1
|
Zhao Y, Xiao C, Li S, Huang A, Li H, Dong J, Qu Q, Liu X, Gao B, Shao N. CD71-Mediated Effects of Soluble Vasorin on Tumor Progression, Angiogenesis and Immunosuppression. Int J Mol Sci 2025; 26:4913. [PMID: 40430053 DOI: 10.3390/ijms26104913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/09/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Increasing recognition of the importance of the tumor microenvironment (TME) in cancer therapeutic strategies has led to more efforts to target molecules in the TME. Vasorin (VASN) is a transmembrane glycoprotein that can be cleaved and released into the extracellular matrix in a soluble form (sVASN), which is regarded as a decoy that inhibits the TGF-β signaling pathway. VASN is upregulated under hypoxic or tumorigenic conditions to regulate tumor progression. In this study, cell surface CD71 was identified as a specific binding protein of sVASN and mediated the internalization of sVASN in cancerous, endothelial and T cells. Endocytosed sVASN enhanced the nuclear translocation of p-STAT3(Tyr705), leading to the activation of a cascade of genes, ultimately contributing to tumor malignant progression. In cancer cells, sVASN promoted cell proliferation and migration by upregulating the YAP1/TAZ or mTOR-AKT pathways and it promotes stemness maintenance by regulating Notch1. In endothelial cells, sVASN facilitated angiogenesis through the VEGF signaling pathway. In T cells, sVASN inhibited the activation of T cells through AKT pathway. This study elucidated the mechanism by which sVASN acts as a tumor-promoting factor to accelerate tumor malignant progression through cell-surface CD71 and presented sVASN as a novel target for cancer therapy.
Collapse
Affiliation(s)
- Yuechao Zhao
- Department of Biochemistry and Molecular Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Can Xiao
- Department of Biochemistry and Molecular Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shaohua Li
- Department of Biochemistry and Molecular Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Aixue Huang
- Department of Biochemistry and Molecular Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jie Dong
- Department of Biochemistry and Molecular Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Qiaoping Qu
- Department of Biochemistry and Molecular Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xuemei Liu
- Department of Biochemistry and Molecular Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Bo Gao
- Department of Biochemistry and Molecular Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ningsheng Shao
- Department of Biochemistry and Molecular Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
2
|
Zhang J, Zhao JJ, Zhou HD, Chen J, Hong MN, Wang JG, Gao PJ, Li XD. Endothelial KLF15/VASN Axis Inhibits Angiogenesis via Activation of Notch1 Signaling. Circ Res 2025. [PMID: 40297901 DOI: 10.1161/circresaha.124.325494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Angiogenesis is a dynamic process fine-tuned by transcription factors in endothelial cells. The KLF15 (Krüppel-like factor 15)-mediated transcriptional regulation mechanism is critical for cardiovascular diseases. However, the role of KLF15 in governing angiogenesis remains unknown. METHODS KLF15 and VASN (vasorin) were deleted from endothelial cells using tamoxifen-inducible Cdh5 promoter-driven Cre recombinase in EC-KLF15 knockout (KO) and EC-VASN KO mice, respectively. EC-KLF15 KO, EC-VASN KO, and control mice were subjected to retinal angiogenesis or tumor cell transplantation. The RNA sequencing, assay for transposase-accessible chromatin using sequencing, and chromatin immunoprecipitation sequencing were conducted to identify VASN as a downstream effector of KLF15. Cell proliferation, wound healing, tube formation, and sprouting assays were performed to delineate endothelial cell function. RESULTS In EC-KLF15 KO mice and adenovirus-mediated KLF15 overexpression mice, we showed that KLF15 negatively regulated retinal angiogenesis, as confirmed in cultured endothelial cells. KLF15 opened chromatin, bound to the promoters of GC-rich sequences, and transactivated the expression of VASN. Subsequently, VASN suppressed endothelial angiogenic function, which was essential for Dll4 (delta-like ligand 4)-induced Notch1 signaling activation. Moreover, increased expression of VASN in EC-KLF15 KO mice suppressed retinal angiogenesis, which was attenuated by γ-secretase inhibitor. EC-VASN KO mice recapitulated the promotion of retinal angiogenesis in EC-KLF15 KO mice. Finally, the EGF (epidermal growth factor)-like domain of VASN was essential for its interaction with Notch1, and VASN EGF-like domain-derived peptides activated Notch1 signaling and suppressed angiogenesis. CONCLUSIONS The KLF15/VASN axis negatively regulates angiogenesis by activating Notch1 signaling. KLF15 and VASN might represent novel therapeutic targets for the treatment of impaired angiogenesis-related diseases and tumors.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., J.-J.Z., H.-D.Z., J.C., M.-N.H., J.-G.W., P.-J.G., X.-D.L.)
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, China (J.Z.)
| | - Jia-Jia Zhao
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., J.-J.Z., H.-D.Z., J.C., M.-N.H., J.-G.W., P.-J.G., X.-D.L.)
| | - Han-Dan Zhou
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., J.-J.Z., H.-D.Z., J.C., M.-N.H., J.-G.W., P.-J.G., X.-D.L.)
| | - Jing Chen
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., J.-J.Z., H.-D.Z., J.C., M.-N.H., J.-G.W., P.-J.G., X.-D.L.)
| | - Mo-Na Hong
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., J.-J.Z., H.-D.Z., J.C., M.-N.H., J.-G.W., P.-J.G., X.-D.L.)
| | - Ji-Guang Wang
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., J.-J.Z., H.-D.Z., J.C., M.-N.H., J.-G.W., P.-J.G., X.-D.L.)
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., J.-J.Z., H.-D.Z., J.C., M.-N.H., J.-G.W., P.-J.G., X.-D.L.)
| | - Xiao-Dong Li
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., J.-J.Z., H.-D.Z., J.C., M.-N.H., J.-G.W., P.-J.G., X.-D.L.)
| |
Collapse
|
3
|
Murugesan S, Addis DR, Hussey H, Powell MF, Saravanakumar L, Sturdivant AB, Sinkey RG, Tubinis MD, Massey ZR, Patton C, Mobley JA, Tita AN, Jilling T, Berkowitz DE. Decreased Extracellular Vesicle Vasorin in Severe Preeclampsia Plasma Mediates Endothelial Dysfunction. J Am Heart Assoc 2025; 14:e037242. [PMID: 40118804 DOI: 10.1161/jaha.124.037242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/30/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Preeclampsia is a serious pregnancy complication affecting 5% to 8% of pregnancies globally. preeclampsia is a leading cause of maternal and neonatal morbidity and death. Despite its prevalence, the underlying mechanisms of preeclampsia remain unclear. This study investigated the role of vasorin in preeclampsia pathogenesis by examining its levels in extracellular vesicles (EVs) and effects on vascular function. METHODS AND RESULTS We conducted unbiased proteomics on urine-derived EVs from women with severe preeclampsia and normotensive pregnancies, identifying differentially abundant proteins. Vasorin expression levels were measured in urinary EVs, plasma EVs, and placental tissue. EVs were generated from human and murine placental explants. Vascular functions were assessed using murine aortic rings and human aortic endothelial cells. Vasorin expression was manipulated in human aortic endothelial cells via overexpression and knockdown followed by RNA sequencing. One hundred twenty proteins showed ≥±1.5-fold regulation (P<0.05) between severe preeclampsia and NTP. Vasorin levels decreased in severe preeclampsia in urinary EVs, plasma EVs, and placental tissue. Vasorin levels increased with gestational age in murine pregnancy and were diminished in a murine model of preeclampsia. Severe preeclampsia and murine preeclampsia EVs impaired human aortic endothelial cell migration and inhibited murine aortic ring vasorelaxation. Vasorin overexpression counteracted these effects. RNA sequencing showed that vasorin manipulation in human aortic endothelial cells differentially regulated hundreds of genes linked to vasculogenesis, proliferation, migration, and apoptosis. CONCLUSIONS The data suggest that vasorin, delivered to the endothelium via EVs, regulates vascular function and that the loss of EV vasorin may be one of the mechanistic drivers of preeclampsia.
Collapse
Affiliation(s)
- Saravanakumar Murugesan
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Hanna Hussey
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Mark F Powell
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Lakshmi Saravanakumar
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Adam B Sturdivant
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Rachel G Sinkey
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Michelle D Tubinis
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Zachary R Massey
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Chelsi Patton
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Alan N Tita
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Tamas Jilling
- Department of Pediatrics, Division of Neonatology University of Alabama at Birmingham Birmingham AL USA
| | - Dan E Berkowitz
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| |
Collapse
|
4
|
Keyif B, Yurtçu E, Başbuğ A, Yavuzcan A, Goynumer FG. An Exploratory Study of Serum Vasorin Levels in Polycystic Ovary Syndrome: A Novel Potential Biomarker for Diagnosis and Pathogenesis. Metabolites 2025; 15:182. [PMID: 40137147 PMCID: PMC11943647 DOI: 10.3390/metabo15030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Objective: This study aims to investigate the potential role of vasorin as a novel biomarker in the pathogenesis of polycystic ovary syndrome (PCOS) by evaluating serum vasorin levels in women diagnosed with PCOS. Methods: A prospective study was conducted at Düzce University Faculty of Medicine between March and July 2024, including 92 women with PCOS, diagnosed based on the 2003 Rotterdam criteria, and 68 age- and BMI-matched healthy controls. Serum vasorin levels were measured using an enzyme-linked immunosorbent assay (ELISA) and compared between the two groups. Additionally, correlations between vasorin levels and metabolic, inflammatory, and hormonal parameters were analyzed. Results: Women with PCOS had significantly lower serum vasorin levels (median: 0.70 pg/mL) compared to the control group (median: 2.36 pg/mL, p < 0.001). No significant correlation was found between vasorin and metabolic or hormonal parameters in the PCOS group. However, a weak positive correlation with prolactin was observed in the control group (r = 0.264, p = 0.030). Although vasorin is involved in inflammatory and oxidative-stress pathways, its association with insulin resistance and lipid metabolism remains unclear based on this study. Receiver Operating Characteristic (ROC) curve analysis demonstrated a high diagnostic performance for vasorin in distinguishing PCOS from healthy individuals (AUC = 0.918, p < 0.001, 95% CI: 0.869-0.967). The optimal cutoff value for vasorin (1.285 pg/mL) yielded 92.6% sensitivity and 87.0% specificity. Conclusions: These findings suggest that vasorin may serve as a promising biomarker for PCOS, potentially linking hormonal dysregulation, inflammatory responses, and ovarian dysfunction. However, further validation is required through longitudinal studies, multi-center cohorts, and mechanistic investigations. Additionally, comparative assessments with established biomarkers such as anti-Müllerian hormone (AMH) and androgen levels are warranted to determine vasorin's diagnostic and prognostic utility in clinical practice.
Collapse
Affiliation(s)
- Betül Keyif
- Department of Obstetrics and Gynecology, Faculty of Medicine, Duzce University, 81600 Duzce, Turkey; (E.Y.); (A.B.); (F.G.G.)
| | - Engin Yurtçu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Duzce University, 81600 Duzce, Turkey; (E.Y.); (A.B.); (F.G.G.)
| | - Alper Başbuğ
- Department of Obstetrics and Gynecology, Faculty of Medicine, Duzce University, 81600 Duzce, Turkey; (E.Y.); (A.B.); (F.G.G.)
| | - Ali Yavuzcan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Sağlık Bilimleri University, Ankara Bilkent City Hospital, 06800 Ankara, Turkey;
| | - Fikret Gokhan Goynumer
- Department of Obstetrics and Gynecology, Faculty of Medicine, Duzce University, 81600 Duzce, Turkey; (E.Y.); (A.B.); (F.G.G.)
| |
Collapse
|
5
|
Moraliyska R, Georgiev T. Biochemical markers in hand osteoarthritis: a path to precision medicine. Rheumatol Int 2025; 45:38. [PMID: 39875697 DOI: 10.1007/s00296-025-05792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Hand osteoarthritis (HOA) is a heterogeneous joint disease with high radiographic and symptomatic prevalence. The diagnosis of HOA is based on clinical and radiographic features. The identification of potential biomarkers for diagnosis, prognosis, disease severity assessment, and therapeutic efficacy evaluation of НОА remains an active area of research. To summarize the eligible biomarker data, a comprehensive narrative review was performed using the PubMed and Scopus databases covering publications from inception to December 2024. Our search uncovered five distinct groups of biomarkers associated with HOA, categorized based on their origin and involvement in distinct biological processes: (1) cartilage synthesis and catabolism, (2) bone remodeling, (3) inflammation, (4) adipokines, and (5) others classified separately. Each biomarker was evaluated in accordance with the Burden of disease, Investigative, Prognostic, Efficacy of intervention, and Diagnostic (BIPED) criteria. In conclusion, no biomarker has yet demonstrated sufficient sensitivity, specificity, or reproducibility to meet the BIPED criteria for classification. The early diagnosis and treatment of HOA require the development of more sensitive assays, advanced platforms, and rigorous bio-clinical trials to stratify previously studied biomarkers and identify novel ones. Precision medicine in HOA demands reliable biomarkers, cost-effective assays, and standardized, reproducible methodologies for global applicability.
Collapse
Affiliation(s)
- Rosina Moraliyska
- Clinic of Rheumatology, University Hospital St. Marina, Varna, 9010, Bulgaria
- Department of Clinical Medical Sciences, Faculty of Dental Medicine, Medical University - Varna, Varna, 9002, Bulgaria
| | - Tsvetoslav Georgiev
- Clinic of Rheumatology, University Hospital St. Marina, Varna, 9010, Bulgaria.
- First Department of Internal Medicine, Faculty of Medicine, Medical University - Varna, Varna, 9002, Bulgaria.
| |
Collapse
|
6
|
Sun J, Yin S, Li Q, Zhang J, Guo X, Yu N, Hu B, Ouyang Y, Huang Q, He M. VASN knockout induces myocardial fibrosis in mice by downregulating non-collagen fibers and promoting inflammation. Front Pharmacol 2025; 15:1500617. [PMID: 39898320 PMCID: PMC11782114 DOI: 10.3389/fphar.2024.1500617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/02/2024] [Indexed: 02/04/2025] Open
Abstract
Myocardial fibrosis (MF) is an important cause of heart failure and cardiac arrest. Vasorin knockout (VASN-/-) leads to pathological cardiac hypertrophy (PCH); however, it is not yet clear whether this PCH transitions to MF in mice. VASN-knockout mice showed typical pathological, imaging, and molecular features of MF upon hematoxylin and eosin staining, Masson staining, Sirius red staining, quantitative polymerase chain reaction (qPCR), immunohistochemistry-paraffin (IHC-P), and immunofluorescence analyses. RNA was extracted from mouse heart tissue, identified, and sequenced in vitro. Differential analysis of the genes showed that the extracellular matrix (ECM) genes (COL6A1, COL9A1, and FRAS1) had strong correlations while their expression levels were significantly reduced by qPCR, IHC-P, and Western blotting. The expression levels of the ECM genes were significantly reduced but those of the inflammatory factors (IL1β and IL6) were significantly upregulated in the heart tissues of VASN-knockout mice. These preliminary results reveal that VASN knockout induces MF by regulating the non-collagen fibers and inflammation.
Collapse
Affiliation(s)
- Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Siwei Yin
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiurui Li
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Jun Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoping Guo
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Na Yu
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Bing Hu
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiaojuan Huang
- Department of Cardiology, The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Min He
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning, China
- Ministry of Education, Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Kobzeva KA, Gurtovoy DE, Polonikov AV, Pokrovsky VM, Patrakhanov EA, Bushueva OY. Polymorphism in Genes Encoding HSP40 Family Proteins is Associated with Ischemic Stroke Risk and Brain Infarct Size: A Pilot Study. J Integr Neurosci 2024; 23:211. [PMID: 39735968 DOI: 10.31083/j.jin2312211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Heat shock proteins (HSPs) play a critical role in the molecular mechanisms of ischemic stroke (IS). A possible role for HSP40 family proteins in atherosclerosis progression has already been revealed; however, to date, molecular genetic studies on the involvement of genes encoding proteins of the HSP40 family in IS have not yet been carried out. AIM We sought to determine whether nine single nucleotide polymorphisms (SNPs) in genes encoding HSP40 family proteins (DNAJB1, DNAJB2, DNAJA1, DNAJA2, DNAJA3 and DNAJC7) are associated with the risk and clinical features of IS. METHODS Using TaqMan-based polymerase chain reaction (PCR) and the MassArray-4 system, DNA samples of 2551 Russians - 1306 IS patients and 1245 healthy individuals - were genotyped. RESULTS SNP rs2034598 DNAJA2 decreased the risk of IS exclusively in male patients (odds ratio = 0.81, 95% confidence interval 0.78-0.98, p = 0.028); rs7189628 DNAJA2 increased the brain infarct size (p = 0.04); and rs6500605 DNAJA3 lowered the age of onset of IS (p = 0.03). SNPs rs10448231 DNAJA1, rs7189628 DNAJA2, rs4926222 DNAJB1 and rs2034598 DNAJA2 were involved in the strongest epistatic interactions linked to IS; SNP rs10448231 DNAJA1 is characterised by the most essential mono-effect (2.96% of IS entropy); all of the top SNP-SNP interaction models included the pairwise combination rs7189628 DNAJA2×rs4926222 DNAJB1, which was found to be a key factor determining susceptibility to IS. In interactions with the studied SNPs, smoking was found to have multidirectional effects (synergism, antagonism or additive effect) and the strongest mono-effect (3.47% of IS entropy), exceeding the mono-effects of rs6500605 DNAJA3, rs10448231 DNAJA1, rs2034598 DNAJA2, rs7189628 DNAJA2 and rs4926222 DNAJB1, involved in the best G×E models and determining 0.03%-0.73% of IS entropy. CONCLUSIONS We are the first to discover polymorphisms in genes encoding HSP40 family proteins as a major risk factor for IS and its clinical manifestations. The comprehensive bioinformatics analysis revealed molecular mechanisms, underscoring their significance in the pathogenesis of IS, primarily reflecting the regulation of heat stress, proteostasis and cellular signalling.
Collapse
Affiliation(s)
- Ksenia A Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Denis E Gurtovoy
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Alexey V Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| | - Vladimir M Pokrovsky
- Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Evgeny A Patrakhanov
- Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Olga Y Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
8
|
Wu DN, Zhang KL, Chen RH, Ye WS, Zheng C, Zheng YL, Zhao XD, Huang RS. VASN promotes the aggressive phenotype in ARID1A-deficient lung adenocarcinoma. BMC Cancer 2024; 24:1327. [PMID: 39472811 PMCID: PMC11520519 DOI: 10.1186/s12885-024-13083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Loss of ARID1A has been reported to drive the progression of lung adenocarcinoma, yet the underlying mechanism remains elusive. In this study, we performed secretome analysis to identify the key secreted proteins regulating lung adenocarcinoma progression. We showed that the VASN level was significantly elevated in the conditioned medium from ARID1A-depleted A549 and H1299 cells. Restoration of ARID1A in ARID1A-depleted lung adenocarcinoma cells prevented the upregulation and secretion of VASN. Clinical analysis demonstrated a negative correlation between ARID1A and VASN expression in ARID1A-mutated lung adenocarcinomas. The patients with ARID1A-mutated lung adenocarcinoma had significantly higher concentrations of serum VASN than healthy controls. Moreover, serum VASN concentrations were associated with TNM stage, lymph node metastasis, and overall survival of the patients with ARID1A-mutated lung adenocarcinoma. Functional studies indicated that VASN overexpression potentiated the proliferation, invasion, and tumorigenesis of lung adenocarcinoma cells. Antibody neutralization of VASN suppressed the aggressiveness of ARID1A-depleted lung adenocarcinoma cells both in vitro and in vivo. Addition of recombinant VASN protein promoted the proliferation and invasion of lung adenocarcinoma cells. Additionally, knockdown of Notch1 blocked the aggressive phenotype induced by recombinant VASN protein. In conclusion, our data uncover the role of VASN in mediating the progression of ARID1A-depleted lung adenocarcinoma and highlight VASN as a promising therapeutic target for this disease.
Collapse
Affiliation(s)
- Dan-Ni Wu
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, China
| | - Kang-Liang Zhang
- Department of Central Lab, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, China
| | - Rui-Heng Chen
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, China
| | - Wen-Sheng Ye
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, China
| | - Chong Zheng
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, China
| | - Yuan-Liang Zheng
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, China
| | - Xiao-Dan Zhao
- Department of Nursing, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, China
| | - Ri-Sheng Huang
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, China.
| |
Collapse
|
9
|
Eijken M, Krautzberger AM, Scholze-Wittler M, Boers-Sijmons B, Koedam M, Kosiol B, Schrewe H, van Leeuwen JP, van der Eerden BC. Vasorin-deficient mice display disturbed vitamin D and mineral homeostasis in combination with a low bone mass phenotype. Bone Rep 2024; 22:101792. [PMID: 39157725 PMCID: PMC11326953 DOI: 10.1016/j.bonr.2024.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Vasorin (Vasn) is a pleiotropic molecule involved in various physiological and pathological conditions, including cancer. Vasn has also been detected in bone cells of developing skeletal tissues but no function for Vasn in bone metabolism has been implicated yet. Therefore, this study aimed to investigate if Vasn plays a significant role in bone biology. First, we investigated tissue distribution of Vasn expression, using lacZ knock-in reporter mice. We detected clear Vasn expression in skeletal elements of postnatal mice. In particular, osteocytes and bone forming osteoblasts showed high expression of Vasn, while the bone marrow was devoid of signal. Vasn knockout mice (Vasn -/- ) displayed postnatal growth retardation and died after four weeks. MicroCT analysis of femurs from 22- to 25-day-old Vasn -/- mice demonstrated reduced trabecular and cortical bone volume corresponding to a low bone mass phenotype. Ex vivo bone marrow cultures demonstrated that osteoclast differentiation and activity were not affected by Vasn deficiency. However, osteogenesis of Vasn -/- bone marrow cultures was disturbed, resulting in lower numbers of alkaline phosphate positive colonies, impaired mineralization and lower expression of osteoblast marker genes. In addition to the bone phenotype, these mice developed a vitamin D3-related phenotype with a strongly reduced circulating 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 and urinary loss of vitamin D binding protein. In conclusion, Vasn-deficient mice suffer from severe disturbances in bone metabolism and mineral homeostasis.
Collapse
Affiliation(s)
- Marco Eijken
- Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Clinical Medicine, Aarhus University, Denmark
| | - A. Michaela Krautzberger
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Manuela Scholze-Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Marijke Koedam
- Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Barbara Kosiol
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Heinrich Schrewe
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | |
Collapse
|
10
|
Zhong Y, Kang H, Ma Z, Li J, Qin Z, Zhang Z, Li P, Zhong Y, Wang L. Vasorin Exocytosed from Glioma Cells Facilitates Angiogenesis via VEGFR2/AKT Signaling Pathway. Mol Cancer Res 2024; 22:668-681. [PMID: 38488456 DOI: 10.1158/1541-7786.mcr-23-0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/05/2024] [Accepted: 03/12/2024] [Indexed: 07/03/2024]
Abstract
Glioma is a highly vascularized tumor of the central nervous system. Angiogenesis plays a predominant role in glioma progression and is considered an important therapeutic target. Our previous study showed that vasorin (VASN), a transmembrane protein, is overexpressed in glioma and promotes angiogenesis; however, the potential mechanism remains unclear. In this study, we found that human vascular endothelial cells (hEC) co-cultured with VASN-overexpressing glioma cells exhibited accelerated migration ability and increased expression of VASN originated from glioma cells. VASN was found in exosomes secreted by glioma cells and could be taken up by hECs. hECs showed more edge filopodia and significantly upregulated expression of endothelial tip cell marker gene and protein levels after co-culture with VASN-overexpressing glioma cells. In clinical glioma tissue and orthotopic transplantation glioma tissue, the vascular density and the number of vascular endothelial cells with a tip cell phenotype in VASN-overexpressed tissues were significantly higher than in tissues with low expression. At the molecular level, VASN interacted with VEGFR2 and caused internalization and autophosphorylation of VEGFR2 protein, and then activated the AKT signaling pathway. Our study collectively reveals the function and mechanism of VASN in facilitating angiogenesis in glioma, providing a new therapeutic target for glioma. IMPLICATIONS These findings demonstrate that VASN exocytosed from glioma cells enhanced the migration of vascular endothelial cells by VEGFR2/AKT signaling pathway.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Hui Kang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Ziqing Ma
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiayu Li
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Zixi Qin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Zixuan Zhang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Peiwen Li
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Ying Zhong
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Lihui Wang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Condorelli AG, Nobili R, Muglia A, Scarpelli G, Marzuolo E, De Stefanis C, Rota R, Diociaiuti A, Alaggio R, Castiglia D, Odorisio T, El Hachem M, Zambruno G. Gamma-Secretase Inhibitors Downregulate the Profibrotic NOTCH Signaling Pathway in Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2024; 144:1522-1533.e10. [PMID: 38237731 DOI: 10.1016/j.jid.2023.10.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 03/03/2024]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare skin fragility disorder caused by mutations in COL7A1. RDEB is hallmarked by trauma-induced unremitting blistering, chronic wounds with inflammation, and progressive fibrosis, leading to severe disease complications. There is currently no cure for RDEB-associated fibrosis. Our previous studies and increasing evidence highlighted the profibrotic role of NOTCH pathway in different skin disorders, including RDEB. In this study, we further investigated the role of NOTCH signaling in RDEB pathogenesis and explored the effects of its inhibition by γ-secretase inhibitors DAPT and PF-03084014 (nirogacestat). Our analyses demonstrated that JAG1 and cleaved NOTCH1 are upregulated in primary RDEB fibroblasts (ie, RDEB-derived fibroblasts) compared with controls, and their protein levels are further increased by TGF-β1 stimulation. Functional assays unveiled the involvement of JAG1/NOTCH1 axis in RDEB fibrosis and demonstrated that its blockade counteracts a variety of fibrotic traits. In particular, RDEB-derived fibroblasts treated with PF-03084014 showed (i) a significant reduction of contractility, (ii) a diminished secretion of TGF-β1 and collagens, and (iii) the downregulation of several fibrotic proteins. Although less marked than PF-03084014-treated cells, RDEB-derived fibroblasts exhibited a reduction of fibrotic traits also upon DAPT treatment. This study provides potential therapeutic strategies to antagonize RDEB fibrosis onset and progression.
Collapse
Affiliation(s)
- Angelo Giuseppe Condorelli
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Rebecca Nobili
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anita Muglia
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giorgia Scarpelli
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Marzuolo
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Diociaiuti
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit and Predictive Molecular Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "La Sapienza", Rome, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - May El Hachem
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
12
|
Murugesan S, Addis DR, Hussey H, Powell MF, Saravanakumar L, Sturdivant AB, Sinkey RG, Tubinis MD, Massey ZR, Mobley JA, Tita AN, Jilling T, Berkowitz DE. Decreased Extracellular Vesicle Vasorin in Severe Preeclampsia Plasma Mediates Endothelial Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600441. [PMID: 38979275 PMCID: PMC11230191 DOI: 10.1101/2024.06.24.600441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Preeclampsia (PE) is a serious pregnancy complication affecting 5-8% of pregnancies globally. It is a leading cause of maternal and neonatal morbidity and mortality. Despite its prevalence, the underlying mechanisms of PE remain unclear. This study aimed to determine the potential role of vasorin (VASN) in PE pathogenesis by investigating its levels in extracellular vesicles (EV) and its effects on vascular function. Methods & Results We conducted unbiased proteomics on urine-derived EV from severe PE (sPE) and normotensive pregnant women (NTP), identifying differential protein abundances. Out of one hundred and twenty proteins with ≥ ±1.5-fold regulation at P<0.05 between sPE and NTP, we focused on Vasorin (VASN), which is downregulated in sPE in urinary EV, in plasma EV and in the placenta and is a known regulator of vascular function. We generated EV with high VASN content from both human and murine placenta explants (Plex EV), which recapitulated disease-state-dependent effects on vascular function observed when treating murine aorta rings (MAR) or human aortic endothelial cells (HAEC) with murine or human plasma-derived EV. In normal murine pregnancy, VASN increases with gestational age (GA), and VASN is decreased in plasma EV, in placenta tissue and in Plex EV after intravenous administration of adenovirus encoding short FMS-like tyrosine kinase 1 (sFLT-1), a murine model of PE (murine-PE). VASN is decreased in plasma EV, in placenta tissue and in EV isolated from conditioned media collected from placenta explants (Plex EV) in patients with sPE as compared to NTP. Human sPE and murine-PE plasma EV and Plex EV impair migration, tube formation, and induces apoptosis in human aortic endothelial cells (HAEC) and inhibit acetylcholine-induced vasorelaxation in murine vascular rings (MAR). VASN over-expression counteracts the effects of sPE EV treatment in HAEC and MAR. RNA sequencing revealed that over-expression or knock down of VASN in HAEC results in contrasting effects on transcript levels of hundreds of genes associated with vasculogenesis, endothelial cell proliferation, migration and apoptosis. Conclusions The data suggest that VASN, delivered to the endothelium via EV, regulates vascular function and that the loss of EV VASN may be one of the mechanistic drivers of PE. CLINICAL PERSPECTIVE What is NewVASN in circulating plasma EV in sPE is reduced compared with VASN content in plasma EV of gestational age-matched pregnant women.VASN is encapsulated and transported in EV and plays a pro-angiogenic role during pregnancy.VASN should be explored both for its pro-angiogenic mechanistic role and as a novel biomarker and potential predictive diagnostic marker for the onset and severity of PE.What Are the Clinical Implications?VASN plays a role in maintaining vascular health and the normal adaptive cardiovascular response in pregnancy. A decrease of VASN is observed in sPE patients contributing to cardiovascular maladaptation.Strategies to boost diminished VASN levels and/or to pharmacologically manipulate mechanisms downstream of VASN may be explored for potential therapeutic benefit in PE.The decrease in EV-associated VASN could potentially be used as a (predictive) biomarker for PE.
Collapse
|
13
|
Niu X, Zhang Z, Zhou Q, Wuethrich A, Lobb R, Trau M. Analysis of secreted small extracellular vesicles from activated human microglial cell lines reveals distinct pro- and anti-inflammatory proteomic profiles. Proteomics 2024; 24:e2300094. [PMID: 38343172 DOI: 10.1002/pmic.202300094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/12/2023] [Accepted: 01/26/2024] [Indexed: 06/04/2024]
Abstract
Microglia are a specialized population of innate immune cells located in the central nervous system. In response to physiological and pathological changes in their microenvironment, microglia can polarize into pro-inflammatory or anti-inflammatory phenotypes. A dysregulation in the pro-/anti-inflammatory balance is associated with many pathophysiological changes in the brain and nervous system. Therefore, the balance between microglia pro-/anti-inflammatory polarization can be a potential biomarker for the various brain pathologies. A non-invasive method of detecting microglia polarization in patients would have promising clinical applications. Here, we perform proteomic analysis of small extracellular vesicles (sEVs) derived from microglia cells to identify sEVs biomarkers indicative of pro-inflammatory and anti-inflammatory phenotypic changes. sEVs were isolated from microglia cell lines under different inflammatory conditions and analyzed by proteomics by liquid chromatography with mass spectrometry. Our findings provide the potential roles of sEVs that could be related to the pathogenesis of various brain diseases.
Collapse
Affiliation(s)
- Xueming Niu
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Zhen Zhang
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Quan Zhou
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Richard Lobb
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Wang M, McGraw KR, Monticone RE, Giordo R, Eid AH, Pintus G. Enhanced vasorin signaling mitigates adverse cardiovascular remodeling. Aging Med (Milton) 2024; 7:414-423. [PMID: 38975316 PMCID: PMC11222745 DOI: 10.1002/agm2.12332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Arterial stiffening is a critical risk factor contributing to the exponential rise in age-associated cardiovascular disease incidence. This process involves age-induced arterial proinflammation, collagen deposition, and calcification, which collectively contribute to arterial stiffening. The primary driver of proinflammatory processes leading to collagen deposition in the arterial wall is the transforming growth factor-beta1 (TGF-β1) signaling. Activation of this signaling is pivotal in driving vascular extracellular remodeling, eventually leading to arterial fibrosis and calcification. Interestingly, the glycosylated protein vasorin (VASN) physically interacts with TGF-β1, and functionally restraining its proinflammatory fibrotic signaling in arterial walls and vascular smooth muscle cells (VSMCs). Notably, as age advances, matrix metalloproteinase type II (MMP-2) is activated, which effectively cleaves VASN protein in both arterial walls and VSMCs. This age-associated/MMP-2-mediated decrease in VASN levels exacerbates TGF-β1 activation, amplifying arterial fibrosis and calcification in the arterial wall. Importantly, TGF-β1 is a downstream molecule of the angiotensin II (Ang II) signaling pathway in the arterial wall and VSMCs, which is modulated by VASN. Indeed, chronic administration of Ang II to young rats significantly activates MMP-2 and diminishes the VASN expression to levels comparable to untreated older control rats. This review highlights and discusses the role played by VASN in mitigating fibrosis and calcification by alleviating TGF-β1 activation and signaling in arterial walls and VSMCs. Understanding these molecular physical and functional interactions may pave the way for establishing VASN-based therapeutic strategies to counteract adverse age-associated cardiovascular remodeling, eventually reducing the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of HealthBiomedical Research Center (BRC)BaltimoreMarylandUSA
| | - Kimberly Raginski McGraw
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of HealthBiomedical Research Center (BRC)BaltimoreMarylandUSA
| | - Robert E. Monticone
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of HealthBiomedical Research Center (BRC)BaltimoreMarylandUSA
| | - Roberta Giordo
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU HealthQatar UniversityDohaQatar
| | | |
Collapse
|
15
|
Andrique C, Bonnet AL, Dang J, Lesieur J, Krautzberger AM, Baroukh B, Torrens C, Sadoine J, Schmitt A, Rochefort GY, Bardet C, Six I, Houillier P, Tharaux PL, Schrewe H, Gaucher C, Chaussain C. Vasorin as an actor of bone turnover? J Cell Physiol 2024; 239:e31257. [PMID: 38504496 DOI: 10.1002/jcp.31257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Bone diseases are increasing with aging populations and it is important to identify clues to develop innovative treatments. Vasn, which encodes vasorin (Vasn), a transmembrane protein involved in the pathophysiology of several organs, is expressed during the development in intramembranous and endochondral ossification zones. Here, we studied the impact of Vasn deletion on the osteoblast and osteoclast dialog through a cell Coculture model. In addition, we explored the bone phenotype of Vasn KO mice, either constitutive or tamoxifen-inducible, or with an osteoclast-specific deletion. First, we show that both osteoblasts and osteoclasts express Vasn. Second, we report that, in both KO mouse models but not in osteoclast-targeted KO mice, Vasn deficiency was associated with an osteopenic bone phenotype, due to an imbalance in favor of osteoclastic resorption. Finally, through the Coculture experiments, we identify a dysregulation of the Wnt/β-catenin pathway together with an increase in RANKL release by osteoblasts, which led to an enhanced osteoclast activity. This study unravels a direct role of Vasn in bone turnover, introducing a new biomarker or potential therapeutic target for bone pathologies.
Collapse
Affiliation(s)
| | - Anne Laure Bonnet
- Université Paris Cité, Montrouge, France
- AP-HP, Services de médecine bucco-dentaire: GH Nord - Université Paris Cité, GH Sorbonne Université, GH Henri Mondor, Paris, France
| | - Julien Dang
- Paris Cardiovascular Research Centre - PARCC, Université Paris Cité, Inserm, Paris, France
| | | | - A Michaela Krautzberger
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | - Alain Schmitt
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | | | | | - Isabelle Six
- URP 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Jules Verne University of Picardie, Amiens, France
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université Paris Cité, Paris, France
- AP-HP, Explorations fonctionnelles rénales, Physiologie, Hôpital européen Georges-Pompidou, Paris, France
| | - Pierre Louis Tharaux
- Paris Cardiovascular Research Centre - PARCC, Université Paris Cité, Inserm, Paris, France
| | - Heinrich Schrewe
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Celine Gaucher
- Université Paris Cité, Montrouge, France
- AP-HP, Services de médecine bucco-dentaire: GH Nord - Université Paris Cité, GH Sorbonne Université, GH Henri Mondor, Paris, France
| | - Catherine Chaussain
- Université Paris Cité, Montrouge, France
- AP-HP, Services de médecine bucco-dentaire: GH Nord - Université Paris Cité, GH Sorbonne Université, GH Henri Mondor, Paris, France
- APHP, Centre de reference des maladies rares du phosphate et du calcium (filière OSCAR, ERN BOND), Hôpital Bretonneau, Paris, France
| |
Collapse
|
16
|
Qin Z, Zhong Y, Li P, Ma Z, Kang H, Huang Y, Zhong Y, Wang L. Vasorin promotes endothelial differentiation of glioma stem cells via stimulating the transcription of VEGFR2. FASEB J 2024; 38:e23682. [PMID: 38780524 DOI: 10.1096/fj.202400159r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/27/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Gliomas are highly vascularized malignancies, but current anti-angiogenic treatments have not demonstrated practical improvements in patient survival. Studies have suggested that glioma-derived endothelial cell (GdEC) formed by glioma stem cell (GSC) differentiation may contribute to the failure of this treatment. However, the molecular mechanisms involved in GSC endothelial differentiation remain poorly understood. We previously reported that vasorin (VASN) is highly expressed in glioma and promotes angiogenesis. Here, we show that VASN expression positively correlates with GdEC signatures in glioma patients. VASN promotes the endothelial differentiation capacity of GSC in vitro and participates in the formation of GSC-derived vessels in vivo. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) is a critical factor that mediates the regulation of VASN on GSC endothelial differentiation. Separation of cell chromatin fractionation and chromatin immunoprecipitation-sequencing analysis show that VASN interacts with Notch1 and co-translocates into the cell nuclei, where VASN binds to the VEGFR2 gene promoter to stimulate its transcription during the progression of GSC differentiation into GdEC. Together, these findings elucidate the role and mechanisms of VASN in promoting the endothelial differentiation of GSC and suggest VASN as a potential target for anti-angiogenic therapy based on intervention in GdEC formation in gliomas.
Collapse
Affiliation(s)
- Zixi Qin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Ying Zhong
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Peiwen Li
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Ziqing Ma
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Hui Kang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Youwei Huang
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Guangzhou, China
| | - Ying Zhong
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Lihui Wang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Curtis AF, Musich M, Costa AN, Gonzales J, Gonzales H, Ferguson BJ, Kille B, Thomas AL, Wei X, Liu P, Greenlief CM, Shenker JI, Beversdorf DQ. Feasibility and Preliminary Efficacy of American Elderberry Juice for Improving Cognition and Inflammation in Patients with Mild Cognitive Impairment. Int J Mol Sci 2024; 25:4352. [PMID: 38673938 PMCID: PMC11050618 DOI: 10.3390/ijms25084352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Despite data showing that nutritional interventions high in antioxidant/anti-inflammatory properties (anthocyanin-rich foods, such as blueberries/elderberries) may decrease risk of memory loss and cognitive decline, evidence for such effects in mild cognitive impairment (MCI) is limited. This study examined preliminary effects of American elderberry (Sambucus nigra subsp. canadensis) juice on cognition and inflammatory markers in patients with MCI. In a randomized, double-blind, placebo-controlled trial, patients with MCI (n = 24, Mage = 76.33 ± 6.95) received American elderberry (n = 11) or placebo (n = 13) juice (5 mL orally 3 times a day) for 6 months. At baseline, 3 months, and 6 months, patients completed tasks measuring global cognition, verbal memory, language, visuospatial cognitive flexibility/problem solving, and memory. A subsample (n = 12, 7 elderberry/5 placebo) provided blood samples to measure serum inflammatory markers. Multilevel models examined effects of the condition (elderberry/placebo), time (baseline/3 months/6 months), and condition by time interactions on cognition/inflammation outcomes. Attrition rates for elderberry (18%) and placebo (15%) conditions were fairly low. The dosage compliance (elderberry-97%; placebo-97%) and completion of cognitive (elderberry-88%; placebo-87%) and blood-based (elderberry-100%; placebo-100%) assessments was high. Elderberry (not placebo) trended (p = 0.09) towards faster visuospatial problem solving performance from baseline to 6 months. For the elderberry condition, there were significant or significantly trending decreases over time across several markers of low-grade peripheral inflammation, including vasorin, prenylcysteine oxidase 1, and complement Factor D. Only one inflammatory marker showed an increase over time (alpha-2-macroglobin). In contrast, for the placebo, several inflammatory marker levels increased across time (L-lactate dehydrogenase B chain, complement Factor D), with one showing deceased levels over time (L-lactate dehydrogenase A chain). Daily elderberry juice consumption in patients with MCI is feasible and well tolerated and may provide some benefit to visuospatial cognitive flexibility. Preliminary findings suggest elderberry juice may reduce low-grade inflammation compared to a placebo-control. These promising findings support the need for larger, more definitive prospective studies with longer follow-ups to better understand mechanisms of action and the clinical utility of elderberries for potentially mitigating cognitive decline.
Collapse
Affiliation(s)
- Ashley F. Curtis
- College of Nursing, University of South Florida, Tampa, FL 33620, USA; (A.F.C.); (A.N.C.)
| | - Madison Musich
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65201, USA; (M.M.); (B.K.)
| | - Amy N. Costa
- College of Nursing, University of South Florida, Tampa, FL 33620, USA; (A.F.C.); (A.N.C.)
- Department of Psychology, University of South Florida, Tampa, FL 33620, USA
| | - Joshua Gonzales
- School of Osteopathic Medicine, A. T. Still University, Kirksville, MO 63501, USA;
- Department of Internal Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Hyeri Gonzales
- School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Bradley J. Ferguson
- Department of Neurology, University of Missouri, Columbia, MO 65211, USA; (B.J.F.); (J.I.S.)
| | - Briana Kille
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65201, USA; (M.M.); (B.K.)
- Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Andrew L. Thomas
- Division of Plant Science and Technology, University of Missouri, Southwest Research Extension and Education Center, Mt. Vernon, MO 65201, USA;
| | - Xing Wei
- Charles W. Gehrke Proteomics Center, Department of Chemistry, University of Missouri, Columbia, MO 65201, USA; (X.W.); (P.L.); (C.M.G.)
| | - Pei Liu
- Charles W. Gehrke Proteomics Center, Department of Chemistry, University of Missouri, Columbia, MO 65201, USA; (X.W.); (P.L.); (C.M.G.)
| | - C. Michael Greenlief
- Charles W. Gehrke Proteomics Center, Department of Chemistry, University of Missouri, Columbia, MO 65201, USA; (X.W.); (P.L.); (C.M.G.)
| | - Joel I. Shenker
- Department of Neurology, University of Missouri, Columbia, MO 65211, USA; (B.J.F.); (J.I.S.)
| | - David Q. Beversdorf
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65201, USA; (M.M.); (B.K.)
- Department of Neurology, University of Missouri, Columbia, MO 65211, USA; (B.J.F.); (J.I.S.)
- Department of Radiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
18
|
Liang J, Smith AW. The Oligomeric State of Vasorin in the Plasma Membrane Measured Non-Invasively by Quantitative Fluorescence Fluctuation Spectroscopy. Int J Mol Sci 2024; 25:4115. [PMID: 38612924 PMCID: PMC11012933 DOI: 10.3390/ijms25074115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Vasorin (VASN), a transmembrane protein heavily expressed in endothelial cells, has garnered recent interest due to its key role in vascular development and pathology. The oligomeric state of VASN is a crucial piece of knowledge given that receptor clustering is a frequent regulatory mechanism in downstream signaling activation and amplification. However, documentation of VASN oligomerization is currently absent. In this brief report, we describe the measurement of VASN oligomerization in its native membranous environment, leveraging a class of fluorescence fluctuation spectroscopy. Our investigation revealed that the majority of VASN resides in a monomeric state, while a minority of VASN forms homodimers in the cellular membrane. This result raises the intriguing possibility that ligand-independent clustering of VASN may play a role in transforming growth factor signaling.
Collapse
Affiliation(s)
- Junyi Liang
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Adam W. Smith
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
19
|
Macdonald JK, Clift CL, Saunders J, Zambrzycki SC, Mehta AS, Drake RR, Angel PM. Differential Protease Specificity by Collagenase as a Novel Approach to Serum Proteomics That Includes Identification of Extracellular Matrix Proteins without Enrichment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:487-497. [PMID: 38329320 PMCID: PMC10921462 DOI: 10.1021/jasms.3c00366] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Circulating extracellular matrix (ECM) proteins are serological biomarkers of interest due to their association with pathologies involving disease processes such as fibrosis and cancers. In this study, we investigate the potential for serum biomarker research using differential protease specificity (DPS), leveraging alternate protease specificity as a targeting mechanism to selectively digest circulating ECM protein serum proteins. A proof-of-concept study is presented using serum from patients with cirrhotic liver or hepatocellular carcinoma. The approach uses collagenase DPS for digestion of deglycosylated serum and liquid-chromatography-trapped ion mobility-tandem mass spectrometry (LC-TIMS-MS/MS) to enhance the detection of ECM proteins in serum. It requires no sample enrichment and minimizes the albumin average precursor intensity readout to less than 1.2%. We further demonstrate the capabilities for using the method as a high-throughput matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS) assay coupled with reference library searching. A goal is to improve the depth and breadth of biofluid proteomics for noninvasive assays.
Collapse
Affiliation(s)
- Jade K. Macdonald
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | | | | | - Stephen C. Zambrzycki
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Anand S. Mehta
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R. Drake
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Peggi M. Angel
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
20
|
La Marca A, De Carlini S, Liuzzi F. Vasorin: a new molecule in human reproduction? Gynecol Endocrinol 2023; 39:2273282. [PMID: 37884010 DOI: 10.1080/09513590.2023.2273282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Affiliation(s)
- Antonio La Marca
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Serena De Carlini
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Liuzzi
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
21
|
Farzamikia N, Hejazian SM, Mostafavi S, Baradaran B, Zununi Vahed S, Ardalan M. Podocyte-specific proteins in urinary extracellular vesicles of patients with IgA nephropathy: Vasorin and ceruloplasmin. BIOIMPACTS : BI 2023; 14:29981. [PMID: 38938751 PMCID: PMC11199928 DOI: 10.34172/bi.2023.29981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 06/29/2024]
Abstract
Introduction Urinary extracellular vesicles (uEVs) can be considered biomarkers of kidney diseases. EVs derived from podocytes may reflect podocyte damage in different glomerular diseases. IgA nephropathy (IgAN) is one of the most common forms of glomerulonephritis (GN) characterized by proteinuria and hematuria. This study aimed to analyze the uEVs of IgAN patients to understand the pathophysiological processes of the disease at the protein level. Methods Patients with GN [biopsy-proven IgAN (n = 16) and membranous glomerulonephritis (MGN, n = 16)], and healthy controls (n = 16) were included in this study. The uEVs were extracted, characterized, and analyzed to evaluate the protein levels of candidate markers of IgAN, including vasorin precursor, aminopeptidase N, and ceruloplasmin by western-blot analysis. Results Higher levels of both podocytes and EVs-related proteins were observed in the pooled urine samples of GN patients compared to the healthy controls. In IgAN patients, uEV-protein levels of vasorin were statistically lower while levels of ceruloplasmin were significantly higher compared to MGN (P = 0.002, P = 0.06) and healthy controls, respectively (P = 0.020, P= 0.001). Conclusion Different levels of the studied proteins in uEVs may indicate podocyte injury and represent a direct association with the pathology of IgAN and MGN.
Collapse
Affiliation(s)
- Negin Farzamikia
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Soroush Mostafavi
- Department of Cardiology, Hazrat-e-Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
22
|
Wan F, Li H, Huang S, Sun J, Li J, Li Y, Yang L, He M. Vasorin promotes proliferation and migration via STAT3 signaling and acts as a promising therapeutic target of hepatocellular carcinoma. Cell Signal 2023; 110:110809. [PMID: 37454705 DOI: 10.1016/j.cellsig.2023.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Abnormal expression of Vasorin (VASN) is related to many types of cancer, but the signaling pathway and mechanism of how VASN contributes to the carcinogenesis of hepatocellular carcinoma (HCC) are poorly understood. Here, we found that VASN was up-regulated in serum/serum exosome and tissues of HCC patients. The expression of VASN in serum improve the detection rate of HCC in alpha-fetoprotein-negative HCC patients. Immunohistochemistry revealed that VASN was highly expressed in HCC tissues and associated with different stages of HCC. Noticeably, when serum VASN combined with α-fetoprotein, the area under the curve (AUC), sensitivity, and specificity of HCC patients compared with healthy patients reached 0.918 (95% CI: 0.869-0.967, P < 0.001), 90.91%, and 90.20%, respectively. VASN knockout HCC cells were obtained by CRISPR/Cas9 and a VASN-specific monoclonal antibody was prepared by hybridoma technology. Knockout of VASN or the addition of VASN-specific monoclonal antibody suppressed the proliferation and migration of HCC. Mechanistically, VASN promote the proliferation and migration of HCC by regulating the phosphorylation of STAT3 and the expression of downstream genes CCND1 and MMP2. In conclusion, our findings suggest that VASN plays a crucial role in the activation of STAT3 signaling pathway in HCC, which is a promising target for the diagnosis and therapy of HCC.
Collapse
Affiliation(s)
- Fengjie Wan
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Hui Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Shiping Huang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Jiafu Li
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Yasi Li
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Lichao Yang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China.
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning 530021, China.
| |
Collapse
|
23
|
Luis TC, Barkas N, Carrelha J, Giustacchini A, Mazzi S, Norfo R, Wu B, Aliouat A, Guerrero JA, Rodriguez-Meira A, Bouriez-Jones T, Macaulay IC, Jasztal M, Zhu G, Ni H, Robson MJ, Blakely RD, Mead AJ, Nerlov C, Ghevaert C, Jacobsen SEW. Perivascular niche cells sense thrombocytopenia and activate hematopoietic stem cells in an IL-1 dependent manner. Nat Commun 2023; 14:6062. [PMID: 37770432 PMCID: PMC10539537 DOI: 10.1038/s41467-023-41691-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
Hematopoietic stem cells (HSCs) residing in specialized niches in the bone marrow are responsible for the balanced output of multiple short-lived blood cell lineages in steady-state and in response to different challenges. However, feedback mechanisms by which HSCs, through their niches, sense acute losses of specific blood cell lineages remain to be established. While all HSCs replenish platelets, previous studies have shown that a large fraction of HSCs are molecularly primed for the megakaryocyte-platelet lineage and are rapidly recruited into proliferation upon platelet depletion. Platelets normally turnover in an activation-dependent manner, herein mimicked by antibodies inducing platelet activation and depletion. Antibody-mediated platelet activation upregulates expression of Interleukin-1 (IL-1) in platelets, and in bone marrow extracellular fluid in vivo. Genetic experiments demonstrate that rather than IL-1 directly activating HSCs, activation of bone marrow Lepr+ perivascular niche cells expressing IL-1 receptor is critical for the optimal activation of quiescent HSCs upon platelet activation and depletion. These findings identify a feedback mechanism by which activation-induced depletion of a mature blood cell lineage leads to a niche-dependent activation of HSCs to reinstate its homeostasis.
Collapse
Affiliation(s)
- Tiago C Luis
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK.
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK.
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, W12 0NN, London, UK.
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK.
| | - Nikolaos Barkas
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Joana Carrelha
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Alice Giustacchini
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Stefania Mazzi
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 86, Stockholm, Sweden
| | - Ruggiero Norfo
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Bishan Wu
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Affaf Aliouat
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Jose A Guerrero
- Department of Haematology, University of Cambridge, Cambridge, UK
- National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Alba Rodriguez-Meira
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Tiphaine Bouriez-Jones
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Iain C Macaulay
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- Earlham Institute, Norwich Research Park, NR4 7UZ, Norwich, UK
| | - Maria Jasztal
- Department of Haematology, University of Cambridge, Cambridge, UK
- National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Guangheng Zhu
- Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- CCOA Therapeutics Inc, Toronto, ON, M5B 1T8, Canada
| | - Heyu Ni
- Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- CCOA Therapeutics Inc, Toronto, ON, M5B 1T8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5B 1W8, Canada
| | - Matthew J Robson
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Cedric Ghevaert
- Department of Haematology, University of Cambridge, Cambridge, UK
- National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Sten Eirik W Jacobsen
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK.
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK.
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 86, Stockholm, Sweden.
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
24
|
Rubina A, Patel M, Nightingale K, Potts M, Fielding CA, Kollnberger S, Lau B, Ladell K, Miners KL, Nichols J, Nobre L, Roberts D, Trinca TM, Twohig JP, Vlahava VM, Davison AJ, Price DA, Tomasec P, Wilkinson GWG, Weekes MP, Stanton RJ, Wang ECY. ADAM17 targeting by human cytomegalovirus remodels the cell surface proteome to simultaneously regulate multiple immune pathways. Proc Natl Acad Sci U S A 2023; 120:e2303155120. [PMID: 37561786 PMCID: PMC10438378 DOI: 10.1073/pnas.2303155120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a major human pathogen whose life-long persistence is enabled by its remarkable capacity to systematically subvert host immune defenses. In exploring the finding that HCMV infection up-regulates tumor necrosis factor receptor 2 (TNFR2), a ligand for the pro-inflammatory antiviral cytokine TNFα, we found that the underlying mechanism was due to targeting of the protease, A Disintegrin And Metalloproteinase 17 (ADAM17). ADAM17 is the prototype 'sheddase', a family of proteases that cleaves other membrane-bound proteins to release biologically active ectodomains into the supernatant. HCMV impaired ADAM17 surface expression through the action of two virally-encoded proteins in its UL/b' region, UL148 and UL148D. Proteomic plasma membrane profiling of cells infected with an HCMV double-deletion mutant for UL148 and UL148D with restored ADAM17 expression, combined with ADAM17 functional blockade, showed that HCMV stabilized the surface expression of 114 proteins (P < 0.05) in an ADAM17-dependent fashion. These included reported substrates of ADAM17 with established immunological functions such as TNFR2 and jagged1, but also numerous unreported host and viral targets, such as nectin1, UL8, and UL144. Regulation of TNFα-induced cytokine responses and NK inhibition during HCMV infection were dependent on this impairment of ADAM17. We therefore identify a viral immunoregulatory mechanism in which targeting a single sheddase enables broad regulation of multiple critical surface receptors, revealing a paradigm for viral-encoded immunomodulation.
Collapse
Affiliation(s)
- Anzelika Rubina
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Mihil Patel
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Martin Potts
- Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, United Kingdom
- Department of Medicine, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Ceri A. Fielding
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Simon Kollnberger
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Betty Lau
- Centre for Virus Research, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Kelly L. Miners
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Jenna Nichols
- Centre for Virus Research, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Dawn Roberts
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Terrence M. Trinca
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Jason P. Twohig
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Virginia-Maria Vlahava
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Andrew J. Davison
- Centre for Virus Research, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - David A. Price
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Peter Tomasec
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Gavin W. G. Wilkinson
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, United Kingdom
- Department of Medicine, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Eddie C. Y. Wang
- Division of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| |
Collapse
|
25
|
Seim RF, Herring LE, Mordant AL, Willis ML, Wallet SM, Coleman LG, Maile R. Involvement of extracellular vesicles in the progression, diagnosis, treatment, and prevention of whole-body ionizing radiation-induced immune dysfunction. Front Immunol 2023; 14:1188830. [PMID: 37404812 PMCID: PMC10316130 DOI: 10.3389/fimmu.2023.1188830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Acute radiation syndrome (ARS) develops after exposure to high doses of ionizing radiation and features immune suppression and organ failure. Currently, there are no diagnostics to identify the occurrence or severity of exposure and there are limited treatments and preventative strategies to mitigate ARS. Extracellular vesicles (EVs) are mediators of intercellular communication that contribute to immune dysfunction across many diseases. We investigated if EV cargo can identify whole body irradiation (WBIR) exposure and if EVs promote ARS immune dysfunction. We hypothesized that beneficial EVs derived from mesenchymal stem cells (MSC-EVs) would blunt ARS immune dysfunction and might serve as prophylactic radioprotectants. Mice received WBIR (2 or 9 Gy) with assessment of EVs at 3 and 7 days after exposure. LC-MS/MS proteomic analysis of WBIR-EVs found dose-related changes as well as candidate proteins that were increased with both doses and timepoints (34 total) such as Thromboxane-A Synthase and lymphocyte cytosolic protein 2. Suprabasin and Sarcalumenin were increased only after 9 Gy suggesting these proteins may indicate high dose/lethal exposure. Analysis of EV miRNAs identified miR-376 and miR-136, which were increased up to 200- and 60-fold respectively by both doses of WBIR and select miRNAs such as miR-1839 and miR-664 were increased only with 9 Gy. WBIR-EVs (9 Gy) were biologically active and blunted immune responses to LPS in RAW264.7 macrophages, inhibiting canonical signaling pathways associated with wound healing and phagosome formation. When given 3 days after exposure, MSC-EVs slightly modified immune gene expression changes in the spleens of mice in response to WBIR and in a combined radiation plus burn injury exposure (RCI). MSC-EVs normalized the expression of certain key immune genes such as NFκBia and Cxcr4 (WBIR), Map4k1, Ccr9 and Cxcl12 (RCI) and lowered plasma TNFα cytokine levels after RCI. When given prophylactically (24 and 3 hours before exposure), MSC-EVs prolonged survival to the 9 Gy lethal exposure. Thus, EVs are important participants in ARS. EV cargo might be used to diagnose WBIR exposure, and MSC-EVs might serve as radioprotectants to blunt the impact of toxic radiation exposure.
Collapse
Affiliation(s)
- Roland F. Seim
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Angie L. Mordant
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Micah L. Willis
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Shannon M. Wallet
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Leon G. Coleman
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Robert Maile
- Department of Surgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
26
|
Calligaris M, Yang CY, Bonelli S, Spanò DP, Müller SA, Lichtenthaler SF, Troeberg L, Scilabra SD. Identification of membrane proteins regulated by ADAM15 by SUSPECS proteomics. Front Mol Biosci 2023; 10:1162504. [PMID: 37388246 PMCID: PMC10304831 DOI: 10.3389/fmolb.2023.1162504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/12/2023] [Indexed: 07/01/2023] Open
Abstract
ADAM15 is a member of the disintegrin-metalloproteinase family of sheddases, which plays a role in several biological processes including cartilage homeostasis. In contrast with well-characterized ADAMs, such as the canonical sheddases ADAM17 and ADAM10, little is known about substrates of ADAM15 or how the enzyme exerts its biological functions. Herein, we used "surface-spanning enrichment with click-sugars (SUSPECS)" proteomics to identify ADAM15 substrates and/or proteins regulated by the proteinase at the cell surface of chondrocyte-like cells. Silencing of ADAM15 by siRNAs significantly altered membrane levels of 13 proteins, all previously not known to be regulated by ADAM15. We used orthogonal techniques to validate ADAM15 effects on 3 of these proteins which have known roles in cartilage homeostasis. This confirmed that ADAM15-silencing increased cell surface levels of the programmed cell death 1 ligand 2 (PDCD1LG2) and reduced cell surface levels of vasorin and the sulfate transporter SLC26A2 through an unknown post-translational mechanism. The increase of PDCD1LG2 by ADAM15 knockdown, a single-pass type I transmembrane protein, suggested it could be a proteinase substrate. However, shed PDCD1LG2 could not be detected even by a data-independent acquisition mass spectrometry, a highly sensitive method for identification and quantification of proteins in complex protein samples, suggesting that ADAM15 regulates PDCD1LG2 membrane levels by a mechanism different from ectodomain shedding.
Collapse
Affiliation(s)
- Matteo Calligaris
- Proteomics Group of Fondazione Ri.MED, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Chun Y. Yang
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Simone Bonelli
- Proteomics Group of Fondazione Ri.MED, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Palermo, Italy
| | - Donatella Pia Spanò
- Proteomics Group of Fondazione Ri.MED, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Palermo, Italy
| | - Stephan A. Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Linda Troeberg
- Norwich Medical School, Bob Champion Research and Education Building, University of East Anglia, Norwich, United Kingdom
| | - Simone D. Scilabra
- Proteomics Group of Fondazione Ri.MED, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| |
Collapse
|
27
|
Taggi M, Liuzzi F, Botticelli L, De Carlini S, Longo M, Donno V, Fabbiani L, La Marca A. Evidence for the expression of vasorin in the human female reproductive tissues. Gynecol Endocrinol 2023; 39:2224457. [PMID: 37331376 DOI: 10.1080/09513590.2023.2224457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
Objective: To investigate the expression and localization of Vasorin (Vasn) in human female reproductive system. Methods: The presence of Vasorin was evaluated by RT-PCR and immunoblotting analyses in patient-derived endometrial, myometrial and granulosa cells (GCs) primary cultures. Immunostaining analyses were performed to detect Vasn localization in primary cultures and in ovarian and uterine tissues. Results: Vasn mRNA was detected in patient-derived endometrial, myometrial and GCs primary cultures without significant differences at the transcript level. Otherwise, immunoblotting analysis showed that Vasn protein levels were significantly higher in GCs than proliferative endometrial stromal cells (ESCs) and myometrial cells. Immunohistochemistry performed in ovarian tissues revealed that Vasn was expressed in the GCs of ovarian follicles at different stages of development with a higher immunostaining signal in mature ovarian follicles such as the antral follicle or on the surface of cumulus oophorus cells than in early-stage follicles. The immunostaining of uterine tissues showed that Vasn was expressed in the proliferative stroma endometrium while it was significantly less expressed in the secretory endometrium. Conversely, no protein immunoreactivity was revealed in health myometrial tissue. Conclusions: Our results revealed the presence of Vasn in the ovary and the endometrium. The pattern of Vasn expression and distribution suggests that this protein may have a role in the regulation of processes such as folliculogenesis, oocyte maturation, and endometrial proliferation.
Collapse
Affiliation(s)
- Marilena Taggi
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Liuzzi
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Laura Botticelli
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Serena De Carlini
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Maria Longo
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Donno
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Luca Fabbiani
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Antonio La Marca
- Department of Medical and Surgical Sciences for Children & Adults, University, Hospital of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
28
|
Liu C, Guo G, Li X, Shen Y, Xu X, Chen Y, Li H, Hao J, He K. Identification of novel urine proteomic biomarkers for high stamina in high-altitude adaptation. Front Physiol 2023; 14:1153166. [PMID: 37250129 PMCID: PMC10214468 DOI: 10.3389/fphys.2023.1153166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: We aimed to identify urine biomarkers for screening individuals with adaptability to high-altitude hypoxia with high stamina levels. Although most non-high-altitude natives experience rapid decline in physical ability when ascending to high altitudes, some individuals with high-altitude adaptability continue to maintain high endurance levels. Methods: We divided the study population into two groups: the LC group (low change in endurance from low to high altitude) and HC group (high change in endurance from low to high altitude). We performed blood biochemistry testing for individuals at high altitudes and sea level. We used urine peptidome profiling to compare the HH (high-altitude with high stamina) and HL (high-altitude with low stamina) groups and the LC and HC groups to identify urine biomarkers. Results: Routine blood tests revealed that the concentration of white blood cells, lymphocytes and platelets were significantly higher in the HH group than in the HL group. Urine peptidome profiling showed that the proteins ITIH1, PDCD1LG2, NME1-NME2, and CSPG4 were significantly differentially expressed between the HH and HL groups, which was tested using ELISA. Urine proteomic analysis showed that LRG1, NID1, VASN, GPX3, ACP2, and PRSS8 were urine proteomic biomarkers of high stamina during high-altitude adaptation. Conclusion: This study provides a novel approach for identifying potential biomarkers for screening individuals who can adapt to high altitudes with high stamina.
Collapse
Affiliation(s)
- Chunlei Liu
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Ge Guo
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xin Li
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yanying Shen
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xiang Xu
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yibing Chen
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Hanlu Li
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Jianxiu Hao
- Clinical Sample Bank, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Medical Big Data Research Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
29
|
Tepus M, Tonoli E, Verderio EAM. Molecular profiling of urinary extracellular vesicles in chronic kidney disease and renal fibrosis. Front Pharmacol 2023; 13:1041327. [PMID: 36712680 PMCID: PMC9877239 DOI: 10.3389/fphar.2022.1041327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Chronic kidney disease (CKD) is a long-term kidney damage caused by gradual loss of essential kidney functions. A global health issue, CKD affects up to 16% of the population worldwide. Symptoms are often not apparent in the early stages, and if left untreated, CKD can progress to end-stage kidney disease (ESKD), also known as kidney failure, when the only possible treatments are dialysis and kidney transplantation. The end point of nearly all forms of CKD is kidney fibrosis, a process of unsuccessful wound-healing of kidney tissue. Detection of kidney fibrosis, therefore, often means detection of CKD. Renal biopsy remains the best test for renal scarring, despite being intrinsically limited by its invasiveness and sampling bias. Urine is a desirable source of fibrosis biomarkers as it can be easily obtained in a non-invasive way and in large volumes. Besides, urine contains biomolecules filtered through the glomeruli, mirroring the pathological state. There is, however, a problem of highly abundant urinary proteins that can mask rare disease biomarkers. Urinary extracellular vesicles (uEVs), which originate from renal cells and carry proteins, nucleic acids, and lipids, are an attractive source of potential rare CKD biomarkers. Their cargo consists of low-abundant proteins but highly concentrated in a nanosize-volume, as well as molecules too large to be filtered from plasma. Combining molecular profiling data (protein and miRNAs) of uEVs, isolated from patients affected by various forms of CKD, this review considers the possible diagnostic and prognostic value of uEVs biomarkers and their potential application in the translation of new experimental antifibrotic therapeutics.
Collapse
Affiliation(s)
- Melanie Tepus
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Elisa Tonoli
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Elisabetta A. M. Verderio
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Liang W, Zuo J, Liu M, Su Y, Guo B, Hou J, Xing Q, Peng Y, Fang L, Cao Y, Shan J, Sun R, Zhao J, Wang J. VASN promotes colorectal cancer progression by activating the YAP/TAZ and AKT signaling pathways via YAP. FASEB J 2023; 37:e22688. [PMID: 36468780 DOI: 10.1096/fj.202201181r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/07/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies. Vasorin (VASN) has been reported to be critical in tumor development and angiogenesis. However, VASN has not been reported in CRC, and its role is unclear. In this study, VASN expression is upregulated in CRC compared with the normal tissues, and VASN expression positively correlates with N stage and poor overall survival by analysis of different datasets and 32 CRC clinicopathologic samples. Overexpression of VASN significantly promotes CRC cell progression, including proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), while knockdown of VASN inhibits CRC progression. We found that VASN was associated with the YAP/TAZ and PI3K/AKT pathways by gene set enrichment analysis (GSEA) and gene ontology (GO) analysis. Notably, western blotting, immunofluorescence staining and co-immunofluorescence (co-IP) confirmed that VASN could interact with YAP and activate the YAP/TAZ and PTEN/PI3K/AKT pathways, and knockdown of YAP reversed this effect. Importantly, our findings indicate that VASN interacts with YAP to inhibit YAP phosphorylation and stimulates CRC proliferation, migration, and invasion through activation of the YAP/TAZ-TEAD target gene CTGF and PTEN/PI3K/AKT pathways. Our results also show that knockdown of YAP reverses the cellular phenotype induced by increased VASN. In conclusion, our study reveals that VASN acts as an oncogene to stimulate tumor progression in CRC, providing new insights into the molecular mechanisms of CRC development and representing a possible novel biomarker for CRC.
Collapse
Affiliation(s)
- Weiye Liang
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jia Zuo
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Mingkai Liu
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuling Su
- Center for Pancreatic Cancer Research, School of Medicine, South China University of Technology, Guangzhou, China
| | - Baoyin Guo
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou, China
| | - Jiangtao Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of TCM, Guangzhou, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yinglong Peng
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lian Fang
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yihui Cao
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiajie Shan
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ruixia Sun
- Bioscience Laboratory, BIOS Bioscience and Technology Limited Company, Guangzhou, China
| | - Jie Zhao
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jian Wang
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China.,Bioscience Laboratory, BIOS Bioscience and Technology Limited Company, Guangzhou, China
| |
Collapse
|
31
|
Colombo G, Altomare A, Astori E, Landoni L, Garavaglia ML, Rossi R, Giustarini D, Lionetti MC, Gagliano N, Milzani A, Dalle-Donne I. Effects of Physiological and Pathological Urea Concentrations on Human Microvascular Endothelial Cells. Int J Mol Sci 2022; 24:ijms24010691. [PMID: 36614132 PMCID: PMC9821335 DOI: 10.3390/ijms24010691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023] Open
Abstract
Urea is the uremic toxin accumulating with the highest concentration in the plasma of chronic kidney disease (CKD) patients, not being completely cleared by dialysis. Urea accumulation is reported to exert direct and indirect side effects on the gastrointestinal tract, kidneys, adipocytes, and cardiovascular system (CVS), although its pathogenicity is still questioned since studies evaluating its side effects lack homogeneity. Here, we investigated the effects of physiological and pathological urea concentrations on a human endothelial cell line from the microcirculation (Human Microvascular Endothelial Cells-1, HMEC-1). Urea (5 g/L) caused a reduction in the proliferation rate after 72 h of exposure and appeared to be a potential endothelial-to-mesenchymal transition (EndMT) stimulus. Moreover, urea induced actin filament rearrangement, a significant increase in matrix metalloproteinases 2 (MMP-2) expression in the medium, and a significant up- or down-regulation of other EndMT biomarkers (keratin, fibrillin-2, and collagen IV), as highlighted by differential proteomic analysis. Among proteins whose expression was found to be significantly dysregulated following exposure of HMEC-1 to urea, dimethylarginine dimethylaminohydrolase (DDAH) and vasorin turned out to be down-regulated. Both proteins have been directly linked to cardiovascular diseases (CVD) by in vitro and in vivo studies. Future experiments will be needed to deepen their role and investigate the signaling pathways in which they are involved to clarify the possible link between CKD and CVD.
Collapse
Affiliation(s)
- Graziano Colombo
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, 20133 Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Emanuela Astori
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, 20133 Milan, Italy
| | - Lucia Landoni
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, 20133 Milan, Italy
| | - Maria Lisa Garavaglia
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, 20133 Milan, Italy
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018–2022), University of Siena, 53100 Siena, Italy
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018–2022), University of Siena, 53100 Siena, Italy
| | - Maria Chiara Lionetti
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, 20133 Milan, Italy
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Aldo Milzani
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Department of Biosciences (Department of Excellence 2018–2022), Università degli Studi di Milano, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
32
|
Saad M, El-Menyar A, Kunji K, Ullah E, Al Suwaidi J, Kullo IJ. Validation of Polygenic Risk Scores for Coronary Heart Disease in a Middle Eastern Cohort Using Whole Genome Sequencing. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003712. [PMID: 36252120 PMCID: PMC9770120 DOI: 10.1161/circgen.122.003712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Enthusiasm for using polygenic risk scores (PRSs) in clinical practice is tempered by concerns about their portability to diverse ancestry groups, thus motivating genome-wide association studies in non-European ancestry cohorts. METHODS We conducted a genome-wide association study for coronary heart disease in a Middle Eastern cohort using whole genome sequencing and assessed the performance of 6 PRSs developed with methods including LDpred (PGS000296), metaGRS (PGS000018), Pruning and Thresholding (PGS000337), and an EnsemblePRS we developed. Additionally, we evaluated the burden of rare variants in lipid genes in cases and controls. Whole genome sequencing at 30× coverage was performed in 1067 coronary heart disease cases (mean age=59 years; 70.3% males) and 6170 controls (mean age=40 years; 43.5% males). RESULTS The majority of PRSs performed well; odds ratio (OR) per 1 SD increase (OR1sd) was highest for PGS000337 (OR1sd=1.81, 95% CI [1.66-1.98], P=3.07×10-41). EnsemblePRS performed better than individual PRSs (OR1sd=1.8, 95% CI [1.66-1.96], P=5.89×10-44). The OR for the 10th decile versus the remaining deciles was >3.2 for PGS000337, PGS000296, PGS000018, and reached 4.58 for EnsemblePRS. Of 400 known genome-wide significant loci, 33 replicated at P<10-4. However, the 9p21 locus did not replicate. Six suggestive (P<10-5) new loci/genes with plausible biological function were identified (eg, CORO7, RBM47, PDE4D). The burden of rare functional variants in LDLR, APOB, PCSK9, and ANGPTL4 was greater in cases than controls. CONCLUSIONS Overall, we demonstrate that PRSs derived from European ancestry genome-wide association studies performed well in a Middle Eastern cohort, suggesting these could be used in the clinical setting while ancestry-specific PRSs are developed.
Collapse
Affiliation(s)
- Mohamad Saad
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar (M.S., K.K., E.U.)
| | | | - Khalid Kunji
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar (M.S., K.K., E.U.)
| | - Ehsan Ullah
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar (M.S., K.K., E.U.)
| | | | - Iftikhar J. Kullo
- Department of Cardiovascular Medicine, and the Gonda Vascular Center, Mayo Clinic, Rochester, MN (I.J.K.)
| |
Collapse
|
33
|
Ciccosanti F, Antonioli M, Sacchi A, Notari S, Farina A, Beccacece A, Fusto M, Vergori A, D'Offizi G, Taglietti F, Antinori A, Nicastri E, Marchioni L, Palmieri F, Ippolito G, Piacentini M, Agrati C, Fimia GM. Proteomic analysis identifies a signature of disease severity in the plasma of COVID-19 pneumonia patients associated to neutrophil, platelet and complement activation. Clin Proteomics 2022; 19:38. [PMID: 36348270 PMCID: PMC9641302 DOI: 10.1186/s12014-022-09377-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Most patients infected with SARS-CoV-2 display mild symptoms with good prognosis, while 20% of patients suffer from severe viral pneumonia and up to 5% may require intensive care unit (ICU) admission due to severe acute respiratory syndrome, which could be accompanied by multiorgan failure.Plasma proteomics provide valuable and unbiased information about disease progression and therapeutic candidates. Recent proteomic studies have identified molecular changes in plasma of COVID-19 patients that implied significant dysregulation of several aspects of the inflammatory response accompanied by a general metabolic suppression. However, which of these plasma alterations are associated with disease severity remains only partly characterized.A known limitation of proteomic studies of plasma samples is the large difference in the macromolecule abundance, with concentration spanning at least 10 orders of magnitude. To improve the coverage of plasma contents, we performed a deep proteomic analysis of plasma from 10 COVID-19 patients with severe/fatal pneumonia compared to 10 COVID-19 patients with pneumonia who did not require ICU admission (non-ICU). To this aim, plasma samples were first depleted of the most abundant proteins, trypsin digested and peptides subjected to a high pH reversed-phase peptide fractionation before LC-MS analysis.These results highlighted an increase of proteins involved in neutrophil and platelet activity and acute phase response, which is significantly higher in severe/fatal COVID-19 patients when compared to non-ICU ones. Importantly, these changes are associated with a selective induction of complement cascade factors in severe/fatal COVID-19 patients. Data are available via ProteomeXchange with identifier PXD036491. Among these alterations, we confirmed by ELISA that higher levels of the neutrophil granule proteins DEFA3 and LCN2 are present in COVID-19 patients requiring ICU admission when compared to non-ICU and healthy donors.Altogether, our study provided an in-depth view of plasma proteome changes that occur in COVID-19 patients in relation to disease severity, which can be helpful to identify therapeutic strategies to improve the disease outcome.
Collapse
Affiliation(s)
- Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Manuela Antonioli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Alessandra Sacchi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Stefania Notari
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Anna Farina
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Alessia Beccacece
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Marisa Fusto
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Alessandra Vergori
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Gianpiero D'Offizi
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Fabrizio Taglietti
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Andrea Antinori
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Emanuele Nicastri
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Luisa Marchioni
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Fabrizio Palmieri
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Giuseppe Ippolito
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
- General Directorate for Research and Health Innovation, Italian Ministry of Health, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Agrati
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy.
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy.
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy.
- Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy.
| |
Collapse
|
34
|
Louvet L, Lenglet G, Krautzberger AM, Mentaverri R, Hague F, Kowalewski C, Mahtal N, Lesieur J, Bonnet A, Andrique C, Gaucher C, Gomila C, Schrewe H, Tharaux P, Kamel S, Chaussain C, Six I. Vasorin plays a critical role in vascular smooth muscle cells and arterial functions. J Cell Physiol 2022; 237:3845-3859. [PMID: 35892191 PMCID: PMC9796581 DOI: 10.1002/jcp.30838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/01/2023]
Abstract
Within the cardiovascular system, the protein vasorin (Vasn) is predominantly expressed by vascular smooth muscle cells (VSMCs) in the coronary arteries and the aorta. Vasn knockout (Vasn-/- ) mice die within 3 weeks of birth. In the present study, we investigated the role of vascular Vasn expression on vascular function. We used inducible Vasn knockout mice (VasnCRE-ERT KO and VasnSMMHC-CRE-ERT2 KO , in which respectively all cells or SMCs only are targeted) to analyze the consequences of total or selective Vasn loss on vascular function. Furthermore, in vivo effects were investigated in vitro using human VSMCs. The death of VasnCRE-ERT KO mice 21 days after tamoxifen injection was concomitant with decreases in blood pressure, angiotensin II levels, and vessel contractibility to phenylephrine. The VasnSMMHC-CRE-ERT2 KO mice displayed concomitant changes in vessel contractibility in response to phenylephrine and angiotensin II levels. In vitro, VASN deficiency was associated with a shift toward the SMC contractile phenotype, an increase in basal intracellular Ca2+ levels, and a decrease in the SMCs' ability to generate a calcium signal in response to carbachol or phenylephrine. Additionally, impaired endothelium-dependent relaxation (due to changes in nitric oxide signaling) was observed in all Vasn knockout mice models. Our present findings highlight the role played by Vasn SMC expression in the maintenance of vascular functions. The mechanistic experiments suggested that these effects are mediated by SMC phenotype switching and changes in intracellular calcium homeostasis, angiotensin II levels, and NO signaling.
Collapse
Affiliation(s)
- Loïc Louvet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV)Picardie Jules Verne UniversityAmiensFrance
| | - Gaëlle Lenglet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV)Picardie Jules Verne UniversityAmiensFrance
| | | | - Romuald Mentaverri
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV)Picardie Jules Verne UniversityAmiensFrance,Amiens University HospitalHuman Biology CenterAmiensFrance
| | - Frédéric Hague
- UR EA4667, UPJV, Laboratoire de Physiologie Cellulaire et MoléculairePicardie Jules Verne UniversityAmiensFrance
| | - Clara Kowalewski
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV)Picardie Jules Verne UniversityAmiensFrance
| | - Nassim Mahtal
- Université Paris Cité, Paris Cardiovascular CenterINSERMParisFrance
| | - Julie Lesieur
- Université Paris Cité, URP2496F‐92120MontrougeFrance
| | - Anne‐Laure Bonnet
- Université Paris Cité, URP2496F‐92120MontrougeFrance,AP‐HP, FHU DDS‐net, Services de médecine bucco‐dentaire (GH Sorbonne Université, GH Paris Nord Université de Paris, GH Henri Mondor)ParisFrance
| | | | - Céline Gaucher
- Université Paris Cité, URP2496F‐92120MontrougeFrance,AP‐HP, FHU DDS‐net, Services de médecine bucco‐dentaire (GH Sorbonne Université, GH Paris Nord Université de Paris, GH Henri Mondor)ParisFrance
| | - Cathy Gomila
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV)Picardie Jules Verne UniversityAmiensFrance
| | - Heinrich Schrewe
- Department of Developmental GeneticsMax Planck Institute for Molecular GeneticsBerlinGermany
| | | | - Said Kamel
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV)Picardie Jules Verne UniversityAmiensFrance,Amiens University HospitalHuman Biology CenterAmiensFrance
| | - Catherine Chaussain
- Université Paris Cité, URP2496F‐92120MontrougeFrance,AP‐HP, FHU DDS‐net, Services de médecine bucco‐dentaire (GH Sorbonne Université, GH Paris Nord Université de Paris, GH Henri Mondor)ParisFrance
| | - Isabelle Six
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV)Picardie Jules Verne UniversityAmiensFrance
| |
Collapse
|
35
|
Liao Z, Ke W, Liu H, Tong B, Wang K, Feng X, Hua W, Wang B, Song Y, Luo R, Liang H, Zhang W, Zhao K, Li S, Yang C. Vasorin-containing small extracellular vesicles retard intervertebral disc degeneration utilizing an injectable thermoresponsive delivery system. J Nanobiotechnology 2022; 20:420. [PMID: 36123708 PMCID: PMC9484164 DOI: 10.1186/s12951-022-01624-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/02/2022] [Indexed: 11/14/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the pathological reason of back pain and the therapeutic approaches are still unsatisfactory. Recently, mesenchymal stem cell-derived small extracellular vesicles (EVs) have emerged as the novel regenerative method for IDD. In this study, we intensively investigated the therapeutic mechanism of small EVs, and found that vasorin protein enriched in EVs promoted the proliferation and extracellular matrix anabolism of nucleus pulposus cells via the Notch1 signaling pathway. Then, we fabricated a thermoresponsive gel which composed of Pluronic F127 and decellularized extracellular matrix (FEC) for the delivery and sustained release of EVs. Besides, ex vivo and in vivo results showed that EVs embedded in FEC (EVs@FEC) ameliorate the disc degeneration efficiently and achieve better therapeutic effects than one-off EVs delivery. Collectively, these findings deepen the understanding of EVs mechanism in treating intervertebral disc degeneration, and also illustrate the promising capacity of sustained EVs release system for intervertebral disc regeneration.
Collapse
Affiliation(s)
- Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kangcheng Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
36
|
Yang L, Cheng X, Shi W, Li H, Zhang Q, Huang S, Huang X, Wen S, Gan J, Liao Z, Sun J, Liang J, Ouyang Y, He M. Vasorin Deletion in C57BL/6J Mice Induces Hepatocyte Autophagy through Glycogen-Mediated mTOR Regulation. Nutrients 2022; 14:nu14173600. [PMID: 36079859 PMCID: PMC9460126 DOI: 10.3390/nu14173600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 01/18/2023] Open
Abstract
Abnormal vasorin (Vasn) expression occurs in multiple diseases, particularly liver cancers. Vasn knockout (KO) in mice causes malnutrition, a shortened life span, and decreased physiological functions. However, the causes and underlying mechanisms remain unknown. Here, we established Vasn KO C57BL/6J mice by using the CRISPR/Cas9 system. The animals were weighed, and histology, immunohistochemistry, electronic microscopy, and liver function tests were used to examine any change in the livers. Autophagy markers were detected by Western blotting. MicroRNA (miRNA) sequencing was performed on liver samples and analyses to study the signaling pathway altered by Vasn KO. Significant reductions in mice body and liver weight, accompanied by abnormal liver function, liver injury, and reduced glycogen accumulation in hepatocytes, were observed in the Vasn KO mice. The deficiency of Vasn also significantly increased the number of autophagosomes and the expression of LC3A/B-II/I but decreased SQSTM1/p62 levels in hepatocytes, suggesting aberrant activation of autophagy. Vasn deficiency inhibited glycogen-mediated mammalian target of rapamycin (mTOR) phosphorylation and activated Unc-51-like kinase 1 (ULK1) signaling, suggesting that Vasn deletion upregulates hepatocyte autophagy through the mTOR-ULK1 signaling pathway as a possible cause of diminished life span and health. Our results indicate that Vasn is required for the homeostasis of liver glycogen metabolism upstream of hepatocyte autophagy, suggesting research values for regulating Vasn in pathways related to liver physiology and functions. Overall, this study provides new insight into the role of Vasn in liver functionality.
Collapse
Affiliation(s)
- Lichao Yang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Xiaojing Cheng
- School of Public Health, Guangxi Medical University, Nanning 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Wei Shi
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Hui Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qi Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Shiping Huang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Sha Wen
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Ji Gan
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Zhouxiang Liao
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Jinning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
- Correspondence: (Y.O.); (M.H.); Tel.: +86-771-5629860 (M.H.)
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning 530021, China
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning 530021, China
- Correspondence: (Y.O.); (M.H.); Tel.: +86-771-5629860 (M.H.)
| |
Collapse
|
37
|
Guo X, Sun J, Liang J, Zhu S, Zhang M, Yang L, Huang X, Xue K, Mo Z, Wen S, Hu B, Liu J, Ouyang Y, He M. Vasorin contributes to lung injury via FABP4-mediated inflammation. Mol Biol Rep 2022; 49:9335-9344. [PMID: 35945403 DOI: 10.1007/s11033-022-07780-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/06/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Lung injury caused by pulmonary inflammation is one of the main manifestations of respiratory diseases. Vasorin (VASN) is a cell-surface glycoprotein encoded by the VASN gene and is expressed in the lungs of developing mouse foetuses. Previous research has revealed that VASN is associated with many diseases. However, its exact function in the lungs and the underlying mechanism remain poorly understood. METHODS AND RESULTS To investigate the molecular mechanisms involved in lung disease caused by VASN deficiency, a VASN gene knockout (VASN-/-) model was established. The pathological changes in the lungs of VASN-/- mice were similar to those in a lung injury experimental mouse model. We further analysed the transcriptomes of the lungs of VASN-/- mice and wild-type mice. Genes in twenty-four signalling pathways were enriched in the lungs of VASN-/- mice, among which PPAR signalling pathway genes (3 genes, FABP4, Plin1, AdipoQ, were upregulated, while apoA5 was downregulated) were found to be closely related to lung injury. The most significantly changed lung injury-related gene, FABP4, was selected for further verification. The mRNA and protein levels of FABP4 were significantly increased in the lungs of VASN-/- mice, as were the mRNA and protein levels of the inflammatory factors IL-6, TNF-α and IL-1β. CONCLUSIONS We believe that these data provide molecular evidence for the regulatory role of VASN in inflammation in the context of lung injury.
Collapse
Affiliation(s)
- Xiaoping Guo
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Siran Zhu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lichao Yang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kangning Xue
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhongxiang Mo
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Sha Wen
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Bing Hu
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiajuan Liu
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Min He
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China. .,School of Public Health, Guangxi Medical University, Nanning, 530021, China. .,Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, China.
| |
Collapse
|
38
|
Choi JA, Ju HH, Lee J, Kim JE, Paik SY, Skiba NP, Rao PV. Increased Complement-Associated Inflammation in Cytomegalovirus-Positive Hypertensive Anterior Uveitis Patients Based on the Aqueous Humor Proteomics Analysis. J Clin Med 2022; 11:2337. [PMID: 35566463 PMCID: PMC9101446 DOI: 10.3390/jcm11092337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Herpetic anterior uveitis-associated ocular inflammation is commonly manifested with ocular hypertension and glaucoma. Relative to other viruses, cytomegalovirus (CMV) positive hypertensive anterior uveitis is associated with high recurrences of uveitis, as well as with uncontrolled intraocular pressure (IOP) and a subsequent higher requirement for future glaucoma surgery. To gain novel insights into the pathogenesis of ocular hypertension in these patients, we investigated the proteome changes of the aqueous humor (AH) derived from the CMV hypertensive anterior uveitis (CMV-HAU; n = 10) patients and non-glaucoma (cataract; n = 10) patients using liquid chromatography with tandem mass spectrometry. Among a total of 562 proteins identified, fifty and fifteen proteins were significantly elevated and decreased, respectively, in the AH of CMV-HAU patients compared to the control subjects by ≥2 fold. Gene ontology (GO) enrichment and network analyses of elevated proteins revealed that the enrichment of protein was involved in the complement activation, the humoral immune response mediated by the circulating immunoglobulins, proteolysis, and platelet degranulation. In the AH of CMV-HAU, GDF (growth/differentiation factor)-15, the inflammatory marker belonging to the TGF-β superfamily proteins, was significantly increased, while vasorin, an anti-TGF-β protein, levels were decreased. The trabecular meshwork cells infected with CMV exhibited a significantly increased expression of inflammatory markers. Collectively, these data indicate increased complement factor associated inflammation and humoral immunity in CMV-HAU associated ocular hypertension.
Collapse
Affiliation(s)
- Jin A Choi
- Department of Ophthalmology, College of Medicine, St. Vincent’s Hospital, The Catholic University of Korea, Suwon 16247, Korea;
| | - Hyun-hee Ju
- Department of Ophthalmology, College of Medicine, St. Vincent’s Hospital, The Catholic University of Korea, Suwon 16247, Korea;
| | - Jiyoung Lee
- Department of Ophthalmology, College of Medicine, Daejon St. Mary’s Hospital, The Catholic University of Korea, Daejon 34943, Korea;
| | - Ju-Eun Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.-E.K.); (S.-Y.P.)
| | - Soon-Young Paik
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.-E.K.); (S.-Y.P.)
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA; (N.P.S.); (P.V.R.)
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA; (N.P.S.); (P.V.R.)
| |
Collapse
|
39
|
Application of Proteogenomics to Urine Analysis towards the Identification of Novel Biomarkers of Prostate Cancer: An Exploratory Study. Cancers (Basel) 2022; 14:cancers14082001. [PMID: 35454907 PMCID: PMC9031064 DOI: 10.3390/cancers14082001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is one of the most common cancers. Due to the limited and invasive approaches for PCa diagnosis, it is crucial to identify more accurate and non-invasive biomarkers for its detection. The aim of our study was to non-invasively uncover new protein targets for detecting PCa using a proteomics and proteogenomics approach. This work identified several dysregulated mutant protein isoforms in urine from PCa patients, some of them predicted to have a protective or an adverse role in these patients. These results are promising given urine’s non-invasive nature and offers an auspicious opportunity for research and development of PCa biomarkers. Abstract To identify new protein targets for PCa detection, first, a shotgun discovery experiment was performed to characterize the urinary proteome of PCa patients. This revealed 18 differentially abundant urinary proteins in PCa patients. Second, selected targets were clinically tested by immunoblot, and the soluble E-cadherin fragment was detected for the first time in the urine of PCa patients. Third, the proteogenome landscape of these PCa patients was characterized, revealing 1665 mutant protein isoforms. Statistical analysis revealed 6 differentially abundant mutant protein isoforms in PCa patients. Analysis of the likely effects of mutations on protein function and PPIs involving the dysregulated mutant protein isoforms suggests a protective role of mutations HSPG2*Q1062H and VASN*R161Q and an adverse role of AMBP*A286G and CD55*S162L in PCa patients. This work originally characterized the urinary proteome, focusing on the proteogenome profile of PCa patients, which is usually overlooked in the analysis of PCa and body fluids. Combined analysis of mass spectrometry data using two different software packages was performed for the first time in the context of PCa, which increased the robustness of the data analysis. The application of proteogenomics to urine proteomic analysis can be very enriching in mutation-related diseases such as cancer.
Collapse
|
40
|
Sumner JA, Gambazza S, Gao X, Baccarelli AA, Uddin M, McLaughlin KA. Epigenetics of early-life adversity in youth: cross-sectional and longitudinal associations. Clin Epigenetics 2022; 14:48. [PMID: 35395780 PMCID: PMC8994405 DOI: 10.1186/s13148-022-01269-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Altered DNA methylation (DNAm) may be one pathway through which early-life adversity (ELA) contributes to adverse mental and physical health outcomes. This study investigated whether the presence versus absence of ELA experiences reflecting the dimensions of threat and deprivation were associated with epigenome-wide DNAm cross-sectionally and longitudinally in a community-based sample of children and adolescents. METHODS In 113 youths aged 8-16 years with wide variability in ELA, we examined associations of abuse (physical, sexual, emotional; indicating threat-related experiences) and neglect (emotional, physical; indicating deprivation-related experiences) with DNAm assessed with the Illumina EPIC BeadChip array, with DNA derived from saliva. In cross-sectional epigenome-wide analyses, we investigated associations of lifetime abuse and neglect with DNAm at baseline. In longitudinal epigenome-wide analyses, we examined whether experiencing abuse and neglect over an approximately 2-year follow-up were each associated with change in DNAm from baseline to follow-up. RESULTS In cross-sectional analyses adjusting for lifetime experience of neglect, lifetime experience of abuse was associated with DNAm for four cytosine-phosphodiester-guanine (CpG) sites (cg20241299: coefficient = 0.023, SE = 0.004; cg08671764: coefficient = 0.018, SE = 0.003; cg27152686: coefficient = - 0.069, SE = 0.012; cg24241897: coefficient = - 0.003, SE = 0.001; FDR < .05). In longitudinal analyses, experiencing neglect over follow-up was associated with an increase in DNAm for one CpG site, adjusting for abuse over follow-up (cg03135983: coefficient = 0.036, SE = 0.006; FDR < .05). CONCLUSIONS In this study, we identified examples of epigenetic patterns associated with ELA experiences of threat and deprivation that were already observable in youth. We provide novel evidence for change in DNAm over time in relation to ongoing adversity and that experiences reflecting distinct ELA dimensions may be characterized by unique epigenetic patterns.
Collapse
Affiliation(s)
- Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Psychology Building 1285, Box 951563, Los Angeles, CA, 90095-1563, USA.
| | - Simone Gambazza
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Healthcare Professions Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Xu Gao
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, China
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | | |
Collapse
|
41
|
Choi JA, Maddala R, Karnam S, Skiba NP, Vann R, Challa P, Rao PV. Role of vasorin, an anti-apoptotic, anti-TGF-β and hypoxia-induced glycoprotein in the trabecular meshwork cells and glaucoma. J Cell Mol Med 2022; 26:2063-2075. [PMID: 35170203 PMCID: PMC8980963 DOI: 10.1111/jcmm.17229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Glaucoma, one of the leading causes of irreversible blindness, is commonly associated with elevated intraocular pressure due to impaired aqueous humour (AH) drainage through the trabecular meshwork. The aetiological mechanisms contributing to impaired AH outflow, however, are poorly understood. Here, we identified the secreted form of vasorin, a transmembrane glycoprotein, as a common constituent of human AH by mass spectrometry and immunoblotting analysis. ELISA assay revealed a significant but marginal decrease in vasorin levels in the AH of primary open‐angle glaucoma patients compared to non‐glaucoma cataract patients. Human trabecular meshwork (HTM) cells were confirmed to express vasorin, which has been shown to possess anti‐apoptotic and anti‐TGF‐β activities. Treatment of HTM cells with vasorin induced actin stress fibres and focal adhesions and suppressed TGF‐β2‐induced SMAD2/3 activation in HTM cells. Additionally, cobalt chloride‐induced hypoxia stimulated a robust elevation in vasorin expression, and vasorin suppressed TNF‐α‐induced cell death in HTM cells. Taken together, these findings reveal the importance of vasorin in maintenance of cell survival, inhibition of TGF‐β induced biological responses in TM cells, and the decreasing trend in vasorin levels in the AH of glaucoma patients suggests a plausible role for vasorin in the pathobiology of ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Jin A Choi
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Shruthi Karnam
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robin Vann
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Pratap Challa
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
42
|
Aydin M, Kızıltan R, Algul S, Kemik O. The Utility of Serum Vasorin Levels as a Novel Potential Biomarker for Early Detection of Colon Cancer. Cureus 2022; 14:e21653. [PMID: 35233325 PMCID: PMC8881733 DOI: 10.7759/cureus.21653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Objective The objective of this study was to investigate the utility of vasorin, a newly discovered transmembrane protein, as a novel biomarker in the early detection of colon cancer. Methods A total of 80 patients aged 55-70 years, diagnosed with colon cancer and followed up in our clinics, and 50 healthy volunteer blood donors were included in the study. Participants' demographics such as age, gender, and vasorin levels were recorded and compared between the patient and control groups. In addition, primary tumor status (pT) values N and T stages of the tumors were studied in the patient group. All patients included in the study were pathologically confirmed by colonoscopy plus biopsy and postoperative histopathologic examination. Results The mean age was found as 64.59±3.70 (min-max: 55-70) years old in the patient group and 63.56±3.07 (min-max: 57-70) years. There was no statistically significant difference between both groups regarding demographics (p>0.05). Serum Vasorin levels were higher in patients with colon cancer than in the control group (p<0.001). Serum Vasorin levels were higher among patients with advanced disease and related to the clinical stage of the locally advanced tumor. Conclusion Our findings revealed that serum vasorin levels are upregulated in patients with colon cancer. Raised vasorin levels may be a non-invasive biomarker beneficial for early detection and prediction of colon cancer prognosis. In addition, vasorin levels further rose as the disease advanced to higher TNM (tumor (T), nodes (N), and metastases (M)) stages. Further comprehensive studies are needed to draw more evident conclusions and generalize our results.
Collapse
Affiliation(s)
- Mehmet Aydin
- General Surgery, Medical Park Bahçelievler Hospital, Istanbul, TUR
| | - Remzi Kızıltan
- General Surgery, Van Yuzuncu Yil University School of Medicine, Van, TUR
| | - Sermin Algul
- Physiology, Van Yuzuncu Yil University School of Medicine, Van, TUR
| | - Ozgur Kemik
- Surgical Oncology, Van Yuzuncu Yil University School of Medicine, Van, TUR
| |
Collapse
|
43
|
Nurmohamed NS, Belo Pereira JP, Hoogeveen RM, Kroon J, Kraaijenhof JM, Waissi F, Timmerman N, Bom MJ, Hoefer IE, Knaapen P, Catapano AL, Koenig W, de Kleijn D, Visseren FL, Levin E, Stroes ES. OUP accepted manuscript. Eur Heart J 2022; 43:1569-1577. [PMID: 35139537 PMCID: PMC9020984 DOI: 10.1093/eurheartj/ehac055] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Aims Current risk scores do not accurately identify patients at highest risk of recurrent atherosclerotic cardiovascular disease (ASCVD) in need of more intensive therapeutic interventions. Advances in high-throughput plasma proteomics, analysed with machine learning techniques, may offer new opportunities to further improve risk stratification in these patients. Methods and results Targeted plasma proteomics was performed in two secondary prevention cohorts: the Second Manifestations of ARTerial disease (SMART) cohort (n = 870) and the Athero-Express cohort (n = 700). The primary outcome was recurrent ASCVD (acute myocardial infarction, ischaemic stroke, and cardiovascular death). Machine learning techniques with extreme gradient boosting were used to construct a protein model in the derivation cohort (SMART), which was validated in the Athero-Express cohort and compared with a clinical risk model. Pathway analysis was performed to identify specific pathways in high and low C-reactive protein (CRP) patient subsets. The protein model outperformed the clinical model in both the derivation cohort [area under the curve (AUC): 0.810 vs. 0.750; P < 0.001] and validation cohort (AUC: 0.801 vs. 0.765; P < 0.001), provided significant net reclassification improvement (0.173 in validation cohort) and was well calibrated. In contrast to a clear interleukin-6 signal in high CRP patients, neutrophil-signalling-related proteins were associated with recurrent ASCVD in low CRP patients. Conclusion A proteome-based risk model is superior to a clinical risk model in predicting recurrent ASCVD events. Neutrophil-related pathways were found in low CRP patients, implying the presence of a residual inflammatory risk beyond traditional NLRP3 pathways. The observed net reclassification improvement illustrates the potential of proteomics when incorporated in a tailored therapeutic approach in secondary prevention patients.
Collapse
Affiliation(s)
| | | | - Renate M. Hoogeveen
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jordan M. Kraaijenhof
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Farahnaz Waissi
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nathalie Timmerman
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Michiel J. Bom
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Imo E. Hoefer
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Paul Knaapen
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alberico L. Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy
- IRCCS Multimedica, Milano, Italy
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Dominique de Kleijn
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Frank L.J. Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Evgeni Levin
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- HorAIzon BV, Delft, The Netherlands
| | | |
Collapse
|
44
|
Shen WX, Liu Y, Chen Y, Zeng X, Tan Y, Jiang YY, Chen Y. OUP accepted manuscript. Nucleic Acids Res 2022; 50:e45. [PMID: 35100418 PMCID: PMC9071488 DOI: 10.1093/nar/gkac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/01/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Omics-based biomedical learning frequently relies on data of high-dimensions (up to thousands) and low-sample sizes (dozens to hundreds), which challenges efficient deep learning (DL) algorithms, particularly for low-sample omics investigations. Here, an unsupervised novel feature aggregation tool AggMap was developed to Aggregate and Map omics features into multi-channel 2D spatial-correlated image-like feature maps (Fmaps) based on their intrinsic correlations. AggMap exhibits strong feature reconstruction capabilities on a randomized benchmark dataset, outperforming existing methods. With AggMap multi-channel Fmaps as inputs, newly-developed multi-channel DL AggMapNet models outperformed the state-of-the-art machine learning models on 18 low-sample omics benchmark tasks. AggMapNet exhibited better robustness in learning noisy data and disease classification. The AggMapNet explainable module Simply-explainer identified key metabolites and proteins for COVID-19 detections and severity predictions. The unsupervised AggMap algorithm of good feature restructuring abilities combined with supervised explainable AggMapNet architecture establish a pipeline for enhanced learning and interpretability of low-sample omics data.
Collapse
Affiliation(s)
- Wan Xiang Shen
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P.R. China
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore 117543, Singapore
| | - Yu Liu
- Institute for Health Innovation & Technology, National University of Singapore 117543, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore 117543, Singapore
| | - Yan Chen
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P.R. China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P.R. China
- Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518110, P.R. China
| | - Yu Yang Jiang
- Correspondence may also be addressed to Yu Yang Jiang. Tel: +86 755 2603635;
| | - Yu Zong Chen
- To whom correspondence should be addressed. Tel: +86 755 26032094;
| |
Collapse
|
45
|
Sun J, Guo X, Yu P, Liang J, Mo Z, Zhang M, Yang L, Huang X, Hu B, Liu J, Ouyang Y, He M. Vasorin deficiency leads to cardiac hypertrophy by targeting MYL7 in young mice. J Cell Mol Med 2021; 26:88-98. [PMID: 34854218 PMCID: PMC8742182 DOI: 10.1111/jcmm.17034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
Vasorin (VASN) is an important transmembrane protein associated with development and disease. However, it is not clear whether the death of mice with VASN deficiency (VASN-/- ) is related to cardiac dysfunction. The aim of this research was to ascertain whether VASN induces pathological cardiac hypertrophy by targeting myosin light chain 7 (MYL7). VASN-/- mice were produced by CRISPR/Cas9 technology and inbreeding. PCR amplification, electrophoresis, real-time PCR and Western blotting were used to confirm VASN deficiency. Cardiac hypertrophy was examined by blood tests, histological analysis and real-time PCR, and key downstream factors were identified by RNA sequencing and real-time PCR. Western blotting, immunohistochemistry and electron microscopy analysis were used to confirm the downregulation of MYL7 production and cardiac structural changes. Our results showed that sudden death of VASN-/- mice occurred 21-28 days after birth. The obvious increases in cardiovascular risk, heart weight and myocardial volume and the upregulation of hypertrophy marker gene expression indicated that cardiac hypertrophy may be the cause of death in young VASN-/- mice. Transcriptome analysis revealed that VASN deficiency led to MYL7 downregulation, which induced myocardial structure abnormalities and disorders. Our results revealed a pathological phenomenon in which VASN deficiency may lead to cardiac hypertrophy by downregulating MYL7 production. However, more research is necessary to elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoping Guo
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Ping Yu
- Department of Cardiology, The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhongxiang Mo
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Lichao Yang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Bing Hu
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiajuan Liu
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Min He
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, China.,Ministry of Education, Key Laboratory of High-Incidence-Tumor Prevention & Treatment, (Guangxi Medical University), Nanning, China
| |
Collapse
|
46
|
Abstract
The reproductive lifespan of female mammals is limited and ultimately depends on the production of a sufficient number of high quality oocytes from a pool of non-growing primordial follicles that are set aside during embryonic and perinatal development. Recent studies show multiple signaling pathways are responsible for maintaining primordial follicle arrest and regulation of activation. Identification of these pathways and their regulatory mechanisms is essential for developing novel treatments for female infertility, improving existing in vitro fertilization techniques, and more recently, restoring the function of cryopreserved ovarian tissue. This review focuses on recent developments in transforming growth factor beta (TGFβ) family signaling in ovarian follicle development and its potential application to therapeutic design. Mouse models have been an essential tool for discovering genes critical for fertility, and recent advancements in human organ culture have additionally allowed for the translation of murine discoveries into human research and clinical settings.
Collapse
|
47
|
ADAM 17 and Epithelial-to-Mesenchymal Transition: The Evolving Story and Its Link to Fibrosis and Cancer. J Clin Med 2021; 10:jcm10153373. [PMID: 34362154 PMCID: PMC8347979 DOI: 10.3390/jcm10153373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
For decades, metalloproteinase 17 (ADAM17) has been the goal of wide investigation. Since its discovery as the tumour necrosis factor-α convertase, it has been studied as the main drug target, especially in the context of inflammatory conditions and tumour. In fact, evidence is mounting to support a key role of ADAM17 in the induction of the proliferation, migration and progression of tumour cells and the trigger of the pro-fibrotic process during chronic inflammatory conditions; this occurs, probably, through the activation of epithelial-to-mesenchymal transition (EMT). EMT is a central morphologic conversion that occurs in adults during wound healing, tumour progression and organ fibrosis. EMT is characterised by the disassembly of cell–cell contacts, remodelling of the actin cytoskeleton and separation of cells, and generates fibroblast-like cells that express mesenchymal markers and have migratory properties. This transition is characterised by loss of epithelial proteins such as E-cadherin and the acquisition of new mesenchymal markers, including vimentin and a-smooth muscle actin. The present review discusses the current understanding of molecular mechanisms involved in ADAM17-dependent EMT in order to individuate innovative therapeutic strategies using ADAM17-related pathways.
Collapse
|
48
|
Bourgeois R, Bourgault J, Despres AA, Perrot N, Guertin J, Girard A, Mitchell PL, Gotti C, Bourassa S, Scipione CA, Gaudreault N, Boffa MB, Koschinsky ML, Pibarot P, Droit A, Thériault S, Mathieu P, Bossé Y, Arsenault BJ. Lipoprotein Proteomics and Aortic Valve Transcriptomics Identify Biological Pathways Linking Lipoprotein(a) Levels to Aortic Stenosis. Metabolites 2021; 11:metabo11070459. [PMID: 34357353 PMCID: PMC8307014 DOI: 10.3390/metabo11070459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Lipoprotein(a) (Lp(a)) is one of the most important risk factors for the development of calcific aortic valve stenosis (CAVS). However, the mechanisms through which Lp(a) causes CAVS are currently unknown. Our objectives were to characterize the Lp(a) proteome and to identify proteins that may be differentially associated with Lp(a) in patients with versus without CAVS. Our second objective was to identify genes that may be differentially regulated by exposure to high versus low Lp(a) levels in explanted aortic valves from patients with CAVS. We isolated Lp(a) from the blood of 21 patients with CAVS and 22 volunteers and performed untargeted label-free analysis of the Lp(a) proteome. We also investigated the transcriptomic signature of calcified aortic valves from patients who underwent aortic valve replacement with high versus low Lp(a) levels (n = 118). Proteins involved in the protein activation cascade, platelet degranulation, leukocyte migration, and response to wounding may be associated with Lp(a) depending on CAVS status. The transcriptomic analysis identified genes involved in cardiac aging, chondrocyte development, and inflammation as potentially influenced by Lp(a). Our multi-omic analyses identified biological pathways through which Lp(a) may cause CAVS, as well as key molecular events that could be triggered by Lp(a) in CAVS development.
Collapse
Affiliation(s)
- Raphaëlle Bourgeois
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jérôme Bourgault
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Audrey-Anne Despres
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Nicolas Perrot
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jakie Guertin
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Arnaud Girard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Patricia L. Mitchell
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
| | - Clarisse Gotti
- Proteomics Platform of the CHU de Québec, QC G1V 4G2, Canada; (C.G.); (S.B.); (A.D.)
| | - Sylvie Bourassa
- Proteomics Platform of the CHU de Québec, QC G1V 4G2, Canada; (C.G.); (S.B.); (A.D.)
| | - Corey A. Scipione
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada;
| | - Nathalie Gaudreault
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
| | - Michael B. Boffa
- Robarts Research Institute, London, ON N6A 5B7, Canada; (M.B.B.); (M.L.K.)
| | | | - Philippe Pibarot
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Arnaud Droit
- Proteomics Platform of the CHU de Québec, QC G1V 4G2, Canada; (C.G.); (S.B.); (A.D.)
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada
| | - Sébastien Thériault
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Patrick Mathieu
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Yohan Bossé
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Benoit J. Arsenault
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-656-8711 (ext. 3498)
| |
Collapse
|
49
|
Remnestål J, Bergström S, Olofsson J, Sjöstedt E, Uhlén M, Blennow K, Zetterberg H, Zettergren A, Kern S, Skoog I, Nilsson P, Månberg A. Association of CSF proteins with tau and amyloid β levels in asymptomatic 70-year-olds. ALZHEIMERS RESEARCH & THERAPY 2021; 13:54. [PMID: 33653397 PMCID: PMC7923505 DOI: 10.1186/s13195-021-00789-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022]
Abstract
Background Increased knowledge of the evolution of molecular changes in neurodegenerative disorders such as Alzheimer’s disease (AD) is important for the understanding of disease pathophysiology and also crucial to be able to identify and validate disease biomarkers. While several biological changes that occur early in the disease development have already been recognized, the need for further characterization of the pathophysiological mechanisms behind AD still remains. Methods In this study, we investigated cerebrospinal fluid (CSF) levels of 104 proteins in 307 asymptomatic 70-year-olds from the H70 Gothenburg Birth Cohort Studies using a multiplexed antibody- and bead-based technology. Results The protein levels were first correlated with the core AD CSF biomarker concentrations of total tau, phospho-tau and amyloid beta (Aβ42) in all individuals. Sixty-three proteins showed significant correlations to either total tau, phospho-tau or Aβ42. Thereafter, individuals were divided based on CSF Aβ42/Aβ40 ratio and Clinical Dementia Rating (CDR) score to determine if early changes in pathology and cognition had an effect on the correlations. We compared the associations of the analysed proteins with CSF markers between groups and found 33 proteins displaying significantly different associations for amyloid-positive individuals and amyloid-negative individuals, as defined by the CSF Aβ42/Aβ40 ratio. No differences in the associations could be seen for individuals divided by CDR score. Conclusions We identified a series of transmembrane proteins, proteins associated with or anchored to the plasma membrane, and proteins involved in or connected to synaptic vesicle transport to be associated with CSF biomarkers of amyloid and tau pathology in AD. Further studies are needed to explore these proteins’ role in AD pathophysiology. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00789-5.
Collapse
Affiliation(s)
- Julia Remnestål
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodvägen 23A, Solna, Stockholm, Sweden
| | - Sofia Bergström
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodvägen 23A, Solna, Stockholm, Sweden
| | - Jennie Olofsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodvägen 23A, Solna, Stockholm, Sweden
| | - Evelina Sjöstedt
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodvägen 23A, Solna, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Mathias Uhlén
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodvägen 23A, Solna, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Anna Zettergren
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
| | - Silke Kern
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodvägen 23A, Solna, Stockholm, Sweden
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodvägen 23A, Solna, Stockholm, Sweden.
| |
Collapse
|
50
|
Zheng Y, Verhoeff TA, Perez Pardo P, Garssen J, Kraneveld AD. The Gut-Brain Axis in Autism Spectrum Disorder: A Focus on the Metalloproteases ADAM10 and ADAM17. Int J Mol Sci 2020; 22:ijms22010118. [PMID: 33374371 PMCID: PMC7796333 DOI: 10.3390/ijms22010118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a spectrum of disorders that are characterized by problems in social interaction and repetitive behavior. The disease is thought to develop from changes in brain development at an early age, although the exact mechanisms are not known yet. In addition, a significant number of people with ASD develop problems in the intestinal tract. A Disintegrin And Metalloproteases (ADAMs) include a group of enzymes that are able to cleave membrane-bound proteins. ADAM10 and ADAM17 are two members of this family that are able to cleave protein substrates involved in ASD pathogenesis, such as specific proteins important for synapse formation, axon signaling and neuroinflammation. All these pathological mechanisms are involved in ASD. Besides the brain, ADAM10 and ADAM17 are also highly expressed in the intestines. ADAM10 and ADAM17 have implications in pathways that regulate gut permeability, homeostasis and inflammation. These metalloproteases might be involved in microbiota-gut-brain axis interactions in ASD through the regulation of immune and inflammatory responses in the intestinal tract. In this review, the potential roles of ADAM10 and ADAM17 in the pathology of ASD and as targets for new therapies will be discussed, with a focus on the gut-brain axis.
Collapse
Affiliation(s)
- Yuanpeng Zheng
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Tessa A. Verhoeff
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., 3584CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Correspondence: ; Tel.: +31-(0)3-02534509
| |
Collapse
|