1
|
Hanson KM, Macdonald SJ. Dynamic changes in gene expression through aging in Drosophila melanogaster heads. G3 (BETHESDA, MD.) 2025; 15:jkaf039. [PMID: 39992875 PMCID: PMC12005168 DOI: 10.1093/g3journal/jkaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Work in many systems has shown large-scale changes in gene expression during aging. However, many studies employ just 2 arbitrarily chosen timepoints to measure expression and can only observe an increase or a decrease in expression between "young" and "old" animals, failing to capture any dynamic, nonlinear changes that occur throughout the aging process. We used RNA sequencing to measure expression in male head tissue at 15 timepoints through the lifespan of an inbred Drosophila melanogaster strain. We detected >6,000 significant, age-related genes, nearly all of which have been seen in previous Drosophila aging expression studies and that include several known to harbor lifespan-altering mutations. We grouped our gene set into 28 clusters via their temporal expression change, observing a diversity of trajectories; some clusters show a linear change over time, while others show more complex, nonlinear patterns. Notably, reanalysis of our dataset comparing the earliest and latest timepoints-mimicking a 2-timepoint design-revealed fewer differentially expressed genes (around 4,500). Additionally, those genes exhibiting complex expression trajectories in our multitimepoint analysis were most impacted in this reanalysis; their identification, and the inferred change in gene expression with age, was often dependent on the timepoints chosen. Informed by our trajectory-based clusters, we executed a series of gene enrichment analyses, identifying enriched functions/pathways in all clusters, including the commonly seen increase in stress- and immune-related gene expression with age. Finally, we developed a pair of accessible Shiny apps to enable exploration of our differential expression and gene enrichment results.
Collapse
Affiliation(s)
- Katherine M Hanson
- Department of Molecular Biosciences and Center for Genomics, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Stuart J Macdonald
- Department of Molecular Biosciences and Center for Genomics, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| |
Collapse
|
2
|
Doyle TD, Poole OM, Barnes JC, Hawkes WLS, Jimenez Guri E, Wotton KR. Multiple factors contribute to female dominance in migratory bioflows. Open Biol 2025; 15:240235. [PMID: 39933573 PMCID: PMC11813574 DOI: 10.1098/rsob.240235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/28/2024] [Accepted: 12/31/2024] [Indexed: 02/13/2025] Open
Abstract
Migration is a widely observed phenomenon supported by morphological, physiological and behavioural traits that vary with season and sex in many species. Recently, the genetic components underpinning migration in the marmalade hoverfly (Diptera: Syrphidae) have been unpacked through detection of differentially expressed genes between migrant and non-migrant females. Males also migrate, but changing sex ratios during autumn migration, from around 50% female in northern Europe to around 90% in southern Europe, suggests males are poor long-distance fliers. To elucidate the mechanisms underpinning this sex difference, we performed morphological, physiological and transcriptomic characterization of actively migrating females and males. Both sexes show similar physiological adaptations including hyperphagia and starvation resistance, but females display higher tolerance to cold, have lower wing loading values and display a greater flight capacity. In addition, females modulate the expression of genes involved in immunity, hypoxia and longevity while suppressing hormonal pathways involved in maintaining reproductive diapause. These traits contribute to the success of female migrants and underlie the diminishing pool of males, influencing population dynamics across huge geographic areas and through the whole migratory and overwintering period.
Collapse
Affiliation(s)
- Toby D. Doyle
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Oliver M. Poole
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | | | - Will Leo S. Hawkes
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
- Swiss Ornithological Institute, Seerose 1, SempachCH-6204, Switzerland
| | - Eva Jimenez Guri
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Karl R. Wotton
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| |
Collapse
|
3
|
Hanson KM, Macdonald SJ. Dynamic Changes in Gene Expression Through Aging in Drosophila melanogaster Heads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627977. [PMID: 39764034 PMCID: PMC11702523 DOI: 10.1101/2024.12.11.627977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Work in many systems has shown large-scale changes in gene expression during aging. However, many studies employ just two, arbitrarily-chosen timepoints at which to measure expression, and can only observe an increase or a decrease in expression between "young" and "old" animals, failing to capture any dynamic, non-linear changes that occur throughout the aging process. We used RNA sequencing to measure expression in male head tissue at 15 timepoints through the lifespan of an inbred Drosophila melanogaster strain. We detected >6,000 significant, age-related genes, nearly all of which have been seen in previous fly aging expression studies, and which include several known to harbor lifespan-altering mutations. We grouped our gene set into 28 clusters via their temporal expression change, observing a diversity of trajectories; some clusters show a linear change over time, while others show more complex, non-linear patterns. Notably, re-analysis of our dataset comparing the earliest and latest timepoints - mimicking a two-timepoint design - revealed fewer differentially-expressed genes (around 4,500). Additionally, those genes exhibiting complex expression trajectories in our multi-timepoint analysis were most impacted in this re-analysis; Their identification, and the inferred change in gene expression with age, was often dependent on the timepoints chosen. Informed by our trajectory-based clusters, we executed a series of gene enrichment analyses, identifying enriched functions/pathways in all clusters, including the commonly seen increase in stress- and immune-related gene expression with age. Finally, we developed a pair of accessible shiny apps to enable exploration of our differential expression and gene enrichment results.
Collapse
Affiliation(s)
- Katherine M Hanson
- Department of Molecular Biosciences and Center for Genomics, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Stuart J Macdonald
- Department of Molecular Biosciences and Center for Genomics, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| |
Collapse
|
4
|
Strilbytska OM, Semaniuk U, Yurkevych I, Berezovskyi V, Glovyak A, Gospodaryov DV, Bayliak MM, Lushchak O. 2,4-Dinitrophenol is toxic on a low caloric diet but extends lifespan of Drosophila melanogaster on nutrient-rich diets without an impact on metabolism. Biogerontology 2024; 26:27. [PMID: 39702849 DOI: 10.1007/s10522-024-10169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Uncouplers of mitochondrial electron transport chain, such as 2,4-dinitrophehol (DNP), can mimic calorie restriction by decreasing efficiency of adenosine triphosphate (ATP) synthesis. However, DNP is also a toxic substance, whose overdosage can be lethal. In the fruit fly, Drosophila melanogaster model, we have found that DNP in concentrations of 0.05-0.2 g/L, led to a drastic decrease in fruit fly survival on a low caloric diet (1% sucrose and 1% yeast; 1S-1Y). On the 5S-5Y diet, DNP decreased lifespan of flies reared only in concentration 0.2 g/L, whilst on the diet 15S-15Y DNP either did not significantly shortened fruit fly lifespan or extended it. The lifespan extension on the high caloric 15S-15Y diet with DNP was accompanied by lower activity of lactate dehydrogenase and a decrease in activities of mitochondrial respiratory chain complexes I, II, and V, determined by blue native electrophoresis followed by in-gel activity assays. The exposure to DNP also did not affect key glycolytic enzymes, antioxidant and related enzymes, and markers of oxidative stress, such as aconitase activity and amount protein carbonyls. Consumption of DNP-supplemented diet did not affect flies' resistance to heat stress, though made male flies slightly more resistant to starvation compared with males reared on the control food. We also did not observe substantial changes in the contents of metabolic stores, triacylglycerols and glycogen, in the DNP-treated flies. All this suggest that a nutrient-rich diets provide effective protection against DNP, providing a mild uncoupling of the respiratory chain that allows lifespan extension without considerable changes in metabolism.
Collapse
Affiliation(s)
- Olha M Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk, 76018, Ukraine
| | - Uliana Semaniuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk, 76018, Ukraine
| | - Ihor Yurkevych
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk, 76018, Ukraine
| | - Vladyslav Berezovskyi
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk, 76018, Ukraine
| | - Andriy Glovyak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk, 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk, 76018, Ukraine
| | - Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk, 76018, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., Ivano-Frankivsk, 76018, Ukraine.
- Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
5
|
Das P, Aballay A, Singh J. Calcineurin inhibition enhances Caenorhabditis elegans lifespan by defecation defects-mediated calorie restriction and nuclear hormone signaling. eLife 2024; 12:RP89572. [PMID: 39485281 PMCID: PMC11530235 DOI: 10.7554/elife.89572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Calcineurin is a highly conserved calcium/calmodulin-dependent serine/threonine protein phosphatase with diverse functions. Inhibition of calcineurin is known to enhance the lifespan of Caenorhabditis elegans through multiple signaling pathways. Aiming to study the role of calcineurin in regulating innate immunity, we discover that calcineurin is required for the rhythmic defecation motor program (DMP) in C. elegans. Calcineurin inhibition leads to defects in the DMP, resulting in intestinal bloating, rapid colonization of the gut by bacteria, and increased susceptibility to bacterial infection. We demonstrate that intestinal bloating caused by calcineurin inhibition mimics the effects of calorie restriction, resulting in enhanced lifespan. The TFEB ortholog, HLH-30, is required for lifespan extension mediated by calcineurin inhibition. Finally, we show that the nuclear hormone receptor, NHR-8, is upregulated by calcineurin inhibition and is necessary for the increased lifespan. Our studies uncover a role for calcineurin in the C. elegans DMP and provide a new mechanism for calcineurin inhibition-mediated longevity extension.
Collapse
Affiliation(s)
- Priyanka Das
- Department of Biological Sciences, Indian Institute of Science Education and ResearchMohaliIndia
| | - Alejandro Aballay
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Jogender Singh
- Department of Biological Sciences, Indian Institute of Science Education and ResearchMohaliIndia
| |
Collapse
|
6
|
Walton A, Herman JJ, Rueppell O. Social life results in social stress protection: a novel concept to explain individual life-history patterns in social insects. Biol Rev Camb Philos Soc 2024; 99:1444-1457. [PMID: 38468146 DOI: 10.1111/brv.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Resistance to and avoidance of stress slow aging and confer increased longevity in numerous organisms. Honey bees and other superorganismal social insects have two main advantages over solitary species to avoid or resist stress: individuals can directly help each other by resource or information transfer, and they can cooperatively control their environment. These benefits have been recognised in the context of pathogen and parasite stress as the concept of social immunity, which has been extensively studied. However, we argue that social immunity is only a special case of a general concept that we define here as social stress protection to include group-level defences against all biotic and abiotic stressors. We reason that social stress protection may have allowed the evolution of reduced individual-level defences and individual life-history optimization, including the exceptional aging plasticity of many social insects. We describe major categories of stress and how a colonial lifestyle may protect social insects, particularly against temporary peaks of extreme stress. We use the honey bee (Apis mellifera L.) to illustrate how patterns of life expectancy may be explained by social stress protection and how modern beekeeping practices can disrupt social stress protection. We conclude that the broad concept of social stress protection requires rigorous empirical testing because it may have implications for our general understanding of social evolution and specifically for improving honey bee health.
Collapse
Affiliation(s)
- Alexander Walton
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, Canada
| | - Jacob J Herman
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, Canada
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Lin YC, Zhang M, Chang YJ, Kuo TH. Comparisons of lifespan and stress resistance between sexes in Drosophila melanogaster. Heliyon 2023; 9:e18178. [PMID: 37576293 PMCID: PMC10415617 DOI: 10.1016/j.heliyon.2023.e18178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Animals exhibit different extents of sexual dimorphism in a variety of phenotypes. Sex differences in longevity, one of the most complex life history traits, have also been reported. Although lifespan regulation has been studied extensively in the fruit fly, Drosophila melanogaster, the sex differences in lifespan have not been consistent in previous studies. To explore this issue, we revisited this question by examining the lifespan and stress resistance of both sexes among 15 inbred strains. We first found positive correlations between males and females from the same strain in terms of lifespan and resistance to starvation and desiccation stress. Although the lifespan difference between male and female flies varied greatly depending on the strain, males across all strains collectively had a longer lifespan. In contrast, females showed better resistance to starvation and desiccation stress. We also observed greater variation in lifespan and resistance to starvation and desiccation stress in females. Unexpectedly, there was no notable correlation observed between lifespan and the three types of stress resistance in either males or females. Overall, our study provides new data regarding sexual dimorphism in fly lifespan and stress resistance; this information may promote the investigation of mechanisms underlying longevity in future research.
Collapse
Affiliation(s)
- Yu-Chiao Lin
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - MingYang Zhang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Tsung-Han Kuo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
8
|
Vershinina YS, Krasnov GS, Garbuz DG, Shaposhnikov MV, Fedorova MS, Pudova EA, Katunina IV, Kornev AB, Zemskaya NV, Kudryavtsev AA, Bulavkina EV, Matveeva AA, Ulyasheva NS, Guvatova ZG, Anurov AA, Moskalev AA, Kudryavtseva AV. Transcriptomic Analysis of the Effect of Torin-2 on the Central Nervous System of Drosophila melanogaster. Int J Mol Sci 2023; 24:ijms24109095. [PMID: 37240439 DOI: 10.3390/ijms24109095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Torin-2, a synthetic compound, is a highly selective inhibitor of both TORC1 and TORC2 (target of rapamycin) complexes as an alternative to the well-known immunosuppressor, geroprotector, and potential anti-cancer natural compound rapamycin. Torin-2 is effective at hundreds of times lower concentrations and prevents some negative side effects of rapamycin. Moreover, it inhibits the rapamycin-resistant TORC2 complex. In this work, we evaluated transcriptomic changes in D. melanogaster heads induced with lifetime diets containing Torin-2 and suggested possible neuroprotective mechanisms of Torin-2. The analysis included D. melanogaster of three ages (2, 4, and 6 weeks old), separately for males and females. Torin-2, taken at the lowest concentration being tested (0.5 μM per 1 L of nutrient paste), had a slight positive effect on the lifespan of D. melanogaster males (+4% on the average) and no positive effect on females. At the same time, RNA-Seq analysis revealed interesting and previously undiscussed effects of Torin-2, which differed between sexes as well as in flies of different ages. Among the cellular pathways mostly altered by Torin-2 at the gene expression level, we identified immune response, protein folding (heat shock proteins), histone modification, actin cytoskeleton organization, phototransduction and sexual behavior. Additionally, we revealed that Torin-2 predominantly reduced the expression of Srr gene responsible for the conversion of L-serine to D-serine and thus regulating activity of NMDA receptor. Via western blot analysis, we showed than in old males Torin-2 tends to increase the ratio of the active phosphorylated form of ERK, the lowest node of the MAPK cascade, which may play a significant role in neuroprotection. Thus, the complex effect of Torin-2 may be due to the interplay of the immune system, hormonal background, and metabolism. Our work is of interest for further research in the field of NMDA-mediated neurodegeneration.
Collapse
Affiliation(s)
- Yulia S Vershinina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - David G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena A Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina V Katunina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey B Kornev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nadezhda V Zemskaya
- Institute of Biology, Komi Science Center, Ural Branch of RAS, 167000 Syktyvkar, Russia
| | - Alexander A Kudryavtsev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elizaveta V Bulavkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna A Matveeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia S Ulyasheva
- Institute of Biology, Komi Science Center, Ural Branch of RAS, 167000 Syktyvkar, Russia
| | - Zulfiya G Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Artemiy A Anurov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
9
|
Glastad KM, Roessler J, Gospocic J, Bonasio R, Berger SL. Long ant life span is maintained by a unique heat shock factor. Genes Dev 2023; 37:398-417. [PMID: 37257919 PMCID: PMC10270196 DOI: 10.1101/gad.350250.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Eusocial insect reproductive females show strikingly longer life spans than nonreproductive female workers despite high genetic similarity. In the ant Harpegnathos saltator (Hsal), workers can transition to reproductive "gamergates," acquiring a fivefold prolonged life span by mechanisms that are poorly understood. We found that gamergates have elevated expression of heat shock response (HSR) genes in the absence of heat stress and enhanced survival with heat stress. This HSR gene elevation is driven in part by gamergate-specific up-regulation of the gene encoding a truncated form of a heat shock factor most similar to mammalian HSF2 (hsalHSF2). In workers, hsalHSF2 was bound to DNA only upon heat stress. In gamergates, hsalHSF2 bound to DNA even in the absence of heat stress and was localized to gamergate-biased HSR genes. Expression of hsalHSF2 in Drosophila melanogaster led to enhanced heat shock survival and extended life span in the absence of heat stress. Molecular characterization illuminated multiple parallels between long-lived flies and gamergates, underscoring the centrality of hsalHSF2 to extended ant life span. Hence, ant caste-specific heat stress resilience and extended longevity can be transferred to flies via hsalHSF2. These findings reinforce the critical role of proteostasis in health and aging and reveal novel mechanisms underlying facultative life span extension in ants.
Collapse
Affiliation(s)
- Karl M Glastad
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Julian Roessler
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Janko Gospocic
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Roberto Bonasio
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
10
|
Li X, Sun Y, Tian X, Wang C, Li Q, Li Q, Zhu S, Lan C, Zhang Y, Li X, Ding R, Zhu X. Sitobion miscanthi L type symbiont enhances the fitness and feeding behavior of the host grain aphid. PEST MANAGEMENT SCIENCE 2023; 79:1362-1371. [PMID: 36458953 DOI: 10.1002/ps.7308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/09/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Symbiotic bacteria affect physiology and ecology of insect hosts. The Sitobion miscanthi L type symbiont (SMLS) is a recently discovered and widely distributed secondary symbiont in the grain aphid Sitobion miscanthi Takahashi in China. RESULTS In this study, SMLS-infected (SI) and SMLS-uninfected (SU) aphid strains were obtained from field population. The artificially SMLS-re-infected (SRI) strain was established by injecting SU aphids with the SI strain hemolymph containing SMLS. The SRI and SU strains had identical genetic backgrounds and similar microbial community structures. Compared with the SU strain, adult longevity, survival rate, and fecundity were significantly greater in the SRI strain (biological fitness of 1.48). Moreover, the SRI strain spent more time ingesting phloem than the SU strain. A comparative transcriptome analysis indicated that reproduction- and longevity-related genes were more highly expressed in the SRI strain than in the SU strain. CONCLUSION The findings indicated that the infection with SMLS enhanced the Sitobion miscanthi fitness and feeding behavior. The beneficial effect of the SMLS on hosts could explain why it frequently infects the field populations in the grain aphid Sitobion miscanthi Takahashi in China. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Henan Engineering Research Center of Green Pesticide Creation and Intelligent Pesticide Residue Sensor Detection, School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Yulin Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xujun Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Chao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Qiuchi Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Saige Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chen Lan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruifeng Ding
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Dobosz R, Flis Ł, Bocianowski J, Malewski T. Effect of Vicia sativa L. on Motility, Mortality and Expression Levels of hsp Genes in J2 Stage of Meloidogyne hapla. J Nematol 2023; 55:20230009. [PMID: 37082220 PMCID: PMC10111211 DOI: 10.2478/jofnem-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 04/22/2023] Open
Abstract
Assuming that the seeds of Vicia sativa L. have a stressful effect on J2 stage Meloidogyne hapla, we undertook research on the effect of these seeds on the motility and mortality of J2 and determined the expression levels of selected hsp genes in J2. The assessment of the effect of V. sativa seeds on the motility of M. hapla specimens consisted of observing the movement of J2 immersed in a seed diffusate or in a tomato root filtrate at temperatures of 10, 17, and 21°C. In J2 treated with V. sativa (cv. Ina) seed diffusates, the expression level of hsp genes was determined by qPCR. J2 exposed to V. sativa diffusates were found to lose their motility, while their mortality did not exceed 30%. J2 in the seed diffusate were characterized by an increase in the expression levels of the Mh-hsp90, Mh-hsp1, and Mh-hsp43 genes. It is suggested that the hsp90 gene may be a potential bioindicator of the environmental impact on Meloidogyne nematodes. The impaired ability to move in J2 of M. hapla is attributable to the occurrence of V. sativa seeds in their habitat. These studies may contribute to developing methods of reducing crop damage caused by M. hapla.
Collapse
Affiliation(s)
- Renata Dobosz
- Institute of Plant Protection-National Research Institute, Department of Entomology and Animal Pests, Węgorka 20, 60-318Poznan, Poland
| | - Łukasz Flis
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679Warsaw, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637Poznan, Poland
| | - Tadeusz Malewski
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679Warsaw, Poland
| |
Collapse
|
12
|
Shen WC, Yuh CH, Lu YT, Lin YH, Ching TT, Wang CY, Wang HD. Reduced Ribose-5-Phosphate Isomerase A-1 Expression in Specific Neurons and Time Points Promotes Longevity in Caenorhabditis elegans. Antioxidants (Basel) 2023; 12:antiox12010124. [PMID: 36670987 PMCID: PMC9854458 DOI: 10.3390/antiox12010124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Deregulation of redox homeostasis is often associated with an accelerated aging process. Ribose-5-phosphate isomerase A (RPIA) mediates redox homeostasis in the pentose phosphate pathway (PPP). Our previous study demonstrated that Rpi knockdown boosts the healthspan in Drosophila. However, whether the knockdown of rpia-1, the Rpi ortholog in Caenorhabditis elegans, can improve the healthspan in C. elegans remains unknown. Here, we report that spatially and temporally limited knockdown of rpia-1 prolongs lifespan and improves the healthspan in C. elegans, reflecting the evolutionarily conserved phenotypes observed in Drosophila. Ubiquitous and pan-neuronal knockdown of rpia-1 both enhance tolerance to oxidative stress, reduce polyglutamine aggregation, and improve the deteriorated body bending rate caused by polyglutamine aggregation. Additionally, rpia-1 knockdown temporally in the post-developmental stage and spatially in the neuron display enhanced lifespan. Specifically, rpia-1 knockdown in glutamatergic or cholinergic neurons is sufficient to increase lifespan. Importantly, the lifespan extension by rpia-1 knockdown requires the activation of autophagy and AMPK pathways and reduced TOR signaling. Moreover, the RNA-seq data support our experimental findings and reveal potential novel downstream targets. Together, our data disclose the specific spatial and temporal conditions and the molecular mechanisms for rpia-1 knockdown-mediated longevity in C. elegans. These findings may help the understanding and improvement of longevity in humans.
Collapse
Affiliation(s)
- Wen-Chi Shen
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Mioali Country 35053, Taiwan
| | - Yu-Ting Lu
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
| | - Yen-Hung Lin
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
| | - Tsui-Ting Ching
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chao-Yung Wang
- Department of Cardiology, Chang Gung Memory Hospital, Linkou Main Branch, Chang Gung University, Taoyuan 33305, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan
- Department of Life Science, National Tsing Hua University, HsinChu 300044, Taiwan
- Correspondence: ; Tel.: +886-3-5742470
| |
Collapse
|
13
|
Lin ZH, Chang SY, Shen WC, Lin YH, Shen CL, Liao SB, Liu YC, Chen CS, Ching TT, Wang HD. Isocitrate Dehydrogenase Alpha-1 Modulates Lifespan and Oxidative Stress Tolerance in Caenorhabditis elegans. Int J Mol Sci 2022; 24:ijms24010612. [PMID: 36614054 PMCID: PMC9820670 DOI: 10.3390/ijms24010612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Altered metabolism is a hallmark of aging. The tricarboxylic acid cycle (TCA cycle) is an essential metabolic pathway and plays an important role in lifespan regulation. Supplementation of α-ketoglutarate, a metabolite converted by isocitrate dehydrogenase alpha-1 (idha-1) in the TCA cycle, increases lifespan in C. elegans. However, whether idha-1 can regulate lifespan in C. elegans remains unknown. Here, we reported that the expression of idha-1 modulates lifespan and oxidative stress tolerance in C. elegans. Transgenic overexpression of idha-1 extends lifespan, increases the levels of NADPH/NADP+ ratio, and elevates the tolerance to oxidative stress. Conversely, RNAi knockdown of idha-1 exhibits the opposite effects. In addition, the longevity of eat-2 (ad1116) mutant via dietary restriction (DR) was reduced by idha-1 knockdown, indicating that idha-1 may play a role in DR-mediated longevity. Furthermore, idha-1 mediated lifespan may depend on the target of rapamycin (TOR) signaling. Moreover, the phosphorylation levels of S6 kinase (p-S6K) inversely correlate with idha-1 expression, supporting that the idha-1-mediated lifespan regulation may involve the TOR signaling pathway. Together, our data provide new insights into the understanding of idha-1 new function in lifespan regulation probably via DR and TOR signaling and in oxidative stress tolerance in C. elegans.
Collapse
Affiliation(s)
- Zhi-Han Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 115201, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115201, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106319, Taiwan
| | - Shun-Ya Chang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wen-Chi Shen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yen-Hung Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chiu-Lun Shen
- Department of Life Science, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Sin-Bo Liao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Chun Liu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsui-Ting Ching
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 300044, Taiwan
- Correspondence: ; Tel.: +88-635742470
| |
Collapse
|
14
|
Sebastian B, Fey RM, Morar P, Lasher B, Giebultowicz JM, Hendrix DA. Discovery and Visualization of Age-Dependent Patterns in the Diurnal Transcriptome of Drosophila. J Circadian Rhythms 2022; 20:1. [PMID: 36561348 PMCID: PMC9733130 DOI: 10.5334/jcr.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/06/2022] [Indexed: 12/13/2022] Open
Abstract
Many critical life processes are regulated by input from 24-hour external light/dark cycles, such as metabolism, cellular homeostasis, and detoxification. The circadian clock, which helps coordinate the response to these diurnal light/dark cycles, remains rhythmic across lifespan; however, rhythmic transcript expression is altered during normal aging. To better understand how aging impacts diurnal expression, we present an improved Fourier-based method for detecting and visualizing rhythmicity that is based on the relative power of the 24-hour period compared to other periods (RP24). We apply RP24 to transcript-level expression profiles from the heads of young (5-day) and old (55-day) Drosophila melanogaster, and reveal novel age-dependent rhythmicity changes that may be masked at the gene level. We show that core clock transcripts phase advance during aging, while most rhythmic transcripts phase delay. Transcripts rhythmic only in young flies tend to peak before lights on, while transcripts only rhythmic in old peak after lights on. We show that several pathways, including glutathione metabolism, gain or lose coordinated rhythmic expression with age, providing insight into possible mechanisms of age-onset neurodegeneration. Remarkably, we find that many pathways show very robust coordinated rhythms across lifespan, highlighting their putative roles in promoting neural health. We investigate statistically enriched transcription factor binding site motifs that may be involved in these rhythmicity changes.
Collapse
Affiliation(s)
| | - Rosalyn M. Fey
- Department of Biochemistry and Biophysics, Oregon State University, US
| | - Patrick Morar
- Department of Biochemistry and Biophysics, Oregon State University, US
| | - Brittany Lasher
- Department of Biochemistry and Biophysics, Oregon State University, US
| | | | - David A. Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, US
- School of Electrical Engineering and Computer Science, Oregon State University, US
| |
Collapse
|
15
|
Ma J, Wang J, Wang Q, Shang L, Zhao Y, Zhang G, Ma Q, Hong S, Gu C. Physiological and transcriptional responses to heat stress and functional analyses of PsHSPs in tree peony ( Paeonia suffruticosa). FRONTIERS IN PLANT SCIENCE 2022; 13:926900. [PMID: 36035676 PMCID: PMC9403832 DOI: 10.3389/fpls.2022.926900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Tree peony (Paeonia suffruticosa) is a traditional Chinese flower that is not resistant to high temperatures, and the frequent sunburn during summer limits its normal growth. The lack of understanding of the molecular mechanisms in tree peony has greatly restricted the improvement of novel heat-tolerant varieties. Therefore, we treated tree peony cultivar "Yuhong" (P. suffruticosa "Yuhong") at normal (25°C) and high temperatures (40°C) and sequenced the transcriptomes, to investigate the molecular responsive mechanisms to heat stress. By comparing the transcriptomes, a total of 7,673 differentially expressed genes (DEGs) were detected comprising 4,220 upregulated and 3,453 downregulated genes. Functional annotation showed that the DEGs were mainly related to the metabolic process, cells and binding, carbon metabolism, and endoplasmic reticulum protein processing. qRT-PCR revealed that three sHSP genes (PsHSP17.8, PsHSP21, and PsHSP27.4) were upregulated in the response of tree peony to heat stress. Tissue quantification of the transgenic lines (Arabidopsis thaliana) showed that all three genes were most highly expressed in the leaves. The survival rates of transgenic lines (PsHSP17.8, PsHSP21, and PsHSP27.4) restored to normal growth after high-temperature treatment were 43, 36, and 31%, respectively. In addition, the activity of superoxide dismutase, accumulation of free proline, and chlorophyll level was higher than those of the wild-type lines, while the malondialdehyde content and conductivity were lower, and the membrane lipid peroxidation reaction of the wild-type plant was more intense. Our research found several processes and pathways related to heat resistance in tree peony including metabolic process, single-organism process, phenylpropane biosynthesis pathway, and endoplasmic reticulum protein synthesis pathway. PsHSP17.8, PsHSP21, and PsHSP27.4 improved heat tolerance by increasing SOD activity and proline content. These findings can provide genetic resources for understanding the heat-resistance response of tree peony and benefit future germplasm innovation.
Collapse
Affiliation(s)
- Jin Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
| | - Qun Wang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Linxue Shang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yu Zhao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Guozhe Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Qingqing Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Sidan Hong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Cuihua Gu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
16
|
Känel P, Noll GA, Schroedter K, Naffin E, Kronenberg J, Busswinkel F, Twyman RM, Klämbt C, Prüfer D. The tobacco phosphatidylethanolamine-binding protein NtFT4 increases the lifespan of Drosophila melanogaster by interacting with the proteostasis network. Aging (Albany NY) 2022; 14:2989-3029. [PMID: 35396341 PMCID: PMC9037272 DOI: 10.18632/aging.204005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
Proteostasis reflects the well-balanced synthesis, trafficking and degradation of cellular proteins. This is a fundamental aspect of the dynamic cellular proteome, which integrates multiple signaling pathways, but it becomes increasingly error-prone during aging. Phosphatidylethanolamine-binding proteins (PEBPs) are highly conserved regulators of signaling networks and could therefore affect aging-related processes. To test this hypothesis, we expressed PEPBs in a heterologous context to determine their ectopic activity. We found that heterologous expression of the tobacco (Nicotiana tabacum) PEBP NtFT4 in Drosophila melanogaster significantly increased the lifespan of adult flies and reduced age-related locomotor decline. Similarly, overexpression of the Drosophila ortholog CG7054 increased longevity, whereas its suppression by RNA interference had the opposite effect. In tobacco, NtFT4 acts as a floral regulator by integrating environmental and intrinsic stimuli to promote the transition to reproductive growth. In Drosophila, NtFT4 engaged distinct targets related to proteostasis, such as HSP26. In older flies, it also prolonged Hsp26 gene expression, which promotes longevity by maintaining protein integrity. In NtFT4-transgenic flies, we identified deregulated genes encoding proteases that may contribute to proteome stability at equilibrium. Our results demonstrate that the expression of NtFT4 influences multiple aspects of the proteome maintenance system via both physical interactions and transcriptional regulation, potentially explaining the aging-related phenotypes we observed.
Collapse
Affiliation(s)
- Philip Känel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Gundula A. Noll
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Katrin Schroedter
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Elke Naffin
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Julia Kronenberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Franziska Busswinkel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | | | - Christian Klämbt
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
17
|
Hao M, Zhang Z, Guo Y, Zhou H, Gu Q, Xu J. Rubidium chloride increases lifespan through an AMPK/FOXO-dependent pathway in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2021; 77:1517-1524. [PMID: 34724562 DOI: 10.1093/gerona/glab329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is involved in life span maintenance, stress responses, and germ cell cycle arrest upon dauer entry. AMPK is currently considered a promising target for preventing age-related diseases. Rubidium is one of the trace elements in human body. As early as the 1970s, RbCl has been was reported to have neuroprotective effects. In this work, we report the anti-aging effect of RbCl in Caenorhabditis elegans. Specifically, we reveal that (1) RbCl does increase the lifespan and enhance stress resistance in C. elegans without disturbing their fecundity. (2) RbCl induces superoxide dismutase (SOD) expression, which is essential for its anti-aging and anti-stress effect. (3) AAK-2 and DAF-16 are essential to the anti-aging efficacy of RbCl, and RbCl can promote DAF-16 translocating into the nucleus, suggesting that RbCl delays aging through regulating AMPK/FOXO pathway. RbCl can be a promising agent against aging related diseases.
Collapse
Affiliation(s)
- Mengjiao Hao
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhikang Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yijun Guo
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Ngian Z, Lin W, Ong C. NELF-A controls Drosophila healthspan by regulating heat-shock protein-mediated cellular protection and heterochromatin maintenance. Aging Cell 2021; 20:e13348. [PMID: 33788376 PMCID: PMC8135010 DOI: 10.1111/acel.13348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022] Open
Abstract
NELF‐mediated pausing of RNA polymerase II (RNAPII) constitutes a crucial step in transcription regulation. However, it remains unclear how control release of RNAPII pausing can affect the epigenome and regulate important aspects of animal physiology like aging. We found that NELF‐A dosage regulates Drosophila healthspan: Halving NELF‐A level in the heterozygous mutants or via neuronal‐specific RNAi depletion improves their locomotor activity, stress resistance, and lifespan significantly. Conversely, NELF‐A overexpression shortens fly lifespan drastically. Mechanistically, lowering NELF‐A level facilitates the release of paused RNAPII for productive transcription of the heat‐shock protein (Hsp) genes. The elevated HSPs expression in turn attenuates the accumulation of insoluble protein aggregates, reactive oxidative species, DNA damage and systemic inflammation in the brains of aging NELF‐A depleted flies as compared to their control siblings. This pro‐longevity effect is unique to NELF‐A due to its higher expression level and more efficient pausing of RNAPII than other NELF subunits. Importantly, enhanced resistance to oxidative stress in NELF‐A heterozygous mutants is highly conserved such that knocking down its level in human SH‐SY5Y cells attenuates hydrogen peroxide‐induced DNA damage and apoptosis. Depleting NELF‐A reconfigures the epigenome through the maintenance of H3K9me2‐enriched heterochromatin during aging, leading to the repression of specific retrotransposons like Gypsy‐1 in the brains of NELF‐A mutants. Taken together, we showed that the dosage of neuronal NELF‐A affects multiple aspects of aging in Drosophila by regulating transcription of Hsp genes in the brains, suggesting that targeting transcription elongation might be a viable therapeutic strategy against age‐onset diseases like neurodegeneration.
Collapse
Affiliation(s)
- Zhen‐Kai Ngian
- Temasek Life Sciences Laboratory National University of Singapore Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore Singapore
| | - Wei‐Qi Lin
- Temasek Life Sciences Laboratory National University of Singapore Singapore Singapore
| | - Chin‐Tong Ong
- Temasek Life Sciences Laboratory National University of Singapore Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore Singapore
| |
Collapse
|
19
|
Changes in Presynaptic Gene Expression during Homeostatic Compensation at a Central Synapse. J Neurosci 2021; 41:3054-3067. [PMID: 33608385 PMCID: PMC8026347 DOI: 10.1523/jneurosci.2979-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/02/2022] Open
Abstract
Homeostatic matching of pre- and postsynaptic function has been observed in many species and neural structures, but whether transcriptional changes contribute to this form of trans-synaptic coordination remains unknown. To identify genes whose expression is altered in presynaptic neurons as a result of perturbing postsynaptic excitability, we applied a transcriptomics-friendly, temperature-inducible Kir2.1-based activity clamp at the first synaptic relay of the Drosophila olfactory system, a central synapse known to exhibit trans-synaptic homeostatic matching. Twelve hours after adult-onset suppression of activity in postsynaptic antennal lobe projection neurons of males and females, we detected changes in the expression of many genes in the third antennal segment, which houses the somata of presynaptic olfactory receptor neurons. These changes affected genes with roles in synaptic vesicle release and synaptic remodeling, including several implicated in homeostatic plasticity at the neuromuscular junction. At 48 h and beyond, the transcriptional landscape tilted toward protein synthesis, folding, and degradation; energy metabolism; and cellular stress defenses, indicating that the system had been pushed to its homeostatic limits. Our analysis suggests that similar homeostatic machinery operates at peripheral and central synapses and identifies many of its components. The presynaptic transcriptional response to genetically targeted postsynaptic perturbations could be exploited for the construction of novel connectivity tracing tools. SIGNIFICANCE STATEMENT Homeostatic feedback mechanisms adjust intrinsic and synaptic properties of neurons to keep their average activity levels constant. We show that, at a central synapse in the fruit fly brain, these mechanisms include changes in presynaptic gene expression that are instructed by an abrupt loss of postsynaptic excitability. The trans-synaptically regulated genes have roles in synaptic vesicle release and synapse remodeling; protein synthesis, folding, and degradation; and energy metabolism. Our study establishes a role for transcriptional changes in homeostatic synaptic plasticity, points to mechanistic commonalities between peripheral and central synapses, and potentially opens new opportunities for the development of connectivity-based gene expression systems.
Collapse
|
20
|
Pizzo L, Lasser M, Yusuff T, Jensen M, Ingraham P, Huber E, Singh MD, Monahan C, Iyer J, Desai I, Karthikeyan S, Gould DJ, Yennawar S, Weiner AT, Pounraja VK, Krishnan A, Rolls MM, Lowery LA, Girirajan S. Functional assessment of the "two-hit" model for neurodevelopmental defects in Drosophila and X. laevis. PLoS Genet 2021; 17:e1009112. [PMID: 33819264 PMCID: PMC8049494 DOI: 10.1371/journal.pgen.1009112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/15/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
We previously identified a deletion on chromosome 16p12.1 that is mostly inherited and associated with multiple neurodevelopmental outcomes, where severely affected probands carried an excess of rare pathogenic variants compared to mildly affected carrier parents. We hypothesized that the 16p12.1 deletion sensitizes the genome for disease, while "second-hits" in the genetic background modulate the phenotypic trajectory. To test this model, we examined how neurodevelopmental defects conferred by knockdown of individual 16p12.1 homologs are modulated by simultaneous knockdown of homologs of "second-hit" genes in Drosophila melanogaster and Xenopus laevis. We observed that knockdown of 16p12.1 homologs affect multiple phenotypic domains, leading to delayed developmental timing, seizure susceptibility, brain alterations, abnormal dendrite and axonal morphology, and cellular proliferation defects. Compared to genes within the 16p11.2 deletion, which has higher de novo occurrence, 16p12.1 homologs were less likely to interact with each other in Drosophila models or a human brain-specific interaction network, suggesting that interactions with "second-hit" genes may confer higher impact towards neurodevelopmental phenotypes. Assessment of 212 pairwise interactions in Drosophila between 16p12.1 homologs and 76 homologs of patient-specific "second-hit" genes (such as ARID1B and CACNA1A), genes within neurodevelopmental pathways (such as PTEN and UBE3A), and transcriptomic targets (such as DSCAM and TRRAP) identified genetic interactions in 63% of the tested pairs. In 11 out of 15 families, patient-specific "second-hits" enhanced or suppressed the phenotypic effects of one or many 16p12.1 homologs in 32/96 pairwise combinations tested. In fact, homologs of SETD5 synergistically interacted with homologs of MOSMO in both Drosophila and X. laevis, leading to modified cellular and brain phenotypes, as well as axon outgrowth defects that were not observed with knockdown of either individual homolog. Our results suggest that several 16p12.1 genes sensitize the genome towards neurodevelopmental defects, and complex interactions with "second-hit" genes determine the ultimate phenotypic manifestation.
Collapse
Affiliation(s)
- Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Micaela Lasser
- Department of Biology, Boston College, Chestnut Hill, MA, United States of America
| | - Tanzeen Yusuff
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Matthew Jensen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Phoebe Ingraham
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Mayanglambam Dhruba Singh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Connor Monahan
- Department of Biology, Boston College, Chestnut Hill, MA, United States of America
| | - Janani Iyer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Inshya Desai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Siddharth Karthikeyan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Dagny J. Gould
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Sneha Yennawar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Alexis T. Weiner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Vijay Kumar Pounraja
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Arjun Krishnan
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States of America
| | - Melissa M. Rolls
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Laura Anne Lowery
- Department of Medicine, Boston University Medical Center, Boston, MA, United States of America
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
21
|
Proshkina E, Yushkova E, Koval L, Zemskaya N, Shchegoleva E, Solovev I, Yakovleva D, Pakshina N, Ulyasheva N, Shaposhnikov M, Moskalev A. Tissue-Specific Knockdown of Genes of the Argonaute Family Modulates Lifespan and Radioresistance in Drosophila Melanogaster. Int J Mol Sci 2021; 22:2396. [PMID: 33673647 PMCID: PMC7957547 DOI: 10.3390/ijms22052396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Small RNAs are essential to coordinate many cellular processes, including the regulation of gene expression patterns, the prevention of genomic instability, and the suppression of the mutagenic transposon activity. These processes determine the aging, longevity, and sensitivity of cells and an organism to stress factors (particularly, ionizing radiation). The biogenesis and activity of small RNAs are provided by proteins of the Argonaute family. These proteins participate in the processing of small RNA precursors and the formation of an RNA-induced silencing complex. However, the role of Argonaute proteins in regulating lifespan and radioresistance remains poorly explored. We studied the effect of knockdown of Argonaute genes (AGO1, AGO2, AGO3, piwi) in various tissues on the Drosophila melanogaster lifespan and survival after the γ-irradiation at a dose of 700 Gy. In most cases, these parameters are reduced or did not change significantly in flies with tissue-specific RNA interference. Surprisingly, piwi knockdown in both the fat body and the nervous system causes a lifespan increase. But changes in radioresistance depend on the tissue in which the gene was knocked out. In addition, analysis of changes in retrotransposon levels and expression of stress response genes allow us to determine associated molecular mechanisms.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Elena Yushkova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Nadezhda Zemskaya
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Evgeniya Shchegoleva
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Ilya Solovev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
- Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Daria Yakovleva
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
- Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Natalya Pakshina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Natalia Ulyasheva
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
22
|
Budnar P, Singh NP, Rao CM. HSPB5 (αB-crystallin) confers protection against paraquat-induced oxidative stress at the organismal level in a tissue-dependent manner. Cell Stress Chaperones 2021; 26:229-239. [PMID: 33078332 PMCID: PMC7736594 DOI: 10.1007/s12192-020-01171-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/10/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is one of the major and continuous stresses, an organism encounters during its lifetime. Tissues such as the brain, liver and muscles are more prone to damage by oxidative stress due to their metabolic activity, differences in physiological and adaptive processes. One of the defence mechanisms against continuous oxidative stress is a set of small heat shock proteins. αB-Crystallin/HSPB5, a small heat shock protein, gets upregulated under stress and acts as a molecular chaperone. In addition to acting as a molecular chaperone, HSPB5 is shown to have a role in other cytoprotective functions such as inhibition of apoptosis, prevention of oxidative stress and stabilisation of cytoskeletal system. Such protection in vivo, at the organism level, particularly in a tissue-dependent manner, has not been investigated. We have expressed HSPB5 in fat body (liver), neurons and specifically in dopaminergic and motor neurons in Drosophila and investigated its protective effect against paraquat-induced oxidative stress. We observed that expression of HSPB5 in neurons and fat body confers protection against paraquat-induced oxidative stress. Expression in dopaminergic neurons showed a higher protective effect. Our results clearly establish the protective ability of HSPB5 in vivo; the extent of protection, however, varies depending on the tissue in which it is expressed. Interestingly, neuronal expression of HSPB5 resulted in an improvement in negative geotropic behaviour, whereas specific expression in muscle tissue did not show such a beneficial effect.
Collapse
Affiliation(s)
- Prashanth Budnar
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Narendra Pratap Singh
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Ch Mohan Rao
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
23
|
Fu R, Huang Z, Li H, Zhu Y, Zhang H. A Hemidesmosome-to-Cytoplasm Translocation of Small Heat Shock Proteins Provides Immediate Protection against Heat Stress. Cell Rep 2020; 33:108410. [DOI: 10.1016/j.celrep.2020.108410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/28/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
|
24
|
Li HB, Dai CG, Hu Y. Characterization and expression analysis of genes encoding three small heat shock proteins in the oriental armyworm, Mythimna separata (Walker). PLoS One 2020; 15:e0235912. [PMID: 32776931 PMCID: PMC7417081 DOI: 10.1371/journal.pone.0235912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/24/2020] [Indexed: 11/18/2022] Open
Abstract
Small heat shock proteins (sHsps) function in the response of insects to abiotic
stress; however, their role in response to biotic stress has been
under-investigated. Mythimna separata, the oriental armyworm,
is polyphenetic and exhibits gregarious and solitary phases in response to high
and low population density, respectively. In this study, three genes were
identified encoding sHsps, namely
MsHsp19.7,
MsHsp19.8 and
MsHsp21.4, and expression levels in
solitary and gregarious M. separata were
compared. The deduced protein sequences of the three MsHsps had
molecular weights of 19.7, 19.8 and 21.4 kDa, respectively, and contained a
conserved α-crystalline domain. Real-time PCR analyses revealed that the three
sHsps were transcribed in all developmental stages and were
dramatically up-regulated at the 6th larval stage in gregarious
individuals. Expression of the three MsHsps was variable in
different tissues of 6th instar larvae, but exhibited consistent up-
and down-regulation in the hindgut and Malpighian tubules of gregarious
individuals, respectively. In addition,
MsHsp19.7 and
MsHsp19.8 were significantly induced when
solitary forms were subjected to crowding for 36 h, but all three
MsHsps were down-regulated when gregarious forms were
isolated. Our findings suggest that population density functions as a stress
factor and impacts MsHsps expression in M.
separata.
Collapse
Affiliation(s)
- Hong-Bo Li
- Institute of Plant Protection, Guizhou Academy of
Agricultural Sciences, Guiyang, China
- * E-mail:
| | - Chang-Geng Dai
- Institute of Plant Protection, Guizhou Academy of
Agricultural Sciences, Guiyang, China
| | - Yang Hu
- Institute of Plant Protection, Guizhou Academy of
Agricultural Sciences, Guiyang, China
| |
Collapse
|
25
|
Zhang ZD, Milman S, Lin JR, Wierbowski S, Yu H, Barzilai N, Gorbunova V, Ladiges WC, Niedernhofer LJ, Suh Y, Robbins PD, Vijg J. Genetics of extreme human longevity to guide drug discovery for healthy ageing. Nat Metab 2020; 2:663-672. [PMID: 32719537 PMCID: PMC7912776 DOI: 10.1038/s42255-020-0247-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Ageing is the greatest risk factor for most common chronic human diseases, and it therefore is a logical target for developing interventions to prevent, mitigate or reverse multiple age-related morbidities. Over the past two decades, genetic and pharmacologic interventions targeting conserved pathways of growth and metabolism have consistently led to substantial extension of the lifespan and healthspan in model organisms as diverse as nematodes, flies and mice. Recent genetic analysis of long-lived individuals is revealing common and rare variants enriched in these same conserved pathways that significantly correlate with longevity. In this Perspective, we summarize recent insights into the genetics of extreme human longevity and propose the use of this rare phenotype to identify genetic variants as molecular targets for gaining insight into the physiology of healthy ageing and the development of new therapies to extend the human healthspan.
Collapse
Affiliation(s)
- Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA.
| | - Sofiya Milman
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Shayne Wierbowski
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, New York, NY, USA
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, New York, NY, USA
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Warren C Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Departments of Obstetrics and Gynecology, Genetics and Development, Columbia University, New York, NY, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Center for Single-Cell Omics in Aging and Disease, School of Public Health, Shanghai, Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Santana E, de los Reyes T, Casas-Tintó S. Small heat shock proteins determine synapse number and neuronal activity during development. PLoS One 2020; 15:e0233231. [PMID: 32437379 PMCID: PMC7241713 DOI: 10.1371/journal.pone.0233231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/30/2020] [Indexed: 01/31/2023] Open
Abstract
Environmental changes cause stress, Reactive Oxygen Species and unfolded protein accumulation which hamper synaptic activity and trigger cell death. Heat shock proteins (HSPs) assist protein refolding to maintain proteostasis and cellular integrity. Mechanisms regulating the activity of HSPs include transcription factors and posttranslational modifications that ensure a rapid response. HSPs preserve synaptic function in the nervous system upon environmental insults or pathological factors and contribute to the coupling between environmental cues and neuron control of development. We have performed a biased screening in Drosophila melanogaster searching for synaptogenic modulators among HSPs during development. We explore the role of two small-HSPs (sHSPs), sHSP23 and sHSP26 in synaptogenesis and neuronal activity. Both sHSPs immunoprecipitate together and the equilibrium between both chaperones is required for neuronal development and activity. The molecular mechanism controlling HSP23 and HSP26 accumulation in neurons relies on a novel gene (CG1561), which we name Pinkman (pkm). We propose that sHSPs and Pkm are targets to modulate the impact of stress in neurons and to prevent synapse loss.
Collapse
|
27
|
Baral SS, Lieux ME, DiMario PJ. Nucleolar stress in Drosophila neuroblasts, a model for human ribosomopathies. Biol Open 2020; 9:bio046565. [PMID: 32184230 PMCID: PMC7197718 DOI: 10.1242/bio.046565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
Different stem cells or progenitor cells display variable threshold requirements for functional ribosomes. This is particularly true for several human ribosomopathies in which select embryonic neural crest cells or adult bone marrow stem cells, but not others, show lethality due to failures in ribosome biogenesis or function (now known as nucleolar stress). To determine if various Drosophila neuroblasts display differential sensitivities to nucleolar stress, we used CRISPR-Cas9 to disrupt the Nopp140 gene that encodes two splice variant ribosome biogenesis factors (RBFs). Disruption of Nopp140 induced nucleolar stress that arrested larvae in the second instar stage. While the majority of larval neuroblasts arrested development, the mushroom body (MB) neuroblasts continued to proliferate as shown by their maintenance of deadpan, a neuroblast-specific transcription factor, and by their continued EdU incorporation. MB neuroblasts in wild-type larvae appeared to contain more fibrillarin and Nopp140 in their nucleoli as compared to other neuroblasts, indicating that MB neuroblasts stockpile RBFs as they proliferate in late embryogenesis while other neuroblasts normally enter quiescence. A greater abundance of Nopp140 encoded by maternal transcripts in Nopp140-/- MB neuroblasts of 1----2-day-old larvae likely rendered these cells more resilient to nucleolar stress.
Collapse
Affiliation(s)
- Sonu Shrestha Baral
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Molly E Lieux
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Patrick J DiMario
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
28
|
Camandona VDL, Rios-Anjos RM, Alegria TGP, Pereira F, Bicev RN, da Cunha FM, Digiampietri LA, de Barros MH, Netto LES, Ferreira-Junior JR. Expression of human HSP27 in yeast extends replicative lifespan and uncovers a hormetic response. Biogerontology 2020; 21:559-575. [PMID: 32189112 DOI: 10.1007/s10522-020-09869-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/13/2020] [Indexed: 01/20/2023]
Abstract
Human HSP27 is a small heat shock protein that modulates the ability of cells to respond to heat shock and oxidative stress, and also functions as a chaperone independent of ATP, participating in the proteasomal degradation of proteins. The expression of HSP27 is associated with survival in mammalian cells. In cancer cells, it confers resistance to chemotherapy; in neurons, HSP27 has a positive effect on neuronal viability in models of Alzheimer's and Parkinson's diseases. To better understand the mechanism by which HSP27 expression contributes to cell survival, we expressed human HSP27 in the budding yeast Saccharomyces cerevisiae under control of different mutant TEF promoters, that conferred nine levels of graded basal expression, and showed that replicative lifespan and proteasomal activity increase as well as the resistance to oxidative and thermal stresses. The profile of these phenotypes display a dose-response effect characteristic of hormesis, an adaptive phenomenon that is observed when cells are exposed to increasing amounts of stress or toxic substances. The hormetic response correlates with changes in expression levels of HSP27 and also with its oligomeric states when correlated to survival assays. Our results indicate that fine tuning of HSP27 concentration could be used as a strategy for cancer therapy, and also for improving neuronal survival in neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Thiago Geronimo Pires Alegria
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Fábio Pereira
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Mário Henrique de Barros
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
29
|
Sikkink KL, Hostager R, Kobiela ME, Fremling N, Johnston K, Zambre A, Snell-Rood EC. Tolerance of Novel Toxins through Generalized Mechanisms: Simulating Gradual Host Shifts of Butterflies. Am Nat 2020; 195:485-503. [PMID: 32097036 DOI: 10.1086/707195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Organisms encounter a wide range of toxic compounds in their environments, from chemicals that serve anticonsumption or anticompetition functions to pollutants and pesticides. Although we understand many detoxification mechanisms that allow organisms to consume toxins typical of their diet, we know little about why organisms vary in their ability to tolerate entirely novel toxins. We tested whether variation in generalized stress responses, such as antioxidant pathways, may underlie variation in reactions to novel toxins and, if so, their associated costs. We used an artificial diet to present cabbage white butterfly caterpillars (Pieris rapae) with plant material containing toxins not experienced in their evolutionary history. Families that maintained high performance (e.g., high survival, fast development time, large body size) on diets containing one novel toxic plant also performed well when exposed to two other novel toxic plants, consistent with a generalized response. Variation in constitutive (but not induced) expression of genes involved in oxidative stress responses was positively related to performance on the novel diets. While we did not detect reproductive trade-offs of this generalized response, there was a tendency to have less melanin investment in the wings, consistent with the role of melanin in oxidative stress responses. Taken together, our results support the hypothesis that variation in generalized stress responses, such as genes involved in oxidative stress responses, may explain the variation in tolerance to entirely novel toxins and may facilitate colonization of novel hosts and environments.
Collapse
|
30
|
Abstract
Biological ageing and its mechanistic underpinnings are of immense biomedical and ecological significance. Ageing involves the decline of diverse biological functions and places a limit on a species’ maximum lifespan. Ageing is associated with epigenetic changes involving DNA methylation. Furthermore, an analysis of mammals showed that the density of CpG sites in gene promoters, which are targets for DNA methylation, is correlated with lifespan. Using 252 whole genomes and databases of animal age and promotor sequences, we show a pattern across vertebrates. We also derive a predictive lifespan clock based on CpG density in a selected set of promoters. The lifespan clock accurately predicts maximum lifespan in vertebrates (R2 = 0.76) from the density of CpG sites within only 42 selected promoters. Our lifespan clock provides a wholly new method for accurately estimating lifespan using genome sequences alone and enables estimation of this challenging parameter for both poorly understood and extinct species.
Collapse
|
31
|
Expression of Heat Shock Protein 70 Is Insufficient To Extend Drosophila melanogaster Longevity. G3-GENES GENOMES GENETICS 2019; 9:4197-4207. [PMID: 31624139 PMCID: PMC6893204 DOI: 10.1534/g3.119.400782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been known for over 20 years that Drosophila melanogaster flies with twelve additional copies of the hsp70 gene encoding the 70 kD heat shock protein lives longer after a non-lethal heat treatment. Since the heat treatment also induces the expression of additional heat shock proteins, the biological effect can be due either to HSP70 acting alone or in combination. This study used the UAS/GAL4 system to determine whether hsp70 is sufficient to affect the longevity and the resistance to thermal, oxidative or desiccation stresses of the whole organism. We observed that HSP70 expression in the nervous system or muscles has no effect on longevity or stress resistance but ubiquitous expression reduces the life span of males. We also observed that the down-regulation of hsp70 using RNAi did not affect longevity.
Collapse
|
32
|
Li HB, Dai CG, He YF, Hu Y. Characterization and Expression of Genes Encoding Superoxide Dismutase in the Oriental Armyworm, Mythimna separata (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2381-2388. [PMID: 31219570 DOI: 10.1093/jee/toz163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Superoxide dismutase (SOD) is an antioxidant metalloenzyme that catalyzes the dismutation of the superoxide anion O2- to O2 and H2O2. Many studies have focused on the role of SOD in response to abiotic stress, but its role during biotic stress, such as changes in organismal population density, has rarely been investigated. The oriental armyworm, Mythimna separata, is an economically important pest that exhibits phenotypic changes in response to population density. Solitary and gregarious phases occur at low and high population density, respectively. To examine the role of SODs in response to population density stress, we cloned two genes encoding SOD, MsCuZnSOD and MsMnSOD, and compared their expression in solitary and gregarious phases of M. separata. The MsCuZnSOD and MsMnSOD ORFs were 480 and 651 bp and encoded predicted protein products of 159 and 216 amino acids, respectively. The two SODs contained motifs that are typical of orthologous proteins. Real-time PCR indicated that the two SOD genes were expressed throughout developmental stages and were significantly upregulated in more mature stages of gregarious M. separata. Expression of the two SOD genes in various tissues of sixth-instar larvae was higher in gregarious versus solitary insects. Furthermore, expression of the SOD genes was significantly upregulated in response to crowding in solitary individuals, but suppressed in gregarious insects subjected to isolation. Collectively, these results suggest that population density may be key factor in the induction of SOD genes in M. separata.
Collapse
Affiliation(s)
- Hong-Bo Li
- Department of Entomology, Institute of Plant Protection, Guizhou Academy of Agricultural Science, Guiyang, Guizhou, China
| | - Chang-Geng Dai
- Department of Entomology, Institute of Plant Protection, Guizhou Academy of Agricultural Science, Guiyang, Guizhou, China
| | - Yong-Fu He
- Department of Entomology, Institute of Plant Protection, Guizhou Academy of Agricultural Science, Guiyang, Guizhou, China
| | - Yang Hu
- Department of Entomology, Institute of Plant Protection, Guizhou Academy of Agricultural Science, Guiyang, Guizhou, China
| |
Collapse
|
33
|
Maier D, Nagel AC, Kelp A, Preiss A. Protein Kinase D Is Dispensable for Development and Survival of Drosophila melanogaster. G3 (BETHESDA, MD.) 2019; 9:2477-2487. [PMID: 31142547 PMCID: PMC6686927 DOI: 10.1534/g3.119.400307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/24/2019] [Indexed: 02/03/2023]
Abstract
Members of the Protein Kinase D (PKD) family are involved in numerous cellular processes in mammals, including cell survival after oxidative stress, polarized transport of Golgi vesicles, as well as cell migration and invasion. PKD proteins belong to the PKC/CAMK class of serine/threonine kinases, and transmit diacylglycerol-regulated signals. Whereas three PKD isoforms are known in mammals, Drosophila melanogaster contains a single PKD homolog. Previous analyses using overexpression and RNAi studies indicated likewise multi-facetted roles for Drosophila PKD, including the regulation of secretory transport and actin-cytoskeletal dynamics. Recently, involvement in growth regulation has been proposed based on the hypomorphic dPKDH allele. We have generated PKD null alleles that are homozygous viable without apparent phenotype. They largely match control flies regarding fertility, developmental timing and weight. Males, but not females, are slightly shorter lived and starvation sensitive. Furthermore, migration of pole cells in embryos and border cells in oocytes appears normal. PKD mutants tolerate heat, cold and osmotic stress like the control but are sensitive to oxidative stress, conforming to the described role for mammalian PKDs. A candidate screen to identify functionally redundant kinases uncovered genetic interactions of PKD with Pkcδ, sqa and Drak mutants, further supporting the role of PKD in oxidative stress response, and suggesting its involvement in starvation induced autophagy and regulation of cytoskeletal dynamics. Overall, PKD appears dispensable for fly development and survival presumably due to redundancy, but influences environmental responses.
Collapse
Affiliation(s)
- Dieter Maier
- Universität Hohenheim, Institut für Genetik (240A), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Anja C Nagel
- Universität Hohenheim, Institut für Genetik (240A), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Alexandra Kelp
- Universität Hohenheim, Institut für Genetik (240A), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Anette Preiss
- Universität Hohenheim, Institut für Genetik (240A), Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
34
|
The longevity-promoting factor, TCER-1, widely represses stress resistance and innate immunity. Nat Commun 2019; 10:3042. [PMID: 31316054 PMCID: PMC6637209 DOI: 10.1038/s41467-019-10759-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
Stress resistance and longevity are positively correlated but emerging evidence indicates that they are physiologically distinct. Identifying factors with distinctive roles in these processes is challenging because pro-longevity genes often enhance stress resistance. We demonstrate that TCER-1, the Caenorhabditis elegans homolog of human transcription elongation and splicing factor, TCERG1, has opposite effects on lifespan and stress resistance. We previously showed that tcer-1 promotes longevity in germline-less C. elegans and reproductive fitness in wild-type animals. Surprisingly, tcer-1 mutants exhibit exceptional resistance against multiple stressors, including infection by human opportunistic pathogens, whereas, TCER-1 overexpression confers immuno-susceptibility. TCER-1 inhibits immunity only during fertile stages of life. Elevating its levels ameliorates the fertility loss caused by infection, suggesting that TCER-1 represses immunity to augment fecundity. TCER-1 acts through repression of PMK-1 as well as PMK-1-independent factors critical for innate immunity. Our data establish key roles for TCER-1 in coordinating immunity, longevity and fertility, and reveal mechanisms that distinguish length of life from functional aspects of aging. Resistance to stress is often associated with increased longevity. Using the model organism C. elegans the authors here show that TCER-1 enhances lifespan while at the same time increasing sensitivity to a number of biotic and abiotic stressors.
Collapse
|
35
|
Hunt LC, Jiao J, Wang YD, Finkelstein D, Rao D, Curley M, Robles-Murguia M, Shirinifard A, Pagala VR, Peng J, Fan Y, Demontis F. Circadian gene variants and the skeletal muscle circadian clock contribute to the evolutionary divergence in longevity across Drosophila populations. Genome Res 2019; 29:1262-1276. [PMID: 31249065 PMCID: PMC6673717 DOI: 10.1101/gr.246884.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Organisms use endogenous clocks to adapt to the rhythmicity of the environment and to synchronize social activities. Although the circadian cycle is implicated in aging, it is unknown whether natural variation in its function contributes to differences in lifespan between populations and whether the circadian clock of specific tissues is key for longevity. We have sequenced the genomes of Drosophila melanogaster strains with exceptional longevity that were obtained via multiple rounds of selection from a parental strain. Comparison of genomic, transcriptomic, and proteomic data revealed that changes in gene expression due to intergenic polymorphisms are associated with longevity and preservation of skeletal muscle function with aging in these strains. Analysis of transcription factors differentially modulated in long-lived versus parental strains indicates a possible role of circadian clock core components. Specifically, there is higher period and timeless and lower cycle expression in the muscle of strains with delayed aging compared to the parental strain. These changes in the levels of circadian clock transcription factors lead to changes in the muscle circadian transcriptome, which includes genes involved in metabolism, proteolysis, and xenobiotic detoxification. Moreover, a skeletal muscle-specific increase in timeless expression extends lifespan and recapitulates some of the transcriptional and circadian changes that differentiate the long-lived from the parental strains. Altogether, these findings indicate that the muscle circadian clock is important for longevity and that circadian gene variants contribute to the evolutionary divergence in longevity across populations.
Collapse
Affiliation(s)
- Liam C Hunt
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Jianqin Jiao
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Deepti Rao
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Michelle Curley
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Maricela Robles-Murguia
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Vishwajeeth R Pagala
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.,Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Fabio Demontis
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
36
|
Erwin AA, Blumenstiel JP. Aging in the Drosophila ovary: contrasting changes in the expression of the piRNA machinery and mitochondria but no global release of transposable elements. BMC Genomics 2019; 20:305. [PMID: 31014230 PMCID: PMC6480902 DOI: 10.1186/s12864-019-5668-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/08/2019] [Indexed: 01/06/2023] Open
Abstract
Background Evolutionary theory indicates that the dynamics of aging in the soma and reproductive tissues may be distinct. This difference arises from the fact that only the germline lineage establishes future generations. In the soma, changes in the landscape of heterochromatin have been proposed to have an important role in aging. This is because redistribution of heterochromatin during aging has been linked to the derepression of transposable elements and an overall loss of somatic gene regulation. A role for changes in the chromatin landscape in the aging of reproductive tissues is less well established. Whether or not epigenetic factors, such as heterochromatin marks, are perturbed in aging reproductive tissues is of interest because, in special cases, epigenetic variation may be heritable. Using mRNA sequencing data from late-stage egg chambers in Drosophila melanogaster, we characterized the landscape of altered gene and transposable element expression in aged reproductive tissues. This allowed us to test the hypothesis that reproductive tissues may differ from somatic tissues in their response to aging. Results We show that age-related expression changes in late-stage egg chambers tend to occur in genes residing in heterochromatin, particularly on the largely heterochromatic 4th chromosome. However, these expression differences are seen as both decreases and increases during aging, inconsistent with a general loss of heterochromatic silencing. We also identify an increase in expression of the piRNA machinery, suggesting an age-related increased investment in the maintenance of genome stability. We further identify a strong age-related reduction in the expression of mitochondrial transcripts. However, we find no evidence for global TE derepression in reproductive tissues. Rather, the observed effects of aging on TEs are primarily strain and family specific. Conclusions These results identify unique responses in somatic versus reproductive tissue with regards to aging. As in somatic tissues, female reproductive tissues show reduced expression of mitochondrial genes. In contrast, the piRNA machinery shows increased expression during aging. Overall, these results also indicate that global loss of TE control observed in other studies may be unique to the soma and sensitive to genetic background and TE family. Electronic supplementary material The online version of this article (10.1186/s12864-019-5668-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra A Erwin
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| | - Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
37
|
Weisman NY. Genetic and Epigenetic Pathways of lethal (2) giant larvae Tumor Suppressor in Drosophila melanogaster. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419020145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Mills BB, Thomas AD, Riddle NC. HP1B is a euchromatic Drosophila HP1 homolog with links to metabolism. PLoS One 2018; 13:e0205867. [PMID: 30346969 PMCID: PMC6197686 DOI: 10.1371/journal.pone.0205867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/02/2018] [Indexed: 11/30/2022] Open
Abstract
Heterochromatin Protein 1 (HP1) proteins are an important family of chromosomal proteins conserved among all major eukaryotic lineages. While HP1 proteins are best known for their role in heterochromatin, many HP1 proteins function in euchromatin as well. As a group, HP1 proteins carry out diverse functions, playing roles in the regulation of gene expression, genome stability, chromatin structure, and DNA repair. While the heterochromatic HP1 proteins are well studied, our knowledge of HP1 proteins with euchromatic distribution is lagging behind. We have created the first mutations in HP1B, a Drosophila HP1 protein with euchromatic function, and the Drosophila homolog most closely related to mammalian HP1α, HP1β, and HP1γ. We find that HP1B is a non-essential protein in Drosophila, with mutations affecting fertility and animal activity levels. In addition, animals lacking HP1B show altered food intake and higher body fat levels. Gene expression analysis of animals lacking HP1B demonstrates that genes with functions in various metabolic processes are affected primarily by HP1B loss. Our findings suggest that there is a link between the chromatin protein HP1B and the regulation of metabolism.
Collapse
Affiliation(s)
- Benjamin B. Mills
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrew D. Thomas
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nicole C. Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
39
|
Araujo SM, Poetini MR, Bortolotto VC, de Freitas Couto S, Pinheiro FC, Meichtry LB, de Almeida FP, Santos Musachio EA, de Paula MT, Prigol M. Chronic unpredictable mild stress-induced depressive-like behavior and dysregulation of brain levels of biogenic amines in Drosophila melanogaster. Behav Brain Res 2018; 351:104-113. [DOI: 10.1016/j.bbr.2018.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/09/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022]
|
40
|
Symonenko AV, Roshina NV, Krementsova AV, Pasyukova EG. Reduced Neuronal Transcription of Escargot, the Drosophila Gene Encoding a Snail-Type Transcription Factor, Promotes Longevity. Front Genet 2018; 9:151. [PMID: 29760717 PMCID: PMC5936762 DOI: 10.3389/fgene.2018.00151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years, several genes involved in complex neuron specification networks have been shown to control life span. However, information on these genes is scattered, and studies to discover new neuronal genes and gene cascades contributing to life span control are needed, especially because of the recognized role of the nervous system in governing homeostasis, aging, and longevity. Previously, we demonstrated that several genes that encode RNA polymerase II transcription factors and that are involved in the development of the nervous system affect life span in Drosophila melanogaster. Among other genes, escargot (esg) was demonstrated to be causally associated with an increase in the life span of male flies. Here, we present new data on the role of esg in life span control. We show that esg affects the life spans of both mated and unmated males and females to varying degrees. By analyzing the survival and locomotion of the esg mutants, we demonstrate that esg is involved in the control of aging. We show that increased longevity is caused by decreased esg transcription. In particular, we demonstrate that esg knockdown in the nervous system increased life span, directly establishing the involvement of the neuronal esg function in life span control. Our data invite attention to the mechanisms regulating the esg transcription rate, which is changed by insertions of DNA fragments of different sizes downstream of the structural part of the gene, indicating the direction of further research. Our data agree with the previously made suggestion that alterations in gene expression during development might affect adult lifespan, due to epigenetic patterns inherited in cell lineages or predetermined during the development of the structural and functional properties of the nervous system.
Collapse
Affiliation(s)
- Alexander V Symonenko
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Roshina
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Genetic Basis of Biodiversity, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Krementsova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Kinetics and Mechanisms of Enzymatic and Catalytic Reactions, N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Elena G Pasyukova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
41
|
Ectopic expression of S28A-mutated Histone H3 modulates longevity, stress resistance and cardiac function in Drosophila. Sci Rep 2018; 8:2940. [PMID: 29440697 PMCID: PMC5811592 DOI: 10.1038/s41598-018-21372-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Histone H3 serine 28 (H3S28) phosphorylation and de-repression of polycomb repressive complex (PRC)-mediated gene regulation is linked to stress conditions in mitotic and post-mitotic cells. To better understand the role of H3S28 phosphorylation in vivo, we studied a Drosophila strain with ectopic expression of constitutively-activated H3S28A, which prevents PRC2 binding at H3S28, thus mimicking H3S28 phosphorylation. H3S28A mutants showed prolonged life span and improved resistance against starvation and paraquat-induced oxidative stress. Morphological and functional analysis of heart tubes revealed smaller luminal areas and thicker walls accompanied by moderately improved cardiac function after acute stress induction. Whole-exome deep gene-sequencing from isolated heart tubes revealed phenotype-corresponding changes in longevity-promoting and myotropic genes. We also found changes in genes controlling mitochondrial biogenesis and respiration. Analysis of mitochondrial respiration from whole flies revealed improved efficacy of ATP production with reduced electron transport-chain activity. Finally, we analyzed posttranslational modification of H3S28 in an experimental heart failure model and observed increased H3S28 phosphorylation levels in HF hearts. Our data establish a critical role of H3S28 phosphorylation in vivo for life span, stress resistance, cardiac and mitochondrial function in Drosophila. These findings may pave the way for H3S28 phosphorylation as a putative target to treat stress-related disorders such as heart failure.
Collapse
|
42
|
RNA-Sequencing of Drosophila melanogaster Head Tissue on High-Sugar and High-Fat Diets. G3-GENES GENOMES GENETICS 2018; 8:279-290. [PMID: 29141990 PMCID: PMC5765356 DOI: 10.1534/g3.117.300397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity has been shown to increase risk for cardiovascular disease and type-2 diabetes. In addition, it has been implicated in aggravation of neurological conditions such as Alzheimer’s. In the model organism Drosophila melanogaster, a physiological state mimicking diet-induced obesity can be induced by subjecting fruit flies to a solid medium disproportionately higher in sugar than protein, or that has been supplemented with a rich source of saturated fat. These flies can exhibit increased circulating glucose levels, increased triglyceride content, insulin-like peptide resistance, and behavior indicative of neurological decline. We subjected flies to variants of the high-sugar diet, high-fat diet, or normal (control) diet, followed by a total RNA extraction from fly heads of each diet group for the purpose of Poly-A selected RNA-Sequencing. Our objective was to identify the effects of obesogenic diets on transcriptome patterns, how they differed between obesogenic diets, and identify genes that may relate to pathogenesis accompanying an obesity-like state. Gene ontology analysis indicated an overrepresentation of affected genes associated with immunity, metabolism, and hemocyanin in the high-fat diet group, and CHK, cell cycle activity, and DNA binding and transcription in the high-sugar diet group. Our results also indicate differences in the effects of the high-fat diet and high-sugar diet on expression profiles in head tissue of flies, despite the reportedly similar phenotypic impacts of the diets. The impacted genes, and how they may relate to pathogenesis in the Drosophila obesity-like state, warrant further experimental investigation.
Collapse
|
43
|
Quan G, Duan J, Ladd T, Krell PJ. Identification and expression analysis of multiple small heat shock protein genes in spruce budworm, Choristoneura fumiferana (L.). Cell Stress Chaperones 2018; 23:141-154. [PMID: 28755305 PMCID: PMC5741589 DOI: 10.1007/s12192-017-0832-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/13/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022] Open
Abstract
Fifteen small heat shock protein (sHSP) genes were identified from spruce budworm, Choristoneura fumiferana (L.), an important native forest pest in North America. The transcript levels of each CfHSP were measured under non-stress conditions in all life stages from egg to adult and in five different larval tissues. CfHSP transcript levels showed variation during development, with highest levels in adults and lowest in eggs. Most CfHSP transcripts are highly expressed in larval fat body and Malpighian tubules; two CfHSPs display extremely high expression in the head and epidermis. Upon heat stress, nine CfHSP genes are significantly upregulated, increasing by 50- to 2500-fold depending on developmental stage and tissue type. Upon starvation, eight CfHSPs are upregulated or downregulated, whereas six others retain constant expression. These results suggest that CfHSPs have important and multiple roles in spruce budworm development and in response to heat stress and starvation.
Collapse
Affiliation(s)
- Guoxing Quan
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, P6A2E5, Sault Ste. Marie, ON, Canada.
| | - Jun Duan
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, P6A2E5, Sault Ste. Marie, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, N1G2W1, Guelph, ON, Canada
| | - Tim Ladd
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, P6A2E5, Sault Ste. Marie, ON, Canada
| | - Peter J Krell
- Department of Molecular and Cellular Biology, University of Guelph, N1G2W1, Guelph, ON, Canada
| |
Collapse
|
44
|
Dasari V, Srivastava S, Khan S, Mishra RK. Epigenetic factors Polycomb (Pc) and Suppressor of zeste (Su(z)2) negatively regulate longevity in Drosophila melanogaster. Biogerontology 2017; 19:33-45. [PMID: 29177687 DOI: 10.1007/s10522-017-9737-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023]
Abstract
The process of aging is a hallmark of the natural life span of all organisms and individuals within a population show variability in the measures of age related performance. Longevity and the rate of aging are influenced by several factors such as genetics, nutrition, stress, and environment. Many studies have focused on the genes that impact aging and there is increasing evidence that epigenetic factors regulate these genes to control life span. Polycomb (PcG) and trithorax (trxG) protein complexes maintain the expression profiles of developmentally important genes and regulate many cellular processes. Here, we report that mutations of PcG and trxG members affect the process of aging in Drosophila melanogaster, with perturbations mostly associated with retardation in aging. We find that mutations in polycomb repressive complex (PRC1) components Pc and Su(z)2 increase fly survival. Using an inducible UAS-GAL4 system, we show that this effect is tissue-specific; knockdown in fat body, but not in muscle or brain tissues, enhances life span. We hypothesize that these two proteins influence life span via pathways independent of their PRC1 functions, with distinct effects on response to oxidative stress. Our observations highlight the role of global epigenetic regulators in determining life span.
Collapse
Affiliation(s)
- Vasanthi Dasari
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Surabhi Srivastava
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Shagufta Khan
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
45
|
The small heat shock protein Hsp27: Present understanding and future prospects. J Therm Biol 2017; 69:149-154. [DOI: 10.1016/j.jtherbio.2017.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 01/16/2023]
|
46
|
Xiao C, Qiu S, Robertson RM. The white gene controls copulation success in Drosophila melanogaster. Sci Rep 2017; 7:7712. [PMID: 28794482 PMCID: PMC5550479 DOI: 10.1038/s41598-017-08155-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/06/2017] [Indexed: 11/17/2022] Open
Abstract
Characteristics of male courtship behavior in Drosophila melanogaster have been well-described, but the genetic basis of male-female copulation is largely unknown. Here we show that the white (w) gene, a classical gene for eye color, is associated with copulation success. 82.5% of wild-type Canton-S flies copulated within 60 minutes in circular arenas, whereas few white-eyed mutants mated successfully. The w+ allele exchanged to the X chromosome or duplicated to the Y chromosome in the white-eyed genetic background rescued the defect of copulation success. The w+-associated copulation success was independent of eye color phenotype. Addition of the mini-white (mw+) gene to the white-eyed mutant rescued the defect of copulation success in a manner that was mw+ copy number-dependent. Lastly, male-female sexual experience mimicked the effects of w+/mw+ in improving successful copulation. These data suggest that the w+ gene controls copulation success in Drosophila melanogaster.
Collapse
Affiliation(s)
- Chengfeng Xiao
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Shuang Qiu
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - R Meldrum Robertson
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
47
|
Abstract
The incidence and prevalence of cardiac diseases, which are the main cause of death worldwide, are likely to increase because of population ageing. Prevailing theories about the mechanisms of ageing feature the gradual derailment of cellular protein homeostasis (proteostasis) and loss of protein quality control as central factors. In the heart, loss of protein patency, owing to flaws in genetically-determined design or because of environmentally-induced 'wear and tear', can overwhelm protein quality control, thereby triggering derailment of proteostasis and contributing to cardiac ageing. Failure of protein quality control involves impairment of chaperones, ubiquitin-proteosomal systems, autophagy, and loss of sarcomeric and cytoskeletal proteins, all of which relate to induction of cardiomyocyte senescence. Targeting protein quality control to maintain cardiac proteostasis offers a novel therapeutic strategy to promote cardiac health and combat cardiac disease. Currently marketed drugs are available to explore this concept in the clinical setting.
Collapse
Affiliation(s)
- Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
48
|
Economou K, Kotsiliti E, Mintzas AC. Stage and cell-specific expression and intracellular localization of the small heat shock protein Hsp27 during oogenesis and spermatogenesis in the Mediterranean fruit fly, Ceratitis capitata. JOURNAL OF INSECT PHYSIOLOGY 2017; 96:64-72. [PMID: 27756555 DOI: 10.1016/j.jinsphys.2016.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
The cell-specific expression and intracellular distribution of the small heat protein Hsp27 was investigated in the ovaries and testes of the Mediterranean fruit fly, Ceratitis capitata (medfly), under both normal and heat shock conditions. For this study, a gfp-hsp27 strain was used to detect the chimeric protein by confocal microscopy. In unstressed ovaries, the protein was expressed throughout egg development in a stage and cell-specific pattern. In germarium, the protein was detected in the cytoplasm of the somatic cells in both unstressed and heat-shocked ovaries. In the early stages of oogenesis of unstressed ovaries, the protein was mainly located in the perinuclear region of the germ cells and in the cytoplasm of the follicle cells, while in later stages (9-10) it was distributed in the cytoplasm of the germ cells. In late stages (12-14), the protein changed localization pattern and was exclusively associated with the nuclei of the somatic cells. In heat shocked ovaries, the protein was mainly located in the nuclei of the somatic cells throughout egg chamber's development. In unstressed testes, the chimeric protein was detected in the nuclei of primary spermatocytes and in the filamentous structures of spermatid bundles, called actin cones. Interestingly, after a heat shock, the protein presented the same cell-specific localization pattern as in unstressed testes. Furthermore, the protein was also detected in the nuclei of the epithelial cells of the deferent duct, the accessory glands and the ejaculatory bulb. Our data suggest that medfly Hsp27 may have cell-specific functions, especially in the nucleus. Moreover, the association of this protein to actin cones during spermatid individualization, suggests a possible role of the protein in the formation and stabilization of actin cones.
Collapse
Affiliation(s)
- Katerina Economou
- University of Patras, Department of Biology, University Campus, 26504 Rio, Greece.
| | - Elena Kotsiliti
- University of Patras, Department of Biology, University Campus, 26504 Rio, Greece.
| | | |
Collapse
|
49
|
Dwivedi V, Lakhotia SC. Ayurvedic Amalaki Rasayana promotes improved stress tolerance and thus has anti-aging effects in Drosophila melanogaster. J Biosci 2016; 41:697-711. [DOI: 10.1007/s12038-016-9641-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
l-Arginine Enhances Resistance against Oxidative Stress and Heat Stress in Caenorhabditis elegans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13100969. [PMID: 27690079 PMCID: PMC5086708 DOI: 10.3390/ijerph13100969] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/23/2016] [Accepted: 09/20/2016] [Indexed: 01/21/2023]
Abstract
The antioxidant properties of l-arginine (l-Arg) in vivo, and its effect on enhancing resistance to oxidative stress and heat stress in Caenorhabditis elegans were investigated. C. elegans, a worm model popularly used in molecular and developmental biology, was used in the present study. Here, we report that l-Arg, at a concentration of 1 mM, prolonged C. elegans life by 26.98% and 37.02% under oxidative and heat stress, respectively. Further experiments indicated that the longevity-extending effects of l-Arg may be exerted by its free radical scavenging capacity and the upregulation of aging-associated gene expression in worms. This work is important in the context of numerous recent studies that concluded that environment stresses are associated with an increased population death rate.
Collapse
|