1
|
Pateras J, Lodi M, Rana P, Ghosh P. Heterogeneous Clustering of Multiomics Data for Breast Cancer Subgroup Classification and Detection. Int J Mol Sci 2025; 26:1707. [PMID: 40004168 PMCID: PMC11855380 DOI: 10.3390/ijms26041707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The rapid growth of diverse -omics datasets has made multiomics data integration crucial in cancer research. This study adapts the expectation-maximization routine for the joint latent variable modeling of multiomics patient profiles. By combining this approach with traditional biological feature selection methods, this study optimizes latent distribution, enabling efficient patient clustering from well-studied cancer types with reduced computational expense. The proposed optimization subroutines enhance survival analysis and improve runtime performance. This article presents a framework for distinguishing cancer subtypes and identifying potential biomarkers for breast cancer. Key insights into individual subtype expression and function were obtained through differentially expressed gene analysis and pathway enrichment for BRCA patients. The analysis compared 302 tumor samples to 113 normal samples across 60,660 genes. The highly upregulated gene COL10A1, promoting breast cancer progression and poor prognosis, and the consistently downregulated gene CDG300LG, linked to brain metastatic cancer, were identified. Pathway enrichment analysis revealed similarities in cellular matrix organization pathways across subtypes, with notable differences in functions like cell proliferation regulation and endocytosis by host cells. GO Semantic Similarity analysis quantified gene relationships in each subtype, identifying potential biomarkers like MATN2, similar to COL10A1. These insights suggest deeper relationships within clusters and highlight personalized treatment potential based on subtypes.
Collapse
Affiliation(s)
- Joseph Pateras
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Musaddiq Lodi
- Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Pratip Rana
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
2
|
Braxton AM, Kiemen AL, Grahn MP, Forjaz A, Parksong J, Mahesh Babu J, Lai J, Zheng L, Niknafs N, Jiang L, Cheng H, Song Q, Reichel R, Graham S, Damanakis AI, Fischer CG, Mou S, Metz C, Granger J, Liu XD, Bachmann N, Zhu Y, Liu Y, Almagro-Pérez C, Jiang AC, Yoo J, Kim B, Du S, Foster E, Hsu JY, Rivera PA, Chu LC, Liu F, Fishman EK, Yuille A, Roberts NJ, Thompson ED, Scharpf RB, Cornish TC, Jiao Y, Karchin R, Hruban RH, Wu PH, Wirtz D, Wood LD. 3D genomic mapping reveals multifocality of human pancreatic precancers. Nature 2024; 629:679-687. [PMID: 38693266 DOI: 10.1038/s41586-024-07359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/26/2024] [Indexed: 05/03/2024]
Abstract
Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.
Collapse
Affiliation(s)
- Alicia M Braxton
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ashley L Kiemen
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mia P Grahn
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - André Forjaz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeeun Parksong
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaanvi Mahesh Babu
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiaying Lai
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lily Zheng
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Noushin Niknafs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liping Jiang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haixia Cheng
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianqian Song
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rebecca Reichel
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Graham
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander I Damanakis
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Catherine G Fischer
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephanie Mou
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cameron Metz
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julie Granger
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiao-Ding Liu
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Niklas Bachmann
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yutong Zhu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - YunZhou Liu
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Cristina Almagro-Pérez
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ann Chenyu Jiang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeonghyun Yoo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bridgette Kim
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Scott Du
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Eli Foster
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jocelyn Y Hsu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Paula Andreu Rivera
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Linda C Chu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fengze Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elliot K Fishman
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan Yuille
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth D Thompson
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert B Scharpf
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Toby C Cornish
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| | - Rachel Karchin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Liu J, Pan Y, Liu Y, Wei W, Hu X, Xin W, Chen N. The regulation of PTEN: Novel insights into functions as cancer biomarkers and therapeutic targets. J Cell Physiol 2023; 238:1693-1715. [PMID: 37334436 DOI: 10.1002/jcp.31053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023]
Abstract
This review summarizes the implications of the primary tumor suppressor protein phosphatase and tensin homolog (PTEN) in aggressive cancer development. PTEN interacts with other cellular proteins or factors suggesting the existence of an intricate molecular network that regulates their oncogenic function. Accumulating evidence has shown that PTEN exists and plays a role in the cytoplasmic organelles and in the nucleus. PTEN blocks phosphoinositide 3-kinases (PI3K)-protein kinase B-mammalian target of rapamycin signaling pathway by dephosphorylating phosphatidylinositol (PI)-3,4,5-triphosphate to PI-4,5-bisphosphate thus counteracting PI3K function. Studies have shown that PTEN expression is tightly regulated at transcriptional, posttranscriptional, and posttranslational levels (including protein-protein interactions and posttranslational modifications). Despite recent advances in PTEN research, the regulation and function of the PTEN gene remain largely unknown. How mutation or loss of specific exons in the PTEN gene occurs and involves in cancer development is not clear. This review illustrates the regulatory mechanisms of PTEN expression and discusses how PTEN participates in tumor development and/or suppression. Future prospects for the clinical applications are also highlighted.
Collapse
Affiliation(s)
- Jie Liu
- Department of Dermatology, Skin Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yongli Pan
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Yuheng Liu
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaoping Hu
- Department of Dermatology, Skin Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Nan Chen
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
4
|
Co-dependencies in the tumor immune microenvironment. Oncogene 2022; 41:3821-3829. [PMID: 35817840 PMCID: PMC9893036 DOI: 10.1038/s41388-022-02406-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023]
Abstract
Activated oncogenes and disrupted tumor suppressor genes (TSGs) not only endow aspiring cancer cells with new biological capabilities but also influence the composition and function of host cells in the tumor microenvironment (TME). These non-cancer host cells can in turn provide cancer cells with growth support and protection from the anti-tumor immune response. In this ecosystem, geospatially heterogenous "subTME" adds to the complexity of the "global" TME which bestows tumors with increased tumorigenic ability and resistance to therapy. This review highlights how specific genetic alterations in cancer cells establish various symbiotic co-dependencies with surrounding host cells and details the cooperative role of the host cells in tumor biology. These essential interactions expand the repertoire of targets for the development of precision cancer treatments.
Collapse
|
5
|
Sacco A, Federico C, Todoerti K, Ziccheddu B, Palermo V, Giacomini A, Ravelli C, Maccarinelli F, Bianchi G, Belotti A, Ribolla R, Favasuli V, Revenko AS, Macleod AR, Willis B, Cai H, Hauser J, Rooney C, Willis SE, Martin PL, Staniszewska A, Ambrose H, Hanson L, Cattaneo C, Tucci A, Rossi G, Ronca R, Neri A, Mitola S, Bolli N, Presta M, Moschetta M, Ross S, Roccaro AM. Specific targeting of the KRAS mutational landscape in myeloma as a tool to unveil the elicited antitumor activity. Blood 2021; 138:1705-1720. [PMID: 34077955 PMCID: PMC9710471 DOI: 10.1182/blood.2020010572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Alterations in KRAS have been identified as the most recurring somatic variants in the multiple myeloma (MM) mutational landscape. Combining DNA and RNA sequencing, we studied 756 patients and observed KRAS as the most frequently mutated gene in patients at diagnosis; in addition, we demonstrated the persistence or de novo occurrence of the KRAS aberration at disease relapse. Small-molecule inhibitors targeting KRAS have been developed; however, they are selective for tumors carrying the KRASG12C mutation. Therefore, there is still a need to develop novel therapeutic approaches to target the KRAS mutational events found in other tumor types, including MM. We used AZD4785, a potent and selective antisense oligonucleotide that selectively targets and downregulates all KRAS isoforms, as a tool to dissect the functional sequelae secondary to KRAS silencing in MM within the context of the bone marrow niche and demonstrated its ability to significantly silence KRAS, leading to inhibition of MM tumor growth, both in vitro and in vivo, and confirming KRAS as a driver and therapeutic target in MM.
Collapse
Affiliation(s)
- Antonio Sacco
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Cinzia Federico
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Katia Todoerti
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Bachisio Ziccheddu
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Valentina Palermo
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giada Bianchi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Angelo Belotti
- Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | | | - Vanessa Favasuli
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | | | | | - Joana Hauser
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | - Claire Rooney
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | | | | | | | - Helen Ambrose
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | - Lyndsey Hanson
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | | | | | - Giuseppe Rossi
- Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonino Neri
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Niccolò Bolli
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Sarah Ross
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | - Aldo M. Roccaro
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
6
|
Valentino M, Dejana E, Malinverno M. The multifaceted PDCD10/CCM3 gene. Genes Dis 2021; 8:798-813. [PMID: 34522709 PMCID: PMC8427250 DOI: 10.1016/j.gendis.2020.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
The programmed cell death 10 (PDCD10) gene was originally identified as an apoptosis-related gene, although it is now usually known as CCM3, as the third causative gene of cerebral cavernous malformation (CCM). CCM is a neurovascular disease that is characterized by vascular malformations and is associated with headaches, seizures, focal neurological deficits, and cerebral hemorrhage. The PDCD10/CCM3 protein has multiple subcellular localizations and interacts with several multi-protein complexes and signaling pathways. Thus PDCD10/CCM3 governs many cellular functions, which include cell-to-cell junctions and cytoskeleton organization, cell proliferation and apoptosis, and exocytosis and angiogenesis. Given its central role in the maintenance of homeostasis of the cell, dysregulation of PDCD10/CCM3 can result in a wide range of altered cell functions. This can lead to severe diseases, including CCM, cognitive disability, and several types of cancers. Here, we review the multifaceted roles of PDCD10/CCM3 in physiology and pathology, with a focus on its functions beyond CCM.
Collapse
Affiliation(s)
| | - Elisabetta Dejana
- The FIRC Institute of Molecular Oncology (IFOM), Milan, 16 20139, Italy.,Department of Oncology and Haemato-Oncology, University of Milan, Milan, 7 20122, Italy.,Vascular Biology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, SE-751 05, Sweden
| | - Matteo Malinverno
- The FIRC Institute of Molecular Oncology (IFOM), Milan, 16 20139, Italy
| |
Collapse
|
7
|
De Marco C, Zoppoli P, Rinaldo N, Morganella S, Morello M, Zuccalà V, Carriero MV, Malanga D, Chirillo R, Bruni P, Malzoni C, Di Vizio D, Venturella R, Zullo F, Rizzuto A, Ceccarelli M, Ciliberto G, Viglietto G. Genome-wide analysis of copy number alterations led to the characterisation of PDCD10 as oncogene in ovarian cancer. Transl Oncol 2021; 14:101013. [PMID: 33516089 PMCID: PMC7846933 DOI: 10.1016/j.tranon.2021.101013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
We have identified 201 altered chromosomal bands and 3300 altered genes in human ovarian cancer samples. The gene encoding for PDCD10 was selected for further studies. PDCD10 was found to be over-expressed in primary cancer samples and in the corresponding metastatic lesions. High PDCD10 expression correlates with grade, nodal involvement or advanced FIGO stage. PDCD10 is involved in the control of cell growth and motility in vitro as well as tumorigenicity in vivo.
Copy Number Alterations (CNAs) represent the most common genetic alterations identified in ovarian cancer cells, being responsible for the extensive genomic instability observed in this cancer. Here we report the identification of CNAs in a cohort of Italian patients affected by ovarian cancer performed by SNP-based array. Our analysis allowed the identification of 201 significantly altered chromosomal bands (70 copy number gains; 131 copy number losses). The 3300 genes subjected to CNA identified here were compared to those present in the TCGA dataset. The analysis allowed the identification of 11 genes with increased CN and mRNA expression (PDCD10, EBAG9, NUDCD1, ENY2, CSNK2A1, TBC1D20, ZCCHC3, STARD3, C19orf12, POP4, UQCRFS1). PDCD10 was selected for further studies because of the highest frequency of CNA. PDCD10 was found, by immunostaining of three different Tissue Micro Arrays, to be over-expressed in the majority of ovarian primary cancer samples and in metastatic lesions. Moreover, significant correlations were found in specific subsets of patients, between increased PDCD10 expression and grade (p < 0.005), nodal involvement (p < 0.05) or advanced FIGO stage (p < 0.01). Finally, manipulation of PDCD10 expression by shRNA in ovarian cancer cells (OVCAR-5 and OVCA429) demonstrated a positive role for PDCD10 in the control of cell growth and motility in vitro and tumorigenicity in vivo. In conclusion, this study allowed the identification of novel genes subjected to copy number alterations in ovarian cancer. In particular, the results reported here point to a prominent role of PDCD10 as a bona fide oncogene.
Collapse
Affiliation(s)
- Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Graecia", University Catanzaro, Italy.
| | - Pietro Zoppoli
- Department of Experimental and Clinical Medicine, "Magna Graecia", University Catanzaro, Italy
| | - Nicola Rinaldo
- Biogem Scarl, Institute for Genetic Research "G. Salvatore", Ariano Irpino (AV), Italy
| | - Sandro Morganella
- Biogem Scarl, Institute for Genetic Research "G. Salvatore", Ariano Irpino (AV), Italy
| | - Matteo Morello
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles (CA), USA
| | - Valeria Zuccalà
- Pathology Unit, "Pugliese-Ciaccio" Hospital, Catanzaro, Italy
| | | | - Donatella Malanga
- Department of Experimental and Clinical Medicine, "Magna Graecia", University Catanzaro, Italy
| | - Roberta Chirillo
- Department of Experimental and Clinical Medicine, "Magna Graecia", University Catanzaro, Italy
| | - Paola Bruni
- Casa di Cura "Malzoni-Villa dei Platani", Avellino, Italy
| | | | - Dolores Di Vizio
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles (CA), USA
| | - Roberta Venturella
- Unit of Obstetrics and Gynaecology, "Magna Graecia" University of Catanzaro, Italy
| | - Fulvio Zullo
- Unit of Obstetrics and Gynaecology, "Magna Graecia" University of Catanzaro, Italy
| | - Antonia Rizzuto
- Department of Medical and Surgical Sciences, "Magna Graecia", Catanzaro, Italy
| | - Michele Ceccarelli
- Biogem Scarl, Institute for Genetic Research "G. Salvatore", Ariano Irpino (AV), Italy
| | | | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, "Magna Graecia", University Catanzaro, Italy.
| |
Collapse
|
8
|
Lu J, Yu R, Liu R, Liang X, Sun J, Zhang H, Wu H, Zhang Z, Shao YW, Guo J, Liang Z. Genetic aberrations in Chinese pancreatic cancer patients and their association with anatomic location and disease outcomes. Cancer Med 2020; 10:933-943. [PMID: 33350171 PMCID: PMC7897942 DOI: 10.1002/cam4.3679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Pancreatic cancer (PC) is one of the most lethal malignancies with an increasing death rate over the years. We performed targeted sequencing and survival analyses on 90 Chinese pancreatic cancer patients, hoping to identify genomic biomarkers associated with clinical outcomes and therapeutic options. METHOD Genomic DNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue specimens of 90 pancreatic cancer patients and sequenced. The associations with clinicopathological factors were analyzed. RESULT High prevalence of driver mutations in KRAS, TP53, CDKN2A, SMAD4, and ARID1A genes were found. Most mutated genes in PC belonged to cell cycle and DNA damage repair pathways. Tumors that arise from the pancreas' body and tail (BT tumors) displayed a higher ratio of mutated KRAS and TP53 than those that arise from the pancreas' head and neck (HN tumors), who showed less diverse KRAS subtypes. Patients with a KRAS p.G12R mutated tumor tended to have a prolonged disease-free survival (DFS) and overall survival (OS) than other KRAS subtypes. Those with an altered ARID1A gene and more than two mutated driver genes tended to have a shorter DFS and OS. CONCLUSION HN and BT tumors of the pancreas displayed different mutational profiles, which had prognostic significances and indicated different potential therapeutic options.
Collapse
Affiliation(s)
- Junliang Lu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruoying Yu
- Translational Medicine Research Institute, Geneseeq Technology Inc, Toronto, ON, Canada
| | - Rui Liu
- Translational Medicine Research Institute, Geneseeq Technology Inc, Toronto, ON, Canada
| | - Xiaolong Liang
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jian Sun
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui Zhang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiwen Zhang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang W Shao
- Nanjing Geneseeq Technology Inc, Nanjing, Canada.,School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Liu APY, Wu G, Orr BA, Lin T, Ashford JM, Bass JK, Bowers DC, Hassall T, Fisher PG, Indelicato DJ, Klimo P, Boop F, Conklin H, Onar-Thomas A, Merchant TE, Ellison DW, Gajjar A, Robinson GW. Outcome and molecular analysis of young children with choroid plexus carcinoma treated with non-myeloablative therapy: results from the SJYC07 trial. Neurooncol Adv 2020; 3:vdaa168. [PMID: 33506206 PMCID: PMC7813199 DOI: 10.1093/noajnl/vdaa168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Choroid plexus carcinoma (CPC) is a rare and aggressive tumor of infancy without a clear treatment strategy. This study describes the outcomes of children with CPC treated on the multi-institutional phase 2 SJYC07 trial and reports on the significance of clinical and molecular characteristics. Methods Eligible children <3 years-old with CPC were postoperatively stratified to intermediate-risk (IR) stratum if disease was localized or high-risk (HR) stratum, if metastatic. All received high-dose methotrexate-containing induction chemotherapy. IR-stratum patients received focal irradiation as consolidation whereas HR-stratum patients received additional chemotherapy. Consolidation was followed by oral antiangiogenic maintenance regimen. Survival rates and potential prognostic factors were analyzed. Results Thirteen patients (median age: 1.41 years, range: 0.21-2.93) were enrolled; 5 IR, 8 HR. Gross-total resection or near-total resection was achieved in ten patients and subtotal resection in 3. Seven patients had TP53-mutant tumors, including 4 who were germline carriers. Five patients experienced progression and died of disease; 8 (including 5 HR) are alive without progression. The 5-year progression-free survival (PFS) and overall survival rates were 61.5 ± 13.5% and 68.4 ± 13.1%. Patients with TP53-wild-type tumors had a 5-year PFS of 100% as compared to 28.6 ± 17.1% for TP53-mutant tumors (P = .012). Extent of resection, metastatic status, and use of radiation therapy were not significantly associated with survival. Conclusions Non-myeloablative high-dose methotrexate-containing therapy with maximal surgical resection resulted in long-term PFS in more than half of patients with CPC. TP53-mutational status was the only significant prognostic variable and should form the basis of risk-stratification in future trials.
Collapse
Affiliation(s)
- Anthony P Y Liu
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gang Wu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Tong Lin
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jason M Ashford
- Department of Psychology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Johnnie K Bass
- Department of Rehabilitation Services, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Daniel C Bowers
- Division of Pediatric Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tim Hassall
- Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Paul G Fisher
- Department of Neurology, Stanford University, Palo Alto, California, USA
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine-Jacksonville, Semmes Murphey Clinic, Memphis, Tennessee, USA
| | - Paul Klimo
- Department of Surgery, St. Jude Children's Research Hospital, Semmes Murphey Clinic, Memphis, Tennessee, USA.,Department of Neurosurgery, University of Tennessee Health Science Center, Semmes Murphey Clinic, Memphis, Tennessee, USA.,Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Semmes Murphey Clinic, Memphis, Tennessee, USA.,Semmes Murphey Clinic, Memphis, Tennessee, USA
| | - Frederick Boop
- Department of Surgery, St. Jude Children's Research Hospital, Semmes Murphey Clinic, Memphis, Tennessee, USA.,Department of Neurosurgery, University of Tennessee Health Science Center, Semmes Murphey Clinic, Memphis, Tennessee, USA.,Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Semmes Murphey Clinic, Memphis, Tennessee, USA.,Semmes Murphey Clinic, Memphis, Tennessee, USA
| | - Heather Conklin
- Department of Psychology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Giles W Robinson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
10
|
Abstract
Rnd proteins constitute a subfamily of Rho GTPases represented in mammals by Rnd1, Rnd2 and Rnd3. Despite their GTPase structure, their specific feature is the inability to hydrolyse GTP-bound nucleotide. This aspect makes them atypical among Rho GTPases. Rnds are regulated for their expression at the transcriptional or post-transcriptional levels and they are activated through post-translational modifications and interactions with other proteins. Rnd proteins are mainly involved in the regulation of the actin cytoskeleton and cell proliferation. Whereas Rnd3 is ubiquitously expressed, Rnd1 and 2 are tissue-specific. Increasing data has described their important role during development and diseases. Herein, we describe their involvement in physiological and pathological conditions with a focus on the neuronal and vascular systems, and summarize their implications in tumorigenesis.
Collapse
Affiliation(s)
- Sara Basbous
- INSERM, BaRITOn, U1053, F-33000, Univ. Bordeaux, Bordeaux, France
| | - Roberta Azzarelli
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Emilie Pacary
- INSERM, U1215 - Neurocentre Magendie, F-33077, Univ. Bordeaux, Bordeaux, France
| | - Violaine Moreau
- INSERM, BaRITOn, U1053, F-33000, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
11
|
Dong C, Fan B, Ren Z, Liu B, Wang Y. CircSMARCA5 Facilitates the Progression of Prostate Cancer Through miR-432/PDCD10 Axis. Cancer Biother Radiopharm 2020; 36:70-83. [PMID: 32407167 DOI: 10.1089/cbr.2019.3490] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Circular RNAs (circRNAs) have been reported to be implicated in the pathogenesis of prostate cancer (PCa). Herein, the authors explore the role and molecular mechanism of circRNA SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 5 (circSMARCA5) in PCa. Materials and Methods: The levels of circSMARCA5, SMARCA5, miR-432, and programmed cell death 10 (PDCD10) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The circular structure and stability of circSMARCA5 were validated by qRT-PCR using Oligo dT primer, transcriptional inhibitor actinomycin D, or RNase R treatment, respectively. Cell proliferation, migration, invasion, epithelial/mesenchymal transition (EMT), and glycolysis were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), transwell migration and invasion assays, Western blot assay, and Glucose or Lactate Detection Kit, respectively. The target relationship between miR-432 and circSMARCA5 or PDCD10 was validated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Western blot was performed to detect the protein expression of PDCD10 in PCa cells. Results: CircSMARCA5 was aberrantly upregulated, and was a circular and stable RNA in PCa cells. CircSMARCA5 accelerated the proliferation, metastasis, and glycolysis of PCa cells. MiR-432 was a direct target of circSMARCA5, and circSMARCA5 accelerated the development of PCa through miR-432 in PCa cells. PDCD10 was a direct target of miR-432, and PDCD10 addition reversed the inhibitory effects of miR-432 accumulation on the proliferation, metastasis, and glycolysis of PCa cells. CircSMARCA5 upregulated the expression of PDCD10 through sponging miR-432 in PCa cells. Conclusion: CircSMARCA5 deteriorated PCa through the miR-432/PDCD10 axis. CircSMARCA5/miR-432/PDCD10 axis might be an underlying therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Chunhui Dong
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Fan
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zongtao Ren
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Liu
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanchao Wang
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Association test using Copy Number Profile Curves (CONCUR) enhances power in rare copy number variant analysis. PLoS Comput Biol 2020; 16:e1007797. [PMID: 32365089 PMCID: PMC7224564 DOI: 10.1371/journal.pcbi.1007797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 05/14/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022] Open
Abstract
Copy number variants (CNVs) are the gain or loss of DNA segments in the genome that can vary in dosage and length. CNVs comprise a large proportion of variation in human genomes and impact health conditions. To detect rare CNV associations, kernel-based methods have been shown to be a powerful tool due to their flexibility in modeling the aggregate CNV effects, their ability to capture effects from different CNV features, and their accommodation of effect heterogeneity. To perform a kernel association test, a CNV locus needs to be defined so that locus-specific effects can be retained during aggregation. However, CNV loci are arbitrarily defined and different locus definitions can lead to different performance depending on the underlying effect patterns. In this work, we develop a new kernel-based test called CONCUR (i.e., copy number profile curve-based association test) that is free from a definition of locus and evaluates CNV-phenotype associations by comparing individuals' copy number profiles across the genomic regions. CONCUR is built on the proposed concepts of "copy number profile curves" to describe the CNV profile of an individual, and the "common area under the curve (cAUC) kernel" to model the multi-feature CNV effects. The proposed method captures the effects of CNV dosage and length, accounts for the numerical nature of copy numbers, and accommodates between- and within-locus etiological heterogeneity without the need to define artificial CNV loci as required in current kernel methods. In a variety of simulation settings, CONCUR shows comparable or improved power over existing approaches. Real data analyses suggest that CONCUR is well powered to detect CNV effects in the Swedish Schizophrenia Study and the Taiwan Biobank.
Collapse
|
13
|
Fan L, Lei H, Zhang S, Peng Y, Fu C, Shu G, Yin G. Non-canonical signaling pathway of SNAI2 induces EMT in ovarian cancer cells by suppressing miR-222-3p transcription and upregulating PDCD10. Theranostics 2020; 10:5895-5913. [PMID: 32483426 PMCID: PMC7254989 DOI: 10.7150/thno.43198] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Epithelial ovarian cancer (EOC) is one of the most lethal malignancies in women worldwide. Many studies showed the transcription factor SNAI2-induced Epithelial-Mesenchymal Transition (EMT) through inhibiting E-cadherin (E-cad) expression. Our previous study reported that miR-222-3p was an important tumor-suppressive miRNA for EOC development and dissemination. The present study aimed to acquire a deeper mechanistic understanding of the role of miR-222-3p regulation that might contribute to improving current anti-metastasis strategies in EOC. Methods: A variety of techniques were used to measure mRNA and protein expression levels, including quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, immunohistochemical (IHC) staining, and immunofluorescence (IF). Four different microRNA (miRNA) target prediction databases were used to predict the target genes of miR-222. Luciferase assay was performed to determine the direct binding of miR-222-3p to the untranslated region (3'-UTR) of PDCD10. The biological effects of PDCD10 and miR-222-3p were also investigated in vitro by Transwell and wound healing assays, as well as in vivo by a xenograft mice model. Combining UCSC and JASPAR, as well as ENCODE public databases, we predicted that the transcription factor SNAI2 could affect miR-222-3p expression. Luciferase assay was utilized to examine the validity of putative SNAI2 binding sites for miR-222-3p regulation. Chromatin immunoprecipitation (ChIP) was used to explore the SNAI2's occupancy on the miR-222-3p promoter. Results: We observed the inhibitory effect of SNAI2 on miR-222-3p transcription and confirmed the tumor-suppressive function of miR-222-3p both in EOC cells and tissues. PDCD10 was upregulated and inversely correlated with miR-222-3p, both in vitro and in vivo, which was consistent with the information in bioinformatics databases. Furthermore, We observed direct binding of miR-222-3p to the 3'-UTR of PDCD10 and inhibition of PDCD10 translation, which, in turn, inhibited EOC cell migration in vitro and repressed EOC xenografted tumor metastasis in vivo. We found that genetic overexpression of PDCD10 (OE-PDCD10) increased cancer metastasis by down-regulating E-cad and enhancing Vimentin (VIM) thereby inducing EMT and promoting β-catenin/Wnt-mediated cell migration.
Collapse
Affiliation(s)
- Lili Fan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Han Lei
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Sai Zhang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Yulong Peng
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Chunyan Fu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, Hunan Province
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
14
|
Xi J, Li A, Wang M. HetRCNA: A Novel Method to Identify Recurrent Copy Number Alternations from Heterogeneous Tumor Samples Based on Matrix Decomposition Framework. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:422-434. [PMID: 29994262 DOI: 10.1109/tcbb.2018.2846599] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A common strategy to discovering cancer associated copy number aberrations (CNAs) from a cohort of cancer samples is to detect recurrent CNAs (RCNAs). Although the previous methods can successfully identify communal RCNAs shared by nearly all tumor samples, detecting subgroup-specific RCNAs and their related subgroup samples from cancer samples with heterogeneity is still invalid for these existing approaches. In this paper, we introduce a novel integrated method called HetRCNA, which can identify statistically significant subgroup-specific RCNAs and their related subgroup samples. Based on matrix decomposition framework with weight constraint, HetRCNA can successfully measure the subgroup samples by coefficients of left vectors with weight constraint and subgroup-specific RCNAs by coefficients of the right vectors and significance test. When we evaluate HetRCNA on simulated dataset, the results show that HetRCNA gives the best performances among the competing methods and is robust to the noise factors of the simulated data. When HetRCNA is applied on a real breast cancer dataset, our approach successfully identifies a bunch of RCNA regions and the result is highly correlated with the results of the other two investigated approaches. Notably, the genomic regions identified by HetRCNA harbor many breast cancer related genes reported by previous researches.
Collapse
|
15
|
Cretella D, Digiacomo G, Giovannetti E, Cavazzoni A. PTEN Alterations as a Potential Mechanism for Tumor Cell Escape from PD-1/PD-L1 Inhibition. Cancers (Basel) 2019; 11:1318. [PMID: 31500143 PMCID: PMC6770107 DOI: 10.3390/cancers11091318] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
The recent approval of immune checkpoint inhibitors drastically changed the standard treatments in many advanced cancer patients, but molecular changes within the tumor can prevent the activity of immunotherapy drugs. Thus, the introduction of the inhibitors of the immune checkpoint programmed death-1/programmed death ligand-1 (PD-1/PD-L1), should prompt deeper studies on resistance mechanisms, which can be caused by oncogenic mutations detected in cancer cells. PTEN, a tumor suppressor gene, dephosphorylates the lipid signaling intermediate PIP3 with inhibition of AKT activity, one of the main effectors of the PI3K signaling axis. As a consequence of genetic or epigenetic aberrations, PTEN expression is often altered, with increased activation of PI3K axis. Interestingly, some data confirmed that loss of PTEN expression modified the pattern of cytokine secretion creating an immune-suppressive microenvironment with increase of immune cell populations that can promote tumor progression. Moreover, PTEN loss may be ascribed to reduction of tumor infiltrating lymphocytes (TILs), which can explain the absence of activity of immune checkpoint inhibitors. This review describes the role of PTEN loss as a mechanism responsible for resistance to anti PD-1/PD-L1 treatment. Moreover, combinatorial strategies between PD-1/PD-L1 inhibitors and PI3K/AKT targeting drugs are proposed as a new strategy to overcome resistance to immune checkpoint inhibition.
Collapse
Affiliation(s)
- Daniele Cretella
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Graziana Digiacomo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081HV Amsterdam, The Netherlands.
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy.
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
16
|
Mouly L, Gilhodes J, Lemarié A, Cohen-Jonathan Moyal E, Toulas C, Favre G, Sordet O, Monferran S. The RND1 Small GTPase: Main Functions and Emerging Role in Oncogenesis. Int J Mol Sci 2019; 20:ijms20153612. [PMID: 31344837 PMCID: PMC6696182 DOI: 10.3390/ijms20153612] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/21/2019] [Indexed: 02/07/2023] Open
Abstract
The Rho GTPase family can be classified into classic and atypical members. Classic members cycle between an inactive Guanosine DiPhosphate -bound state and an active Guanosine TriPhosphate-bound state. Atypical Rho GTPases, such as RND1, are predominantly in an active GTP-bound conformation. The role of classic members in oncogenesis has been the subject of numerous studies, while that of atypical members has been less explored. Besides the roles of RND1 in healthy tissues, recent data suggest that RND1 is involved in oncogenesis and response to cancer therapeutics. Here, we present the current knowledge on RND1 expression, subcellular localization, and functions in healthy tissues. Then, we review data showing that RND1 expression is dysregulated in tumors, the molecular mechanisms involved in this deregulation, and the role of RND1 in oncogenesis. For several aggressive tumors, RND1 presents the features of a tumor suppressor gene. In these tumors, low expression of RND1 is associated with a bad prognosis for the patients. Finally, we highlight that RND1 expression is induced by anticancer agents and modulates their response. Of note, RND1 mRNA levels in tumors could be used as a predictive marker of both patient prognosis and response to anticancer agents.
Collapse
Affiliation(s)
- Laetitia Mouly
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
- Faculty of Pharmacy and Medecine, Université Toulouse III, 31062 Toulouse, France
| | - Julia Gilhodes
- Institut Claudius Regaud, IUCT-O, 31059 Toulouse, France
| | - Anthony Lemarié
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
- Faculty of Pharmacy and Medecine, Université Toulouse III, 31062 Toulouse, France
| | - Elizabeth Cohen-Jonathan Moyal
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
- Faculty of Pharmacy and Medecine, Université Toulouse III, 31062 Toulouse, France
- Institut Claudius Regaud, IUCT-O, 31059 Toulouse, France
| | - Christine Toulas
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
- Institut Claudius Regaud, IUCT-O, 31059 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
- Faculty of Pharmacy and Medecine, Université Toulouse III, 31062 Toulouse, France
- Institut Claudius Regaud, IUCT-O, 31059 Toulouse, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France
| | - Sylvie Monferran
- Cancer Research Center of Toulouse, INSERM UMR1037, 31037 Toulouse, France.
- Faculty of Pharmacy and Medecine, Université Toulouse III, 31062 Toulouse, France.
| |
Collapse
|
17
|
Putnam DK, Ma X, Rice SV, Liu Y, Newman S, Zhang J, Chen X. VCF2CNA: A tool for efficiently detecting copy-number alterations in VCF genotype data and tumor purity. Sci Rep 2019; 9:10357. [PMID: 31316100 PMCID: PMC6637131 DOI: 10.1038/s41598-019-45938-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/19/2019] [Indexed: 01/24/2023] Open
Abstract
VCF2CNA is a tool (Linux commandline or web-interface) for copy-number alteration (CNA) analysis and tumor purity estimation of paired tumor-normal VCF variant file formats. It operates on whole genome and whole exome datasets. To benchmark its performance, we applied it to 46 adult glioblastoma and 146 pediatric neuroblastoma samples sequenced by Illumina and Complete Genomics (CGI) platforms respectively. VCF2CNA was highly consistent with a state-of-the-art algorithm using raw sequencing data (mean F1-score = 0.994) in high-quality whole genome glioblastoma samples and was robust to uneven coverage introduced by library artifacts. In the whole genome neuroblastoma set, VCF2CNA identified MYCN high-level amplifications in 31 of 32 clinically validated samples compared to 15 found by CGI’s HMM-based CNA model. Moreover, VCF2CNA achieved highly consistent CNA profiles between WGS and WXS platforms (mean F1 score 0.97 on a set of 15 rhabdomyosarcoma samples). In addition, VCF2CNA provides accurate tumor purity estimates for samples with sufficient CNAs. These results suggest that VCF2CNA is an accurate, efficient and platform-independent tool for CNA and tumor purity analyses without accessing raw sequence data.
Collapse
Affiliation(s)
- Daniel K Putnam
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen V Rice
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
18
|
Molkentine JM, Fujimoto TN, Horvath TD, Grossberg AJ, Garcia CJG, Deorukhkar A, de la Cruz Bonilla M, Lin D, Samuel ELG, Chan WK, Lorenzi PL, Piwnica-Worms H, Dantzer R, Tour JM, Mason KA, Taniguchi CM. Enteral Activation of WR-2721 Mediates Radioprotection and Improved Survival from Lethal Fractionated Radiation. Sci Rep 2019; 9:1949. [PMID: 30760738 PMCID: PMC6374382 DOI: 10.1038/s41598-018-37147-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Unresectable pancreatic cancer is almost universally lethal because chemotherapy and radiation cannot completely stop the growth of the cancer. The major problem with using radiation to approximate surgery in unresectable disease is that the radiation dose required to ablate pancreatic cancer exceeds the tolerance of the nearby duodenum. WR-2721, also known as amifostine, is a well-known radioprotector, but has significant clinical toxicities when given systemically. WR-2721 is a prodrug and is converted to its active metabolite, WR-1065, by alkaline phosphatases in normal tissues. The small intestine is highly enriched in these activating enzymes, and thus we reasoned that oral administration of WR-2721 just before radiation would result in localized production of the radioprotective WR-1065 in the small intestine, providing protective benefits without the significant systemic side effects. Here, we show that oral WR-2721 is as effective as intraperitoneal WR-2721 in promoting survival of intestinal crypt clonogens after morbid irradiation. Furthermore, oral WR-2721 confers full radioprotection and survival after lethal upper abdominal irradiation of 12.5 Gy × 5 fractions (total of 62.5 Gy, EQD2 = 140.6 Gy). This radioprotection enables ablative radiation therapy in a mouse model of pancreatic cancer and nearly triples the median survival compared to controls. We find that the efficacy of oral WR-2721 stems from its selective accumulation in the intestine, but not in tumors or other normal tissues, as determined by in vivo mass spectrometry analysis. Thus, we demonstrate that oral WR-2721 is a well-tolerated, and quantitatively selective, radioprotector of the intestinal tract that is capable of enabling clinically relevant ablative doses of radiation to the upper abdomen without unacceptable gastrointestinal toxicity.
Collapse
Affiliation(s)
- Jessica M Molkentine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Tara N Fujimoto
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Thomas D Horvath
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Aaron J Grossberg
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
- Department of Symptoms Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Carolina J Garcia Garcia
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Amit Deorukhkar
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Marimar de la Cruz Bonilla
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Daniel Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Errol L G Samuel
- Department of Chemistry, Smalley-Curl Institute and the NanoCarbon Center, and Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, United States of America
| | - Wai Kin Chan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Robert Dantzer
- Department of Symptoms Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - James M Tour
- Department of Chemistry, Smalley-Curl Institute and the NanoCarbon Center, and Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, United States of America
| | - Kathryn A Mason
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America
| | - Cullen M Taniguchi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America.
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States of America.
| |
Collapse
|
19
|
Zhang W, Wang M, Wu Q, Zhu Q, Jiao Y, Zhu Y, Yang B, Ni S, Yu J, Sun H, Zeng YX. Mutational signatures and the genomic landscape of betel quid chewing-associated tongue carcinoma. Cancer Med 2019; 8:701-711. [PMID: 30672146 PMCID: PMC6382727 DOI: 10.1002/cam4.1888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
Our study presents the genetic landscape betel quid chewing-associated tongue carcinomas (BQ-TCs). We compared the genetic landscape and mutational signatures of 15 BQ-TCs, five nonbetel quid chewing-associated tongue carcinomas (nBQ-TCs), and 82 tongue carcinomas in general population from the TCGA (TCGA-TCs) project. The highlights of this research mainly include: (a) The genetic landscape of BQ-TC was characterized with frequent mutations in RASA1 gene and in CpG islands throughout the genome. (b) The BQ-TC had a distinct mutational signature from that of nBQ-TC and tongue carcinomas in the general population, and this signature was associated with the mutations in RASA1 and in CpG islands. (c) Our study indicates that betel quid (BQ) chewing classifies a distinct group of tongue carcinoma. The BQ chewing might not contribute to the tumorigenesis of tongue carcinomas as a mutagen.
Collapse
Affiliation(s)
- Weilong Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mu Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qifeng Wu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Zhu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchen Jiao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Laboratory of Cell and Molecular Biology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiming Zhu
- Department of Head and Neck Surgery, National Cancer Center/Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Beibei Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song Ni
- Department of Head and Neck Surgery, National Cancer Center/Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianjun Yu
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hong Sun
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Xin Zeng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
20
|
Tan P, Ye Y, He L, Xie J, Jing J, Ma G, Pan H, Han L, Han W, Zhou Y. TRIM59 promotes breast cancer motility by suppressing p62-selective autophagic degradation of PDCD10. PLoS Biol 2018; 16:e3000051. [PMID: 30408026 PMCID: PMC6245796 DOI: 10.1371/journal.pbio.3000051] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/20/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer cells adopt various modes of migration during metastasis. How the ubiquitination machinery contributes to cancer cell motility remains underexplored. Here, we report that tripartite motif (TRIM) 59 is frequently up-regulated in metastatic breast cancer, which is correlated with advanced clinical stages and reduced survival among breast cancer patients. TRIM59 knockdown (KD) promoted apoptosis and inhibited tumor growth, while TRIM59 overexpression led to the opposite effects. Importantly, we uncovered TRIM59 as a key regulator of cell contractility and adhesion to control the plasticity of metastatic tumor cells. At the molecular level, we identified programmed cell death protein 10 (PDCD10) as a target of TRIM59. TRIM59 stabilized PDCD10 by suppressing RING finger and transmembrane domain-containing protein 1 (RNFT1)-induced lysine 63 (K63) ubiquitination and subsequent phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa (p62)-selective autophagic degradation. TRIM59 promoted PDCD10-mediated suppression of Ras homolog family member A (RhoA)-Rho-associated coiled-coil kinase (ROCK) 1 signaling to control the transition between amoeboid and mesenchymal invasiveness. PDCD10 overexpression or administration of a ROCK inhibitor reversed TRIM59 loss-induced contractile phenotypes, thereby accelerating cell migration, invasion, and tumor formation. These findings establish the rationale for targeting deregulated TRIM59/PDCD10 to treat breast cancer.
Collapse
Affiliation(s)
- Peng Tan
- Department of Medical Oncology and Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, United States of America
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Jiansheng Xie
- Department of Medical Oncology and Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
| | - Hongming Pan
- Department of Medical Oncology and Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Leng Han
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, United States of America
| | - Weidong Han
- Department of Medical Oncology and Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America
- Department of Medical Physiology, College of Medicine, Texas A&M University, Temple, Texas, United States of America
| |
Collapse
|
21
|
Hata T, Suenaga M, Marchionni L, Macgregor-Das A, Yu J, Shindo K, Tamura K, Hruban RH, Goggins M. Genome-Wide Somatic Copy Number Alterations and Mutations in High-Grade Pancreatic Intraepithelial Neoplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1723-1733. [PMID: 29684357 PMCID: PMC6024190 DOI: 10.1016/j.ajpath.2018.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/23/2018] [Accepted: 03/19/2018] [Indexed: 12/17/2022]
Abstract
To obtain a better understanding of the genetic alterations of high-grade pancreatic intraepithelial neoplasia (HG-PanIN), we performed whole-genome copy number analysis by using single nucleotide polymorphism microarrays and targeted next-generation sequencing of 11 microdissected HG-PanIN and two low-grade PanIN lesions associated with HG-PanIN. HG-PanIN mutation profiles were compared with those of their associated invasive pancreatic ductal adenocarcinoma. All PanIN lesions harbored somatic KRAS mutations. The most common copy number losses in the HG-PanIN were at the CDKN2A (9p21), TP53 (17p13), and SMAD4 (18q21) loci. Chromosomal losses in HG-PanIN were also found at 6p25-p24, 6q11-q27, 12q24, and 17q23-q24. Biallelic inactivation of CDKN2A and TP53 was detected in five of eight and in three of eight evaluable PanIN lesions, respectively. None of the HG-PanIN lesions had SMAD4 mutations or homozygous deletion. Copy number gains were noted at the MYC (8q24) and CCNE1 (19q12) loci and at 1q25-q31. Four HG-PanINs and one low-grade PanIN harbored chromothripsis-like regions. Five of seven pancreatic ductal adenocarcinomas evaluated had additional mutations that were not found in their associated HG-PanIN. HG-PanIN harbors widespread copy number alterations and commonly shows evidence of biallelic inactivation of CDKN2A and TP53 but not SMAD4. Chromothripsis events contribute to the copy number alterations of HG-PanIN.
Collapse
Affiliation(s)
- Tatsuo Hata
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Masaya Suenaga
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Luigi Marchionni
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anne Macgregor-Das
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jun Yu
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Koji Shindo
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Koji Tamura
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
22
|
Tian Y, Liu LL, Guo DM, Wang Y, Zha WH, Li Y, Wu FJ. TPX2 gene silencing inhibits cell proliferation and promotes apoptosis through negative regulation of AKT signaling pathway in ovarian cancer. J Cell Biochem 2018; 119:7540-7555. [PMID: 29904936 DOI: 10.1002/jcb.27065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 01/27/2023]
Abstract
Ovarian cancer (OC) is the leading cause of death from gynecological malignancy. Accumulated studies have revealed that targeting protein for Xklp2 (TPX2) was tightly associated with the development and progression of OC. The present study further determined a novel mechanism of TPX2 in OC via the AKT signaling pathway. The differentially expressed genes were screened in GEO database for gene expression microarray of OC. Bioinformatics was used to analyze the key differentially expressed genes in OC. We prepared CD133/1+ OC stem cells. Then cells were treated with TPX2-1 siRNA and perifcsine to explore the correlation of TPX2 and the AKT signaling pathway. We determined the expression of TPX2, AKT, Pl3 K, PTEN, caspase-3, Bax and Bcl-2 in OC cells. Cell proliferation, migration, invasion, and apoptosis rate were respectively measured using MTT and EdU assays, Transwell assay, Scratch test, and flow cytometry. Xenograft tumor in nude mice was used to determine the effect of TPX2 in OC cells in vitro. Initially, TPX2 overexpression was observed in OC, and TPX2 mediated the effect of the AKT signaling pathway in OC. TPX2 knockdown decreased expression of AKT, Pl3 K, and Bcl-2, and the extent of AKT phosphorylation, but increased expression of PTEN, Caspase-3, and Bax. Furthermore, TPX2 knockdown suppressed OC cell proliferation, migration and invasion, but promoted OC cell apoptosis. Taken together, TPX2 silencing negatively regulates the AKT signaling pathway by which OC cell proliferation was inhibited yet cell apoptosis was accelerated, suggesting a potential therapeutic approach to OC.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Lian-Lian Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Dong-Mei Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yan Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Wen-Hui Zha
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Fu-Ju Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
23
|
Mareschal S, Ruminy P, Alcantara M, Villenet C, Figeac M, Dubois S, Bertrand P, Bouzelfen A, Viailly PJ, Penther D, Tilly H, Bastard C, Jardin F. Application of the cghRA framework to the genomic characterization of Diffuse Large B-Cell Lymphoma. Bioinformatics 2018; 33:2977-2985. [PMID: 28481978 DOI: 10.1093/bioinformatics/btx309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/06/2017] [Indexed: 12/15/2022] Open
Abstract
Motivation Although sequencing-based technologies are becoming the new reference in genome analysis, comparative genomic hybridization arrays (aCGH) still constitute a simple and reliable approach for copy number analysis. The most powerful algorithms to analyze such data have been freely provided by the scientific community for many years, but combining them is a complex scripting task. Results The cghRA framework combines a user-friendly graphical interface and a powerful object-oriented command-line interface to handle a full aCGH analysis, as is illustrated in an original series of 107 Diffuse Large B-Cell Lymphomas. New algorithms for copy-number calling, polymorphism detection and minimal common region prioritization were also developed and validated. While their performances will only be demonstrated with aCGH, these algorithms could actually prove useful to any copy-number analysis, whatever the technique used. Availability and implementation R package and source for Linux, MS Windows and MacOS are freely available at http://bioinformatics.ovsa.fr/cghRA. Contact mareschal@ovsa.fr or fabrice.jardin@chb.unicancer.fr. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sylvain Mareschal
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Philippe Ruminy
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Marion Alcantara
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Céline Villenet
- Plate-Forme de Génomique Fonctionnelle et Structurale, Université de Lille II, 59000 Lille, France
| | - Martin Figeac
- Plate-Forme de Génomique Fonctionnelle et Structurale, Université de Lille II, 59000 Lille, France.,Cellule de Bioinformatique du Plateau Commun de Séquençage, CHRU de Lille, 59000 Lille, France
| | - Sydney Dubois
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Philippe Bertrand
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Abdelilah Bouzelfen
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Pierre-Julien Viailly
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Dominique Penther
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Hervé Tilly
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France
| | - Christian Bastard
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| | - Fabrice Jardin
- INSERM U1245 Team "Genomics and Biomarkers in Lymphoma and Solid Tumors," Centre Henri Becquerel, 76000 Rouen, France.,Normandie Université, 14000 Caen, France
| |
Collapse
|
24
|
The Rho GTPase Rnd1 inhibits epithelial-mesenchymal transition in hepatocellular carcinoma and is a favorable anti-metastasis target. Cell Death Dis 2018; 9:486. [PMID: 29706627 PMCID: PMC5924761 DOI: 10.1038/s41419-018-0517-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/09/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
Rnd1, a member of Rho GTPases, was found to be downregulated in human malignancies and downregulation of Rnd1 promotes tumor invasion via various mechanisms. However, the role of Rnd1 in hepatocellular carcinoma (HCC) progression remains unclear. In this study, our results demonstrated that Rnd1 was downregulated in HCC cells and in human HCC tissues. Low expression of Rnd1 was associated with aggressive clinic-pathologic characteristics, such as vascular invasion, and poor prognosis in patients who underwent curative surgery for HCC. Overexpression of Rnd1-suppressed cell growth, migration, invasion, and EMT processes in vitro and in vivo. Furthermore, Rnd1 blocked HCC progression by restricting EMT process through inhibition of the Raf/MEK/ERK cascade, and this was correlated with a reduction in RhoA activity. Combination of Rnd1 overexpression with sorafenib, a Raf signaling pathway inhibitor, showed a more potent inhibition on HCC metastasis. Moreover, epigenetic inhibitors (5-Aza and SAHA) increased the expression of Rnd1, and potentiated sorafenib-induced toxicity in HCC cells. In a conclusion, Rnd1-suppressed EMT-mediated metastasis of HCC by reducing the activity of the RhoA/Raf/MEK/ERK signaling pathway, functioning as a favorable anti-metastasis target for HCC patients. Rnd1 overexpression in combination with sorafenib may result in enhanced anti-metastasis efficacy in HCC.
Collapse
|
25
|
Abstract
High-throughput biological technologies are routinely used to generate gene expression profiling or cytogenetics data. To achieve high performance, methods available in the literature become more specialized and often require high computational resources. Here, we propose a new versatile method based on the data-ordering rank values. We use linear algebra, the Perron-Frobenius theorem and also extend a method presented earlier for searching differentially expressed genes for the detection of recurrent copy number aberration. A result derived from the proposed method is a one-sample Student's t-test based on rank values. The proposed method is to our knowledge the only that applies to gene expression profiling and to cytogenetics data sets. This new method is fast, deterministic, and requires a low computational load. Probabilities are associated with genes to allow a statistically significant subset selection in the data set. Stability scores are also introduced as quality parameters. The performance and comparative analyses were carried out using real data sets. The proposed method can be accessed through an R package available from the CRAN (Comprehensive R Archive Network) website: https://cran.r-project.org/web/packages/fcros .
Collapse
Affiliation(s)
- Doulaye Dembélé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 1258, Université de Strasbourg, Illkirch-Graffenstaden, France
| |
Collapse
|
26
|
Urfali-Mamatoglu C, Kazan HH, Gündüz U. Dual function of programmed cell death 10 (PDCD10) in drug resistance. Biomed Pharmacother 2018; 101:129-136. [PMID: 29482058 DOI: 10.1016/j.biopha.2018.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/30/2022] Open
Abstract
Drug resistance, a major challenge in cancer chemotherapy, is a result of several mechanistic alterations including resistance to apoptosis. Apoptosis is a well-controlled cell death mechanism which is regulated by several signaling pathways. Alterations in structure, function, and expression pattern of the proteins involved in the regulation of apoptosis have been linked to drug resistance. Programmed Cell Death 10 (PDCD10) protein is recently associated with the regulation of cell survival and apoptosis. However, the role of PDCD10 in drug resistance has not been clearly established. Here, we aimed to figure out the role of PDCD10 in resistance to anti-cancer agents in different cell lines. We found that PDCD10 expression was cell- and anti-cancer agent-specific; down-regulated in doxorubicin- and docetaxel-resistant MCF7 cells while up-regulated in doxorubicin-resistant HeLa cells. Down-regulation of PDCD10 expression by siRNA in parental MCF7 cells increased the resistance while it increased sensitivity in doxorubicin-resistant HeLa cells. Similarly, over-expression of PDCD10 in parental HeLa cells increased the resistance to doxorubicin while it re-sensitized doxorubicin-resistant MCF7 cells. Moreover, the alterations in PDCD10 expression led to changes in caspase 3/7 activity and the levels of apoptosis-related genes. Our results point out a possible dual role of PDCD10 in drug resistance for the first time in the literature and emphasize PDCD10 as a novel target for reversal of drug resistance in cancer.
Collapse
Affiliation(s)
| | - Hasan Hüseyin Kazan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ufuk Gündüz
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
27
|
Whole-exome and transcriptome sequencing of refractory diffuse large B-cell lymphoma. Oncotarget 2018; 7:86433-86445. [PMID: 27835906 PMCID: PMC5349924 DOI: 10.18632/oncotarget.13239] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/28/2016] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Although rituximab therapy improves clinical outcome, some patients develop resistant DLBCL; however, the genetic alterations in these patients are not well documented. To identify the genetic background of refractory DLBCL, we conducted whole-exome sequencing and transcriptome sequencing for six patients with refractory and seven with responsive DLBCL. The average numbers of pathogenic somatic single nucleotide variants and indels in coding regions were 71 in refractory patients (range 28–120) and 38 (range 19–66) in responsive patients. Missense mutations of TP53 were exclusive in 50% (3/6) of refractory patients and involved the DNA-binding domain of TP53. All missense mutations of TP53 were accompanied by copy number deletions. RAB11FIP5, PRKCB, PRDM15, FNBP4, AHR, CEP128, BRE, DHX16, MYO6, and NMT1 mutations were recurrent in refractory patients. MYD88, B2M, SORCS3, and WDFY3 mutations were more frequent in refractory patients than in responsive patients. REL–BCL11A fusion was found in two refractory patients; one had both fusion and copy number gain. Recurrent copy gains of POU2AF1, SLC1A4, REL11, FANCL, CACNA1D, TRRAP, and CUX1 with significantly increased average expression were found in refractory patients. The expression profile revealed enriched gene sets associated with treatment resistance, including oxidative phosphorylation and ATP-binding cassette transporters. In conclusion, this study integrated both genomic and transcriptomic alterations associated with refractory DLBCL and found several treatment-resistance alterations that may contribute to refractoriness.
Collapse
|
28
|
Rausch V, Krieg A, Camps J, Behrens B, Beier M, Wangsa D, Heselmeyer-Haddad K, Baldus SE, Knoefel WT, Ried T, Stoecklein NH. Array comparative genomic hybridization of 18 pancreatic ductal adenocarcinomas and their autologous metastases. BMC Res Notes 2017; 10:560. [PMID: 29110683 PMCID: PMC5674747 DOI: 10.1186/s13104-017-2886-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 10/31/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Mortality rates of pancreatic cancer remain high, which is mainly due to advanced disease and metastasis. We hypothesized that genomic copy number alterations are enriched in metastatic cells compared to autologous primary tumors, which may inform on cancer-related pathways possibly serving as potential targets for specific therapies. We investigated 18 pancreatic ductal adenocarcinomas, including 39 lymph node and 5 distant metastases after surgical resection. Analysis was performed with array-based comparative genomic hybridization (aCGH). RESULTS Metastases acquire a higher frequency of copy number alterations with the highest in distant metastasis (median = 42, lymph node metastases: median = 23, primary tumors: median = 17). In lymph node metastases, gains were prevalent on chromosome bands 8q11.23-q24.3, 12q14.1, 17p12.1, 21q22.12, and losses on 3p21.31, 4p14, 8p23.3-p11.21,17p12-11.2. Genes on amplified regions are involved in cancer-related pathways such as WNT-signaling, also involved in metastasis. CONCLUSIONS Pancreatic cancers show a high degree of intratumor heterogeneity, which could lead to resistance of chemotherapy and worse outcome. ACGH analysis reveals regions preferentially gained or lost in synchronous metastases encoding for genes involved in cancer-related pathways, which could lead to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Valentin Rausch
- Department of General, Visceral, and Pediatric Surgery, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Andreas Krieg
- Department of General, Visceral, and Pediatric Surgery, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Jordi Camps
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
- Present Address: Gastrointestinal and Pancreatic Oncology Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Bianca Behrens
- Department of General, Visceral, and Pediatric Surgery, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Manfred Beier
- Institute of Human Genetics and Anthropology, Heinrich-Heine-University and University Hospital, Duesseldorf, Germany
| | - Darawalee Wangsa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Kerstin Heselmeyer-Haddad
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Stephan E. Baldus
- Department of Pathology, Heinrich-Heine-University and University Hospital, Duesseldorf, Germany
| | - Wolfram T. Knoefel
- Department of General, Visceral, and Pediatric Surgery, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Thomas Ried
- Section of Cancer Genomics, Genetics Branch, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, MD USA
| | - Nikolas H. Stoecklein
- Department of General, Visceral, and Pediatric Surgery, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| |
Collapse
|
29
|
STK38L kinase ablation promotes loss of cell viability in a subset of KRAS-dependent pancreatic cancer cell lines. Oncotarget 2017; 8:78556-78572. [PMID: 29108249 PMCID: PMC5667982 DOI: 10.18632/oncotarget.20833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/27/2017] [Indexed: 01/07/2023] Open
Abstract
Pancreatic ductal adenocarcinomas (PDACs) are highly aggressive malignancies, associated with poor clinical prognosis and limited therapeutic options. Oncogenic KRAS mutations are found in over 90% of PDACs, playing a central role in tumor progression. Global gene expression profiling of PDAC reveals 3-4 major molecular subtypes with distinct phenotypic traits and pharmacological vulnerabilities, including variations in oncogenic KRAS pathway dependencies. PDAC cell lines of the aberrantly differentiated endocrine exocrine (ADEX) subtype are robustly KRAS-dependent for survival. The KRAS gene is located on chromosome 12p11-12p12, a region amplified in 5-10% of primary PDACs. Within this amplicon, we identified co-amplification of KRAS with the STK38L gene in a subset of primary human PDACs and PDAC cell lines. Therefore, we determined whether PDAC cell lines are dependent on STK38L expression for proliferation and viability. STK38L encodes a serine/threonine kinase, which shares homology with Hippo pathway kinases LATS1/2. We show that STK38L expression is elevated in a subset of primary PDACs and PDAC cell lines displaying ADEX subtype characteristics, including overexpression of mutant KRAS. RNAi-mediated depletion of STK38L in a subset of ADEX subtype cell lines inhibits cellular proliferation and induces apoptosis. Concomitant with these effects, STK38L depletion causes increased expression of the LATS2 kinase and the cell cycle regulator p21. LATS2 depletion partially rescues the cytostatic and cytotoxic effects of STK38L depletion. Lastly, high STK38L mRNA expression is associated with decreased overall patient survival in PDACs. Collectively, our findings implicate STK38L as a candidate targetable vulnerability in a subset of molecularly-defined PDACs.
Collapse
|
30
|
Balli D, Rech AJ, Stanger BZ, Vonderheide RH. Immune Cytolytic Activity Stratifies Molecular Subsets of Human Pancreatic Cancer. Clin Cancer Res 2017; 23:3129-3138. [PMID: 28007776 DOI: 10.1158/1078-0432.ccr-16-2128] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 01/13/2023]
Abstract
Purpose: Immunotherapy has the potential to improve the dismal prognosis in pancreatic ductal adenocarcinoma (PDA), but clinical trials, including those with single-agent PD-1 or PD-L1 inhibition, have been disappointing. Our aim was to examine the immune landscape of PDA as it relates to aspects of tumor biology, including neoepitope burden.Experimental Design: We used publicly available expression data from 134 primary resection PDA samples from The Cancer Genome Atlas to stratify patients according to a cytolytic T-cell activity expression index. We correlated cytolytic immune activity with mutational, structural, and neoepitope features of the tumor.Results: Human PDA displays a range of intratumoral cytolytic T-cell activity. PDA tumors with low cytolytic activity exhibited significantly increased copy number alterations, including recurrent amplifications of MYC and NOTCH2 and recurrent deletions and mutations of CDKN2A/B In sharp contrast to other tumor types, high cytolytic activity in PDA did not correlate with increased mutational burden or neoepitope load (MHC class I and class II). Cytolytic-high tumors exhibited increased expression of multiple immune checkpoint genes compared to cytolytic-low tumors, except for PD-L1 expression, which was uniformly low.Conclusions: These data identify a subset of human PDA with high cytolytic T-cell activity. Rather than being linked to mutation burden or neoepitope load, immune activation indices in PDA were inversely linked to genomic alterations, suggesting that intrinsic oncogenic processes drive immune inactivity in human PDA. Furthermore, these data highlight the potential importance of immune checkpoints other than PD-L1/PD-1 as therapeutic targets in this lethal disease. Clin Cancer Res; 23(12); 3129-38. ©2016 AACR.
Collapse
Affiliation(s)
- David Balli
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew J Rech
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Vonderheide
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Langdon CG, Platt JT, Means RE, Iyidogan P, Mamillapalli R, Klein M, Held MA, Lee JW, Koo JS, Hatzis C, Hochster HS, Stern DF. Combinatorial Screening of Pancreatic Adenocarcinoma Reveals Sensitivity to Drug Combinations Including Bromodomain Inhibitor Plus Neddylation Inhibitor. Mol Cancer Ther 2017; 16:1041-1053. [PMID: 28292938 PMCID: PMC5457712 DOI: 10.1158/1535-7163.mct-16-0794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/10/2017] [Accepted: 03/08/2017] [Indexed: 12/12/2022]
Abstract
Pancreatic adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death in the United States. PDAC is difficult to manage effectively, with a five-year survival rate of only 5%. PDAC is largely driven by activating KRAS mutations, and as such, cannot be directly targeted with therapeutic agents that affect the activated protein. Instead, inhibition of downstream signaling and other targets will be necessary to effectively manage PDAC. Here, we describe a tiered single-agent and combination compound screen to identify targeted agents that impair growth of a panel of PDAC cell lines. Several of the combinations identified from the screen were further validated for efficacy and mechanism. Combination of the bromodomain inhibitor JQ1 and the neddylation inhibitor MLN4294 altered the production of reactive oxygen species in PDAC cells, ultimately leading to defects in the DNA damage response. Dual bromodomain/neddylation blockade inhibited in vivo growth of PDAC cell line xenografts. Overall, this work revealed novel combinatorial regimens, including JQ1 plus MLN4294, which show promise for the treatment of RAS-driven PDAC. Mol Cancer Ther; 16(6); 1041-53. ©2017 AACR.
Collapse
Affiliation(s)
- Casey G Langdon
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - James T Platt
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Robert E Means
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Pinar Iyidogan
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Ramanaiah Mamillapalli
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Michael Klein
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Matthew A Held
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Jong Woo Lee
- Department of Internal Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Ja Seok Koo
- Department of Internal Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Christos Hatzis
- Department of Internal Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Howard S Hochster
- Department of Internal Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - David F Stern
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
32
|
Genetic and pharmacological inhibition of TTK impairs pancreatic cancer cell line growth by inducing lethal chromosomal instability. PLoS One 2017; 12:e0174863. [PMID: 28380042 PMCID: PMC5381904 DOI: 10.1371/journal.pone.0174863] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/16/2017] [Indexed: 01/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma, which accounts for the majority of pancreatic cancers, is a lethal disease with few therapeutic options. Genomic profiling of pancreatic ductal adenocarcinoma has identified a complex and heterogeneous landscape. Understanding the molecular characteristics of pancreatic ductal adenocarcinoma will facilitate the identification of potential therapeutic strategies. We analyzed the gene expression profiles of primary tumors from patients compared to normal pancreas and identified high co-overexpression of core components of the spindle assembly checkpoint, including the protein kinase TTK (also known as MPS-1). We found overexpression of TTK protein in a subset of pancreatic ductal adenocarcinoma primary tumors and cell lines. siRNA-mediated depletion or catalytic inhibition of TTK resulted in an aberrant cell cycle profile, multi- and micro-nucleation, induction of apoptosis, and decreased cell proliferation and transformed growth. Selective catalytic inhibition of TTK caused override of the spindle assembly checkpoint-induced cell cycle arrest. Interestingly, we identified ubiquitin specific peptidase 16 (Usp16), an ubiquitin hydrolase, as a phosphorylation substrate of TTK. Usp16 regulates chromosomal condensation and G2/M progression by deubiquitinating histone H2A and polo-like kinase 1. Phosphomimetic mutants of Usp16 show enhanced proteosomal degradation and may prolong the G2/M transition allowing for correction of replication errors. Taken together, our results suggest a critical role for TTK in preventing aneuploidy-induced cell death in pancreatic cancer.
Collapse
|
33
|
Iguchi E, Safgren SL, Marks DL, Olson RL, Fernandez-Zapico ME. Pancreatic Cancer, A Mis-interpreter of the Epigenetic Language. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:575-590. [PMID: 28018146 PMCID: PMC5168833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pancreatic cancer is the third leading cause of cancer mortality in the U.S. with close to 40,000 deaths per year. Pancreatic ductal adenocarcinoma (PDAC) represents approximately 90 percent of all pancreatic cancer cases and is the most lethal form of the disease. Current therapies for PDAC are ineffective and most patients cannot be treated by surgical resection. Most research efforts have primarily focused on how genetic alterations cause, alter progression, contribute to diagnosis, and influence PDAC management. Over the past two decades, a model has been advanced of PDAC initiation and progression as a multi-step process driven by the acquisition of mutations leading to loss of tumor suppressors and activation of oncogenes. The recognition of the essential roles of these genetic alterations in the development of PDAC has revolutionized our knowledge of this disease. However, none of these findings have turned into effective treatment for this dismal malignancy. In recent years, studies in the areas of chromatin modifications, and non-coding RNAs have uncovered mechanisms for regulating gene expression which occur independently of genetic alterations. Chromatin-based mechanisms are interwoven with microRNA-driven regulation of protein translation to create an integrated epigenetic language, which is grossly dysregulated in PDAC. Thus in PDAC, key tumor suppressors that are well established to play a role in PDAC may be repressed, and oncogenes can be upregulated secondary to epigenetic alterations. Unlike mutations, epigenetic changes are potentially reversible. Given this feature of epigenetic mechanisms, it is conceivable that targeting epigenetic-based events promoting and maintaining PDAC could serve as foundation for the development of new therapeutic and diagnostic approaches for this disease.
Collapse
Affiliation(s)
- Eriko Iguchi
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - David L. Marks
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Rachel L. Olson
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
34
|
Abstract
Pancreatic neoplasms have a wide range of histologic types with distinct clinical outcomes. Recent advances in high-throughput sequencing technologies have greatly deepened our understanding of pancreatic neoplasms. Now, the exomes of major histologic types of pancreatic neoplasms have been sequenced, and their genetic landscapes have been revealed. This article reviews the molecular changes underlying pancreatic neoplasms, with a special focus on the genetic changes that characterize the histologic types of pancreatic neoplasms. Emphasis is also made on the molecular features of key genes that have the potential for therapeutic targets.
Collapse
|
35
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease with a high mortality rate. Genetic and biochemical studies have shown that RAS signaling mediated by KRAS plays a pivotal role in disease initiation, progression and drug resistance. RAS signaling affects several cellular processes in PDAC, including cellular proliferation, migration, cellular metabolism and autophagy. 90% of pancreatic cancer patients harbor somatic oncogenic point mutations in KRAS, which lead to constitutive activation of the molecule. Pancreatic cancers lacking KRAS mutations show activation of RAS via upstream signaling through receptor mediated tyrosine kinases, like EGFR, and in a small fraction of patients, oncogenic activation of the downstream B-RAF molecule is detected. RAS-stimulated signaling of RAF/MEK/ERK, PI3K/AKT/mTOR and RalA/B is active in human pancreatic cancers, cancer cell lines and mouse models of PDAC, although activation levels of each signaling arm appear to be variable across different tumors and perhaps within different subclones of single tumors. Recently, several targeted therapies directed towards MEK, ERK, PI3K and mTOR have been assayed in pancreatic cancer cell lines and in mouse models of the disease with promising results for their ability to impede cellular growth or delay tumor formation, and several inhibitors are currently in clinical trials. However, therapy-induced cross activation of RAS effector molecules has elucidated the complexities of targeting RAS signaling. Combinatorial therapies are now being explored as an approach to overcome RAS-induced therapeutic resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Karen M Mann
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph Juan
- Molecular Oncology Department, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
36
|
Human pancreatic cancer progression: an anarchy among CCN-siblings. J Cell Commun Signal 2016; 10:207-216. [PMID: 27541366 DOI: 10.1007/s12079-016-0343-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Decades of basic and translational studies have identified the mechanisms by which pancreatic cancer cells use molecular pathways to hijack the normal homeostasis of the pancreas, promoting pancreatic cancer initiation, progression, and metastasis, as well as drug resistance. These molecular pathways were explored to develop targeted therapies to prevent or cure this fatal disease. Regrettably, the studies found that majority of the molecular events that dictate carcinogenic growth in the pancreas are non-actionable (potential non-responder groups of targeted therapy). In this review we discuss exciting discoveries on CCN-siblings that reveal how CCN-family members contribute to the different aspects of the development of pancreatic cancer with special emphasis on therapy.
Collapse
|
37
|
Franco OE, Tyson DR, Konvinse KC, Udyavar AR, Estrada L, Quaranta V, Crawford SE, Hayward SW. Altered TGF-α/β signaling drives cooperation between breast cancer cell populations. FASEB J 2016; 30:3441-3452. [PMID: 27383183 DOI: 10.1096/fj.201500187rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/21/2016] [Indexed: 02/01/2023]
Abstract
The role of tumor heterogeneity in regulating disease progression is poorly understood. We hypothesized that interactions between subpopulations of cancer cells can affect the progression of tumors selecting for a more aggressive phenotype. We developed an in vivo assay based on the immortalized nontumorigenic breast cell line MCF10A and its Ras-transformed derivatives AT1 (mildly tumorigenic) and CA1d (highly tumorigenic). CA1d cells outcompeted MCF10A, forming invasive tumors. AT1 grafts were approximately 1% the size of CA1d tumors when initiated using identical cell numbers. In contrast, CA1d/AT1 mixed tumors were larger than tumors composed of AT1 alone (100-fold) or CA1d (3-fold), suggesting cooperation in tumor growth. One of the mechanisms whereby CA1d and AT1 were found to cooperate was by modulation of TGF-α and TGF-β signaling. Both of these molecules were sufficient to induce changes in AT1 proliferative potential in vitro. Reisolation of AT1 tumor-derived (AT1-TD) cells from these mixed tumors revealed that AT1-TD cells grew in vivo, forming tumors as large as tumorigenic CA1d cells. Cooperation between subpopulations of cancer epithelium is an understudied mechanism of tumor growth and invasion that may have implications on tumor resistance to current therapies.-Franco, O. E., Tyson, D. R., Konvinse, K. C., Udyavar, A. R., Estrada, L., Quaranta, V., Crawford, S. E., Hayward, S. W. Altered TGF-α/β signaling drives cooperation between breast cancer cell populations.
Collapse
Affiliation(s)
- Omar E Franco
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Darren R Tyson
- Department of Cancer Biology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Katherine C Konvinse
- Department of Urologic Surgery, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA; and
| | - Akshata R Udyavar
- Department of Cancer Biology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Lourdes Estrada
- Department of Cancer Biology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Vito Quaranta
- Department of Cancer Biology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Susan E Crawford
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Simon W Hayward
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois, USA; Department of Urologic Surgery, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA; and Department of Cancer Biology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
38
|
Xi J, Li A. Discovering Recurrent Copy Number Aberrations in Complex Patterns via Non-Negative Sparse Singular Value Decomposition. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2016; 13:656-668. [PMID: 26372614 DOI: 10.1109/tcbb.2015.2474404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recurrent copy number aberrations (RCNAs) in multiple cancer samples are strongly associated with tumorigenesis, and RCNA discovery is helpful to cancer research and treatment. Despite the emergence of numerous RCNA discovering methods, most of them are unable to detect RCNAs in complex patterns that are influenced by complicating factors including aberration in partial samples, co-existing of gains and losses and normal-like tumor samples. Here, we propose a novel computational method, called non-negative sparse singular value decomposition (NN-SSVD), to address the RCNA discovering problem in complex patterns. In NN-SSVD, the measurement of RCNA is based on the aberration frequency in a part of samples rather than all samples, which can circumvent the complexity of different RCNA patterns. We evaluate NN-SSVD on synthetic dataset by comparison on detection scores and Receiver Operating Characteristics curves, and the results show that NN-SSVD outperforms existing methods in RCNA discovery and demonstrate more robustness to RCNA complicating factors. Applying our approach on a breast cancer dataset, we successfully identify a number of genomic regions that are strongly correlated with previous studies, which harbor a bunch of known breast cancer associated genes.
Collapse
|
39
|
Asting AG, Ljungman D, Carén H, Dambrauskas Z, Iresjö BM, Hyltander A, Naredi P, Lundholm K. Alterations in Tumor DNA Are Related to Short Postoperative Survival in Patients Resected for Pancreatic Carcinoma Aimed at Cure. Pancreas 2016; 45:900-907. [PMID: 26684859 DOI: 10.1097/mpa.0000000000000566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Pancreatic ductal adenocarcinomas (PDACs) are found in more than 85% of patients with pancreatic cancer and with 5-year survival of less than 10%. Effective treatment may be radical surgery, which is hampered by rapid relapse. Therefore, our aim was to compare DNA sequence alterations in patients with short and long survival to evaluate if confirmed DNA alterations predict short postoperative survival. METHODS DNA was extracted from tumor tissue from 59 PDAC patients, analyzed for KRAS mutations, and hybridized to 180 K CGH + SNP microarrays and 450 K methylation arrays. Analyses were based on postoperative survival where less than 12 months was considered to be short survival and more than 18 months was considered long survival. RESULTS Ninety-three percent of the patients had KRAS mutations in tumor DNA. Great heterogeneity of whole genome DNA sequence alterations were observed among chromosomes within the patient materials. Specific DNA sequence alterations did not directly predict postoperative survival, although short survivors had significantly more and larger DNA amplifications (P < 0.006). Amplifications on chromosome 11 and 21 and deletions on chromosome 2 predicted short postoperative survival (P < 0.03). DNA methylation was not related to survival. CONCLUSIONS Highly variable genetic differences among DNA regions in PDAC tumors were demonstrated. Postoperative short survival was related to tumor sequence DNA alterations on chromosome 2, 11, and 21.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/surgery
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 21/genetics
- DNA Methylation
- DNA, Neoplasm/genetics
- Female
- Humans
- Male
- Middle Aged
- Mutation
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/surgery
- Polymorphism, Single Nucleotide
- Postoperative Period
- Proto-Oncogene Proteins p21(ras)/genetics
- Survival Analysis
- Time Factors
- Treatment Outcome
Collapse
Affiliation(s)
- Annika Gustafsson Asting
- From the *Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, and †Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; ‡Department of Surgery, and §Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ying H, Dey P, Yao W, Kimmelman AC, Draetta GF, Maitra A, DePinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2016; 30:355-85. [PMID: 26883357 PMCID: PMC4762423 DOI: 10.1101/gad.275776.115] [Citation(s) in RCA: 391] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ying et al. review pancreatic ductal adenocarcinoma (PDAC) genetics and biology, particularly altered cancer cell metabolism, the complexity of immune regulation in the tumor microenvironment, and impaired DNA repair processes. With 5-year survival rates remaining constant at 6% and rising incidences associated with an epidemic in obesity and metabolic syndrome, pancreatic ductal adenocarcinoma (PDAC) is on track to become the second most common cause of cancer-related deaths by 2030. The high mortality rate of PDAC stems primarily from the lack of early diagnosis and ineffective treatment for advanced tumors. During the past decade, the comprehensive atlas of genomic alterations, the prominence of specific pathways, the preclinical validation of such emerging targets, sophisticated preclinical model systems, and the molecular classification of PDAC into specific disease subtypes have all converged to illuminate drug discovery programs with clearer clinical path hypotheses. A deeper understanding of cancer cell biology, particularly altered cancer cell metabolism and impaired DNA repair processes, is providing novel therapeutic strategies that show strong preclinical activity. Elucidation of tumor biology principles, most notably a deeper understanding of the complexity of immune regulation in the tumor microenvironment, has provided an exciting framework to reawaken the immune system to attack PDAC cancer cells. While the long road of translation lies ahead, the path to meaningful clinical progress has never been clearer to improve PDAC patient survival.
Collapse
Affiliation(s)
- Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Prasenjit Dey
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wantong Yao
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Alec C Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Giulio F Draetta
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Anirban Maitra
- Department of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Sheikh Ahmed Pancreatic Cancer Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
41
|
Jang H, Hur Y, Lee H. Identification of cancer-driver genes in focal genomic alterations from whole genome sequencing data. Sci Rep 2016; 6:25582. [PMID: 27156852 PMCID: PMC4860638 DOI: 10.1038/srep25582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/19/2016] [Indexed: 11/18/2022] Open
Abstract
DNA copy number alterations (CNAs) are the main genomic events that occur during the initiation and development of cancer. Distinguishing driver aberrant regions from passenger regions, which might contain candidate target genes for cancer therapies, is an important issue. Several methods for identifying cancer-driver genes from multiple cancer patients have been developed for single nucleotide polymorphism (SNP) arrays. However, for NGS data, methods for the SNP array cannot be directly applied because of different characteristics of NGS such as higher resolutions of data without predefined probes and incorrectly mapped reads to reference genomes. In this study, we developed a wavelet-based method for identification of focal genomic alterations for sequencing data (WIFA-Seq). We applied WIFA-Seq to whole genome sequencing data from glioblastoma multiforme, ovarian serous cystadenocarcinoma and lung adenocarcinoma, and identified focal genomic alterations, which contain candidate cancer-related genes as well as previously known cancer-driver genes.
Collapse
Affiliation(s)
- Ho Jang
- Gwangju Institute of Science and Technology, School of Electrical Engineering and Computer Science, Gwangju, 500-712, South Korea
| | - Youngmi Hur
- Yonsei University, Department of Mathematics, Seoul, 120-749, South Korea
| | - Hyunju Lee
- Gwangju Institute of Science and Technology, School of Electrical Engineering and Computer Science, Gwangju, 500-712, South Korea
| |
Collapse
|
42
|
Fu X, Zhang W, Su Y, Lu L, Wang D, Wang H. MicroRNA-103 suppresses tumor cell proliferation by targeting PDCD10 in prostate cancer. Prostate 2016; 76:543-51. [PMID: 26771762 DOI: 10.1002/pros.23143] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/15/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND It is known that microRNAs (miRNAs) are a class of small, non-coding RNAs that act as key regulators in various physiological and pathological processes. However, the regulatory mechanisms involving miRNAs in prostate cancer remain largely unknown. Here, we found that miR-103 is down-regulated in prostate cancer and closely associated with tumor proliferation and migration. Our objective was to explore the role of the miR-103 in prostate cancer. METHODS In this study, we measured miR-103 level using real-time polymerase chain reaction in the human prostate cancer cell lines, including PC-3, LNCap, 22Rv1, DU145, and the normal prostate epithelium cell line RWPE-1, a total of 25 pairs of primary prostate cancer tissues and adjacent non-cancerous tissues (NCTs) were measured also. In addition, over-expression of miR-103 in prostate cancer cell lines to determine the role of miR-103 in prostate cancer. RESULTS We found that miR-103 is down-regulated in prostate cancer and closely associated with tumor proliferation and migration. In addition, over-expression of miR-103 apparently inhibits prostate cancer cell proliferation and migration in vitro. Gain-of-function in vitro experiments further show that miR-103 mimics significantly inhibited prostate cancer cell proliferation, invasion and increase the cell cycle in G1 phase, while promoted cell apoptosis. Subsequent dual-luciferase reporter assay identified one of the proto-oncogene PDCD10 as direct target of miR-103. CONCLUSIONS Therefore, our data collectively demonstrate that miR-103 is a proto-oncogene miRNA that can suppress prostate cancer proliferation and migration by down-regulating the oncogene PDCD10, indicating that miR-103 may represent a new potential diagnostic and therapeutic target for prostate cancer treatment.
Collapse
Affiliation(s)
- Xiaoliang Fu
- Departmentof Urology, Xi'an Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Departmentof Urology, Xi'an Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yansheng Su
- The Chinese People's Liberation Army 323 hospital, Xi'an, China
| | - Lu Lu
- Armed Police Hospital of Shaanxi, Xi'an, China
| | - Dong Wang
- Departmentof Urology, Xi'an Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - He Wang
- Departmentof Urology, Xi'an Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
43
|
Singh R, Lillard JW, Singh S. Epigenetic Changes and Potential Targets in Pancreatic Cancer. EPIGENETIC ADVANCEMENTS IN CANCER 2016:27-63. [DOI: 10.1007/978-3-319-24951-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Wu Z, Qi Y, Guo Z, Li P, Zhou D. miR-613 suppresses ischemia-reperfusion-induced cardiomyocyte apoptosis by targeting the programmed cell death 10 gene. Biosci Trends 2016; 10:251-7. [DOI: 10.5582/bst.2016.01122] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhenhua Wu
- ICU, Departmentof Cardiac Surgery, Tianjin Chest Hospital
| | - Yujuan Qi
- ICU, Departmentof Cardiac Surgery, Tianjin Chest Hospital
| | - Zhigang Guo
- Department of Cardiac Surgery, Tianjin Chest Hospital
| | - Peijun Li
- ICU, Departmentof Cardiac Surgery, Tianjin Chest Hospital
| | - Ding Zhou
- TEDA International Cardiovascular Hospital
| |
Collapse
|
45
|
Gao X. Penalized weighted low-rank approximation for robust recovery of recurrent copy number variations. BMC Bioinformatics 2015; 16:407. [PMID: 26652207 PMCID: PMC4676147 DOI: 10.1186/s12859-015-0835-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copy number variation (CNV) analysis has become one of the most important research areas for understanding complex disease. With increasing resolution of array-based comparative genomic hybridization (aCGH) arrays, more and more raw copy number data are collected for multiple arrays. It is natural to realize the co-existence of both recurrent and individual-specific CNVs, together with the possible data contamination during the data generation process. Therefore, there is a great need for an efficient and robust statistical model for simultaneous recovery of both recurrent and individual-specific CNVs. RESULT We develop a penalized weighted low-rank approximation method (WPLA) for robust recovery of recurrent CNVs. In particular, we formulate multiple aCGH arrays into a realization of a hidden low-rank matrix with some random noises and let an additional weight matrix account for those individual-specific effects. Thus, we do not restrict the random noise to be normally distributed, or even homogeneous. We show its performance through three real datasets and twelve synthetic datasets from different types of recurrent CNV regions associated with either normal random errors or heavily contaminated errors. CONCLUSION Our numerical experiments have demonstrated that the WPLA can successfully recover the recurrent CNV patterns from raw data under different scenarios. Compared with two other recent methods, it performs the best regarding its ability to simultaneously detect both recurrent and individual-specific CNVs under normal random errors. More importantly, the WPLA is the only method which can effectively recover the recurrent CNVs region when the data is heavily contaminated.
Collapse
Affiliation(s)
- Xiaoli Gao
- Department of Mathematics and Statistics, University of North Carolina at Greensboro, 1400 Spring Garden St, Greensoboro, NC, USA.
| |
Collapse
|
46
|
Zhang Y, Hu X, Miao X, Zhu K, Cui S, Meng Q, Sun J, Wang T. MicroRNA-425-5p regulates chemoresistance in colorectal cancer cells via regulation of Programmed Cell Death 10. J Cell Mol Med 2015; 20:360-9. [PMID: 26647742 PMCID: PMC4727563 DOI: 10.1111/jcmm.12742] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022] Open
Abstract
Acquired chemoresistance represents a major obstacle in cancer treatment, the underlying mechanism of which is complex and not well understood. MiR‐425‐5p has been reported to be implicated tumorigenesis in a few cancer types. However, its role in regulating chemoresistance has not been investigated in colorectal cancer (CRC) cells. Microarray analysis was performed in isogenic chemosensitive and chemoresistant HCT116 cell lines to identify differentially expressed miRNAs. miRNA quantitative real‐time PCR was used to detect miR‐425‐5p expression levels between drug resistant and parental cancer cells. MiR‐425‐5p mimic and inhibitor were transfected, followed by CellTiter‐Glo® assay to examine drug sensitivity in these two cell lines. Western Blot and luciferase assay were performed to investigate the direct target of miR‐425‐5p. Xenograft mouse models were used to examine in vivo function of miR‐425‐5p. Our data showed that expression of miR‐425‐5p was significantly up‐regulated in HCT116‐R compared with parental HCT116 cells. Inhibition of miR‐425‐5p reversed chemoresistance in HCT116‐R cells. Programmed cell death 10 (PDCD10) is the direct target of miR‐425‐5p which is required for the regulatory role of miR‐425‐5p in chemoresistance. MiR‐425‐5p inhibitor sensitized HCT116‐R xenografts to chemo drugs in vivo. Our study demonstrated that miR‐425‐5p regulates chemoresistance of CRC cells by modulating PDCD10 expression level both in vitro and in vivo. MiR‐425‐5p may represent a new therapeutic target for the intervention of CRC.
Collapse
Affiliation(s)
- Ye Zhang
- Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Xingqian Hu
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofei Miao
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kuiyu Zhu
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Songkui Cui
- Nanjing Medical University, Nanjing, Jiangsu, China
| | | | - Jialin Sun
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tong Wang
- Wuxi People's Hospital, Wuxi, Jiangsu, China.,Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
47
|
Lambertz N, El Hindy N, Kreitschmann-Andermahr I, Stein KP, Dammann P, Oezkan N, Mueller O, Sure U, Zhu Y. Downregulation of programmed cell death 10 is associated with tumor cell proliferation, hyperangiogenesis and peritumoral edema in human glioblastoma. BMC Cancer 2015; 15:759. [PMID: 26490252 PMCID: PMC4618952 DOI: 10.1186/s12885-015-1709-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022] Open
Abstract
Background Neovascularization and peritumoral edema are hallmarks of glioblastoma (GBM). Programmed cell death 10 (PDCD10) plays a pivotal role in regulating apoptosis, neoangiogenesis and vessel permeability and is implicated in certain tumor signaling pathways. However, little is known about PDCD10 in GBM. We aimed to investigate the expression pattern of PDCD10 and to identify the association of its expression with some molecular and clinical parameters in human GBM. Methods mRNA and protein expression of PDCD10 were examined respectively by real-time RT-PCR and Western blotting in GBM (n = 27), astrocytoma grade II (n = 13) and control (n = 11). The protein level of p-Akt and GFAP was detected by Western blot. Double-imunofluorecent staining was performed to reveal the cellular expression profile of PDCD10. Brain edema and microvascular density (MVD) were respectively analyzed based on pre-operative MRI and after laminin immnostaining. MGMT promoter methylation was detected by methylation specific PCR. Results mRNA and protein levels of PDCD10 were significantly downregulated in GBM, concomitantly accompanied by the activation of Akt. PDCD10 immunoreactivity was absent in proliferating tumor cells, endothelial cells and GFAP-positive cells, but exclusively present in the hypoxic pseudopalisading cells which underwent apoptosis. Moreover, loss of PDCD10 was associated with a higher MVD and a more severe peritumoral edema but not with MGMT promoter methylation in GBM. Conclusion We report for the first time that PDCD10 expression is downregulated in GBM, which is associated with the activation of Akt signaling protein. PDCD10 is potentially implicated in tumor proliferation and apoptosis, hyperangiogenesis and peritumoral edema in GBM.
Collapse
Affiliation(s)
- Nicole Lambertz
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Nicolai El Hindy
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | | | - Klaus Peter Stein
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany. .,Present Address: Department of Neurosurgery, KRH Klinikum Nordstadt, Haltenhoffstr. 41, 30167, Hannover, Germany.
| | - Philipp Dammann
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Neriman Oezkan
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Oliver Mueller
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Ulrich Sure
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Yuan Zhu
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
48
|
Zhu Y, Zhao K, Prinz A, Keyvani K, Lambertz N, Kreitschmann-Andermahr I, Lei T, Sure U. Loss of endothelial programmed cell death 10 activates glioblastoma cells and promotes tumor growth. Neuro Oncol 2015; 18:538-48. [PMID: 26254477 DOI: 10.1093/neuonc/nov155] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/15/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Neo-angiogenesis is a hallmark of glioblastoma (GBM) and is sustained by autocrine and paracrine interactions between neoplastic and nonneoplastic cells. Programmed cell death 10 (PDCD10) is ubiquitously expressed in nearly all tissues and plays crucial roles in regulating angiogenesis and apoptosis. We recently discovered the absence of PDCD10 expression in the tumor vessels of GBM patients. This raised the hypothesis that loss of endothelial PDCD10 affected GBM cell phenotyping and tumor progression. METHODS Endothelial PDCD10 was silenced by siRNA and lentiviral shRNA. The tumor cell phenotype was studied in direct and indirect co-culture of endothelial cells (ECs) with U87 or LN229. Angiogenic protein array was performed in the media of PDCD10-silenced ECs. Tumor angiogenesis and tumor growth were investigated in a human GBM xenograft mouse model. RESULTS Endothelial silence of PDCD10 significantly stimulated tumor cell proliferation, migration, adhesion, and invasion and inhibited apoptosis in co-cultures. Stable knockdown of endothelial PDCD10 increased microvessel density and the formation of a functional vascular network, leading to a 4-fold larger tumor mass in mice. Intriguingly, endothelial deletion of PDCD10 increased (≥2-fold) the release of 20 of 55 tested proangiogenic factors including VEGF, which in turn activated Erk1/2 and Akt in GBM cells. CONCLUSIONS For the first time, we provide evidence that loss of endothelial PDCD10 activates GBM cells and promotes tumor growth, most likely via a paracrine mechanism. PDCD10 shows a tumor-suppressor-like function in the cross talk between ECs and tumor cells and is potentially implicated in GBM progression.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany (Y.Z., K.Z., A.P., N.L., I.K.-A., U.S.); Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany (K.K.); Department of Neurosurgery, Tongji Medical College, Wuhan, China (K.Z., T.L.)
| | - Kai Zhao
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany (Y.Z., K.Z., A.P., N.L., I.K.-A., U.S.); Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany (K.K.); Department of Neurosurgery, Tongji Medical College, Wuhan, China (K.Z., T.L.)
| | - Anja Prinz
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany (Y.Z., K.Z., A.P., N.L., I.K.-A., U.S.); Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany (K.K.); Department of Neurosurgery, Tongji Medical College, Wuhan, China (K.Z., T.L.)
| | - Kathy Keyvani
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany (Y.Z., K.Z., A.P., N.L., I.K.-A., U.S.); Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany (K.K.); Department of Neurosurgery, Tongji Medical College, Wuhan, China (K.Z., T.L.)
| | - Nicole Lambertz
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany (Y.Z., K.Z., A.P., N.L., I.K.-A., U.S.); Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany (K.K.); Department of Neurosurgery, Tongji Medical College, Wuhan, China (K.Z., T.L.)
| | - Ilonka Kreitschmann-Andermahr
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany (Y.Z., K.Z., A.P., N.L., I.K.-A., U.S.); Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany (K.K.); Department of Neurosurgery, Tongji Medical College, Wuhan, China (K.Z., T.L.)
| | - Ting Lei
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany (Y.Z., K.Z., A.P., N.L., I.K.-A., U.S.); Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany (K.K.); Department of Neurosurgery, Tongji Medical College, Wuhan, China (K.Z., T.L.)
| | - Ulrich Sure
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany (Y.Z., K.Z., A.P., N.L., I.K.-A., U.S.); Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany (K.K.); Department of Neurosurgery, Tongji Medical College, Wuhan, China (K.Z., T.L.)
| |
Collapse
|
49
|
Newman S. Interactive analysis of large cancer copy number studies with Copy Number Explorer. Bioinformatics 2015; 31:2874-6. [PMID: 25957352 PMCID: PMC4547619 DOI: 10.1093/bioinformatics/btv298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/05/2015] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED Copy number abnormalities (CNAs) such as somatically-acquired chromosomal deletions and duplications drive the development of cancer. As individual tumor genomes can contain tens or even hundreds of large and/or focal CNAs, a major difficulty is differentiating between important, recurrent pathogenic changes and benign changes unrelated to the subject's phenotype. Here we present Copy Number Explorer, an interactive tool for mining large copy number datasets. Copy Number Explorer facilitates rapid visual and statistical identification of recurrent regions of gain or loss, identifies the genes most likely to drive CNA formation using the cghMCR method and identifies recurrently broken genes that may be disrupted or fused. The software also allows users to identify recurrent CNA regions that may be associated with differential survival. AVAILABILITY AND IMPLEMENTATION Copy Number Explorer is available under the GNU public license (GPL-3). Source code is available at: https://sourceforge.net/projects/copynumberexplorer/ CONTACT scott.newman@emory.edu.
Collapse
Affiliation(s)
- Scott Newman
- Biostatistics & Bioinformatics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
50
|
Miwa T, Kokuryo T, Yokoyama Y, Yamaguchi J, Nagino M. Therapeutic potential of targeting protein for Xklp2 silencing for pancreatic cancer. Cancer Med 2015; 4:1091-100. [PMID: 25914189 PMCID: PMC4529347 DOI: 10.1002/cam4.453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 11/24/2022] Open
Abstract
The targeting protein for Xklp2 (TPX2) is a microtubule- and, cell cycle-associated protein who’s overexpression has been reported in various malignancies. In this study, we verified the overexpression of TPX2 in both surgically resected specimens of pancreatic cancer and multiple pancreatic cancer cell lines. Subsequently, we found that TPX2 siRNA effectively suppressed the proliferation of pancreatic cancer cells in culture, and the direct injection of TPX2 siRNA into subcutaneously implanted pancreatic cancer cells in nude mice revealed antiproliferative effects. These results implied a therapeutic potential of TPX2 siRNA in pancreatic cancer. Among 56 angiogenesis-related factors examined using angiogenesis arrays, the average protein levels of insulin-like growth factor-binding protein-3 (IGFBP-3) were significantly higher in TPX2 siRNA-treated tumors than in the Control siRNA-treated tumors. Moreover, we demonstrated that CD34-positive microvessels were significantly reduced in tumors treated with TPX2 siRNA compared to tumors that treated with Control siRNA. The attenuated expression of CD34 in TPX2 siRNA-treated tumors coincided with the overexpression of IGFBP-3. These results indicated that TPX2 has an impact on tumor angiogenesis in pancreatic cancer. The results also implied that the antiangiogenic effect observed in TPX2 siRNA-treated pancreatic cancer cells may be partly explained by the upregulation of IGFBP-3.
Collapse
Affiliation(s)
- Tomohiro Miwa
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Toshio Kokuryo
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|