1
|
Dinh J, Yi D, Lin F, Xue P, Holloway ND, Xie Y, Ibe NU, Nguyen HP, Viscarra JA, Wang Y, Sul HS. The microprotein C16orf74/MICT1 promotes thermogenesis in brown adipose tissue. EMBO J 2025:10.1038/s44318-025-00444-x. [PMID: 40355556 DOI: 10.1038/s44318-025-00444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
Brown and beige adipose tissues are metabolically beneficial for increasing energy expenditure via thermogenesis, mainly through UCP1 (uncoupling protein 1). Here, we identify C16orf74, subsequently named MICT1 (microprotein for thermogenesis 1), as a microprotein that is specifically and highly expressed in brown adipose tissue (BAT) and is induced upon cold exposure. MICT1 interacts with protein phosphatase 2B (PP2B, calcineurin) through the docking motif PNIIIT, thereby interfering with dephosphorylation of the regulatory subunit of protein kinase A (PKA), RIIβ, and potentiating PKA activity in brown adipocytes. Overexpression of MICT1 in differentiated brown adipocytes promotes thermogenesis, showing increased oxygen consumption rate (OCR) with higher thermogenic gene expression during β3-adrenergic stimulation, while knockdown of MICT1 impairs thermogenic responses. Moreover, BAT-specific MICT1 ablation in mice suppresses thermogenic capacity to increase adiposity and insulin resistance. Conversely, MICT1 overexpression in BAT or treating mice with a chemical inhibitor that targets the PP2B docking motif of MICT1 enhances thermogenesis. This results in cold tolerance and increased energy expenditure, protection against diet-induced and genetic obesity and insulin resistance, thus suggesting a therapeutic potential of MICT1 targeting.
Collapse
Affiliation(s)
- Jennie Dinh
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, 94720, USA
| | - Danielle Yi
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, 94720, USA
- Endocrinology Program, University of California, Berkeley, CA, 94720, USA
| | - Frances Lin
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, 94720, USA
| | - Pengya Xue
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, 94720, USA
| | - Nicholas D Holloway
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, 94720, USA
- Endocrinology Program, University of California, Berkeley, CA, 94720, USA
| | - Ying Xie
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, 94720, USA
| | - Nnejiuwa U Ibe
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, 94720, USA
| | - Hai P Nguyen
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, 94720, USA
- Endocrinology Program, University of California, Berkeley, CA, 94720, USA
- University of Texas at Austin, Austin, TX, 78723, USA
| | - Jose A Viscarra
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, 94720, USA
| | - Yuhui Wang
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, 94720, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, 94720, USA.
- Endocrinology Program, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Patalano SD, Fuxman Bass P, Fuxman Bass JI. Transcription factors in the development and treatment of immune disorders. Transcription 2025; 16:118-140. [PMID: 38100543 PMCID: PMC11970766 DOI: 10.1080/21541264.2023.2294623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Immune function is highly controlled at the transcriptional level by the binding of transcription factors (TFs) to promoter and enhancer elements. Several TF families play major roles in immune gene expression, including NF-κB, STAT, IRF, AP-1, NRs, and NFAT, which trigger anti-pathogen responses, promote cell differentiation, and maintain immune system homeostasis. Aberrant expression, activation, or sequence of isoforms and variants of these TFs can result in autoimmune and inflammatory diseases as well as hematological and solid tumor cancers. For this reason, TFs have become attractive drug targets, even though most were previously deemed "undruggable" due to their lack of small molecule binding pockets and the presence of intrinsically disordered regions. However, several aspects of TF structure and function can be targeted for therapeutic intervention, such as ligand-binding domains, protein-protein interactions between TFs and with cofactors, TF-DNA binding, TF stability, upstream signaling pathways, and TF expression. In this review, we provide an overview of each of the important TF families, how they function in immunity, and some related diseases they are involved in. Additionally, we discuss the ways of targeting TFs with drugs along with recent research developments in these areas and their clinical applications, followed by the advantages and disadvantages of targeting TFs for the treatment of immune disorders.
Collapse
Affiliation(s)
- Samantha D. Patalano
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Paula Fuxman Bass
- Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan I. Fuxman Bass
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
3
|
Berber M, Penton D. Calcineurin inhibitors and the renin-angiotensin-aldosterone system. Acta Physiol (Oxf) 2024; 240:e14248. [PMID: 39460458 DOI: 10.1111/apha.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Calcineurin inhibitors (CnIs) are effective immunosuppressants with decades of accumulated experience in treating immune disorders and, most notably, solid organ transplantation. While CnIs have significantly increased graft survival and transformed the patient standard of care, their use has been overshadowed by a number of undesired side effects. For instance, CnI-associated nephrotoxicity has been reported since early studies and remains a major therapeutic concern. The occurrence of several ion imbalances alongside hypertension was also noted early on, indicating the involvement of the renin-angiotensin-aldosterone system (RAAS) in CnI-mediated toxicity. However, the literature in this field is crowded with conflicting reports from clinical trials as well as studies using animal and invitro models. With this review, we aim to provide a structured and updated overview of the physiological and pathophysiological evidence supporting the involvement of the classical RAAS in CnI-associated toxicity.
Collapse
Affiliation(s)
- Mesut Berber
- Department of Pediatrics, Harvard Medical School and Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - David Penton
- Electrophysiology Facility, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Fischer MA, Jia L, Edelblum KL. Type I IFN Induces TCR-dependent and -independent Antimicrobial Responses in γδ Intraepithelial Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1380-1391. [PMID: 39311642 PMCID: PMC11493514 DOI: 10.4049/jimmunol.2400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Intraepithelial lymphocytes (IELs) expressing the TCRγδ survey the intestinal epithelium to limit the invasion of microbial pathogens. The production of type I IFN is a central component of an antiviral immune response, yet how these proinflammatory cytokines contribute to γδ IEL effector function remains unclear. Based on the unique activation status of IELs and their ability to bridge innate and adaptive immunity, we investigated the extent to which type I IFN signaling modulates γδ IEL function. Using an ex vivo culture model, we find that type I IFN alone is unable to drive IFN-γ production, yet low-level TCR activation synergizes with type I IFN to induce IFN-γ production in murine γδ IELs. Further investigation into the underlying molecular mechanisms of costimulation revealed that TCRγδ-mediated activation of NFAT and JNK is required for type I IFN to promote IFN-γ expression in a STAT4-dependent manner. Whereas type I IFN rapidly upregulates antiviral gene expression independent of a basal TCRγδ signal, neither tonic TCR triggering nor the presence of a TCR agonist was sufficient to elicit type I IFN-induced IFN-γ production in vivo. However, bypassing proximal TCR signaling events synergized with IFNAR/STAT4 activation to induce γδ IEL IFN-γ production. These findings indicate that γδ IELs contribute to host defense in response to type I IFN by mounting a rapid antimicrobial response independent of TCRγδ signaling, and may produce IFN-γ in a TCR-dependent manner under permissive conditions.
Collapse
Affiliation(s)
- Matthew A Fischer
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Luo Jia
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
5
|
Sato Y, Habara M, Hanaki S, Sharif J, Tomiyasu H, Miki Y, Shimada M. Calcineurin/NFATc1 pathway represses cellular cytotoxicity by modulating histone H3 expression. Sci Rep 2024; 14:14732. [PMID: 38926604 PMCID: PMC11208570 DOI: 10.1038/s41598-024-65769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Excess amounts of histones in the cell induce mitotic chromosome loss and genomic instability, and are therefore detrimental to cell survival. In yeast, excess histones are degraded by the proteasome mediated via the DNA damage response factor Rad53. Histone expression, therefore, is tightly regulated at the protein level. Our understanding of the transcriptional regulation of histone genes is far from complete. In this study, we found that calcineurin inhibitor treatment increased histone protein levels, and that the transcription factor NFATc1 (nuclear factor of activated T cells 1) repressed histone transcription and acts downstream of the calcineurin. We further revealed that NFATc1 binds to the promoter regions of many histone genes and that histone transcription is downregulated in a manner dependent on intracellular calcium levels. Indeed, overexpression of histone H3 markedly inhibited cell proliferation. Taken together, these findings suggest that NFATc1 prevents the detrimental effects of histone H3 accumulation by inhibiting expression of histone at the transcriptional level.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Makoto Habara
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Shunsuke Hanaki
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Jafar Sharif
- Developmental Genetics Group, Center for Integrative Medical Sciences (IMS), RIKEN, 1-7-22 Suehiro, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Haruki Tomiyasu
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Yosei Miki
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan.
- Department of Molecular Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
6
|
Fischer MA, Jia L, Edelblum KL. Type I interferon induces TCR-dependent and -independent antimicrobial responses in γδ intraepithelial lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584444. [PMID: 38559228 PMCID: PMC10979951 DOI: 10.1101/2024.03.11.584444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Intraepithelial lymphocytes (IEL) expressing the γδ T cell receptor (TCR) survey the intestinal epithelium to limit the invasion of microbial pathogens. The production of type I interferon (IFN) is a central component of an antiviral immune response, yet how these pro-inflammatory cytokines contribute to γδ IEL effector function remains unclear. Based on the unique activation status of IELs, and their ability to bridge innate and adaptive immunity, we investigated the extent to which type I IFN signaling modulates γδ IEL function. Using an ex vivo culture model, we find that type I IFN alone is unable to drive IFNγ production, yet low level TCR activation synergizes with type I IFN to induce IFNγ production in murine γδ IELs. Further investigation into the underlying molecular mechanisms of co-stimulation revealed that TCRγδ-mediated activation of NFAT and JNK is required for type I IFN to promote IFNγ expression in a STAT4- dependent manner. Whereas type I IFN rapidly upregulates antiviral gene expression independent of a basal TCRγδ signal, neither tonic TCR triggering nor the presence of a TCR agonist was sufficient to elicit type I IFN-induced IFNγ production in vivo . However, bypassing proximal TCR signaling events synergized with IFNAR/STAT4 activation to induce γδ IEL IFNγ production. These findings indicate that γδ IELs contribute to host defense in response to type I IFN by mounting a rapid antimicrobial response independent of TCRγδ signaling, and under permissive conditions, produce IFNγ in a TCR-dependent manner.
Collapse
|
7
|
Mackiewicz J, Lisek M, Boczek T. Targeting CaN/NFAT in Alzheimer's brain degeneration. Front Immunol 2023; 14:1281882. [PMID: 38077352 PMCID: PMC10701682 DOI: 10.3389/fimmu.2023.1281882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive functions. While the exact causes of this debilitating disorder remain elusive, numerous investigations have characterized its two core pathologies: the presence of β-amyloid plaques and tau tangles. Additionally, multiple studies of postmortem brain tissue, as well as results from AD preclinical models, have consistently demonstrated the presence of a sustained inflammatory response. As the persistent immune response is associated with neurodegeneration, it became clear that it may also exacerbate other AD pathologies, providing a link between the initial deposition of β-amyloid plaques and the later development of neurofibrillary tangles. Initially discovered in T cells, the nuclear factor of activated T-cells (NFAT) is one of the main transcription factors driving the expression of inflammatory genes and thus regulating immune responses. NFAT-dependent production of inflammatory mediators is controlled by Ca2+-dependent protein phosphatase calcineurin (CaN), which dephosphorylates NFAT and promotes its transcriptional activity. A substantial body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to several pathologies observed in AD, including neuronal apoptosis, synaptic deficits, and glia activation. In view of this, the role of NFAT isoforms in AD has been linked to disease progression at different stages, some of which are paralleled to diminished cognitive status. The use of classical inhibitors of CaN/NFAT signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of AD by diminishing β-amyloid neurotoxicity and neuroinflammation. In this article, we discuss the recent findings related to the contribution of CaN/NFAT signaling to the progression of AD and highlight the possible benefits of targeting this pathway in AD treatment.
Collapse
Affiliation(s)
| | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
8
|
Hua L, Wang D, Wang K, Wang Y, Gu J, Zhang Q, You Q, Wang L. Design of Tracers in Fluorescence Polarization Assay for Extensive Application in Small Molecule Drug Discovery. J Med Chem 2023; 66:10934-10958. [PMID: 37561645 DOI: 10.1021/acs.jmedchem.3c00881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Development of fluorescence polarization (FP) assays, especially in a competitive manner, is a potent and mature tool for measuring the binding affinities of small molecules. This approach is suitable for high-throughput screening (HTS) for initial ligands and is also applicable for further study of the structure-activity relationships (SARs) of candidate compounds for drug discovery. Buffer and tracer, especially rational design of the tracer, play a vital role in an FP assay system. In this perspective, we provided different kinds of approaches for tracer design based on successful cases in recent years. We classified these tracers by different types of ligands in tracers, including peptide, nucleic acid, natural product, and small molecule. To make this technology accessible for more targets, we briefly described the basic theory and workflow, followed by highlighting the design and application of typical FP tracers from a perspective of medicinal chemistry.
Collapse
Affiliation(s)
- Liwen Hua
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Danni Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Keran Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
9
|
Mondal R, Banerjee C, Nandy S, Roy M, Chakraborty J. Calcineurin inhibition protects against dopamine toxicity and attenuates behavioral decline in a Parkinson's disease model. Cell Biosci 2023; 13:140. [PMID: 37528492 PMCID: PMC10394860 DOI: 10.1186/s13578-023-01068-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD), a highly prevalent neuro-motor disorder is caused due to progressive loss of dopaminergic (DAergic) neurons at substantia nigra region of brain. This leads to depleted dopamine (DA) content at striatum, thus affecting the fine tuning of basal ganglia. In patients, this imbalance is manifested by akinesia, catalepsy and tremor. PD associated behavioral dysfunctions are frequently mitigated by l-DOPA (LD) therapy, a precursor for DA synthesis. Due to progressive neurodegeneration, LD eventually loses applicability in PD. Although DA is cytotoxic, it is unclear whether LD therapy can accelerate PD progression or not. LD itself does not lead to neurodegeneration in vivo, but previous reports demonstrate that LD treatment mediated excess DA can potentiate neurotoxicity when PD associated genetic or epigenetic aberrations are involved. So, minimizing DA toxicity during the therapy is an absolute necessity to halt or slowdown PD progression. The two major contributing factors associated with DA toxicity are: degradation by Monoamine oxidase and DAquinone (DAQ) formation. RESULTS Here, we report that apoptotic mitochondrial fragmentation via Calcineurin (CaN)-DRP1 axis is a common downstream event for both these initial cues, inhibiting which can protect cells from DA toxicity comprehensively. No protective effect is observed, in terms of cell survival when only PxIxIT domain of CaN is obstructed, demonstrating the importance to block DRP1-CaN axis specifically. Further, evaluation of the impact of DA exposure on PD progression in a mice model reveal that LD mediated behavioral recovery diminishes with time, mostly because of continued DAergic cell death and dendritic spine loss at striatum. CaN inhibition, alone or in combination with LD, offer long term behavioral protection. This protective effect is mediated specifically by hindering CaN-DRP1 axis, whereas inhibiting interaction between CaN and other substrates, including proteins involved in neuro-inflammation, remained ineffective when LD is co-administered. CONCLUSIONS In this study, we conclude that DA toxicity can be circumvented by CaN inhibition and it can mitigate PD related behavioral aberrations by protecting neuronal architecture at striatum. We propose that CaN inhibitors might extend the therapeutic efficacy of LD treatment.
Collapse
Affiliation(s)
- Rupsha Mondal
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chayan Banerjee
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumangal Nandy
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Moumita Roy
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Joy Chakraborty
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Zhang H, Xu M, Li H, Mai X, Sun J, Mi L, Ma J, Zhu X, Fei Y. Detection speed optimization of the OI-RD microscope for ultra-high throughput screening. BIOMEDICAL OPTICS EXPRESS 2023; 14:2386-2399. [PMID: 37206144 PMCID: PMC10191655 DOI: 10.1364/boe.487563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023]
Abstract
The oblique-incidence reflectivity difference (OI-RD) microscope is a label-free detection system for microarrays that has many successful applications in high throughput drug screening. The increase and optimization of the detection speed of the OI-RD microscope will enable it to be a potential ultra-high throughput screening tool. This work presents a series of optimization methods that can significantly reduce the time to scan an OI-RD image. The wait time for the lock-in amplifier was decreased by the proper selection of the time constant and development of a new electronic amplifier. In addition, the time for the software to acquire data and for translation stage movement was also minimized. As a result, the detection speed of the OI-RD microscope is 10 times faster than before, making the OI-RD microscope suitable for ultra-high throughput screening applications.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology,
Fudan University, Shanghai, 200433, China
| | - Mengjing Xu
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology,
Fudan University, Shanghai, 200433, China
| | - Haofeng Li
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology,
Fudan University, Shanghai, 200433, China
| | - Xiaohan Mai
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology,
Fudan University, Shanghai, 200433, China
| | - Jiawei Sun
- Department of Science and Technology, Shanghai Deyu Intelligent Technology Co., Ltd., Shanghai, 201413, China
| | - Lan Mi
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology,
Fudan University, Shanghai, 200433, China
| | - Jiong Ma
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology,
Fudan University, Shanghai, 200433, China
| | - Xiangdong Zhu
- Department of Physics, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology,
Fudan University, Shanghai, 200433, China
| |
Collapse
|
11
|
Macchi R, Sotelo AD, Parrado AC, Salaverry LS, Blanco GA, Castro MS, Rey-Roldán EB, Canellada AM. Losartan impairs HTR-8/SVneo trophoblast migration through inhibition of angiotensin II-induced pro-inflammatory profile in human endometrial stromal cells. Toxicol Appl Pharmacol 2023; 461:116383. [PMID: 36682589 DOI: 10.1016/j.taap.2023.116383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
A deep interaction between the endometrium and the invading trophoblast occurs during implantation in humans, with the acquisition of uterine receptivity to the invading embryo promoted by an elevation of pro-inflammatory cytokines in the endometrium, and the invasiveness of decidualizing endometrial stromal cells, augmented by trophoblast-derived signals. Considering that usage of angiotensin II type 1 (AT1) receptor blockers, among other renin-angiotensin system (RAS) antagonists, is associated with adverse pregnancy outcomes, here we aim to analyse the involvement of AT1 receptor in the reciprocal dialogue occurring between endometrial stroma and trophoblast cells. In human endometrial stromal cells (T-HESC) pre-incubated with a decidualization cocktail, angiotensin (Ang) II increased protein expression of prolactin and FOXO1, markers of endometrial decidualization, while promoting nuclear translocation of FOXO1. In addition, Ang II treatment increased CXCL8, and matrix metalloprotease (MMP)-2 levels in T-HESC. Incubation with the AT1 receptor blocker losartan or with an NFAT signalling inhibitor, decreased Ang II-induced secretion of prolactin, CXCL8, and MMP-2 in T-HESC. In a wound healing assay, conditioned medium (CM) obtained from Ang II-treated T-HESC, but not CM from losartan-pre-incubated T-HESC, increased migration of HTR-8/SVneo trophoblasts, effect that was inhibited in the presence of a CXCL8-neutralizing antibody. An increased secretion of CXCL8 and MMP-2 was observed after treatment of T-HESC with CM obtained from HTR-8/SVneo cells, which was not observed in T-HESC pre-incubated with losartan or with the NFAT inhibitor. This study evidenced a reciprocal RAS-coded messaging between trophoblast and ESC which is affected by the AT1 receptor blocker losartan.
Collapse
Affiliation(s)
- Rosario Macchi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Agustina D Sotelo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Andrea C Parrado
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Luciana S Salaverry
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Guillermo A Blanco
- Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Marisa S Castro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Estela B Rey-Roldán
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Andrea M Canellada
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina.
| |
Collapse
|
12
|
He S, Lim GE. The Application of High-Throughput Approaches in Identifying Novel Therapeutic Targets and Agents to Treat Diabetes. Adv Biol (Weinh) 2023; 7:e2200151. [PMID: 36398493 DOI: 10.1002/adbi.202200151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/04/2022] [Indexed: 11/19/2022]
Abstract
During the past decades, unprecedented progress in technologies has revolutionized traditional research methodologies. Among these, advances in high-throughput drug screening approaches have permitted the rapid identification of potential therapeutic agents from drug libraries that contain thousands or millions of molecules. Moreover, high-throughput-based therapeutic target discovery strategies can comprehensively interrogate relationships between biomolecules (e.g., gene, RNA, and protein) and diseases and significantly increase the authors' knowledge of disease mechanisms. Diabetes is a chronic disease primarily characterized by the incapacity of the body to maintain normoglycemia. The prevalence of diabetes in modern society has become a severe public health issue that threatens the well-being of millions of patients. Although a number of pharmacological treatments are available, there is no permanent cure for diabetes, and discovering novel therapeutic targets and agents continues to be an urgent need. The present review discusses the technical details of high-throughput screening approaches in drug discovery, followed by introducing the applications of such approaches to diabetes research. This review aims to provide an example of the applicability of high-throughput technologies in facilitating different aspects of disease research.
Collapse
Affiliation(s)
- Siyi He
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| |
Collapse
|
13
|
Delint-Ramirez I, Konada L, Heady L, Rueda R, Jacome ASV, Marlin E, Marchioni C, Segev A, Kritskiy O, Yamakawa S, Reiter AH, Tsai LH, Madabhushi R. Calcineurin dephosphorylates topoisomerase IIβ and regulates the formation of neuronal-activity-induced DNA breaks. Mol Cell 2022; 82:3794-3809.e8. [PMID: 36206766 PMCID: PMC9990814 DOI: 10.1016/j.molcel.2022.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/27/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022]
Abstract
Neuronal activity induces topoisomerase IIβ (Top2B) to generate DNA double-strand breaks (DSBs) within the promoters of neuronal early response genes (ERGs) and facilitate their transcription, and yet, the mechanisms that control Top2B-mediated DSB formation are unknown. Here, we report that stimulus-dependent calcium influx through NMDA receptors activates the phosphatase calcineurin to dephosphorylate Top2B at residues S1509 and S1511, which stimulates its DNA cleavage activity and induces it to form DSBs. Exposing mice to a fear conditioning paradigm also triggers Top2B dephosphorylation at S1509 and S1511 in the hippocampus, indicating that calcineurin also regulates Top2B-mediated DSB formation following physiological neuronal activity. Furthermore, calcineurin-Top2B interactions following neuronal activity and sites that incur activity-induced DSBs are preferentially localized at the nuclear periphery in neurons. Together, these results reveal how radial gene positioning and the compartmentalization of activity-dependent signaling govern the position and timing of activity-induced DSBs and regulate gene expression patterns in neurons.
Collapse
Affiliation(s)
- Ilse Delint-Ramirez
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lahiri Konada
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lance Heady
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Richard Rueda
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Eric Marlin
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte Marchioni
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amir Segev
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Oleg Kritskiy
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Satoko Yamakawa
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ram Madabhushi
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
NAD + metabolism drives astrocyte proinflammatory reprogramming in central nervous system autoimmunity. Proc Natl Acad Sci U S A 2022; 119:e2211310119. [PMID: 35994674 PMCID: PMC9436380 DOI: 10.1073/pnas.2211310119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Astrocytes are the most abundant glial cells in the CNS, and their dysfunction contributes to the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis (EAE). Recent advances highlight the pivotal role of cellular metabolism in programming immune responses. However, the underlying immunometabolic mechanisms that drive astrocyte pathogenicity remain elusive. Nicotinamide adenine dinucleotide (NAD+) is a vital coenzyme involved in cellular redox reactions and a substrate for NAD+-dependent enzymes. Cellular NAD+ levels are dynamically controlled by synthesis and degradation, and dysregulation of this balance has been associated with inflammation and disease. Here, we demonstrate that cell-autonomous generation of NAD+ via the salvage pathway regulates astrocyte immune function. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in the salvage pathway, results in depletion of NAD+, inhibits oxidative phosphorylation, and limits astrocyte inflammatory potential. We identified CD38 as the main NADase up-regulated in reactive mouse and human astrocytes in models of neuroinflammation and MS. Genetic or pharmacological blockade of astrocyte CD38 activity augmented NAD+ levels, suppressed proinflammatory transcriptional reprogramming, impaired chemotactic potential to inflammatory monocytes, and ameliorated EAE. We found that CD38 activity is mediated via calcineurin/NFAT signaling in mouse and human reactive astrocytes. Thus, NAMPT-NAD+-CD38 circuitry in astrocytes controls their ability to meet their energy demands and drives the expression of proinflammatory transcriptional modules, contributing to CNS pathology in EAE and, potentially, MS. Our results identify candidate therapeutic targets in MS.
Collapse
|
15
|
Li L, Zheng J, Stevens M, Oltean S. A repositioning screen using an FGFR2 splicing reporter reveals compounds that regulate epithelial-mesenchymal transitions and inhibit growth of prostate cancer xenografts. Mol Ther Methods Clin Dev 2022; 25:147-157. [PMID: 35402635 PMCID: PMC8971352 DOI: 10.1016/j.omtm.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/13/2022] [Indexed: 12/13/2022]
Abstract
Research in the area of hallmarks of cancer has opened the possibility of designing new therapies based on modulating these cancer properties. We present here a screen designed to find chemicals that modulate epithelial-mesenchymal transitions (EMTs) in prostate cancer. For screening, we used a repurposing library and, as a readout, an FGFR2-based splicing reporter, which has been shown previously to be a sensor for EMTs. Various properties of cancer cells were assessed, signaling pathways investigated, and in vivo experiments in nude mice xenografts performed. The screen yielded three hit compounds (a T-type Ca channel inhibitor, an L-type Ca channel inhibitor, and an opioid antagonist) that switch FGFR2 splicing and induce an epithelial phenotype in prostate cancer cells. The compounds affected differently various properties of cancer cells, but all of them decreased cell migration, which is in line with modulating EMTs. We further present mechanistic insights into one of the compounds, nemadipine-A. The administration of nemadipine-A intraperitoneally in a nude mouse xenograft model of prostate cancer slowed tumor growth. To conclude, we show that knowledge of the molecular mechanisms that connect alternative splicing and various cancer properties may be used as a platform for drug development.
Collapse
Affiliation(s)
- Ling Li
- Institute of Biomedical & Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, St Luke’s Campus, Exeter EX1 2LU, UK
| | - Jinxia Zheng
- Institute of Biomedical & Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, St Luke’s Campus, Exeter EX1 2LU, UK
| | - Megan Stevens
- Institute of Biomedical & Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, St Luke’s Campus, Exeter EX1 2LU, UK
| | - Sebastian Oltean
- Institute of Biomedical & Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, St Luke’s Campus, Exeter EX1 2LU, UK
- Corresponding author Sebastian Oltean, MD, PhD, Institute of Biomedical & Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, St Luke’s Campus, Exeter, EX1 2LU, UK.
| |
Collapse
|
16
|
Samanta J, Mondal A, Das S, Chakraborty S, Sengupta A. Induction of cardiomyocyte calcification is dependent on FoxO1/NFATc3/Runx2 signaling. In Vitro Cell Dev Biol Anim 2021; 57:973-986. [PMID: 34845564 DOI: 10.1007/s11626-021-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
Cardiovascular disorders (CAVDs) being a major concern over the past several years due to the huge number of morbidity and mortality worldwide, a number of studies have been done on the various aspects of cardiac problems. One of the various CAVDs is cardiovascular calcification. A number of investigations and research work have been done previously on the molecular mechanism of vascular and heart valve calcification but the mechanism of myocardial and cardiomyocyte calcification has remained uninvestigated. A number of case studies have shown the presence of calcific deposits in the myocardial/ventricular region of the heart in fetal condition as well as in individuals of different ages but no detailed studies have been done yet. In this study, we have mainly investigated the role of Forkhead box transcription factor FoxO1 and nuclear factor of activated T-cells NFATc3 in cardiomyocyte calcification. Our studies in H9c2 cardiomyocytes show that calcific deposition in cardiomyocytes does not occur in 15 d but upon osteogenic induction for 1 mo where FoxO1 expression gets reduced thereby increasing the expression of its downstream target NFATc3, thus increasing the expression of the osteogenic marker Runx2. Detailed studies on the molecular mechanism of cardiomyocyte calcification will help in finding out therapeutic strategies in the treatment of cardiac calcification.
Collapse
Affiliation(s)
- Jayeeta Samanta
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, West Bengal, India
| | - Arunima Mondal
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, West Bengal, India
| | - Shreya Das
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, West Bengal, India
| | - Santanu Chakraborty
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India
| | - Arunima Sengupta
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
17
|
Giblin MJ, Smith TE, Winkler G, Pendergrass HA, Kim MJ, Capozzi ME, Yang R, McCollum GW, Penn JS. Nuclear factor of activated T-cells (NFAT) regulation of IL-1β-induced retinal vascular inflammation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166238. [PMID: 34343639 PMCID: PMC8565496 DOI: 10.1016/j.bbadis.2021.166238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022]
Abstract
Chronic low-grade retinal inflammation is an essential contributor to the pathogenesis of diabetic retinopathy (DR). It is characterized by increased retinal cell expression and secretion of a variety of inflammatory cytokines; among these, IL-1β has the reputation of being a major driver of cytokine-induced inflammation. IL-1β and other cytokines drive inflammatory changes that cause damage to retinal cells, leading to the hallmark vascular lesions of DR; these include increased leukocyte adherence, vascular permeability, and capillary cell death. Nuclear factor of activated T-cells (NFAT) is a transcriptional regulator of inflammatory cytokines and adhesion molecules and is expressed in retinal cells. Consequently, it may influence multiple pathogenic steps early in DR. We investigated the NFAT-dependency of IL-1β-induced inflammation in human Müller cells (hMC) and human retinal microvascular endothelial cells (hRMEC). Our results show that an NFAT inhibitor, Inhibitor of NFAT-Calcineurin Association-6 (INCA-6), decreased IL-1β-induced expression of IL-1β and TNFα in hMC, while having no effect on VEGF, CCL2, or CCL5 expression. We also demonstrate that INCA-6 attenuated IL-1β-induced increases of IL-1β, TNFα, IL-6, CCL2, and CCL5 (inflammatory cytokines and chemokines), and ICAM-1 and E-selectin (leukocyte adhesion molecules) expression in hRMEC. INCA-6 similarly inhibited IL-1β-induced increases in leukocyte adhesion in both hRMEC monolayers in vitro and an acute model of retinal inflammation in vivo. Finally, INCA-6 rescued IL-1β-induced permeability in both hRMEC monolayers in vitro and an acute model of retinal inflammation in vivo. Taken together, these data demonstrate the potential of NFAT inhibition to mitigate retinal inflammation secondary to diabetes.
Collapse
Affiliation(s)
- Meredith J Giblin
- Department of Cell and Developmental Biology, Vanderbilt University, United States of America.
| | - Taylor E Smith
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - Garrett Winkler
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - Hannah A Pendergrass
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - Minjae J Kim
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, United States of America
| | - Rong Yang
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - Gary W McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| | - John S Penn
- Department of Cell and Developmental Biology, Vanderbilt University, United States of America; Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, United States of America
| |
Collapse
|
18
|
Williams RB, Johnson CN. A Review of Calcineurin Biophysics with Implications for Cardiac Physiology. Int J Mol Sci 2021; 22:ijms222111565. [PMID: 34768996 PMCID: PMC8583826 DOI: 10.3390/ijms222111565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Calcineurin, also known as protein phosphatase 2B, is a heterodimeric serine threonine phosphatase involved in numerous signaling pathways. During the past 50 years, calcineurin has been the subject of extensive investigation. Many of its cellular and physiological functions have been described, and the underlying biophysical mechanisms are the subject of active investigation. With the abundance of techniques and experimental designs utilized to study calcineurin and its numerous substrates, it is difficult to reconcile the available information. There have been a plethora of reports describing the role of calcineurin in cardiac disease. However, a physiological role of calcineurin in healthy cardiomyocyte function requires clarification. Here, we review the seminal biophysical and structural details that are responsible for the molecular function and inhibition of calcineurin. We then focus on literature describing the roles of calcineurin in cardiomyocyte physiology and disease.
Collapse
Affiliation(s)
- Ryan B. Williams
- Department of Chemistry, Mississippi State University, Starkville, MS 39759, USA;
| | - Christopher N. Johnson
- Department of Chemistry, Mississippi State University, Starkville, MS 39759, USA;
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
19
|
Miyata Y, Fuse H, Tokumoto S, Hiki Y, Deviatiiarov R, Yoshida Y, Yamada TG, Cornette R, Gusev O, Shagimardanova E, Funahashi A, Kikawada T. Cas9-mediated genome editing reveals a significant contribution of calcium signaling pathways to anhydrobiosis in Pv11 cells. Sci Rep 2021; 11:19698. [PMID: 34611198 PMCID: PMC8492635 DOI: 10.1038/s41598-021-98905-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/16/2021] [Indexed: 01/01/2023] Open
Abstract
Pv11 is an insect cell line established from the midge Polypedilum vanderplanki, whose larval form exhibits an extreme desiccation tolerance known as anhydrobiosis. Pv11 itself is also capable of anhydrobiosis, which is induced by trehalose treatment. Here we report the successful construction of a genome editing system for Pv11 cells and its application to the identification of signaling pathways involved in anhydrobiosis. Using the Cas9-mediated gene knock-in system, we established Pv11 cells that stably expressed GCaMP3 to monitor intracellular Ca2+ mobilization. Intriguingly, trehalose treatment evoked a transient increase in cytosolic Ca2+ concentration, and further experiments revealed that the calmodulin-calcineurin-NFAT pathway contributes to tolerance of trehalose treatment as well as desiccation tolerance, while the calmodulin-calmodulin kinase-CREB pathway conferred only desiccation tolerance on Pv11 cells. Thus, our results show a critical contribution of the trehalose-induced Ca2+ surge to anhydrobiosis and demonstrate temporally different roles for each signaling pathway.
Collapse
Affiliation(s)
- Yugo Miyata
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hiroto Fuse
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoko Tokumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yusuke Hiki
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Ruslan Deviatiiarov
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Takahiro G Yamada
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Richard Cornette
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Oleg Gusev
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa, Japan
| | - Elena Shagimardanova
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Takahiro Kikawada
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
20
|
NFAT transcription factors are essential and redundant actors for leukemia initiating potential in T-cell acute lymphoblastic leukemia. PLoS One 2021; 16:e0254184. [PMID: 34234374 PMCID: PMC8263285 DOI: 10.1371/journal.pone.0254184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy with few available targeted therapies. We previously reported that the phosphatase calcineurin (Cn) is required for LIC (leukemia Initiating Capacity) potential of T-ALL pointing to Cn as an interesting therapeutic target. Calcineurin inhibitors have however unwanted side effect. NFAT transcription factors play crucial roles downstream of calcineurin during thymocyte development, T cell differentiation, activation and anergy. Here we elucidate NFAT functional relevance in T-ALL. Using murine T-ALL models in which Nfat genes can be inactivated either singly or in combination, we show that NFATs are required for T-ALL LIC potential and essential to survival, proliferation and migration of T-ALL cells. We also demonstrate that Nfat genes are functionally redundant in T-ALL and identified a node of genes commonly deregulated upon Cn or NFAT inactivation, which may serve as future candidate targets for T-ALL.
Collapse
|
21
|
Sompol P, Gollihue JL, Kraner SD, Artiushin IA, Cloyd RA, Chishti EA, Koren SA, Nation GK, Abisambra JF, Huzian O, Nagy LI, Santha M, Hackler L, Puskas LG, Norris CM. Q134R: Small chemical compound with NFAT inhibitory properties improves behavioral performance and synapse function in mouse models of amyloid pathology. Aging Cell 2021; 20:e13416. [PMID: 34117818 PMCID: PMC8282246 DOI: 10.1111/acel.13416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
Inhibition of the protein phosphatase calcineurin (CN) ameliorates pathophysiologic and cognitive changes in aging rodents and mice with aging-related Alzheimer's disease (AD)-like pathology. However, concerns over adverse effects have slowed the transition of common CN-inhibiting drugs to the clinic for the treatment of AD and AD-related disorders. Targeting substrates of CN, like the nuclear factor of activated T cells (NFATs), has been suggested as an alternative, safer approach to CN inhibitors. However, small chemical inhibitors of NFATs have only rarely been described. Here, we investigate a newly developed neuroprotective hydroxyquinoline derivative (Q134R) that suppresses NFAT signaling, without inhibiting CN activity. Q134R partially inhibited NFAT activity in primary rat astrocytes, but did not prevent CN-mediated dephosphorylation of a non-NFAT target, either in vivo, or in vitro. Acute (≤1 week) oral delivery of Q134R to APP/PS1 (12 months old) or wild-type mice (3-4 months old) infused with oligomeric Aβ peptides led to improved Y maze performance. Chronic (≥3 months) oral delivery of Q134R appeared to be safe, and, in fact, promoted survival in wild-type (WT) mice when given for many months beyond middle age. Finally, chronic delivery of Q134R to APP/PS1 mice during the early stages of amyloid pathology (i.e., between 6 and 9 months) tended to reduce signs of glial reactivity, prevented the upregulation of astrocytic NFAT4, and ameliorated deficits in synaptic strength and plasticity, without noticeably altering parenchymal Aβ plaque pathology. The results suggest that Q134R is a promising drug for treating AD and aging-related disorders.
Collapse
Affiliation(s)
- Pradoldej Sompol
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Jenna L. Gollihue
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Susan D. Kraner
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Irina A. Artiushin
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Ryan A. Cloyd
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Emad A. Chishti
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Shon A. Koren
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Grant K. Nation
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Jose F. Abisambra
- Center for Translational Research in Neurodegenerative Disease University of Florida Gainesville FL USA
| | | | | | | | | | | | - Christopher M. Norris
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| |
Collapse
|
22
|
Dougherty PG, Karpurapu M, Koley A, Lukowski JK, Qian Z, Nirujogi TS, Rusu L, Chung S, Hummon AB, Li HW, Christman JW, Pei D. A Peptidyl Inhibitor that Blocks Calcineurin-NFAT Interaction and Prevents Acute Lung Injury. J Med Chem 2020; 63:12853-12872. [PMID: 33073986 PMCID: PMC8011862 DOI: 10.1021/acs.jmedchem.0c01236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is an inflammatory lung disease with a high morbidity and mortality rate, for which no pharmacologic treatment is currently available. Our previous studies discovered that a pivotal step in the disease process is the activation of the nuclear factor of activated T cells (NFAT) c3 in lung macrophages, suggesting that inhibitors against the upstream protein phosphatase calcineurin should be effective for prevention/treatment of ARDS. Herein, we report the development of a highly potent, cell-permeable, and metabolically stable peptidyl inhibitor, CNI103, which selectively blocks the interaction between calcineurin and NFATc3, through computational and medicinal chemistry. CNI103 specifically inhibited calcineurin signaling in vitro and in vivo and exhibited a favorable pharmacokinetic profile, broad tissue distribution following different routes of administration, and minimal toxicity. Our data indicate that CNI103 is a promising novel treatment for ARDS and other inflammatory diseases.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
- Entrada Therapeutics, 50 Northern Avenue, Boston, MA 02210, United States
| | - Manjula Karpurapu
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
| | - Amritendu Koley
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
| | - Jessica K. Lukowski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ziqing Qian
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
- Entrada Therapeutics, 50 Northern Avenue, Boston, MA 02210, United States
| | - Teja Srinivas Nirujogi
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
- East Liverpool City Hospital, 425 W 5th Street, East Liverpool, Ohio 43920, United States
| | - Luiza Rusu
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
| | - Sangwoon Chung
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, United States
| | - Hao W. Li
- Columbia Center for Translational Immunology, Columbia University, 650 W. 168 Street, New York, New York 10032, United States
| | - John W. Christman
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Ave., Columbus, OH 43210, United States
| |
Collapse
|
23
|
Lu A, Pallero MA, Owusu BY, Borovjagin AV, Lei W, Sanders PW, Murphy-Ullrich JE. Calreticulin is important for the development of renal fibrosis and dysfunction in diabetic nephropathy. Matrix Biol Plus 2020; 8:100034. [PMID: 33543033 PMCID: PMC7852315 DOI: 10.1016/j.mbplus.2020.100034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Previously, our lab showed that the endoplasmic reticulum (ER) and calcium regulatory protein, calreticulin (CRT), is important for collagen transcription, secretion, and assembly into the extracellular matrix (ECM) and that ER CRT is critical for TGF-β stimulation of type I collagen transcription through stimulation of ER calcium release and NFAT activation. Diabetes is the leading cause of end stage renal disease. TGF-β is a key factor in the pathogenesis of diabetic nephropathy. However, the role of calreticulin (Calr) in fibrosis of diabetic nephropathy has not been investigated. In current work, we used both in vitro and in vivo approaches to assess the role of ER CRT in TGF-β and glucose stimulated ECM production by renal tubule cells and in diabetic mice. Knockdown of CALR by siRNA in a human proximal tubular cell line (HK-2) showed reduced induction of soluble collagen when stimulated by TGF-β or high glucose as compared to control cells, as well as a reduction in fibronectin and collagen IV transcript levels. CRT protein is increased in kidneys of mice made diabetic with streptozotocin and subjected to uninephrectomy to accelerate renal tubular injury as compared to controls. We used renal-targeted ultrasound delivery of Cre-recombinase plasmid to knockdown specifically CRT expression in the remaining kidney of uninephrectomized Calr fl/fl mice with streptozotocin-induced diabetes. This approach reduced CRT expression in the kidney, primarily in the tubular epithelium, by 30-55%, which persisted over the course of the studies. Renal function as measured by the urinary albumin/creatinine ratio was improved in the mice with knockdown of CRT as compared to diabetic mice injected with saline or subjected to ultrasound and injected with control GFP plasmid. PAS staining of kidneys and immunohistochemical analyses of collagen types I and IV show reduced glomerular and tubulointerstitial fibrosis. Renal sections from diabetic mice with CRT knockdown showed reduced nuclear NFAT in renal tubules and treatment of diabetic mice with 11R-VIVIT, an NFAT inhibitor, reduced proteinuria and renal fibrosis. These studies identify ER CRT as an important regulator of TGF-β stimulated ECM production in the diabetic kidney, potentially through regulation of NFAT-dependent ECM transcription.
Collapse
Key Words
- 4-PBA, 4-phenylbutyrate
- CRT, calreticulin
- Calreticulin
- Collagen
- Diabetic nephropathy
- ECM, extracellular matrix
- EMT, epithelial to mesenchymal transition
- ER, endoplasmic reticulum
- Fibrosis
- GRP78, glucose related protein 78
- MB/US, microbubble/ultrasound
- NFAT
- NFAT, nuclear factor of activated T cells
- PAS, Periodic Acid-Schiff
- STZ, streptozotocin
- TGF-β, transforming growth factor-β
- UPR, unfolded protein response
Collapse
Affiliation(s)
- Ailing Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Manuel A. Pallero
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Benjamin Y. Owusu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Anton V. Borovjagin
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Weiqi Lei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Paul W. Sanders
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
- Department of Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| | | |
Collapse
|
24
|
Hakim S, Craig JM, Koblinski JE, Clevenger CV. Inhibition of the Activity of Cyclophilin A Impedes Prolactin Receptor-Mediated Signaling, Mammary Tumorigenesis, and Metastases. iScience 2020; 23:101581. [PMID: 33083747 PMCID: PMC7549119 DOI: 10.1016/j.isci.2020.101581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/27/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Prolactin (PRL) and its receptor (PRLr) play important roles in the pathogenesis of breast cancer. Cyclophilin A (CypA) is a cis-trans peptidyl-prolyl isomerase (PPI) that is constitutively associated with the PRLr and facilitates the activation of the tyrosine kinase Jak2. Treatment with the non-immunosuppressive prolyl isomerase inhibitor NIM811 or CypA short hairpin RNA inhibited PRL-stimulated signaling, breast cancer cell growth, and migration. Transcriptomic analysis revealed that NIM811 inhibited two-thirds of the top 50 PRL-induced genes and a reduction in gene pathways associated with cancer cell signaling. In vivo treatment of NIM811 in a TNBC xenograft lessened primary tumor growth and induced central tumor necrosis. Deletion of CypA in the MMTV-PyMT mouse model demonstrated inhibition of tumorigenesis with significant reduction in lung and lymph node metastasis. The regulation of PRLr/Jak2-mediated biology by NIM811 demonstrates that a non-immunosuppressive prolyl isomerase inhibitor can function as a potential breast cancer therapeutic. CypA inhibition or knockdown blocks breast cancer cell signaling, growth, and migration NIM811 inhibited PRL-induced genes and gene pathways relevant to cancer signaling Deletion of CypA has shown reduction in tumorigenesis and metastasis in mice
Collapse
Affiliation(s)
- Shawn Hakim
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA.,Wright Center for Clinical and Translational Sciences, Richmond, VA 23298, USA
| | - Justin M Craig
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA.,Wright Center for Clinical and Translational Sciences, Richmond, VA 23298, USA
| | - Jennifer E Koblinski
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA
| | - Charles V Clevenger
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
25
|
Wen L, Javed TA, Dobbs AK, Brown R, Niu M, Li L, Khalid A, Barakat MT, Xiao X, Yimlamai D, Konnikova L, Yu M, Byersdorfer CA, Husain SZ. The Protective Effects of Calcineurin on Pancreatitis in Mice Depend on the Cellular Source. Gastroenterology 2020; 159:1036-1050.e8. [PMID: 32445858 PMCID: PMC7502475 DOI: 10.1053/j.gastro.2020.05.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Calcineurin is a ubiquitously expressed central Ca2+-responsive signaling molecule that mediates acute pancreatitis, but little is known about its effects. We compared the effects of calcineurin expression by hematopoietic cells vs pancreas in mouse models of pancreatitis and pancreatitis-associated lung inflammation. METHODS We performed studies with mice with hematopoietic-specific or pancreas-specific deletion of protein phosphatase 3, regulatory subunit B, alpha isoform (PPP3R1, also called CNB1), in mice with deletion of CNB1 (Cnb1UBC△/△) and in the corresponding controls for each deletion of CNB1. Acute pancreatitis was induced in mice by administration of caerulein or high-pressure infusion of radiocontrast into biliopancreatic ducts; some mice were also given intraductal infusions of an adeno-associated virus vector that expressed nuclear factor of activated T -cells (NFAT)-luciferase into pancreas. Pancreas, bone marrow, liver, kidney, heart, and lung were collected and analyzed by histopathology, immunohistochemistry, and immunoblots; levels of cytokines were measured in serum. Mouse and human primary pancreatic acinar cells were transfected with a vector that expressed NFAT-luciferase and incubated with an agent that blocks interaction of NFAT with calcineurin; cells were analyzed by immunofluorescence. Calcineurin-mediated neutrophil chemotaxis and reactive oxygen species production were measured in neutrophils from mice. RESULTS Mice with hematopoietic-specific deletion of CNB1 developed the same level of local pancreatic inflammation as control mice after administration of caerulein or infusion of radiocontrast into biliopancreatic ducts. Cnb1UBC△/△ mice or mice with pancreas-specific deletion of CNB1 developed less severe pancreatitis and reduced pancreatic inflammation after administration of caerulein or infusion of radiocontrast into biliopancreatic ducts compared with control mice. NFAT was activated in pancreas of Swiss Webster mice given caerulein or infusions of radiocontrast into biliopancreatic ducts. Blocking the interaction between calcineurin and NFAT did not reduce pancreatic acinar cell necrosis in response to caerulein or infusions of radiocontrast. Mice with hematopoietic-specific deletion of CNB1 (but not mice with pancreas-specific deletion of CNB1) had reduced infiltration of lung tissues by neutrophils. Neutrophil chemotaxis and production of reactive oxygen species were decreased after incubation with a calcineurin inhibitor. CONCLUSIONS Hematopoietic and neutrophil expression of calcineurin promotes pancreatitis-associated lung inflammation, whereas pancreatic calcineurin promotes local pancreatic inflammation. The findings indicate that the protective effects of blocking or deleting calcineurin on pancreatitis are mediated by the source of its expression. This information should be used in the development of strategies to inhibit calcineurin for the prevention of pancreatitis and pancreatitis-associated lung inflammation.
Collapse
Affiliation(s)
- Li Wen
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Tanveer A Javed
- Division of Pediatric Gastroenterology, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andrea K Dobbs
- Division of Blood and Marrow Transplantation and Cellular Therapies, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Rebecca Brown
- Division of Blood and Marrow Transplantation and Cellular Therapies, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mengya Niu
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwen Li
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Asna Khalid
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, California
| | - Monique T Barakat
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, California; Department of Medicine, Stanford University, Palo Alto, California
| | - Xiangwei Xiao
- Division of Pediatric Surgery, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Dean Yimlamai
- Division of Pediatric Gastroenterology, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Liza Konnikova
- Division of Newborn Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mang Yu
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, California
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplantation and Cellular Therapies, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sohail Z Husain
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, California.
| |
Collapse
|
26
|
Samanta J, Mondal A, Saha S, Chakraborty S, Sengupta A. Oleic Acid Protects from Arsenic-Induced Cardiac Hypertrophy via AMPK/FoxO/NFATc3 Pathway. Cardiovasc Toxicol 2020; 20:261-280. [PMID: 31571030 DOI: 10.1007/s12012-019-09550-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arsenic toxicity is one of the major environmental problems causing various diseases, cardiovascular disorders is one of them. Several epidemiological studies have shown that arsenic causes cardiac hypertrophy but the detailed molecular mechanism is to be studied yet. This study is designed to determine the molecules involved in the augmentation of arsenic-induced cardiac hypertrophy. Furthermore, the effects of oleic acid on arsenic-induced hypertrophy and cardiac injury have also been investigated. Our results show that arsenic induces cardiac hypertrophy both in vivo in mice and in vitro in rat H9c2 cardiomyocytes. Moreover, arsenic results in decreased activity of AMPK and FoxO1 along with increased NFATc3 expression, a known cardiac hypertrophy inducer. In addition, activation of AMPK and FoxO1 results in reduced NFATc3 expression causing attenuation of arsenic-induced cardiac hypertrophy in H9c2 cells. Interestingly, we have observed that oleic acid helps in ameliorating cardiac hypertrophy in arsenic-exposed mice. Our studies on protection from arsenic-induced cardiac hypertrophy by oleic acid in H9c2 cells shows that oleic acid activates AMPK along with increased nuclear FoxO1 localization, thereby reducing NFATc3 expression and attenuating cardiomyocyte hypertrophy. This study will help in finding out new avenues in treating arsenic-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Jayeeta Samanta
- Department of Life science and Biotechnology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
| | - Arunima Mondal
- Department of Life science and Biotechnology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
| | - Srimoyee Saha
- Department of Physics, Jadavpur University, Kolkata, India
| | | | - Arunima Sengupta
- Department of Life science and Biotechnology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
27
|
Crofts KF, Holbrook BC, Soto-Pantoja DR, Ornelles DA, Alexander-Miller MA. TCR Dependent Metabolic Programming Regulates Autocrine IL-4 Production Resulting in Self-Tuning of the CD8 + T Cell Activation Setpoint. Front Immunol 2020; 11:540. [PMID: 32300344 PMCID: PMC7145404 DOI: 10.3389/fimmu.2020.00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/09/2020] [Indexed: 11/21/2022] Open
Abstract
The ability of T cells to sense and respond to environmental cues by altering their functional capabilities is critical for a safe and optimally protective immune response. One of the important properties that contributes to this goal is the activation set-point of the T cell. Here we report a new pathway through which TCR transgenic OT-I CD8+ T cells can self-tune their activation threshold. We find that in the presence of a strong TCR engagement event there is a shift in the metabolic programming of the cell where both glycolysis and oxidative phosphorylation are significantly increased. This diverges from the switch to a predominantly glycolytic profile that would be predicted following naïve T cell activation. Our data suggest this altered metabolic program results in the production of autocrine IL-4. Both metabolic pathways are required for this cytokine to be made. IL-4 signaling in the activated OT-I CD8+ T cell results in modulation of the sensitivity of the cell, establishing a higher activation setpoint that is maintained over time. Together these data demonstrate a novel mechanism for the regulation of IL-4 production in CD8+ T cells. Further, they reveal a new pathway for the self-tuning of peptide sensitivity. Finally, these studies uncover an unexpected role for oxidative phosphorylation in regulating differentiation in these cells.
Collapse
Affiliation(s)
- Kali F Crofts
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - David R Soto-Pantoja
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
28
|
Cole AJ, Iyengar M, Panesso-Gómez S, O'Hayer P, Chan D, Delgoffe GM, Aird KM, Yoon E, Bai S, Buckanovich RJ. NFATC4 promotes quiescence and chemotherapy resistance in ovarian cancer. JCI Insight 2020; 5:131486. [PMID: 32182216 DOI: 10.1172/jci.insight.131486] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/11/2020] [Indexed: 12/30/2022] Open
Abstract
Development of chemotherapy resistance is a major problem in ovarian cancer. One understudied mechanism of chemoresistance is the induction of quiescence, a reversible nonproliferative state. Unfortunately, little is known about regulators of quiescence. Here, we identify the master transcription factor nuclear factor of activated T cells cytoplasmic 4 (NFATC4) as a regulator of quiescence in ovarian cancer. NFATC4 is enriched in ovarian cancer stem-like cells and correlates with decreased proliferation and poor prognosis. Treatment of cancer cells with cisplatin resulted in NFATC4 nuclear translocation and activation of the NFATC4 pathway, while inhibition of the pathway increased chemotherapy response. Induction of NFATC4 activity resulted in a marked decrease in proliferation, G0 cell cycle arrest, and chemotherapy resistance, both in vitro and in vivo. Finally, NFATC4 drove a quiescent phenotype in part via downregulation of MYC. Together, these data identify NFATC4 as a driver of quiescence and a potential new target to combat chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Alexander J Cole
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mangala Iyengar
- Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Santiago Panesso-Gómez
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick O'Hayer
- Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel Chan
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Greg M Delgoffe
- Tumor Microenvironment Center, UPMC Hillman Cancer Center; and Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine M Aird
- Department of Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA
| | - Shoumei Bai
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ronald J Buckanovich
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Uri A, Nonga OE. What is the current value of fluorescence polarization assays in small molecule screening? Expert Opin Drug Discov 2019; 15:131-133. [DOI: 10.1080/17460441.2020.1702966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Asko Uri
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
30
|
Gang W, Yu-Zhu W, Yang Y, Feng S, Xing-Li F, Heng Z. The critical role of calcineurin/NFAT (C/N) pathways and effective antitumor prospect for colorectal cancers. J Cell Biochem 2019; 120:19254-19273. [PMID: 31489709 DOI: 10.1002/jcb.29243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
Transcription factors (TFs) like a nuclear factor of activated T-cells (NFAT) and its controller calcineurin are highly expressed in primary intestinal epithelial cells (IECs) due to delamination, damage by tumor-associated flora and selective activation in the intestinal tract tumor are crucial in the progression and growth of colorectal cancer (CRC). This study sought to summarize the current findings concerning the dysregulated calcineurin/NFAT (C/N) signaling involved in CRC initiation and progression. These signalings include proliferation, T-cell functions, and glycolysis with high lactate production that remodels the acidosis, which genes in tumor cells provide an evolutionary advantage, or even increased their attack phenotype. Moreover, the relationship between C/N and gut microbiome in CRC, especially role of NFAT and toll-like receptor signaling in regulating intestinal microbiota are also discussed. Furthermore, this review will discuss the proteins and genes relating to C/N induced acidosis in CRC, which includes ASIC2 regulated C/N1 and TFs associated with the glycolytic by-product that affect T-cell functions and CRC cell growth. It is revealed that calcineurin or NFAT targeting to antitumor, selective calcineurin inhibition or targets in NFAT signaling may be useful for clinical treatment of CRC. This can further aid in the identification of specific targets via cancer patient-personalized approach. Future studies should be focused on targeting to C/N or TLR signaling by the combination of therapeutic agents to regulate T-cell functions and gut microbiome for activating potent anticancer property with the prospect of potentiating the antitumor therapy for CRC.
Collapse
Affiliation(s)
- Wang Gang
- Department of Pharmaceutics, Shanghai Eight People's Hospital, Jiangsu University, Shanghai, China
| | - Wang Yu-Zhu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Yang
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shi Feng
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fu Xing-Li
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhang Heng
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| |
Collapse
|
31
|
Shen Y, Song Z, Lu X, Ma Z, Lu C, Zhang B, Chen Y, Duan M, Apetoh L, Li X, Guo J, Miao Y, Zhang G, Yang D, Cai Z, Wang J. Fas signaling-mediated T H9 cell differentiation favors bowel inflammation and antitumor functions. Nat Commun 2019; 10:2924. [PMID: 31266950 PMCID: PMC6606754 DOI: 10.1038/s41467-019-10889-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/07/2019] [Indexed: 11/17/2022] Open
Abstract
Fas induces apoptosis in activated T cell to maintain immune homeostasis, but the effects of non-apoptotic Fas signaling on T cells remain unclear. Here we show that Fas promotes TH9 cell differentiation by activating NF-κB via Ca2+-dependent PKC-β activation. In addition, PKC-β also phosphorylates p38 to inactivate NFAT1 and reduce NFAT1-NF-κB synergy to promote the Fas-induced TH9 transcription program. Fas ligation exacerbates inflammatory bowel disease by increasing TH9 cell differentiation, and promotes antitumor activity in p38 inhibitor-treated TH9 cells. Furthermore, low-dose p38 inhibitor suppresses tumor growth without inducing systemic adverse effects. In patients with tumor, relatively high TH9 cell numbers are associated with good prognosis. Our study thus implicates Fas in CD4+ T cells as a target for inflammatory bowel disease therapy. Furthermore, simultaneous Fas ligation and low-dose p38 inhibition may be an effective approach for TH9 cell induction and cancer therapy.
Collapse
Affiliation(s)
- Yingying Shen
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, 310003, Hangzhou, China
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Zhengbo Song
- Department of Medical Oncology, Zhejiang Cancer Hospital, 310022, Hangzhou, China
| | - Xinliang Lu
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Zeyu Ma
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Chaojie Lu
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Bei Zhang
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yinghu Chen
- Division of Infection Disease, Zhejiang Key Laboratory for Neonatal Diseases, Children's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Meng Duan
- Chronic Disease Research Institute, School of Public Health, School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Lionel Apetoh
- INSERM, U866, Dijon, France
- Faculté de Médecine, Université de Bourgogne, Dijon, 21000, France
| | - Xu Li
- School of Life Science, Westlake University, 310024, Hangzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Ying Miao
- Clinical Trial Center, Qingdao Municipal Hospital, 266011, Qingdao, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Diya Yang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Zhijian Cai
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Jianli Wang
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, 310003, Hangzhou, China.
| |
Collapse
|
32
|
Brautigan DL, Shenolikar S. Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annu Rev Biochem 2019; 87:921-964. [PMID: 29925267 DOI: 10.1146/annurev-biochem-062917-012332] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.
Collapse
Affiliation(s)
- David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA;
| | - Shirish Shenolikar
- Signature Research Programs in Cardiovascular and Metabolic Disorders and Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
33
|
Targeting the NFAT:AP-1 transcriptional complex on DNA with a small-molecule inhibitor. Proc Natl Acad Sci U S A 2019; 116:9959-9968. [PMID: 31019078 DOI: 10.1073/pnas.1820604116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The transcription factor nuclear factor of activated T cells (NFAT) has a key role in both T cell activation and tolerance and has emerged as an important target of immune modulation. NFAT directs the effector arm of the immune response in the presence of activator protein-1 (AP-1), and T cell anergy/exhaustion in the absence of AP-1. Envisioning a strategy for selective modulation of the immune response, we designed a FRET-based high-throughput screen to identify compounds that disrupt the NFAT:AP-1:DNA complex. We screened ∼202,000 small organic compounds and identified 337 candidate inhibitors. We focus here on one compound, N-(3-acetamidophenyl)-2-[5-(1H-benzimidazol-2-yl)pyridin-2-yl]sulfanylacetamide (Compound 10), which disrupts the NFAT:AP-1 interaction at the composite antigen-receptor response element-2 site without affecting the binding of NFAT or AP-1 alone to DNA. Compound 10 binds to DNA in a sequence-selective manner and inhibits the transcription of the Il2 gene and several other cyclosporin A-sensitive cytokine genes important for the effector immune response. This study provides proof-of-concept that small molecules can inhibit the assembly of specific DNA-protein complexes, and opens a potential new approach to treat human diseases where known transcription factors are deregulated.
Collapse
|
34
|
Lee JU, Kim LK, Choi JM. Revisiting the Concept of Targeting NFAT to Control T Cell Immunity and Autoimmune Diseases. Front Immunol 2018; 9:2747. [PMID: 30538703 PMCID: PMC6277705 DOI: 10.3389/fimmu.2018.02747] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 01/15/2023] Open
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors, which includes NFAT1, NFAT2, and NFAT4, are well-known to play important roles in T cell activation. Most of NFAT proteins are controlled by calcium influx upon T cell receptor and costimulatory signaling results increase of IL-2 and IL-2 receptor. NFAT3 however is not shown to be expressed in T cells and NFAT5 has not much highlighted in T cell functions yet. Recent studies demonstrate that the NFAT family proteins involve in function of lineage-specific transcription factors during differentiation of T helper 1 (Th1), Th2, Th17, regulatory T (Treg), and follicular helper T cells (Tfh). They have been studied to make physical interaction with the other transcription factors like GATA3 or Foxp3 and they also regulate Th cell signature gene expressions by direct binding on promotor region of target genes. From last decades, NFAT functions in T cells have been targeted to develop immune modulatory drugs for controlling T cell immunity in autoimmune diseases like cyclosporine A, FK506, etc. Due to their undesirable side defects, only limited application is available in human diseases. This review focuses on the recent advances in development of NFAT targeting drug as well as our understanding of each NFAT family protein in T cell biology. We also discuss updated detail molecular mechanism of NFAT functions in T cells, which would lead us to suggest an idea for developing specific NFAT inhibitors as a therapeutic drug for autoimmune diseases.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Li-Kyung Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| |
Collapse
|
35
|
An ELISA for the study of calcineurin-NFAT unstructured region interaction. Anal Biochem 2018; 549:66-71. [DOI: 10.1016/j.ab.2018.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/19/2018] [Accepted: 03/14/2018] [Indexed: 12/17/2022]
|
36
|
Riccio G, Bottone S, La Regina G, Badolati N, Passacantilli S, Rossi GB, Accardo A, Dentice M, Silvestri R, Novellino E, Stornaiuolo M. A Negative Allosteric Modulator of WNT Receptor Frizzled 4 Switches into an Allosteric Agonist. Biochemistry 2018; 57:839-851. [DOI: 10.1021/acs.biochem.7b01087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gennaro Riccio
- Department
of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Sara Bottone
- Department
of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giuseppe La Regina
- Istituto
Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie
del Farmaco, Sapienza University of Rome, Rome, Italy
| | - Nadia Badolati
- Department
of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Sara Passacantilli
- Istituto
Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie
del Farmaco, Sapienza University of Rome, Rome, Italy
| | - Giovanni Battista Rossi
- Gastroenterology
and gastrointestinal endoscopy unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Antonella Accardo
- Department
of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Monica Dentice
- Department
of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Romano Silvestri
- Istituto
Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie
del Farmaco, Sapienza University of Rome, Rome, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
37
|
Xu D, Bum-Erdene K, Si Y, Zhou D, Ghozayel MK, Meroueh SO. Mimicking Intermolecular Interactions of Tight Protein-Protein Complexes for Small-Molecule Antagonists. ChemMedChem 2017; 12:1794-1809. [PMID: 28960868 DOI: 10.1002/cmdc.201700572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 01/12/2023]
Abstract
Tight protein-protein interactions (Kd <100 nm) that occur over a large binding interface (>1000 Å2 ) are highly challenging to disrupt with small molecules. Historically, the design of small molecules to inhibit protein-protein interactions has focused on mimicking the position of interface protein ligand side chains. Here, we explore mimicry of the pairwise intermolecular interactions of the native protein ligand with residues of the protein receptor to enrich commercial libraries for small-molecule inhibitors of tight protein-protein interactions. We use the high-affinity interaction (Kd =1 nm) between the urokinase receptor (uPAR) and its ligand urokinase (uPA) to test our methods. We introduce three methods for rank-ordering small molecules docked to uPAR: 1) a new fingerprint approach that represents uPA's pairwise interaction energies with uPAR residues; 2) a pharmacophore approach to identify small molecules that mimic the position of uPA interface residues; and 3) a combined fingerprint and pharmacophore approach. Our work led to small molecules with novel chemotypes that inhibited a tight uPAR⋅uPA protein-protein interaction with single-digit micromolar IC50 values. We also report the extensive work that identified several of the hits as either lacking stability, thiol reactive, or redox active. This work suggests that mimicking the binding profile of the native ligand and the position of interface residues can be an effective strategy to enrich commercial libraries for small-molecule inhibitors of tight protein-protein interactions.
Collapse
Affiliation(s)
- David Xu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indianapolis, IN, 46202, USA
| | - Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 4023, Indianapolis, IN, 46202, USA
| | - Yubing Si
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Donghui Zhou
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 4023, Indianapolis, IN, 46202, USA
| | - Mona K Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 4023, Indianapolis, IN, 46202, USA
| | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 4023, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
38
|
Estrada-Avilés R, Rodríguez G, Zarain-Herzberg A. The cardiac calsequestrin gene transcription is modulated at the promoter by NFAT and MEF-2 transcription factors. PLoS One 2017; 12:e0184724. [PMID: 28886186 PMCID: PMC5590987 DOI: 10.1371/journal.pone.0184724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022] Open
Abstract
Calsequestrin-2 (CASQ2) is the main Ca2+-binding protein inside the sarcoplasmic reticulum of cardiomyocytes. Previously, we demonstrated that MEF-2 and SRF binding sites within the human CASQ2 gene (hCASQ2) promoter region are functional in neonatal cardiomyocytes. In this work, we investigated if the calcineurin/NFAT pathway regulates hCASQ2 expression in neonatal cardiomyocytes. The inhibition of NFAT dephosphorylation with CsA or INCA-6, reduced both the luciferase activity of hCASQ2 promoter constructs (-3102/+176 bp and -288/+176 bp) and the CASQ2 mRNA levels in neonatal rat cardiomyocytes. Additionally, NFATc1 and NFATc3 over-expressing neonatal cardiomyocytes showed a 2-3-fold increase in luciferase activity of both hCASQ2 promoter constructs, which was prevented by CsA treatment. Site-directed mutagenesis of the -133 bp MEF-2 binding site prevented trans-activation of hCASQ2 promoter constructs induced by NFAT overexpression. Chromatin Immunoprecipitation (ChIP) assays revealed NFAT and MEF-2 enrichment within the -288 bp to +76 bp of the hCASQ2 gene promoter. Besides, a direct interaction between NFAT and MEF-2 proteins was demonstrated by protein co-immunoprecipitation experiments. Taken together, these data demonstrate that NFAT interacts with MEF-2 bound to the -133 bp binding site at the hCASQ2 gene promoter. In conclusion, in this work, we demonstrate that the Ca2+-calcineurin/NFAT pathway modulates the transcription of the hCASQ2 gene in neonatal cardiomyocytes.
Collapse
Affiliation(s)
- Rafael Estrada-Avilés
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gabriela Rodríguez
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Angel Zarain-Herzberg
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
39
|
Xu D, Si Y, Meroueh SO. A Computational Investigation of Small-Molecule Engagement of Hot Spots at Protein-Protein Interaction Interfaces. J Chem Inf Model 2017; 57:2250-2272. [PMID: 28766941 DOI: 10.1021/acs.jcim.7b00181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The binding affinity of a protein-protein interaction is concentrated at amino acids known as hot spots. It has been suggested that small molecules disrupt protein-protein interactions by either (i) engaging receptor protein hot spots or (ii) mimicking hot spots of the protein ligand. Yet, no systematic studies have been done to explore how effectively existing small-molecule protein-protein interaction inhibitors mimic or engage hot spots at protein interfaces. Here, we employ explicit-solvent molecular dynamics simulations and end-point MM-GBSA free energy calculations to explore this question. We select 36 compounds for which high-quality binding affinity and cocrystal structures are available. Five complexes that belong to three classes of protein-protein interactions (primary, secondary, and tertiary) were considered, namely, BRD4•H4, XIAP•Smac, MDM2•p53, Bcl-xL•Bak, and IL-2•IL-2Rα. Computational alanine scanning using MM-GBSA identified hot-spot residues at the interface of these protein interactions. Decomposition energies compared the interaction of small molecules with individual receptor hot spots to those of the native protein ligand. Pharmacophore analysis was used to investigate how effectively small molecules mimic the position of hot spots of the protein ligand. Finally, we study whether small molecules mimic the effects of the native protein ligand on the receptor dynamics. Our results show that, in general, existing small-molecule inhibitors of protein-protein interactions do not optimally mimic protein-ligand hot spots, nor do they effectively engage protein receptor hot spots. The more effective use of hot spots in future drug design efforts may result in smaller compounds with higher ligand efficiencies that may lead to greater success in clinical trials.
Collapse
Affiliation(s)
- David Xu
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing , Indianapolis, Indiana 46202, United States
| | | | | |
Collapse
|
40
|
Zhao C, Isenberg JS, Popel AS. Transcriptional and Post-Transcriptional Regulation of Thrombospondin-1 Expression: A Computational Model. PLoS Comput Biol 2017; 13:e1005272. [PMID: 28045898 PMCID: PMC5207393 DOI: 10.1371/journal.pcbi.1005272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/29/2016] [Indexed: 01/09/2023] Open
Abstract
Hypoxia is an important physiological stress signal that drives angiogenesis, the formation of new blood vessels. Besides an increase in the production of pro-angiogenic signals such as vascular endothelial growth factor (VEGF), hypoxia also stimulates the production of anti-angiogenic signals. Thrombospondin-1 (TSP-1) is one of the anti-angiogenic factors whose synthesis is driven by hypoxia. Cellular synthesis of TSP-1 is tightly regulated by different intermediate biomolecules including proteins that interact with hypoxia-inducible factors (HIFs), transcription factors that are activated by receptor and intracellular signaling, and microRNAs which are small non-coding RNA molecules that function in post-transcriptional modification of gene expression. Here we present a computational model that describes the mechanistic interactions between intracellular biomolecules and cooperation between signaling pathways that together make up the complex network of TSP-1 regulation both at the transcriptional and post-transcriptional level. Assisted by the model, we conduct in silico experiments to compare the efficacy of different therapeutic strategies designed to modulate TSP-1 synthesis in conditions that simulate tumor and peripheral arterial disease microenvironment. We conclude that TSP-1 production in endothelial cells depends on not only the availability of certain growth factors but also the fine-tuned signaling cascades that are initiated by hypoxia.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| | - Jeffrey S. Isenberg
- Vascular Medicine Institute, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
41
|
Manocha GD, Ghatak A, Puig KL, Kraner SD, Norris CM, Combs CK. NFATc2 Modulates Microglial Activation in the AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2017; 58:775-787. [PMID: 28505967 PMCID: PMC6265241 DOI: 10.3233/jad-151203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) brains are characterized by fibrillar amyloid-β (Aβ) peptide containing plaques and associated reactive microglia. The proinflammatory phenotype of the microglia suggests that they may negatively affect disease course and contribute to behavioral decline. This hypothesis predicts that attenuating microglial activation may provide benefit against disease. Prior work from our laboratory and others has characterized a role for the transcription factor, nuclear factor of activated T cells (NFAT), in regulating microglial phenotype in response to different stimuli, including Aβ peptide. We observed that the NFATc2 isoform was the most highly expressed in murine microglia cultures, and inhibition or deletion of NFATc2 was sufficient to attenuate the ability of the microglia to secrete cytokines. In order to determine whether the NFATc2 isoform, in particular, was a valid immunomodulatory target in vivo, we crossed an NFATc2-/- line to a well-known AD mouse model, an AβPP/PS1 mouse line. As expected, the AβPP/PS1 x NFATc2-/- mice had attenuated cytokine levels compared to AβPP/PS1 mice as well as reduced microgliosis and astrogliosis with no effect on plaque load. Although some species differences in relative isoform expression may exist between murine and human microglia, it appears that microglial NFAT activity is a viable target for modulating the proinflammatory changes that occur during AD.
Collapse
Affiliation(s)
- Gunjan D. Manocha
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Atreyi Ghatak
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Kendra L. Puig
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Susan D. Kraner
- Department of Pharmacology and Nutritional Sciences and the Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Christopher M. Norris
- Department of Pharmacology and Nutritional Sciences and the Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Colin K. Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
42
|
Soudani N, Ghantous CM, Farhat Z, Shebaby WN, Zibara K, Zeidan A. Calcineurin/NFAT Activation-Dependence of Leptin Synthesis and Vascular Growth in Response to Mechanical Stretch. Front Physiol 2016; 7:433. [PMID: 27746739 PMCID: PMC5040753 DOI: 10.3389/fphys.2016.00433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
Background and Aims: Hypertension and obesity are important risk factors of cardiovascular disease. They are both associated with high leptin levels and have been shown to promote vascular hypertrophy, through the RhoA/ROCK and ERK1/2 phosphorylation. Calcineurin/NFAT activation also induces vascular hypertrophy by upregulating various genes. This study aimed to decipher whether a crosstalk exists between the RhoA/ROCK pathway, Ca2+/calcineurin/NFAT pathway, and ERK1/2 phosphorylation in the process of mechanical stretch-induced vascular smooth muscle cell (VSMC) hypertrophy and leptin synthesis. Methods and Results: Rat portal vein (RPV) organ culture was used to investigate the effect of mechanical stretch and exogenous leptin (3.1 nM) on VSMC hypertrophy and leptin synthesis. Results showed that stretching the RPV significantly upregulated leptin secretion, mRNA, and protein expression, which were inhibited by the calcium channel blocker nifedipine (10 μM), the selective calcineurin inhibitor FK506 (1 nM), and the ERK1/2 inhibitor PD98059 (1 μM). The transcription inhibitor actinomycin D (0.1 μM) and the translation inhibitor cycloheximide (1 mM) significantly decreased stretch-induced leptin protein expression. Mechanical stretch or leptin caused an increase in wet weight changes and protein synthesis, considered as hypertrophic markers, while they were inhibited by FK506 (0.1 nM; 1 nM). In addition, stretch or exogenous leptin significantly increased calcineurin activity and MCIP1 expression whereas leptin induced NFAT nuclear translocation in VSMCs. Moreover, in response to stretch or exogenous leptin, the Rho inhibitor C3 exoenzyme (30 ng/mL), the ROCK inhibitor Y-27632 (10 μM), and the actin depolymerization agents Latrunculin B (50 nM) and cytochalasin D (1 μM) reduced calcineurin activation and NFAT nuclear translocation. ERK1/2 phosphorylation was inhibited by FK506 and C3. Conclusions: Mechanical stretch-induced VSMC hypertrophy and leptin synthesis and secretion are mediated by Ca2+/calcineurin/NFAT activation. RhoA/ROCK and ERK1/2 activation are critical for mechanical stretch-induced calcineurin activation.
Collapse
Affiliation(s)
- Nadia Soudani
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Beirut, Lebanon
| | - Crystal M Ghantous
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Beirut, Lebanon
| | - Zein Farhat
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Beirut, Lebanon
| | - Wassim N Shebaby
- Department of Natural Sciences, Lebanese American University Byblos, Lebanon
| | - Kazem Zibara
- Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, Lebanese University Beirut, Lebanon
| | - Asad Zeidan
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Beirut, Lebanon
| |
Collapse
|
43
|
Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT, Holland EC, Sutton JC, Joyce JA. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 2016; 352:aad3018. [PMID: 27199435 DOI: 10.1126/science.aad3018] [Citation(s) in RCA: 512] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/08/2016] [Indexed: 11/02/2022]
Abstract
Macrophages accumulate with glioblastoma multiforme (GBM) progression and can be targeted via inhibition of colony-stimulating factor-1 receptor (CSF-1R) to regress high-grade tumors in animal models of this cancer. However, whether and how resistance emerges in response to sustained CSF-1R blockade is unknown. We show that although overall survival is significantly prolonged, tumors recur in >50% of mice. Gliomas reestablish sensitivity to CSF-1R inhibition upon transplantation, indicating that resistance is tumor microenvironment-driven. Phosphatidylinositol 3-kinase (PI3K) pathway activity was elevated in recurrent GBM, driven by macrophage-derived insulin-like growth factor-1 (IGF-1) and tumor cell IGF-1 receptor (IGF-1R). Combining IGF-1R or PI3K blockade with CSF-1R inhibition in recurrent tumors significantly prolonged overall survival. Our findings thus reveal a potential therapeutic approach for treating resistance to CSF-1R inhibitors.
Collapse
Affiliation(s)
- Daniela F Quail
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Robert L Bowman
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Leila Akkari
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Department of Oncology, University of Lausanne, CH-1066, Lausanne, Switzerland. Ludwig Institute for Cancer Research, University of Lausanne, CH-1066, Lausanne, Switzerland
| | - Marsha L Quick
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Alberto J Schuhmacher
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Jason T Huse
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, WA 98109, USA
| | - James C Sutton
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Department of Oncology, University of Lausanne, CH-1066, Lausanne, Switzerland. Ludwig Institute for Cancer Research, University of Lausanne, CH-1066, Lausanne, Switzerland.
| |
Collapse
|
44
|
Kizub IV, Lakhkar A, Dhagia V, Joshi SR, Jiang H, Wolin MS, Falck JR, Koduru SR, Errabelli R, Jacobs ER, Schwartzman ML, Gupte SA. Involvement of gap junctions between smooth muscle cells in sustained hypoxic pulmonary vasoconstriction development: a potential role for 15-HETE and 20-HETE. Am J Physiol Lung Cell Mol Physiol 2016; 310:L772-83. [PMID: 26895643 DOI: 10.1152/ajplung.00377.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/10/2016] [Indexed: 12/23/2022] Open
Abstract
In response to hypoxia, the pulmonary artery normally constricts to maintain optimal ventilation-perfusion matching in the lung, but chronic hypoxia leads to the development of pulmonary hypertension. The mechanisms of sustained hypoxic pulmonary vasoconstriction (HPV) remain unclear. The aim of this study was to determine the role of gap junctions (GJs) between smooth muscle cells (SMCs) in the sustained HPV development and involvement of arachidonic acid (AA) metabolites in GJ-mediated signaling. Vascular tone was measured in bovine intrapulmonary arteries (BIPAs) using isometric force measurement technique. Expression of contractile proteins was determined by Western blot. AA metabolites in the bath fluid were analyzed by mass spectrometry. Prolonged hypoxia elicited endothelium-independent sustained HPV in BIPAs. Inhibition of GJs by 18β-glycyrrhetinic acid (18β-GA) and heptanol, nonspecific blockers, and Gap-27, a specific blocker, decreased HPV in deendothelized BIPAs. The sustained HPV was not dependent on Ca(2+) entry but decreased by removal of Ca(2+) and by Rho-kinase inhibition with Y-27632. Furthermore, inhibition of GJs decreased smooth muscle myosin heavy chain (SM-MHC) expression and myosin light chain phosphorylation in BIPAs. Interestingly, inhibition of 15- and 20-hydroxyeicosatetraenoic acid (HETE) synthesis decreased HPV in deendothelized BIPAs. 15-HETE- and 20-HETE-stimulated constriction of BIPAs was inhibited by 18β-GA and Gap-27. Application of 15-HETE and 20-HETE to BIPAs increased SM-MHC expression, which was also suppressed by 18β-GA and by inhibitors of lipoxygenase and cytochrome P450 monooxygenases. More interestingly, 15,20-dihydroxyeicosatetraenoic acid and 20-OH-prostaglandin E2, novel derivatives of 20-HETE, were detected in tissue bath fluid and synthesis of these derivatives was almost completely abolished by 18β-GA. Taken together, our novel findings show that GJs between SMCs are involved in the sustained HPV in BIPAs, and 15-HETE and 20-HETE, through GJs, appear to mediate SM-MHC expression and contribute to the sustained HPV development.
Collapse
Affiliation(s)
- Igor V Kizub
- Department of Experimental Therapeutics, Institute of Pharmacology and Toxicology of NAMS of Ukraine, Kiev, Ukraine; Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Anand Lakhkar
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Sachindra R Joshi
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | | | - Ramu Errabelli
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Elizabeth R Jacobs
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York;
| |
Collapse
|
45
|
Lajarín-Cuesta R, Arribas RL, De Los Ríos C. Ligands for Ser/Thr phosphoprotein phosphatases: a patent review (2005-2015). Expert Opin Ther Pat 2016; 26:389-407. [DOI: 10.1517/13543776.2016.1135903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Mizuguchi H, Orimoto N, Kadota T, Kominami T, Das AK, Sawada A, Tamada M, Miyagi K, Adachi T, Matsumoto M, Kosaka T, Kitamura Y, Takeda N, Fukui H. Suplatast tosilate alleviates nasal symptoms through the suppression of nuclear factor of activated T-cells-mediated IL-9 gene expression in toluene-2,4-diisocyanate-sensitized rats. J Pharmacol Sci 2016; 130:151-8. [PMID: 26874672 DOI: 10.1016/j.jphs.2015.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/26/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022] Open
Abstract
Histamine H1 receptor (H1R) gene is upregulated in patients with pollinosis; its expression level is highly correlated with the nasal symptom severity. Antihistamines are widely used as allergy treatments because they inhibit histamine signaling by blocking H1R or suppressing H1R signaling as inverse agonists. However, long-term treatment with antihistamines does not completely resolve toluene-2,4-diisocyanate (TDI)-induced nasal symptoms, although it can decrease H1R gene expression to the basal level, suggesting additional signaling is responsible for the pathogenesis of the allergic symptoms. Here, we show that treatment with suplatast tosilate in combination with antihistamines markedly alleviates nasal symptoms in TDI-sensitized rats. Suplatast suppressed TDI-induced upregulation of IL-9 gene expression. Suplatast also suppressed ionomycin/phorbol-12-myristate-13-acetate-induced upregulation of IL-2 gene expression in Jurkat cells, in which calcineurin (CN)/nuclear factor of activated T-cells (NFAT) signaling is known to be involved. Immunoblot analysis demonstrated that suplatast inhibited binding of NFAT to DNA. Furthermore, suplatast suppressed ionomycin-induced IL-9 mRNA upregulation in RBL-2H3 cells, in which CN/NFAT signaling is also involved. These data suggest that suplatast suppressed NFAT-mediated IL-9 gene expression in TDI-sensitized rats and this might be the underlying mechanism of the therapeutic effects of combined therapy of suplatast with antihistamine.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan.
| | - Naoki Orimoto
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan; Taiho Pharmaceutical Co. LTD., 224-2, Ebisuno Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Takuya Kadota
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Takahiro Kominami
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Asish K Das
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Akiho Sawada
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Misaki Tamada
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Kohei Miyagi
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Tsubasa Adachi
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Mayumi Matsumoto
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Tomoya Kosaka
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8503, Japan
| | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8503, Japan
| | - Hiroyuki Fukui
- Department of Molecular Studies for Incurable Diseases, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8503, Japan
| |
Collapse
|
47
|
NFAT isoforms play distinct roles in TNFα-induced retinal leukostasis. Sci Rep 2015; 5:14963. [PMID: 26527057 PMCID: PMC4630625 DOI: 10.1038/srep14963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/11/2015] [Indexed: 11/11/2022] Open
Abstract
The objective of this study was to determine the role of individual NFAT isoforms in TNFα-induced retinal leukostasis. To this end, human retinal microvascular endothelial cells (HRMEC) transfected with siRNA targeting individual NFAT isoforms were treated with TNFα, and qRT-PCR was used to examine the contribution of each isoform to the TNFα-induced upregulation of leukocyte adhesion proteins. This showed that NFATc1 siRNA increased ICAM1 expression, NFATc2 siRNA reduced CX3CL1, VCAM1, SELE, and ICAM1 expression, NFATc3 siRNA increased CX3CL1 and SELE expression, and NFATc4 siRNA reduced SELE expression. Transfected HRMEC monolayers were also treated with TNFα and assayed using a parallel plate flow chamber, and both NFATc2 and NFATc4 knockdown reduced TNFα-induced cell adhesion. The effect of isoform-specific knockdown on TNFα-induced cytokine production was also measured using protein ELISAs and conditioned cell culture medium, and showed that NFATc4 siRNA reduced CXCL10, CXCL11, and MCP-1 protein levels. Lastly, the CN/NFAT-signaling inhibitor INCA-6 was shown to reduce TNFα-induced retinal leukostasis in vivo. Together, these studies show a clear role for NFAT-signaling in TNFα-induced retinal leukostasis, and identify NFATc2 and NFATc4 as potentially valuable therapeutic targets for treating retinopathies in which TNFα plays a pathogenic role.
Collapse
|
48
|
The azetidine derivative, KHG26792 protects against ATP-induced activation of NFAT and MAPK pathways through P2X7 receptor in microglia. Neurotoxicology 2015; 51:198-206. [PMID: 26522449 DOI: 10.1016/j.neuro.2015.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/21/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023]
Abstract
Azetidine derivatives are of interest for drug development because they may be useful therapeutic agents. However, their mechanisms of action remain to be completely elucidated. Here, we have investigated the effects of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride (KHG26792) on ATP-induced activation of NFAT and MAPK through P2X7 receptor in the BV-2 mouse microglial cell line. KHG26792 decreased ATP-induced TNF-α release from BV-2 microglia by suppressing, at least partly, P2X7 receptor stimulation. KHG26792 also inhibited the ATP-induced increase in IL-6, PGE2, NO, ROS, CXCL2, and CCL3. ATP induced NFAT activation through P2X7 receptor, with KHG26792 reducing the ATP-induced NFAT activation. KHG26792 inhibited an ATP-induced increase in iNOS protein and ERK phosphorylation. KHG26792 prevented an ATP-induced increase in MMP-9 activity through the P2X7 receptor as a result of degradation of TIMP-1 by cathepsin B. Our data provide mechanistic insights into the role of KHG26792 in the inhibition of TNF-α produced via P2X7 receptor-mediated activation of NFAT and MAPK pathways in ATP-treated BV-2 cells. This study highlights the potential use of KHG26792 as a therapeutic agent for the many diseases of the CNS related to activated microglia.
Collapse
|
49
|
Calejo AI, Taskén K. Targeting protein-protein interactions in complexes organized by A kinase anchoring proteins. Front Pharmacol 2015; 6:192. [PMID: 26441649 PMCID: PMC4562273 DOI: 10.3389/fphar.2015.00192] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/24/2015] [Indexed: 01/06/2023] Open
Abstract
Cyclic AMP is a ubiquitous intracellular second messenger involved in the regulation of a wide variety of cellular processes, a majority of which act through the cAMP – protein kinase A (PKA) signaling pathway and involve PKA phosphorylation of specific substrates. PKA phosphorylation events are typically spatially restricted and temporally well controlled. A-kinase anchoring proteins (AKAPs) directly bind PKA and recruit it to specific subcellular loci targeting the kinase activity toward particular substrates, and thereby provide discrete spatiotemporal control of downstream phosphorylation events. AKAPs also scaffold other signaling molecules into multi-protein complexes that function as crossroads between different signaling pathways. Targeting AKAP coordinated protein complexes with high-affinity peptidomimetics or small molecules to tease apart distinct protein–protein interactions (PPIs) therefore offers important means to disrupt binding of specific components of the complex to better understand the molecular mechanisms involved in the function of individual signalosomes and their pathophysiological role. Furthermore, development of novel classes of small molecules involved in displacement of AKAP-bound signal molecules is now emerging. Here, we will focus on mechanisms for targeting PPI, disruptors that modulate downstream cAMP signaling and their role, especially in the heart.
Collapse
Affiliation(s)
- Ana I Calejo
- Biotechnology Centre, University of Oslo Oslo, Norway ; Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Kjetil Taskén
- Biotechnology Centre, University of Oslo Oslo, Norway ; Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital Oslo, Norway
| |
Collapse
|
50
|
Transcription regulates HIF-1α expression in CD4(+) T cells. Immunol Cell Biol 2015; 94:109-13. [PMID: 26150319 DOI: 10.1038/icb.2015.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/03/2015] [Indexed: 12/11/2022]
Abstract
The transcription factor hypoxia inducible factor-1α (HIF-1α) mediates the metabolic adaptation of cells to hypoxia and T-helper cell fate. However, HIF-1α regulation in CD4(+) T cells (T cells) remains elusive. Here we observed that depletion of oxygen (O2⩽2%) alone was not sufficient to induce HIF-1α expression in T cells. However, when hypoxic T cells were stimulated, HIF-1α was expressed and this was dependent on nuclear factor-κB- and nuclear factor of activated T cell (NFAT)-mediated transcriptional upregulation of Hif-1α mRNA. HIF-1α upregulation could be blocked by drugs inhibiting NF-κB, NFAT or mammalian target of rapamycin precluding CD4(+) T-cell stimulation or translation in T cells, as well as by blocking transcription. CD3, CD28, phorbol-12-myristat-13-acetat (PMA) or ionomycin-stimulated T cells did not express HIF-1α under normoxic conditions. In conclusion, regulation of HIF-1α expression in CD4(+) T cells in hypoxia gravely relies on its transcriptional upregulation and subsequent enhanced protein stabilization.
Collapse
|