani GK, Jackman JE, Garzon R, Vaddi K, Baiocchi RA, Ranganathan P. PRMT5 regulates T cell interferon response and is a target for acute graft-versus-host disease. JCI Insight 2020; 5:131099. [PMID: 32191634 DOI: 10.1172/jci.insight.131099] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/16/2020] [Indexed: 01/09/2023] Open
Abstract
Acute graft-versus-host disease (aGVHD) is a T cell-mediated immunological disorder and the leading cause of nonrelapse mortality in patients who receive allogeneic hematopoietic cell transplants. Based on recent observations that protein arginine methyltransferase 5 (PRMT5) and arginine methylation are upregulated in activated memory T cells, we hypothesized that PRMT5 is involved in the pathogenesis of aGVHD. Here, we show that PRMT5 expression and enzymatic activity were upregulated in activated T cells in vitro and in T cells from mice developing aGVHD after allogeneic transplant. PRMT5 expression was also upregulated in T cells of patients who developed aGVHD after allogeneic hematopoietic cell transplant compared with those who did not develop aGVHD. PRMT5 inhibition using a selective small-molecule inhibitor (C220) substantially reduced mouse and human allogeneic T cell proliferation and inflammatory IFN-γ and IL-17 cytokine production. Administration of PRMT5 small-molecule inhibitors substantially improves survival, reducing disease incidence and clinical severity in mouse models of aGVHD without adversely affecting engraftment. Importantly, we show that PRMT5 inhibition retained the beneficial graft-versus-leukemia effect by maintaining cytotoxic CD8+ T cell responses. Mechanistically, we show that PRMT5 inhibition potently reduced STAT1 phosphorylation as well as transcription of proinflammatory genes, including interferon-stimulated genes and IL-17. Additionally, PRMT5 inhibition deregulates the cell cycle in activated T cells and disrupts signaling by affecting ERK1/2 phosphorylation. Thus, we have identified PRMT5 as a regulator of T cell responses and as a therapeutic target in aGVHD.
Collapse
Affiliation(s)
- Katiri J Snyder
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Nina C Zitzer
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Yandi Gao
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Hannah K Choe
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Natalie E Sell
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Anora Ignaci
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Charuta Kale
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Raymond D Devine
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Min Wang
- Prelude Therapeutics, Wilmington, Delaware, USA
| | - Hong Lin
- Prelude Therapeutics, Wilmington, Delaware, USA
| | | | - Gregory K Behbehani
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Kris Vaddi
- Prelude Therapeutics, Wilmington, Delaware, USA
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| |
Collapse
|
26
|
Zhao HY, Li DQ, Wang J, Hou Y, Sun L, Peng J, Hou M. [Effect and mechanism of low-dose chidamide on the treatment of primary immune thrombocytopenia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:292-296. [PMID: 32447932 PMCID: PMC7364928 DOI: 10.3760/cma.j.issn.0253-2727.2020.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Objective: To explore the effect and mechanism of low-dose chidamide on the treatment of primary immune thrombocytopenia (ITP) . Methods: Passive ITP animal model and active ITP animal model were established by C57BL/6J mice. Different doses of chidamide (0, 0.01, 0.1, 0.5, and 5 mg/kg) were orally administrated twice a week for 120 hours in passive ITP mice. Secondly, low-dose chidamine (0.1 mg/kg) was given intragastrically administrated twice a week in active ITP mice. The platelet counts in the peripheral blood before and after treatment were detected. Four weeks later, mice were executed to prepare splenocyte suspension; natural regulatory T cells (CD4(+)CD25(+)Foxp3(+) nTreg cells) in splenocyte suspension were detected by flow cytometry. Serum IL-6 was measured by ELISA. Peripheral blood mononuclear cells from ITP patients were co-cultured with low-dose chidamide in vitro. After incubation for 72 hours, CD4(+)CD25(+)Foxp3(+) Treg cells of mononuclear cells was detected. CD4(+)CD25(+) Treg cells and CD4(+)CD25(-) effector T cells were separated by immunomagnetic beads. The Treg cells and effector T cells were co cultured in a ratio of 1∶4, and treated with low-dose chidamide. The proliferation of effector T cells was detected. Results: Chidamide with low dose (0.1 mg/kg) significantly improved platelet counts in passive ITP mouse model, as well as in the ITP active mouse model and reduced the mortality related to bleeding. Low-dose chidamide significantly increased the number and proportion of nTreg cells in mouse splenocytes, and decreased serum IL-6 level in active ITP mice. In ITP patients, low-dose chidamide also significantly expanded Treg cells in the PBMC culture system. Besides, the proliferation of effector T cells was suppressed. Conclusion: Low-dose chidamide enhances the proliferation of CD4(+)CD25(+)Foxp3(+) regulatory T cells to mediate immunosuppressive function. Serum IL-6 is inhibited for further immune tolerance. In vivo animal study suggestes that low-dose chidamide has a novel therapeutic effect on ITP.
Collapse
Affiliation(s)
- H Y Zhao
- Department of Hematology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013
| | - D Q Li
- Department of Hematology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013
| | - J Wang
- Department of Hematology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013
| | - Y Hou
- Department of Hematology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013
| | - L Sun
- Department of Hematology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013
| | - J Peng
- Department of Hematology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013
| | - M Hou
- Department of Hematology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013
| |
Collapse
|
27
|
Hyvärinen K, Koskela S, Niittyvuopio R, Nihtinen A, Volin L, Salmenniemi U, Putkonen M, Buño I, Gallardo D, Itälä-Remes M, Partanen J, Ritari J. Meta-Analysis of Genome-Wide Association and Gene Expression Studies Implicates Donor T Cell Function and Cytokine Pathways in Acute GvHD. Front Immunol 2020; 11:19. [PMID: 32117222 PMCID: PMC7008714 DOI: 10.3389/fimmu.2020.00019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Graft-vs.-host disease (GvHD) is a major complication after allogeneic hematopoietic stem cell transplantation that causes mortality and severe morbidity. Genetic disparities in human leukocyte antigens between the recipient and donor are known contributors to the risk of the disease. However, the overall impact of genetic component is complex, and consistent findings across different populations and studies remain sparse. To gain a comprehensive understanding of the genes responsible for GvHD, we combined genome-wide association studies (GWAS) from two distinct populations with previously published gene expression studies on GvHD in a single gene-level meta-analysis. We hypothesized that genes driving GvHD should be associated in both data modalities and therefore could be detected more readily through their combined effects in the integrated analysis rather than in separate analyses. The meta-analysis yielded a total of 51 acute GvHD-associated genes (false detection rate [FDR] <0.1). In support of our hypothesis, this number was significantly higher than that in a permutation meta-analysis involving the whole data set, as well as in separate meta-analyses on the GWAS and gene expression data sets. The genes indicated by the meta-analysis were significantly enriched in 277 Gene Ontology terms (FDR < 0.05), such as T cell function and cytokine-mediated signaling pathways, and the results highlighted several established immune mediators, such as interleukins and JAK-STAT signaling, and presented TRAF6 and TERT as potential effector candidates. Altogether, the results support the chosen methodological approach, implicate a role of gene-level variation in donors' key immunological regulators predisposing patients to acute GVHD, and present potential targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Satu Koskela
- Finnish Red Cross Blood Service, Helsinki, Finland
| | - Riitta Niittyvuopio
- Stem Cell Transplantation Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Anne Nihtinen
- Stem Cell Transplantation Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Liisa Volin
- Stem Cell Transplantation Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | | | | | - Ismael Buño
- Department of Hematology, Genomics Unit, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - David Gallardo
- Department of Hematology, Institut Català d'Oncologia, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | | | | | - Jarmo Ritari
- Finnish Red Cross Blood Service, Helsinki, Finland
| |
Collapse
|
28
|
Sultana F, Manasa KL, Shaik SP, Bonam SR, Kamal A. Zinc Dependent Histone Deacetylase Inhibitors in Cancer Therapeutics: Recent Update. Curr Med Chem 2020; 26:7212-7280. [PMID: 29852860 DOI: 10.2174/0929867325666180530094120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Histone deacetylases (HDAC) are an important class of enzymes that play a pivotal role in epigenetic regulation of gene expression that modifies the terminal of core histones leading to remodelling of chromatin topology and thereby controlling gene expression. HDAC inhibitors (HDACi) counter this action and can result in hyperacetylation of histones, thereby inducing an array of cellular consequences such as activation of apoptotic pathways, generation of reactive oxygen species (ROS), cell cycle arrest and autophagy. Hence, there is a growing interest in the potential clinical use of HDAC inhibitors as a new class of targeted cancer therapeutics. Methodology and Result: Several research articles spanning between 2016 and 2017 were reviewed in this article and presently offer critical insights into the important strategies such as structure-based rational drug design, multi-parameter lead optimization methodologies, relevant SAR studies and biology of various class of HDAC inhibitors, such as hydroxamic acids, benzamides, cyclic peptides, aliphatic acids, summarising the clinical trials and results of various combination drug therapy till date. CONCLUSION This review will provide a platform to the synthetic chemists and biologists to cater the needs of both molecular targeted therapy and combination drug therapy to design and synthesize safe and selective HDAC inhibitors in cancer therapeutics.
Collapse
Affiliation(s)
- Faria Sultana
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India
| | - Kesari Lakshmi Manasa
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Siddiq Pasha Shaik
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India
| | - Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Ahmed Kamal
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India.,School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi, 110062, India
| |
Collapse
|
29
|
Gatza E, Reddy P, Choi SW. Prevention and Treatment of Acute Graft-versus-Host Disease in Children, Adolescents, and Young Adults. Biol Blood Marrow Transplant 2020; 26:e101-e112. [PMID: 31931115 DOI: 10.1016/j.bbmt.2020.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022]
Abstract
Acute graft-versus-host disease (GVHD) continues to be a major cause of morbidity and mortality after allogeneic hematopoietic cell transplant (HCT) in pediatric patients (ie, children and adolescent and young adults) and limits broader application of the therapy. Pediatric HCT patients have faced major obstacles to access clinical trials that test new agents for GVHD prevention and treatment. According to a recent search, only 6 clinical trials of interventions for prevention or treatment of acute GVHD were conducted specifically in pediatric patients in the United States over the past decade, with 8 internationally. In this review, we summarize the studies that were performed and specifically enrolled and reported on pediatric patients after allogeneic HCT and provide a listing of studies currently under way.
Collapse
Affiliation(s)
- Erin Gatza
- Department of Pediatrics, Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Pavan Reddy
- Department of Internal Medicine, Division of Hematology-Oncology, Blood & Marrow Transplant Program, University of Michigan, Ann Arbor, Michigan
| | - Sung Won Choi
- Department of Pediatrics, Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
30
|
|
31
|
Lawlor L, Yang XB. Harnessing the HDAC-histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering. Int J Oral Sci 2019; 11:20. [PMID: 31201303 PMCID: PMC6572769 DOI: 10.1038/s41368-019-0053-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
There are large knowledge gaps regarding how to control stem cells growth and differentiation. The limitations of currently available technologies, such as growth factors and/or gene therapies has led to the search of alternatives. We explore here how a cell's epigenome influences determination of cell type, and potential applications in tissue engineering. A prevalent epigenetic modification is the acetylation of DNA core histone proteins. Acetylation levels heavily influence gene transcription. Histone deacetylase (HDAC) enzymes can remove these acetyl groups, leading to the formation of a condensed and more transcriptionally silenced chromatin. Histone deacetylase inhibitors (HDACis) can inhibit these enzymes, resulting in the increased acetylation of histones, thereby affecting gene expression. There is strong evidence to suggest that HDACis can be utilised in stem cell therapies and tissue engineering, potentially providing novel tools to control stem cell fate. This review introduces the structure/function of HDAC enzymes and their links to different tissue types (specifically bone, cardiac, neural tissues), including the history, current status and future perspectives of using HDACis for stem cell research and tissue engineering, with particular attention paid to how different HDAC isoforms may be integral to this field.
Collapse
Affiliation(s)
- Liam Lawlor
- Department of Oral Biology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK
- Doctoral Training Centre in Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Xuebin B Yang
- Department of Oral Biology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
- Doctoral Training Centre in Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK.
| |
Collapse
|
32
|
Sun R, Hedl M, Abraham C. Twist1 and Twist2 Induce Human Macrophage Memory upon Chronic Innate Receptor Treatment by HDAC-Mediated Deacetylation of Cytokine Promoters. THE JOURNAL OF IMMUNOLOGY 2019; 202:3297-3308. [PMID: 31028123 DOI: 10.4049/jimmunol.1800757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
Intestinal tissues are continuously exposed to microbial products that stimulate pattern-recognition receptors (PRRs). Ongoing PRR stimulation can confer epigenetic changes in macrophages, which can then regulate subsequent immune outcomes and adaptation to the local environment. Mechanisms leading to these changes are incompletely understood. We found that short-term stimulation of the PRR NOD2 in primary human monocyte-derived macrophages resulted in increased H3 and H4 acetylation of cytokine promoters, consistent with the increased cytokine secretion observed. However, with prolonged NOD2 stimulation, both the acetylation and cytokine secretion were dramatically decreased. Chronic NOD2 stimulation upregulated the transcription factors Twist1 and Twist2, which bound to the promoters of the histone deacetylases HDAC1 and HDAC3 and induced HDAC1 and HDAC3 expression. HDAC1 and HDAC3 then mediated histone deacetylation at cytokine promoters and, in turn, cytokine downregulation under these conditions. Similar regulation was observed upon chronic stimulation of multiple PRRs. Consistent with the chronic microbial exposure in the intestinal environment, TWIST1, TWIST2, HDAC1, and HDAC3 were upregulated in human intestinal relative to peripheral macrophages. Importantly, complementing HDAC1 and HDAC3 in Twist1/Twist2-deficient monocyte-derived macrophages restored the reduced histone acetylation on cytokine promoters and the decreased cytokine secretion with chronic NOD2 stimulation. Taken together, we identify mechanisms wherein Twist1 and Twist2 promote chromatin modifications, resulting in macrophage instruction and adaptation to conditions in the intestinal microenvironment.
Collapse
Affiliation(s)
- Rui Sun
- Department of Internal Medicine, Yale University, New Haven, CT 06510
| | - Matija Hedl
- Department of Internal Medicine, Yale University, New Haven, CT 06510
| | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, CT 06510
| |
Collapse
|
33
|
Nicorescu I, Dallinga GM, de Winther MP, Stroes ES, Bahjat M. Potential epigenetic therapeutics for atherosclerosis treatment. Atherosclerosis 2019; 281:189-197. [DOI: 10.1016/j.atherosclerosis.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/18/2018] [Accepted: 10/04/2018] [Indexed: 01/03/2023]
|
34
|
Graves SS, Parker MH, Storb R. Animal Models for Preclinical Development of Allogeneic Hematopoietic Cell Transplantation. ILAR J 2018; 59:263-275. [PMID: 30010833 PMCID: PMC6808062 DOI: 10.1093/ilar/ily006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/22/2018] [Accepted: 06/15/2018] [Indexed: 02/01/2023] Open
Abstract
Since its inception in the 1950s, hematopoietic cell transplantation (HCT) has become a highly effective clinical treatment for malignant and nonmalignant hematological disorders. This milestone in cancer therapy was only possible through decades of intensive research using murine and canine animal models that overcame what appeared in the early days to be insurmountable obstacles. Conditioning protocols for tumor ablation and immunosuppression of the recipient using irradiation and chemotherapeutic drugs were developed in mouse and dog models as well as postgrafting immunosuppression methods essential for dependable donor cell engraftment. The random-bred canine was particularly important in defining the role of histocompatibility barriers and the development of the nonmyeloablative transplantation procedure, making HCT available to elderly patients with comorbidities. Two complications limit the success of HCT: disease relapse and graft versus host disease. Studies in both mice and dogs have made significant progress toward reducing and to some degree eliminating patient morbidity and mortality associated with both disease relapse and graft versus host disease. However, more investigation is needed to make HCT more effective, safer, and available as a treatment modality for other non-life-threatening diseases such as autoimmune disorders. Here, we focus our review on the contributions made by both the murine and canine models for the successful past and future development of HCT.
Collapse
Affiliation(s)
- Scott S Graves
- Clinical Research Division of the Fred Hutchinson Cancer Research Center in Seattle, Washington
| | - Maura H Parker
- Clinical Research Division of the Fred Hutchinson Cancer Research Center in Seattle, Washington
| | - Rainer Storb
- Clinical Research Division of the Fred Hutchinson Cancer Research Center in Seattle, Washington
- Department of Medicine, University of Washington in Seattle, Washington
| |
Collapse
|
35
|
Low-dose chidamide restores immune tolerance in ITP in mice and humans. Blood 2018; 133:730-742. [PMID: 30552097 DOI: 10.1182/blood-2018-05-847624] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Increased macrophage phagocytosis of antibody-coated platelets, as well as decreased numbers and/or impaired function of CD4+CD25+Foxp3+ regulatory T (Treg) cells, has been shown to participate in the pathogenesis of immune thrombocytopenia (ITP). Low-dose histone deacetylase inhibitors (HDACi's) are anti-inflammatory and immunomodulatory agents that can enhance immunosuppression in graft-versus-host disease by increasing the number and function of Foxp3+ Treg cells, but it is unclear whether they have the potential to promote immune tolerance and platelet release in ITP. In this study, we performed in vitro and in vivo experiments and found that a low-dose HDACi (chidamide) alleviated thrombocytopenia in passive and active murine models of ITP. Further, low-dose HDACi's attenuated macrophage phagocytosis of antibody-coated platelets, stimulated the production of natural Foxp3+ Treg cells, promoted the peripheral conversion of T cells into Treg cells, and restored Treg cell suppression in vivo and in vitro. Finally, we confirmed that low-dose HDACi's could regulate CTLA4 expression in peripheral blood mononuclear cells through modulation of histone H3K27 acetylation. Low-dose HDACi treatment in ITP could be offset by blocking the effect of CTLA4. Therefore, we propose that low-dose chidamide administration has potential as a novel treatment for ITP in the clinic.
Collapse
|
36
|
Zhang J, Liu Y, Shi G. Gene microarray analysis of expression profiles in Suberoyllanilide hyroxamic acid-treated Dendritic cells. Biochem Biophys Res Commun 2018; 508:392-397. [PMID: 30502083 DOI: 10.1016/j.bbrc.2018.11.143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The purpose of this study is to provide a further theoretical basis for the role of Suberoyllanilide hyroxamic acid (SAHA) affect on Dendritic cells (DCs). METHODS We first downloaded the GSE74306 microarray data, which was about the effect of SAHA act on DCs, from the Gene Expression Omnibus database. Then we analyzed the differential expression genes (DEGs) between SAHA-treated DCs and SAHA-untreated DCs by limma package of R software; The Database for Annotation, Visualization and Integrated Discovery was used to analyze the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for these DEGs. The protein protein interaction (PPI) network was constructed by using STRING database, Cytoscape 3.6.1 software was used to dispose the PPI network for visualization. Finally, we determine the Hub genes in the PPI network according by the degree centrality and betweenness centrality, which were calculated by the CentScaPe 2.2 plug-in of Cytoscape 3.6.1 software. RESULT There were 551 DEGs between SAHA-treated DC cells and SAHA-untreated DC cells, including 357 upregulated genes and 194 downregulated genes. These DEGs genes were enriched in 115 Go terms (Biological Process, 51; Cellular Component, 35 and Molecular Function, 29) and a total of 16 pathways. Glutathione metabolic process, Glutathione metabolism pathway, Rheumatoid arthritis pathway and Systemic lupus erythematosus pathway were most significant function clusters. In the PPI network, Rad51, Src, and Eno2 were Hub genes. CONCLUSION The biological function and KEGG pathway enriched by DEGs may reveal the molecular mechanism of SAHA acting on DC cells. Its Hub genes, Src, Rad51 and Eno2, were expected to be new targets for SAHA therapeutic effects. However, it still need to be confirmed by the next more rigorous molecular biological experiments research.
Collapse
Affiliation(s)
- Junhui Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China; Fuwai Central China Cardiovascular Hospital, Zhengzhou, China.
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
37
|
Notch inhibition enhances graft-versus-leukemia while reducing graft-versus-host disease. Eur J Pharmacol 2018; 843:226-232. [PMID: 30445020 DOI: 10.1016/j.ejphar.2018.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
Abstract
Graft-versus host disease (GVHD) remains the most significant complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Dissociation of graft versus-leukemia (GVL) activity from GVHD has yet to be achieved. In this study, we used γ-secretase inhibitor (GSIs, DAPT) to inhibit Notch signaling in GVHD and GVL murine model. We found that CD11c+CD80+ dendritic cells (DCs) were up-regulated but did not enhance GVHD. Regulatory T cells (Tregs) and central memory T cells that express high levels of CD62L and CD44 had an expansion after Notch inhibition. Reduced Tumor Necrosis Factor-α and increased Interferon-γ production were found, which might be ascribed to the expansion of Tregs and central memory T cells, and result in increased sensitivity of tumor cells to cytotoxic T lymphocyte activity. Fas Receptor-Fas Ligand interaction plays a critical role in GVL instead of aGVHD. Fas Ligand expressions were similar in recipients with or without Notch inhibition, suggesting that GVL activity was maintained. We showed that Notch inhibition could enhances GVL while reducing GVHD via modulating host DCs and donor T cell activity, and the production of inflammatory cytokines.
Collapse
|
38
|
Toubai T, Tamaki H, Peltier DC, Rossi C, Oravecz-Wilson K, Liu C, Zajac C, Wu J, Sun Y, Fujiwara H, Henig I, Kim S, Lombard DB, Reddy P. Mitochondrial Deacetylase SIRT3 Plays an Important Role in Donor T Cell Responses after Experimental Allogeneic Hematopoietic Transplantation. THE JOURNAL OF IMMUNOLOGY 2018; 201:3443-3455. [PMID: 30389773 DOI: 10.4049/jimmunol.1800148] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) through its graft-versus-tumor (GVT) effects is a curative therapy against many hematological malignancies. However, GVT is linked to harmful graft-versus-host disease (GVHD) after allo-HCT. Both GVT and GVHD require allogeneic T cell responses, which is an energetically costly process that causes oxidative stress. Sirtuin 3 (SIRT3), a mitochondrial histone deacetylase (HDAC), plays an important role in cellular processes through inhibition of reactive oxygen species (ROS). Nonmitochondrial class of HDACs regulate T cell responses, but the role of mitochondrial HDACs, specifically SIRT3, on donor T cell responses after allo-HCT remains unknown. In this study, we report that SIRT3-deficient (SIRT3-/-) donor T cells cause reduced GVHD severity in multiple clinically relevant murine models. The GVHD protective effect of allogeneic SIRT3-/- T cells was associated with a reduction in their activation, reduced CXCR3 expression, and no significant impact on cytokine secretion or cytotoxic functions. Intriguingly, the GVHD protective effect of SIRT3-/- T cells was associated with a reduction in ROS production, which is contrary to the effect of SIRT3 deficiency on ROS production in other cells/tissues and likely a consequence of their deficient activation. Notably, the reduction in GVHD in the gastrointestinal tract was not associated with a substantial reduction in the GVT effect. Collectively, these data reveal that SIRT3 activity promotes allogeneic donor T cell responses and ROS production without altering T cell cytokine or cytolytic functions and identify SIRT3 as a novel target on donor T cells to improve outcomes after allo-HCT.
Collapse
Affiliation(s)
- Tomomi Toubai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Hiroya Tamaki
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8131, Japan
| | - Daniel C Peltier
- Division of Hematology and Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109
| | - Corinne Rossi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109.,Department of Pediatric Hematology and Oncology, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | - Katherine Oravecz-Wilson
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, North Bergen, NJ 08903; and
| | - Cynthia Zajac
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Julia Wu
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Yaping Sun
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Hideaki Fujiwara
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Israel Henig
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Stephanie Kim
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - David B Lombard
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109
| | - Pavan Reddy
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109; .,Department of Pediatric Hematology and Oncology, University Hospital of Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
39
|
Persky DO, Li H, Rimsza LM, Barr PM, Popplewell LL, Bane CL, Von Gehr A, LeBlanc M, Fisher RI, Smith SM, Friedberg JW. A phase I/II trial of vorinostat (SAHA) in combination with rituximab-CHOP in patients with newly diagnosed advanced stage diffuse large B-cell lymphoma (DLBCL): SWOG S0806. Am J Hematol 2018; 93:486-493. [PMID: 29266344 DOI: 10.1002/ajh.25010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/07/2017] [Accepted: 12/17/2017] [Indexed: 02/06/2023]
Abstract
Loss of major histocompatibility Class II expression (MHCII) in diffuse large B-cell lymphoma (DLBCL) correlates with decreased survival. MHCII transcription is in part regulated by histone acetylation. We tested the hypothesis that combination of histone deacetylase inhibitor (HDACI) with standard chemotherapy would improve outcomes in DLBCL in part through increased MHCII expression. S0806 was a single arm phase I/II trial of vorinostat given at 400 mg po daily on days 1-9 (subsequently amended to days 1-5 due to toxicity), combined with R-CHOP given on day 3 of a 21-day cycle for 8 cycles, with primary phase II endpoint of 2-year progression free survival (PFS). With 72 evaluable patients, at median follow up of 3 years, 2-year PFS estimate was 73%, and OS estimate was 86%. Considering that the regimen fell short of predefined efficacy improvement and was associated with high rates of febrile neutropenia (38%) and sepsis (19%), it cannot be recommended for general use. Consistent with our hypothesis, patients with low MCHII expression on S0806 had numerically superior outcomes compared to those from trial S0433 which did not use an HDACI, but the difference was not statistically significant. Current studies are focused on finding biomarkers of response to HDACI.
Collapse
Affiliation(s)
| | - Hongli Li
- SWOG Statistical Center; Seattle Washington
| | | | | | | | | | - Ann Von Gehr
- Kaiser Permanente NCORP/Kaiser Permanente San Jose; San Jose California
| | | | - Richard I. Fisher
- Fox Chase Cancer Center/Temple University School of Medicine; Philadelphia Pennsylvania
| | | | | |
Collapse
|
40
|
Mohammadi A, Sharifi A, Pourpaknia R, Mohammadian S, Sahebkar A. Manipulating macrophage polarization and function using classical HDAC inhibitors: Implications for autoimmunity and inflammation. Crit Rev Oncol Hematol 2018; 128:1-18. [DOI: 10.1016/j.critrevonc.2018.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
|
41
|
Chen YB, McCarthy PL, Hahn T, Holstein SA, Ueda M, Kröger N, Bishop M, de Lima M. Methods to prevent and treat relapse after hematopoietic stem cell transplantation with tyrosine kinase inhibitors, immunomodulating drugs, deacetylase inhibitors, and hypomethylating agents. Bone Marrow Transplant 2018; 54:497-507. [DOI: 10.1038/s41409-018-0269-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 11/09/2022]
|
42
|
Gene-knocked out chimeric antigen receptor (CAR) T cells: Tuning up for the next generation cancer immunotherapy. Cancer Lett 2018; 423:95-104. [DOI: 10.1016/j.canlet.2018.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/15/2022]
|
43
|
Zhou T, Sun Y, Li M, Ding Y, Yin R, Li Z, Xie Q, Bao S, Cai W. Enhancer of zeste homolog 2-catalysed H3K27 trimethylation plays a key role in acute-on-chronic liver failure via TNF-mediated pathway. Cell Death Dis 2018; 9:590. [PMID: 29789597 PMCID: PMC5964223 DOI: 10.1038/s41419-018-0670-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
Acute-on-chronic liver failure is mainly due to host immunity self-destruction. The histone H3 lysine 27 (H3K27) trimethylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and regulates immunity, also involves pathogenesis of several liver diseases. The current study was to determine the role of methyltransferase EZH2 and its catalysed H3K27 trimethylation (H3K27me3) in liver failure, and to further investigate the potential target for liver failure treatment. EZH2 and its catalysed H3K27me3 were determined in peripheral blood mononuclear cells (PBMC) from liver failure patients and Kupffer cells from experimental mice. Furthermore, GSK126 (an inhibitor for EZH2 trimethylation function) was applied in liver failure mice in vivo, and lipopolysaccharide-stimulated mononuclear cells in vitro. EZH2 and H3K27me3 were significantly upregulated in human PBMC from liver failure patients or murine Kupffer cells from the liver failure animals, respectively. GSK126 ameliorated disease severity in liver failure mice, which maybe attribute to down-regulate circulating and hepatic proinflammatory cytokines, especially TNF via reducing H3K27me3. In-depth chromatin immunoprecipitation analysis unravelled that decreased enrichment of H3K27me3 on Tnf promotor, resulting in TNF elevation in Kupffer cells from liver failure mice. Nuclear factor kappa B (NF-κB) and protein kinase B (Akt) signalling pathways were activated upon lipopolysaccharide stimulation, but attenuated by using GSK126, accompanied with decreased TNF in vitro. In conclusion, EZH2 and H3K27me3 contributed to the pathogenesis of liver failure via triggering TNF and other indispensable proinflammatory cytokines. EZH2 was to modify H3K27me3 enrichment, as well as, activation of the downstream NF-κB and Akt signalling pathways.
Collapse
Affiliation(s)
- Tianhui Zhou
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ye Sun
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ming Li
- Department of Infectious Diseases, The Fifth People's Hospital of Suzhou, Suzhou, 215007, China
| | - Yongsen Ding
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rongkun Yin
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ziqiang Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shisan Bao
- Discipline of Pathology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
44
|
Phase I trial of histone deacetylase inhibitor panobinostat in addition to glucocorticoids for primary therapy of acute graft-versus-host disease. Bone Marrow Transplant 2018; 53:1434-1444. [PMID: 29670210 DOI: 10.1038/s41409-018-0163-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/05/2018] [Accepted: 02/25/2018] [Indexed: 11/08/2022]
Abstract
Glucocorticoids for primary therapy of acute GVHD have limited responses. A phase I/II trial tested 4 weeks of deacetylase inhibitor panobinostat started within 48 h of glucocorticoids (1 mg/kg/day prednisone or equivalent) as primary treatment for patients with either classic acute GVHD (n = 16) or acute GVHD overlapping with chronic (n = 6). Four patients received 2.5 mg/m2 IV three times a week (TIW). Subsequent to discontinuation of IV panobinostat, patients received oral doses (PO). Two patients treated with 10 mg TIW (PO level 1) had progressive GVHD, after which patients were treated with 5 mg TIW (PO level -1; n = 16); 31/41 adverse events were possibly related, including thrombocytopenia (n = 13), leukopenia (n = 7), hypercholesterolemia (n = 3), hypertriglyceridemia (n = 5), anemia (n = 1), fatigue (n = 1), and hepatobiliary disorder (n = 1). GVHD responses were complete (n = 12) or partial (n = 3), with 1 progression at PO level -1. T-regulatory cells increased at day 8, CD4/CD8 and monocytes exhibited enhanced H3 acetylation, and CD4 or CD8 numbers remained unchanged with a decreased interleukin 12p40 plasma level. Panobinostat in combination with prednisone is safe and warrants further testing in GVHD.
Collapse
|
45
|
A phase 2 study of vorinostat in locally advanced, recurrent, or metastatic adenoid cystic carcinoma. Oncotarget 2018; 8:32918-32929. [PMID: 28415633 PMCID: PMC5464838 DOI: 10.18632/oncotarget.16464] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Purpose Vorinostat is a histone deacetylase inhibitor (HDACi). Based on a confirmed partial response (PR) in an adenoid cystic carcinoma (ACC) patient treated with vorinostat in a prior phase 1 trial, we initiated this phase 2 trial. Methods: Vorinostat was administered orally 400 mg daily, 28 day cycles. The primary objective was to evaluate response rate (RR). Exploratory studies included whole exome sequencing (WES) of selected patients. Results Thirty patients were enrolled. Median age of patients was 53 years (range 21–73). Median number of cycles was 5 (range 1-66). Lymphopenia (n = 5), hypertension (n = 3), oral pain (n = 2), thromboembolic events (n = 2) and fatigue (n = 2) were the only grade 3 adverse events (AEs) that occurred in more than 1 patient. Eleven patients were dose reduced secondary to drug-related AEs. Two patients had a partial response (PR), with response durations of 53 and 7.2 months. One patient had a minor response with a decrease in ascites (for 19 cycles). Stable disease was the best response in 27 patients. Targeted and WES of 8 patients in this trial identified mutations in chromatin remodeling genes highlighting the role of the epigenome in ACC. Conclusion: Vorinostat demonstrated efficacy in patients with ACC supporting the inclusion of HDACi in future studies to treat ACC.
Collapse
|
46
|
Zhang Q, Dai Y, Cai Z, Mou L. HDAC Inhibitors: Novel Immunosuppressants for Allo- and Xeno- Transplantation. ChemistrySelect 2018. [DOI: 10.1002/slct.201702295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qing Zhang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| | - Yifan Dai
- Department Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing, Jiangsu 210029 China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center; Institute of Translational Medicine, Shenzhen Second People's Hospital; Sungang Road 3002, Futian District, Shenzhen Guangdong China
| |
Collapse
|
47
|
Reddy P, Ferrara JL. Graft-Versus-Host Disease and Graft-Versus-Leukemia Responses. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
48
|
Yanginlar C, Logie C. HDAC11 is a regulator of diverse immune functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:54-59. [PMID: 29222071 DOI: 10.1016/j.bbagrm.2017.12.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/02/2017] [Accepted: 12/02/2017] [Indexed: 12/23/2022]
Abstract
Histone deacetylases deacetylate histone and non-histone protein targets. Aberrant HDAC expression and function have been observed in several diseases, which make these enzymes attractive treatment targets. Here, we summarize recent literature that addresses the roles of HDAC11 on the regulation of different immune cells including neutrophils, myeloid derived suppressor cells and T-cells. HDAC11 was initially identified as a negative regulator of the well-known anti-inflammatory cytokine IL-10. Hence, antagonizing HDAC11 activity may have anti-tumor potential, whereas activating HDAC11 may be useful to treat chronic inflammation or autoimmunity. However, to anticipate biological side-effects of HDAC11 modulators, more molecular insights will be required.
Collapse
Affiliation(s)
- Cansu Yanginlar
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Colin Logie
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
49
|
Kasahara H, Kondo T, Nakatsukasa H, Chikuma S, Ito M, Ando M, Kurebayashi Y, Sekiya T, Yamada T, Okamoto S, Yoshimura A. Generation of allo-antigen-specific induced Treg stabilized by vitamin C treatment and its application for prevention of acute graft versus host disease model. Int Immunol 2017; 29:457-469. [DOI: 10.1093/intimm/dxx060] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/28/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hidenori Kasahara
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Taisuke Kondo
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroko Nakatsukasa
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Makoto Ando
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takashi Sekiya
- Department of Immune Regulation, Research Institute, National Center for Global Health and Medicine, Japan
| | - Taketo Yamada
- Department of Pathology, Saitama Medical University, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
50
|
Sumpf K, Nast R, Downie B, Salinas G, Lüder CG. Histone deacetylase inhibitor MS-275 augments expression of a subset of IFN-γ-regulated genes in Toxoplasma gondii-infected macrophages but does not improve parasite control. Exp Parasitol 2017; 180:45-54. [DOI: 10.1016/j.exppara.2017.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/10/2017] [Accepted: 02/07/2017] [Indexed: 01/17/2023]
|