1
|
Audino JA, McElroy KE, Serb JM, Marian JEAR. Anatomy and transcriptomics of the common jingle shell (Bivalvia, Anomiidae) support a sensory function for bivalve tentacles. Sci Rep 2024; 14:31539. [PMID: 39733126 PMCID: PMC11682238 DOI: 10.1038/s41598-024-83313-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024] Open
Abstract
Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology. Here, we gather multiple lines of evidence to explore the specialized sensory function of bivalve tentacles in the common jingle shell, Anomia simplex. In addition to applying microscopy techniques, we performed transcriptome sequencing of dissected tentacles using phylogenetically-informed annotation to identify candidate receptors. Our results demonstrate the expression of candidate GPCRs, including one opsin type, five small-molecule receptors, and 11 chemosensory-related receptors, supporting the involvement of sensory neurons in the organ, likely in association with the ciliated receptor cells observed along the tentacle surface. In addition, we identified seven ionotropic receptors as putative chemosensory receptors and one member of the Piezo mechanosensitive ion channel, which might be involved in touch sensation by ciliated sensory receptors. Our results provide the first evidence of putative sensory genes expressed in a bivalve sensory organ, representing an important starting point to investigate chemosensation in this class.
Collapse
Affiliation(s)
- Jorge A Audino
- Department of Zoology, University of São Paulo, São Paulo, SP, Brazil.
| | - Kyle E McElroy
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jeanne M Serb
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - José E A R Marian
- Department of Zoology, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Ohnishi K, Sokabe T, Miura T, Tominaga M, Ohta A, Kuhara A. G protein-coupled receptor-based thermosensation determines temperature acclimatization of Caenorhabditis elegans. Nat Commun 2024; 15:1660. [PMID: 38396085 PMCID: PMC10891075 DOI: 10.1038/s41467-024-46042-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Animals must sense and acclimatize to environmental temperatures for survival, yet their thermosensing mechanisms other than transient receptor potential (TRP) channels remain poorly understood. We identify a trimeric G protein-coupled receptor (GPCR), SRH-40, which confers thermosensitivity in sensory neurons regulating temperature acclimatization in Caenorhabditis elegans. Systematic knockdown of 1000 GPCRs by RNAi reveals GPCRs involved in temperature acclimatization, among which srh-40 is highly expressed in the ADL sensory neuron, a temperature-responsive chemosensory neuron, where TRP channels act as accessorial thermoreceptors. In vivo Ca2+ imaging demonstrates that an srh-40 mutation reduced the temperature sensitivity of ADL, resulting in supranormal temperature acclimatization. Ectopically expressing SRH-40 in a non-warmth-sensing gustatory neuron confers temperature responses. Moreover, temperature-dependent SRH-40 activation is reconstituted in Drosophila S2R+ cells. Overall, SRH-40 may be involved in thermosensory signaling underlying temperature acclimatization. We propose a dual thermosensing machinery through a GPCR and TRP channels in a single sensory neuron.
Collapse
Affiliation(s)
- Kohei Ohnishi
- Graduate school of Natural Science, Konan University, Kobe, Hyogo, 658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, 658-8501, Japan
- Physiology and Biophysics, Graduate School of Biomedical and Health Sciences (Medical), Hiroshima University, Hiroshima, 734-8553, Japan
| | - Takaaki Sokabe
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan.
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.
- Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi, 444-8787, Japan.
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| | - Toru Miura
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, 658-8501, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi, 444-8787, Japan
| | - Akane Ohta
- Graduate school of Natural Science, Konan University, Kobe, Hyogo, 658-8501, Japan.
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, 658-8501, Japan.
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, 658-8501, Japan.
| | - Atsushi Kuhara
- Graduate school of Natural Science, Konan University, Kobe, Hyogo, 658-8501, Japan.
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, 658-8501, Japan.
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, 658-8501, Japan.
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
3
|
Wang Q, Wang X, Zhang D, Fang W, Li Y, Cao A, Wang Q, Yan D. Transcriptome reveals the toxicity difference of dimethyl disulfide by contact and fumigation on Meloidogyne incognita through calcium channel-mediated oxidative phosphorylation. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132268. [PMID: 37619272 DOI: 10.1016/j.jhazmat.2023.132268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
The prevention and control of root-knot nematode disease has been posing a severe challenge worldwide. Fumigant dimethyl disulfide (DMDS) has excellent biological activity against nematodes. However, DMDS displays significant differences in contact and fumigation toxicity on nematodes. The specific regulatory mechanisms of DMDS on nematodes were investigated by characterizing the ultrastructure of nematodes, examining the physiological and biochemical indicators, and conducting transcriptome high-throughput sequencing. As indicated by the results, DMDS fumigation exhibited the biological activity of against M. incognita 121 times higher than DMDS contact. DMDS contact destroyed nematode body wall cells. Besides, DMDS fumigation destroyed the structure of pseudocoelom. DMDS treatment expedited the oxygen consumption of nematode while inhibiting acetylcholinesterase activity. As indicated by the analysis of vital signaling pathways based on transcriptome, DMDS based on the contact mode penetrated directly into the nematode through the body wall and subsequently affected calcium channels in the body wall and muscle, disrupting their structure; it serves as an uncoupling agent to interfere with ATP synthase. Moreover, DMDS based on the fumigation mode entered the body through the respiratory pathway of olfactory perception-oxygen exchange and subsequently affected calcium channels in the nerve; eventually, DMDS acted on complex IV or complex I.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Daqi Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wensheng Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aocheng Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiuxia Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongdong Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Arrestin-mediated desensitization enables intraneuronal olfactory discrimination in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2022; 119:e2116957119. [PMID: 35878038 PMCID: PMC9351366 DOI: 10.1073/pnas.2116957119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the mammalian olfactory system, cross-talk between olfactory signals is minimized through physical isolation: individual neurons express one or few olfactory receptors among those encoded in the genome. Physical isolation allows for segregation of stimuli during signal transduction; however, in the nematode worm Caenorhabditis elegans, ∼1,300 olfactory receptors are primarily expressed in only 32 neurons, precluding this strategy. Here, we report genetic and behavioral evidence that β-arrestin-mediated desensitization of olfactory receptors, working downstream of the kinase GRK-1, enables discrimination between intraneuronal olfactory stimuli. Our findings suggest that C. elegans exploits β-arrestin desensitization to maximize responsiveness to novel odors, allowing for behaviorally appropriate responses to olfactory stimuli despite the large number of olfactory receptors signaling in single cells. This represents a fundamentally different solution to the problem of olfactory discrimination than that which evolved in mammals, allowing for economical use of a limited number of sensory neurons.
Collapse
|
5
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Yazhini A, Srinivasan N, Sandhya S. Signatures of conserved and unique molecular features in Afrotheria. Sci Rep 2021; 11:1011. [PMID: 33441654 PMCID: PMC7806701 DOI: 10.1038/s41598-020-79559-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/07/2020] [Indexed: 11/09/2022] Open
Abstract
Afrotheria is a clade of African-origin species with striking dissimilarities in appearance and habitat. In this study, we compared whole proteome sequences of six Afrotherian species to obtain a broad viewpoint of their underlying molecular make-up, to recognize potentially unique proteomic signatures. We find that 62% of the proteomes studied here, predominantly involved in metabolism, are orthologous, while the number of homologous proteins between individual species is as high as 99.5%. Further, we find that among Afrotheria, L. africana has several orphan proteins with 112 proteins showing < 30% sequence identity with their homologues. Rigorous sequence searches and complementary approaches were employed to annotate 156 uncharacterized protein sequences and 28 species-specific proteins. For 122 proteins we predicted potential functional roles, 43 of which we associated with protein- and nucleic-acid binding roles. Further, we analysed domain content and variations in their combinations within Afrotheria and identified 141 unique functional domain architectures, highlighting proteins with potential for specialized functions. Finally, we discuss the potential relevance of highly represented protein families such as MAGE-B2, olfactory receptor and ribosomal proteins in L. africana and E. edwardii, respectively. Taken together, our study reports the first comparative study of the Afrotherian proteomes and highlights salient molecular features.
Collapse
Affiliation(s)
- Arangasamy Yazhini
- Lab 103, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Narayanaswamy Srinivasan
- Lab 103, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| | - Sankaran Sandhya
- Lab 103, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
7
|
Bernot JP, Rudy G, Erickson PT, Ratnappan R, Haile M, Rosa BA, Mitreva M, O'Halloran DM, Hawdon JM. Transcriptomic analysis of hookworm Ancylostoma ceylanicum life cycle stages reveals changes in G-protein coupled receptor diversity associated with the onset of parasitism. Int J Parasitol 2020; 50:603-610. [PMID: 32592811 PMCID: PMC7454011 DOI: 10.1016/j.ijpara.2020.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
Free-living nematodes respond to variable and unpredictable environmental stimuli whereas parasitic nematodes exist in a more stable host environment. A positive correlation between the presence of environmental stages in the nematode life cycle and an increasing number of G-protein coupled receptors (GPCRs) reflects this difference in free-living and parasitic lifestyles. As hookworm larvae move from the external environment into a host, they detect uncharacterized host components, initiating a signalling cascade that results in the resumption of development and eventual maturation. Previous studies suggest this process is mediated by GPCRs in amphidial neurons. Here we set out to uncover candidate GPCRs required by a hookworm to recognise its host. First, we identified all potential Ancylostoma ceylanicum GPCRs encoded in the genome. We then used life cycle stage-specific RNA-seq data to identify differentially expressed GPCRs between the free-living infective L3 (iL3) and subsequent parasitic stages to identify receptors involved in the transition to parasitism. We reasoned that GPCRs involved in host recognition and developmental activation would be expressed at higher levels in the environmental iL3 stage than in subsequent stages. Our results support the model that a decrease in GPCR diversity occurs as the larvae develop from the free-living iL3 stage to the parasitic L3 (pL3) in the host over 24-72 h. We find that overall GPCR expression and diversity is highest in the iL3 compared with subsequent parasitic stages. By 72 h, there was an approximately 50% decrease in GPCR richness associated with the moult from the pL3 to the L4. Taken together, our data uncover a negative correlation between GPCR diversity and parasitic development in hookworm. Finally, we demonstrate proof of principal that Caenorhabditis elegans can be used as a heterologous system to examine the expression pattern of candidate host signal chemoreceptors (CRs) from hookworm. We observe expression of candidate host signal CRs in C. elegans, demonstrating that C. elegans can be effectively used as a surrogate to identify expressed hookworm genes. We present several preliminary examples of this strategy and confirm a candidate CR as neuronally expressed.
Collapse
Affiliation(s)
- James P Bernot
- Computational Biology Institute, The George Washington University, Washington DC, USA
| | - Gabriella Rudy
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington DC, USA
| | - Patti T Erickson
- Department of Biological Sciences, Salisbury University, Salisbury, MD, USA
| | - Ramesh Ratnappan
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Meseret Haile
- Department of Biochemistry, Smith College, Northampton, MA, USA
| | - Bruce A Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Damien M O'Halloran
- Department of Biological Sciences, The George Washington University, Washington DC, USA
| | - John M Hawdon
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA.
| |
Collapse
|
8
|
Abstract
Neuropeptides play pivotal roles in various biological events in the nervous, neuroendocrine, and endocrine systems, and are correlated with both physiological functions and unique behavioral traits of animals. Elucidation of functional interaction between neuropeptides and receptors is a crucial step for the verification of their biological roles and evolutionary processes. However, most receptors for novel peptides remain to be identified. Here, we show the identification of multiple G protein-coupled receptors (GPCRs) for species-specific neuropeptides of the vertebrate sister group, Ciona intestinalis Type A, by combining machine learning and experimental validation. We developed an original peptide descriptor-incorporated support vector machine and used it to predict 22 neuropeptide-GPCR pairs. Of note, signaling assays of the predicted pairs identified 1 homologous and 11 Ciona-specific neuropeptide-GPCR pairs for a 41% hit rate: the respective GPCRs for Ci-GALP, Ci-NTLP-2, Ci-LF-1, Ci-LF-2, Ci-LF-5, Ci-LF-6, Ci-LF-7, Ci-LF-8, Ci-YFV-1, and Ci-YFV-3. Interestingly, molecular phylogenetic tree analysis revealed that these receptors, excluding the Ci-GALP receptor, were evolutionarily unrelated to any other known peptide GPCRs, confirming that these GPCRs constitute unprecedented neuropeptide receptor clusters. Altogether, these results verified the neuropeptide-GPCR pairs in the protochordate and evolutionary lineages of neuropeptide GPCRs, and pave the way for investigating the endogenous roles of novel neuropeptides in the closest relatives of vertebrates and the evolutionary processes of neuropeptidergic systems throughout chordates. In addition, the present study also indicates the versatility of the machine-learning-assisted strategy for the identification of novel peptide-receptor pairs in various organisms.
Collapse
|
9
|
Vidal B, Aghayeva U, Sun H, Wang C, Glenwinkel L, Bayer EA, Hobert O. An atlas of Caenorhabditis elegans chemoreceptor expression. PLoS Biol 2018; 16:e2004218. [PMID: 29293491 PMCID: PMC5749674 DOI: 10.1371/journal.pbio.2004218] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
One goal of modern day neuroscience is the establishment of molecular maps that assign unique features to individual neuron types. Such maps provide important starting points for neuron classification, for functional analysis, and for developmental studies aimed at defining the molecular mechanisms of neuron identity acquisition and neuron identity diversification. In this resource paper, we describe a nervous system-wide map of the potential expression sites of 244 members of the largest gene family in the C. elegans genome, rhodopsin-like (class A) G-protein-coupled receptor (GPCR) chemoreceptors, using classic gfp reporter gene technology. We cover representatives of all sequence families of chemoreceptor GPCRs, some of which were previously entirely uncharacterized. Most reporters are expressed in a very restricted number of cells, often just in single cells. We assign GPCR reporter expression to all but two of the 37 sensory neuron classes of the sex-shared, core nervous system. Some sensory neurons express a very small number of receptors, while others, particularly nociceptive neurons, coexpress several dozen GPCR reporter genes. GPCR reporters are also expressed in a wide range of inter- and motorneurons, as well as non-neuronal cells, suggesting that GPCRs may constitute receptors not just for environmental signals, but also for internal cues. We observe only one notable, frequent association of coexpression patterns, namely in one nociceptive amphid (ASH) and two nociceptive phasmid sensory neurons (PHA, PHB). We identified GPCRs with sexually dimorphic expression and several GPCR reporters that are expressed in a left/right asymmetric manner. We identified a substantial degree of GPCR expression plasticity; particularly in the context of the environmentally-induced dauer diapause stage when one third of all tested GPCRs alter the cellular specificity of their expression within and outside the nervous system. Intriguingly, in a number of cases, the dauer-specific alterations of GPCR reporter expression in specific neuron classes are maintained during postdauer life and in some case new patterns are induced post-dauer, demonstrating that GPCR gene expression may serve as traits of life history. Taken together, our resource provides an entry point for functional studies and also offers a host of molecular markers for studying molecular patterning and plasticity of the nervous system.
Collapse
Affiliation(s)
- Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Ulkar Aghayeva
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Haosheng Sun
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Chen Wang
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Lori Glenwinkel
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Emily A. Bayer
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| |
Collapse
|
10
|
Tran A, Tang A, O'Loughlin CT, Balistreri A, Chang E, Coto Villa D, Li J, Varshney A, Jimenez V, Pyle J, Tsujimoto B, Wellbrook C, Vargas C, Duong A, Ali N, Matthews SY, Levinson S, Woldemariam S, Khuri S, Bremer M, Eggers DK, L'Etoile N, Miller Conrad LC, VanHoven MK. C. elegans avoids toxin-producing Streptomyces using a seven transmembrane domain chemosensory receptor. eLife 2017; 6. [PMID: 28873053 PMCID: PMC5584987 DOI: 10.7554/elife.23770] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 08/21/2017] [Indexed: 11/13/2022] Open
Abstract
Predators and prey co-evolve, each maximizing their own fitness, but the effects of predator–prey interactions on cellular and molecular machinery are poorly understood. Here, we study this process using the predator Caenorhabditis elegans and the bacterial prey Streptomyces, which have evolved a powerful defense: the production of nematicides. We demonstrate that upon exposure to Streptomyces at their head or tail, nematodes display an escape response that is mediated by bacterially produced cues. Avoidance requires a predicted G-protein-coupled receptor, SRB-6, which is expressed in five types of amphid and phasmid chemosensory neurons. We establish that species of Streptomyces secrete dodecanoic acid, which is sensed by SRB-6. This behavioral adaptation represents an important strategy for the nematode, which utilizes specialized sensory organs and a chemoreceptor that is tuned to recognize the bacteria. These findings provide a window into the molecules and organs used in the coevolutionary arms race between predator and potential prey.
Collapse
Affiliation(s)
- Alan Tran
- Department of Biological Sciences, San Jose State University, California, United States
| | - Angelina Tang
- Department of Biological Sciences, San Jose State University, California, United States
| | - Colleen T O'Loughlin
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, United States
| | - Anthony Balistreri
- Department of Chemistry, San Jose State University, California, United States
| | - Eric Chang
- Department of Biological Sciences, San Jose State University, California, United States
| | - Doris Coto Villa
- Department of Biological Sciences, San Jose State University, California, United States
| | - Joy Li
- Department of Biological Sciences, San Jose State University, California, United States
| | - Aruna Varshney
- Department of Biological Sciences, San Jose State University, California, United States
| | - Vanessa Jimenez
- Department of Biological Sciences, San Jose State University, California, United States
| | - Jacqueline Pyle
- Department of Biological Sciences, San Jose State University, California, United States
| | - Bryan Tsujimoto
- Department of Biological Sciences, San Jose State University, California, United States
| | - Christopher Wellbrook
- Department of Biological Sciences, San Jose State University, California, United States
| | - Christopher Vargas
- Department of Biological Sciences, San Jose State University, California, United States
| | - Alex Duong
- Department of Biological Sciences, San Jose State University, California, United States
| | - Nebat Ali
- Department of Biological Sciences, San Jose State University, California, United States
| | - Sarah Y Matthews
- Department of Chemistry, San Jose State University, California, United States
| | - Samantha Levinson
- Department of Chemistry, San Jose State University, California, United States
| | - Sarah Woldemariam
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, United States
| | - Sami Khuri
- Department of Computer Science, San Jose State University, California, United States
| | - Martina Bremer
- Department of Mathematics and Statistics, San Jose State University, California, United States
| | - Daryl K Eggers
- Department of Chemistry, San Jose State University, California, United States
| | - Noelle L'Etoile
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, United States
| | | | - Miri K VanHoven
- Department of Biological Sciences, San Jose State University, California, United States
| |
Collapse
|
11
|
Eyun SI, Soh HY, Posavi M, Munro JB, Hughes DS, Murali SC, Qu J, Dugan S, Lee SL, Chao H, Dinh H, Han Y, Doddapaneni H, Worley KC, Muzny DM, Park EO, Silva JC, Gibbs RA, Richards S, Lee CE. Evolutionary History of Chemosensory-Related Gene Families across the Arthropoda. Mol Biol Evol 2017; 34:1838-1862. [PMID: 28460028 PMCID: PMC5850775 DOI: 10.1093/molbev/msx147] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chemosensory-related gene (CRG) families have been studied extensively in insects, but their evolutionary history across the Arthropoda had remained relatively unexplored. Here, we address current hypotheses and prior conclusions on CRG family evolution using a more comprehensive data set. In particular, odorant receptors were hypothesized to have proliferated during terrestrial colonization by insects (hexapods), but their association with other pancrustacean clades and with independent terrestrial colonizations in other arthropod subphyla have been unclear. We also examine hypotheses on which arthropod CRG family is most ancient. Thus, we reconstructed phylogenies of CRGs, including those from new arthropod genomes and transcriptomes, and mapped CRG gains and losses across arthropod lineages. Our analysis was strengthened by including crustaceans, especially copepods, which reside outside the hexapod/branchiopod clade within the subphylum Pancrustacea. We generated the first high-resolution genome sequence of the copepod Eurytemora affinis and annotated its CRGs. We found odorant receptors and odorant binding proteins present only in hexapods (insects) and absent from all other arthropod lineages, indicating that they are not universal adaptations to land. Gustatory receptors likely represent the oldest chemosensory receptors among CRGs, dating back to the Placozoa. We also clarified and confirmed the evolutionary history of antennal ionotropic receptors across the Arthropoda. All antennal ionotropic receptors in E. affinis were expressed more highly in males than in females, suggestive of an association with male mate-recognition behavior. This study is the most comprehensive comparative analysis to date of CRG family evolution across the largest and most speciose metazoan phylum Arthropoda.
Collapse
Affiliation(s)
- Seong-il Eyun
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE
| | - Ho Young Soh
- Faculty of Marine Technology, Chonnam National University, Yeosu, Korea
| | - Marijan Posavi
- Center of Rapid Evolution (CORE) and Department of Integrative Biology, University of Wisconsin, Madison, WI
| | - James B. Munro
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
| | | | - Shwetha C. Murali
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jiaxin Qu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Shannon Dugan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Sandra L. Lee
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Hsu Chao
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Huyen Dinh
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | | | - Kim C. Worley
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Eun-Ok Park
- Fisheries Science Institute, Chonnam National University, Yeosu, Korea
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Carol Eunmi Lee
- Center of Rapid Evolution (CORE) and Department of Integrative Biology, University of Wisconsin, Madison, WI
| |
Collapse
|
12
|
Lieke T, Steinberg CEW, Ju J, Saul N. Natural Marine and Synthetic Xenobiotics Get on Nematode's Nerves: Neuro-Stimulating and Neurotoxic Findings in Caenorhabditis elegans. Mar Drugs 2015; 13:2785-812. [PMID: 25955755 PMCID: PMC4446606 DOI: 10.3390/md13052785] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/15/2015] [Accepted: 04/23/2015] [Indexed: 11/16/2022] Open
Abstract
Marine algae release a plethora of organic halogenated compounds, many of them with unknown ecological impact if environmentally realistic concentrations are applied. One major compound is dibromoacetic acid (DBAA) which was tested for neurotoxicity in the invertebrate model organism Caenorhabditis elegans (C. elegans). This natural compound was compared with the widespread synthetic xenobiotic tetrabromobisphenol-A (TBBP-A) found in marine sediments and mussels. We found a neuro-stimulating effect for DBAA; this is contradictory to existing toxicological reports of mammals that applied comparatively high dosages. For TBBP-A, we found a hormetic concentration-effect relationship. As chemicals rarely occur isolated in the environment, a combination of both organobromines was also examined. Surprisingly, the presence of DBAA increased the toxicity of TBBP-A. Our results demonstrated that organohalogens have the potential to affect single organisms especially by altering the neurological processes, even with promoting effects on exposed organisms.
Collapse
Affiliation(s)
- Thora Lieke
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Späthstr. 80/81, 12437 Berlin, Germany.
| | - Christian E W Steinberg
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Späthstr. 80/81, 12437 Berlin, Germany.
| | - Jingjuan Ju
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Späthstr. 80/81, 12437 Berlin, Germany.
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Nadine Saul
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Späthstr. 80/81, 12437 Berlin, Germany.
| |
Collapse
|
13
|
Vergara IA, Tarailo-Graovac M, Frech C, Wang J, Qin Z, Zhang T, She R, Chu JSC, Wang K, Chen N. Genome-wide variations in a natural isolate of the nematode Caenorhabditis elegans. BMC Genomics 2014; 15:255. [PMID: 24694239 PMCID: PMC4023591 DOI: 10.1186/1471-2164-15-255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 03/03/2014] [Indexed: 12/02/2022] Open
Abstract
Background Increasing genetic and phenotypic differences found among natural isolates of C. elegans have encouraged researchers to explore the natural variation of this nematode species. Results Here we report on the identification of genomic differences between the reference strain N2 and the Hawaiian strain CB4856, one of the most genetically distant strains from N2. To identify both small- and large-scale genomic variations (GVs), we have sequenced the CB4856 genome using both Roche 454 (~400 bps single reads) and Illumina GA DNA sequencing methods (101 bps paired-end reads). Compared to previously described variants (available in WormBase), our effort uncovered twice as many single nucleotide variants (SNVs) and increased the number of small InDels almost 20-fold. Moreover, we identified and validated large insertions, most of which range from 150 bps to 1.2 kb in length in the CB4856 strain. Identified GVs had a widespread impact on protein-coding sequences, including 585 single-copy genes that have associated severe phenotypes of reduced viability in RNAi and genetics studies. Sixty of these genes are homologs of human genes associated with diseases. Furthermore, our work confirms previously identified GVs associated with differences in behavioural and biological traits between the N2 and CB4856 strains. Conclusions The identified GVs provide a rich resource for future studies that aim to explain the genetic basis for other trait differences between the N2 and CB4856 strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nansheng Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
14
|
The olfactory signal transduction for attractive odorants in Caenorhabditis elegans. Biotechnol Adv 2014; 32:290-5. [DOI: 10.1016/j.biotechadv.2013.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/14/2013] [Accepted: 10/28/2013] [Indexed: 11/20/2022]
|
15
|
Suh J, Hutter H. A survey of putative secreted and transmembrane proteins encoded in the C. elegans genome. BMC Genomics 2012; 13:333. [PMID: 22823938 PMCID: PMC3534327 DOI: 10.1186/1471-2164-13-333] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/25/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Almost half of the Caenorhabditis elegans genome encodes proteins with either a signal peptide or a transmembrane domain. Therefore a substantial fraction of the proteins are localized to membranes, reside in the secretory pathway or are secreted. While these proteins are of interest to a variety of different researchers ranging from developmental biologists to immunologists, most of secreted proteins have not been functionally characterized so far. RESULTS We grouped proteins containing a signal peptide or a transmembrane domain using various criteria including evolutionary origin, common domain organization and functional categories. We found that putative secreted proteins are enriched for small proteins and nematode-specific proteins. Many secreted proteins are predominantly expressed in specific life stages or in one of the two sexes suggesting stage- or sex-specific functions. More than a third of the putative secreted proteins are upregulated upon exposure to pathogens, indicating that a substantial fraction may have a role in immune response. Slightly more than half of the transmembrane proteins can be grouped into broad functional categories based on sequence similarity to proteins with known function. By far the largest groups are channels and transporters, various classes of enzymes and putative receptors with signaling function. CONCLUSION Our analysis provides an overview of all putative secreted and transmembrane proteins in C. elegans. This can serve as a basis for selecting groups of proteins for large-scale functional analysis using reverse genetic approaches.
Collapse
Affiliation(s)
- Jinkyo Suh
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|
16
|
Nagarathnam B, Kalaimathy S, Balakrishnan V, Sowdhamini R. Cross-Genome Clustering of Human and C. elegans G-Protein Coupled Receptors. Evol Bioinform Online 2012; 8:229-59. [PMID: 22807621 PMCID: PMC3396462 DOI: 10.4137/ebo.s9405] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are one of the largest groups of membrane proteins and are popular drug targets. The work reported here attempts to perform cross-genome phylogeny on GPCRs from two widely different taxa, human versus C. elegans genomes and to address the issues on evolutionary plasticity, to identify functionally related genes, orthologous relationship, and ligand binding properties through effective bioinformatic approaches. Through RPS blast around 1106 nematode GPCRs were given chance to associate with previously established 8 types of human GPCR profiles at varying E-value thresholds and resulted 32 clusters were illustrating co-clustering and class-specific retainsionship. In the significant thresholds, 81% of the C. elegans GPCRs were associated with 32 clusters and 27 C. elegans GPCRs (2%) inferred for orthology. 177 hypothetical proteins were observed in cluster association and could be reliably associated with one of 32 clusters. Several nematode-specific GPCR clades were observed suggesting lineage-specific functional recruitment in response to environment.
Collapse
Affiliation(s)
- Balasubramanian Nagarathnam
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | | | | | | |
Collapse
|
17
|
Spencer WC, Zeller G, Watson JD, Henz SR, Watkins KL, McWhirter RD, Petersen S, Sreedharan VT, Widmer C, Jo J, Reinke V, Petrella L, Strome S, Von Stetina SE, Katz M, Shaham S, Rätsch G, Miller DM. A spatial and temporal map of C. elegans gene expression. Genome Res 2011; 21:325-41. [PMID: 21177967 PMCID: PMC3032935 DOI: 10.1101/gr.114595.110] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 12/08/2010] [Indexed: 01/31/2023]
Abstract
The C. elegans genome has been completely sequenced, and the developmental anatomy of this model organism is described at single-cell resolution. Here we utilize strategies that exploit this precisely defined architecture to link gene expression to cell type. We obtained RNAs from specific cells and from each developmental stage using tissue-specific promoters to mark cells for isolation by FACS or for mRNA extraction by the mRNA-tagging method. We then generated gene expression profiles of more than 30 different cells and developmental stages using tiling arrays. Machine-learning-based analysis detected transcripts corresponding to established gene models and revealed novel transcriptionally active regions (TARs) in noncoding domains that comprise at least 10% of the total C. elegans genome. Our results show that about 75% of transcripts with detectable expression are differentially expressed among developmental stages and across cell types. Examination of known tissue- and cell-specific transcripts validates these data sets and suggests that newly identified TARs may exercise cell-specific functions. Additionally, we used self-organizing maps to define groups of coregulated transcripts and applied regulatory element analysis to identify known transcription factor- and miRNA-binding sites, as well as novel motifs that likely function to control subsets of these genes. By using cell-specific, whole-genome profiling strategies, we have detected a large number of novel transcripts and produced high-resolution gene expression maps that provide a basis for establishing the roles of individual genes in cellular differentiation.
Collapse
Affiliation(s)
- W. Clay Spencer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Georg Zeller
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Joseph D. Watson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Stefan R. Henz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Kathie L. Watkins
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Rebecca D. McWhirter
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Sarah Petersen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Vipin T. Sreedharan
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Christian Widmer
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Jeanyoung Jo
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Lisa Petrella
- Department of MCD Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Susan Strome
- Department of MCD Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Stephen E. Von Stetina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Menachem Katz
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Gunnar Rätsch
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - David M. Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| |
Collapse
|
18
|
Abstract
Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species.
Collapse
Affiliation(s)
- Christian Frech
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Nansheng Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
19
|
Vergara IA, Chen N. Large synteny blocks revealed between Caenorhabditis elegans and Caenorhabditis briggsae genomes using OrthoCluster. BMC Genomics 2010; 11:516. [PMID: 20868500 PMCID: PMC2997010 DOI: 10.1186/1471-2164-11-516] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 09/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate identification of synteny blocks is an important step in comparative genomics towards the understanding of genome architecture and expression. Most computer programs developed in the last decade for identifying synteny blocks have limitations. To address these limitations, we recently developed a robust program called OrthoCluster, and an online database OrthoClusterDB. In this work, we have demonstrated the application of OrthoCluster in identifying synteny blocks between the genomes of Caenorhabditis elegans and Caenorhabditis briggsae, two closely related hermaphrodite nematodes. RESULTS Initial identification and analysis of synteny blocks using OrthoCluster enabled us to systematically improve the genome annotation of C. elegans and C. briggsae, identifying 52 potential novel genes in C. elegans, 582 in C. briggsae, and 949 novel orthologous relationships between these two species. Using the improved annotation, we have detected 3,058 perfect synteny blocks that contain no mismatches between C. elegans and C. briggsae. Among these synteny blocks, the majority are mapped to homologous chromosomes, as previously reported. The largest perfect synteny block contains 42 genes, which spans 201.2 kb in Chromosome V of C. elegans. On average, perfect synteny blocks span 18.8 kb in length. When some mismatches (interruptions) are allowed, synteny blocks ("imperfect synteny blocks") that are much larger in size are identified. We have shown that the majority (80%) of the C. elegans and C. briggsae genomes are covered by imperfect synteny blocks. The largest imperfect synteny block spans 6.14 Mb in Chromosome X of C. elegans and there are 11 synteny blocks that are larger than 1 Mb in size. On average, imperfect synteny blocks span 63.6 kb in length, larger than previously reported. CONCLUSIONS We have demonstrated that OrthoCluster can be used to accurately identify synteny blocks and have found that synteny blocks between C. elegans and C. briggsae are almost three-folds larger than previously identified.
Collapse
Affiliation(s)
- Ismael A Vergara
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | | |
Collapse
|
20
|
Maydan JS, Lorch A, Edgley ML, Flibotte S, Moerman DG. Copy number variation in the genomes of twelve natural isolates of Caenorhabditis elegans. BMC Genomics 2010; 11:62. [PMID: 20100350 PMCID: PMC2822765 DOI: 10.1186/1471-2164-11-62] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 01/25/2010] [Indexed: 11/23/2022] Open
Abstract
Background Copy number variation is an important component of genetic variation in higher eukaryotes. The extent of natural copy number variation in C. elegans is unknown outside of 2 highly divergent wild isolates and the canonical N2 Bristol strain. Results We have used array comparative genomic hybridization (aCGH) to detect copy number variation in the genomes of 12 natural isolates of Caenorhabditis elegans. Deletions relative to the canonical N2 strain are more common in these isolates than duplications, and indels are enriched in multigene families on the autosome arms. Among the strains in our study, the Hawaiian and Madeiran strains (CB4856 and JU258) carry the largest number of deletions, followed by the Vancouver strain (KR314). Overall we detected 510 different deletions affecting 1136 genes, or over 5% of the genes in the canonical N2 genome. The indels we identified had a median length of 2.7 kb. Since many deletions are found in multiple isolates, deletion loci were used as markers to derive an unrooted tree to estimate genetic relatedness among the strains. Conclusion Copy number variation is extensive in C. elegans, affecting over 5% of the genes in the genome. The deletions we have detected in natural isolates of C. elegans contribute significantly to the number of deletion alleles available to researchers. The relationships between strains are complex and different regions of the genome possess different genealogies due to recombination throughout the natural history of the species, which may not be apparent in studies utilizing smaller numbers of genetic markers.
Collapse
Affiliation(s)
- Jason S Maydan
- Department of Zoology, University of British Columbia, British Columbia, Canada
| | | | | | | | | |
Collapse
|
21
|
Mabon ME, Scott BA, Crowder CM. Divergent mechanisms controlling hypoxic sensitivity and lifespan by the DAF-2/insulin/IGF-receptor pathway. PLoS One 2009; 4:e7937. [PMID: 19936206 PMCID: PMC2775958 DOI: 10.1371/journal.pone.0007937] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 10/22/2009] [Indexed: 11/19/2022] Open
Abstract
Organisms and their cells vary greatly in their tolerance of low oxygen environments (hypoxia). A delineation of the determinants of hypoxia tolerance is incomplete, despite intense interest for its implications in diseases such as stroke and myocardial infarction. The insulin/IGF-1 receptor (IGFR) signaling pathway controls survival of Caenorhabditis elegans from a variety of stressors including aging, hyperthermia, and hypoxia. daf-2 encodes a C. elegans IGFR homolog whose primary signaling pathway modulates the activity of the FOXO transcription factor DAF-16. DAF-16 regulates the transcription of a large number of genes, some of which have been shown to control aging. To identify genes that selectively regulate hypoxic sensitivity, we compared the whole-organismal transcriptomes of three daf-2 reduction-of-function alleles, all of which are hypoxia resistant, thermotolerant, and long lived, but differ in their rank of severities for these phenotypes. The transcript levels of 172 genes were increased in the most hypoxia resistant daf-2 allele, e1370, relative to the other alleles whereas transcripts from only 10 genes were decreased in abundance. RNAi knockdown of 6 of the 10 genes produced a significant increase in organismal survival after hypoxic exposure as would be expected if down regulation of these genes by the e1370 mutation was responsible for hypoxia resistance. However, RNAi knockdown of these genes did not prolong lifespan. These genes definitively separate the mechanisms of hypoxic sensitivity and lifespan and identify biological strategies to survive hypoxic injury.
Collapse
Affiliation(s)
- Meghann E. Mabon
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Division of Biology & Biomedical Sciences, Program in Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Barbara A. Scott
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - C. Michael Crowder
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Division of Biology & Biomedical Sciences, Program in Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
22
|
Vergara IA, Mah AK, Huang JC, Tarailo-Graovac M, Johnsen RC, Baillie DL, Chen N. Polymorphic segmental duplication in the nematode Caenorhabditis elegans. BMC Genomics 2009; 10:329. [PMID: 19622155 PMCID: PMC2728738 DOI: 10.1186/1471-2164-10-329] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 07/21/2009] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The nematode Caenorhabditis elegans was the first multicellular organism to have its genome fully sequenced. Over the last 10 years since the original publication in 1998, the C. elegans genome has been scrutinized and the last gaps were filled in November 2002, which present a unique opportunity for examining genome-wide segmental duplications. RESULTS Here, we performed analysis of the C. elegans genome in search for segmental duplications using a new tool -- OrthoCluster -- we have recently developed. We detected 3,484 duplicated segments -- duplicons -- ranging in size from 234 bp to 108 Kb. The largest pair of duplicons, 108 kb in length located on the left arm of Chromosome V, was further characterized. They are nearly identical at the DNA level (99.7% identity) and each duplicon contains 26 putative protein coding genes. Genotyping of 76 wild-type strains obtained from different labs in the C. elegans community revealed that not all strains contain this duplication. In fact, only 29 strains carry this large segmental duplication, suggesting a very recent duplication event in the C. elegans genome. CONCLUSION This report represents the first demonstration that the C. elegans laboratory wild-type N2 strains has acquired large-scale differences.
Collapse
Affiliation(s)
- Ismael A Vergara
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Allan K Mah
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Jim C Huang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Maja Tarailo-Graovac
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Robert C Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Nansheng Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
23
|
Cutter AD, Dey A, Murray RL. Evolution of the Caenorhabditis elegans genome. Mol Biol Evol 2009; 26:1199-234. [PMID: 19289596 DOI: 10.1093/molbev/msp048] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A fundamental problem in genome biology is to elucidate the evolutionary forces responsible for generating nonrandom patterns of genome organization. As the first metazoan to benefit from full-genome sequencing, Caenorhabditis elegans has been at the forefront of research in this area. Studies of genomic patterns, and their evolutionary underpinnings, continue to be augmented by the recent push to obtain additional full-genome sequences of related Caenorhabditis taxa. In the near future, we expect to see major advances with the onset of whole-genome resequencing of multiple wild individuals of the same species. In this review, we synthesize many of the important insights to date in our understanding of genome organization and function that derive from the evolutionary principles made explicit by theoretical population genetics and molecular evolution and highlight fertile areas for future research on unanswered questions in C. elegans genome evolution. We call attention to the need for C. elegans researchers to generate and critically assess nonadaptive hypotheses for genomic and developmental patterns, in addition to adaptive scenarios. We also emphasize the potential importance of evolution in the gonochoristic (female and male) ancestors of the androdioecious (hermaphrodite and male) C. elegans as the source for many of its genomic and developmental patterns.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology and the Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
24
|
Thomas JH, Robertson HM. The Caenorhabditis chemoreceptor gene families. BMC Biol 2008; 6:42. [PMID: 18837995 PMCID: PMC2576165 DOI: 10.1186/1741-7007-6-42] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 10/06/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. RESULTS Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei. CONCLUSION Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space.
Collapse
Affiliation(s)
- James H Thomas
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois, Urbana-Champaign, IL, USA
| |
Collapse
|
25
|
Venugopal C, Demos CM, Rao KSJ, Pappolla MA, Sambamurti K. Beta-secretase: structure, function, and evolution. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:278-94. [PMID: 18673212 PMCID: PMC2921875 DOI: 10.2174/187152708784936626] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The most popular current hypothesis is that Alzheimer's disease (AD) is caused by aggregates of the amyloid peptide (Abeta), which is generated by cleavage of the Abeta protein precursor (APP) by beta-secretase (BACE-1) followed by gamma-secretase. BACE-1 cleavage is limiting for the production of Abeta, making it a particularly good drug target for the generation of inhibitors that lower Abeta. A landmark discovery in AD was the identification of BACE-1 (a.k.a. Memapsin-2) as a novel class of type I transmembrane aspartic protease. Although BACE-2, a homologue of BACE-1, was quickly identified, follow up studies using knockout mice demonstrated that BACE-1 was necessary and sufficient for most neuronal Abeta generation. Despite the importance of BACE-1 as a drug target, development has been slow due to the incomplete understanding of its function and regulation and the difficulties in developing a brain penetrant drug that can specifically block its large catalytic pocket. This review summarizes the biological properties of BACE-1 and attempts to use phylogenetic perspectives to understand its function. The article also addresses the challenges in discovering a selective drug-like molecule targeting novel mechanisms of BACE-1 regulation.
Collapse
Affiliation(s)
| | | | | | | | - Kumar Sambamurti
- Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
26
|
Semyonov J, Park JI, Chang CL, Hsu SYT. GPCR genes are preferentially retained after whole genome duplication. PLoS One 2008; 3:e1903. [PMID: 18382678 PMCID: PMC2270905 DOI: 10.1371/journal.pone.0001903] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 01/27/2008] [Indexed: 11/19/2022] Open
Abstract
One of the most interesting questions in biology is whether certain pathways have been favored during evolution, and if so, what properties could cause such a preference. Due to the lack of experimental evidence, whether select gene families have been preferentially retained over time after duplication in metazoan organisms remains unclear. Here, by syntenic mapping of nonchemosensory G protein-coupled receptor genes (nGPCRs which represent half the receptome for transmembrane signaling) in the vertebrate genomes, we found that, as opposed to the 8–15% retention rate for whole genome duplication (WGD)-derived gene duplicates in the entire genome of pufferfish, greater than 27.8% of WGD-derived nGPCRs which interact with a nonpeptide ligand were retained after WGD in pufferfish Tetraodon nigroviridis. In addition, we show that concurrent duplication of cognate ligand genes by WGD could impose selection of nGPCRs that interact with a polypeptide ligand. Against less than 2.25% probability for parallel retention of a pair of WGD-derived ligands and a pair of cognate receptor duplicates, we found a more than 8.9% retention of WGD-derived ligand-nGPCR pairs–threefold greater than one would surmise. These results demonstrate that gene retention is not uniform after WGD in vertebrates, and suggest a Darwinian selection of GPCR-mediated intercellular communication in metazoan organisms.
Collapse
Affiliation(s)
- Jenia Semyonov
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jae-Il Park
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chia Lin Chang
- Chang Gung University School of Medicine, and Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Sheau Yu Teddy Hsu
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Chen N, Mah A, Blacque OE, Chu J, Phgora K, Bakhoum MW, Hunt Newbury CR, Khattra J, Chan S, Go A, Efimenko E, Johnsen R, Phirke P, Swoboda P, Marra M, Moerman DG, Leroux MR, Baillie DL, Stein LD. Identification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics. Genome Biol 2007; 7:R126. [PMID: 17187676 PMCID: PMC1794439 DOI: 10.1186/gb-2006-7-12-r126] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 10/20/2006] [Accepted: 12/22/2006] [Indexed: 01/05/2023] Open
Abstract
Comparative genomic analysis of three nematode species identifies 93 genes that encode putative components of the ciliated neurons in C. elegans and are subject to the same regulatory control. Background The recent availability of genome sequences of multiple related Caenorhabditis species has made it possible to identify, using comparative genomics, similarly transcribed genes in Caenorhabditis elegans and its sister species. Taking this approach, we have identified numerous novel ciliary genes in C. elegans, some of which may be orthologs of unidentified human ciliopathy genes. Results By screening for genes possessing canonical X-box sequences in promoters of three Caenorhabditis species, namely C. elegans, C. briggsae and C. remanei, we identified 93 genes (including known X-box regulated genes) that encode putative components of ciliated neurons in C. elegans and are subject to the same regulatory control. For many of these genes, restricted anatomical expression in ciliated cells was confirmed, and control of transcription by the ciliogenic DAF-19 RFX transcription factor was demonstrated by comparative transcriptional profiling of different tissue types and of daf-19(+) and daf-19(-) animals. Finally, we demonstrate that the dye-filling defect of dyf-5(mn400) animals, which is indicative of compromised exposure of cilia to the environment, is caused by a nonsense mutation in the serine/threonine protein kinase gene M04C9.5. Conclusion Our comparative genomics-based predictions may be useful for identifying genes involved in human ciliopathies, including Bardet-Biedl Syndrome (BBS), since the C. elegans orthologs of known human BBS genes contain X-box motifs and are required for normal dye filling in C. elegans ciliated neurons.
Collapse
Affiliation(s)
- Nansheng Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Allan Mah
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Oliver E Blacque
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jeffrey Chu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Kiran Phgora
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Mathieu W Bakhoum
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - C Rebecca Hunt Newbury
- Department of Zoology, University of British Columbia, West Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jaswinder Khattra
- Department of Zoology, University of British Columbia, West Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Susanna Chan
- Department of Zoology, University of British Columbia, West Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Anne Go
- Department of Zoology, University of British Columbia, West Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Evgeni Efimenko
- Karolinska Institute, Department of Biosciences and Nutrition, Södertörn University College, School of Life Sciences, S-14189 Huddinge, Sweden
| | - Robert Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Prasad Phirke
- Karolinska Institute, Department of Biosciences and Nutrition, Södertörn University College, School of Life Sciences, S-14189 Huddinge, Sweden
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, Södertörn University College, School of Life Sciences, S-14189 Huddinge, Sweden
| | - Marco Marra
- British Columbia Cancer Agency, Genome Sciences Centre, Vancouver, British Columbia, Canada V5Z 4S6
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, West Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Lincoln D Stein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
28
|
Thomas JH. Rapid birth-death evolution specific to xenobiotic cytochrome P450 genes in vertebrates. PLoS Genet 2007; 3:e67. [PMID: 17500592 PMCID: PMC1866355 DOI: 10.1371/journal.pgen.0030067] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 03/14/2007] [Indexed: 12/15/2022] Open
Abstract
Genes vary greatly in their long-term phylogenetic stability and there exists no general explanation for these differences. The cytochrome P450 (CYP450) gene superfamily is well suited to investigating this problem because it is large and well studied, and it includes both stable and unstable genes. CYP450 genes encode oxidase enzymes that function in metabolism of endogenous small molecules and in detoxification of xenobiotic compounds. Both types of enzymes have been intensively studied. My analysis of ten nearly complete vertebrate genomes indicates that each genome contains 50-80 CYP450 genes, which are about evenly divided between phylogenetically stable and unstable genes. The stable genes are characterized by few or no gene duplications or losses in species ranging from bony fish to mammals, whereas unstable genes are characterized by frequent gene duplications and losses (birth-death evolution) even among closely related species. All of the CYP450 genes that encode enzymes with known endogenous substrates are phylogenetically stable. In contrast, most of the unstable genes encode enzymes that function as xenobiotic detoxifiers. Nearly all unstable CYP450 genes in the mouse and human genomes reside in a few dense gene clusters, forming unstable gene islands that arose by recurrent local gene duplication. Evidence for positive selection in amino acid sequence is restricted to these unstable CYP450 genes, and sites of selection are associated with substrate-binding regions in the protein structure. These results can be explained by a general model in which phylogenetically stable genes have core functions in development and physiology, whereas unstable genes have accessory functions associated with unstable environmental interactions such as toxin and pathogen exposure. Unstable gene islands in vertebrates share some functional properties with bacterial genomic islands, though they arise by local gene duplication rather than horizontal gene transfer.
Collapse
Affiliation(s)
- James H Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America.
| |
Collapse
|
29
|
Zhao Z, Thomas JH, Chen N, Sheps JA, Baillie DL. Comparative genomics and adaptive selection of the ATP-binding-cassette gene family in caenorhabditis species. Genetics 2007; 175:1407-18. [PMID: 17194779 PMCID: PMC1840077 DOI: 10.1534/genetics.106.066720] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 12/24/2006] [Indexed: 11/18/2022] Open
Abstract
ABC transporters constitute one of the largest gene families in all species. They are mostly involved in transport of substrates across membranes. We have previously demonstrated that the Caenorhabditis elegans ABC family shows poor one-to-one gene orthology with other distant model organisms. To address the evolution dynamics of this gene family among closely related species, we carried out a comparative analysis of the ABC family among the three nematode species C. elegans, C. briggsae, and C. remanei. In contrast to the previous observations, the majority of ABC genes in the three species were found in orthologous trios, including many tandemly duplicated ABC genes, indicating that the gene duplication took place before speciation. Species-specific expansions of ABC members are rare and mostly observed in subfamilies A and B. C. briggsae and C. remanei orthologous ABC genes tend to cluster on trees, with those of C. elegans as an outgroup, consistent with their proposed species phylogeny. Comparison of intron/exon structures of the highly conserved ABCE subfamily members also indicates a closer relationship between C. briggsae and C. remanei than between either of these species and C. elegans. A comparison between insect and mammalian species indicates lineage-specific duplications or deletions of ABC genes, while the family size remains relatively constant. Sites undergoing positive selection within subfamily D, which are implicated in very-long-chain fatty acid transport, were identified. The evolution of these sites might be driven by the changes in food source with time.
Collapse
Affiliation(s)
- Zhongying Zhao
- British Columbia Cancer Research Center, Vancouver, British Columbia V5Z 1L6, Canada.
| | | | | | | | | |
Collapse
|
30
|
Maydan JS, Flibotte S, Edgley ML, Lau J, Selzer RR, Richmond TA, Pofahl NJ, Thomas JH, Moerman DG. Efficient high-resolution deletion discovery in Caenorhabditis elegans by array comparative genomic hybridization. Genome Res 2007; 17:337-47. [PMID: 17267812 PMCID: PMC1800925 DOI: 10.1101/gr.5690307] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have developed array Comparative Genomic Hybridization for Caenorhabditis elegans as a means of screening for novel induced deletions in this organism. We designed three microarrays consisting of overlapping 50-mer probes to annotated exons and micro-RNAs, the first with probes to chromosomes X and II, the second with probes to chromosome II alone, and a third to the entire genome. These arrays were used to reliably detect both a large (50 kb) multigene deletion and a small (1 kb) single-gene deletion in homozygous and heterozygous samples. In one case, a deletion breakpoint was resolved to fewer than 50 bp. In an experiment designed to identify new mutations we used the X:II and II arrays to detect deletions associated with lethal mutants on chromosome II. One is an 8-kb deletion targeting the ast-1 gene on chromosome II and another is a 141-bp deletion in the gene C06A8.1. Others span large sections of the chromosome, up to >750 kb. As a further application of array Comparative Genomic Hybridization in C. elegans we used the whole-genome array to detect the extensive natural gene content variation (almost 2%) between the N2 Bristol strain and the strain CB4856, a strain isolated in Hawaii and JU258, a strain isolated in Madeira.
Collapse
Affiliation(s)
- Jason S. Maydan
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stephane Flibotte
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 4S6 Canada
| | - Mark L. Edgley
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Joanne Lau
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | - James H. Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7730, USA
| | - Donald G. Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Corresponding author.E-mail ; fax (604) 822-2416
| |
Collapse
|
31
|
Abstract
Odour perception is initiated by specific interactions between odorants and a large repertoire of receptors in olfactory neurons. During the past few years, considerable progress has been made in tracing olfactory perception from the odorant receptor protein to the activity of olfactory neurons to higher processing centres and, ultimately, to behaviour. The most complete picture is emerging for the simplest olfactory system studied--that of the fruitfly Drosophila melanogaster. Comparison of rodent, insect and nematode olfaction reveals surprising differences and unexpected similarities among chemosensory systems.
Collapse
Affiliation(s)
- Cornelia I Bargmann
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
32
|
Fire A, Alcazar R, Tan F. Unusual DNA structures associated with germline genetic activity in Caenorhabditis elegans. Genetics 2006; 173:1259-73. [PMID: 16648589 PMCID: PMC1526662 DOI: 10.1534/genetics.106.057364] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 04/21/2006] [Indexed: 11/18/2022] Open
Abstract
We describe a surprising long-range periodicity that underlies a substantial fraction of C. elegans genomic sequence. Extended segments (up to several hundred nucleotides) of the C. elegans genome show a strong bias toward occurrence of AA/TT dinucleotides along one face of the helix while little or no such constraint is evident on the opposite helical face. Segments with this characteristic periodicity are highly overrepresented in intron sequences and are associated with a large fraction of genes with known germline expression in C. elegans. In addition to altering the path and flexibility of DNA in vitro, sequences of this character have been shown by others to constrain DNA::nucleosome interactions, potentially producing a structure that could resist the assembly of highly ordered (phased) nucleosome arrays that have been proposed as a precursor to heterochromatin. We propose a number of ways that the periodic occurrence of An/Tn clusters could reflect evolution and function of genes that express in the germ cell lineage of C. elegans.
Collapse
Affiliation(s)
- Andrew Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA.
| | | | | |
Collapse
|
33
|
Hillier LW, Coulson A, Murray JI, Bao Z, Sulston JE, Waterston RH. Genomics in C. elegans: so many genes, such a little worm. Genome Res 2006; 15:1651-60. [PMID: 16339362 DOI: 10.1101/gr.3729105] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Caenorhabditis elegans genome sequence is now complete, fully contiguous telomere to telomere and totaling 100,291,840 bp. The sequence has catalyzed the collection of systematic data sets and analyses, including a curated set of 19,735 protein-coding genes--with >90% directly supported by experimental evidence--and >1300 noncoding RNA genes. High-throughput efforts are under way to complete the gene sets, along with studies to characterize gene expression, function, and regulation on a genome-wide scale. The success of the worm project has had a profound effect on genome sequencing and on genomics more broadly. We now have a solid platform on which to build toward the lofty goal of a true molecular understanding of worm biology with all its implications including those for human health.
Collapse
Affiliation(s)
- Ladeana W Hillier
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Odor sensitivity may not be due to odor-receptor (OR) binding but rather may be due to emergent properties of transduction pathways and the anatomical convergence of olfactory neurons. A recent study suggests that odor-OR interactions are brief and infrequently activate heterotrimeric GTP-binding proteins (G proteins); in contrast, visual receptors have long-lasting activation states and activate many G proteins. These differences may reflect strategies that evolved to accommodate very different signals, and the mechanisms described might be applicable for receptors across phyla. However, whereas visual receptors (rhodopsin) appeared before protostome-deuterostome separation, ORs may be independently derived in different phyla. Alternatively, phylum-distinct ORs may share common ancestry but be influenced by diversifying selection. Phylum-distinct ORs may imply phylum-specific OR mechanisms, whereas common ancestry may imply common mechanisms. Nonetheless, most animals detect a similar repertoire of olfactory signals, and OR mechanisms may be convergent on those signals independent of receptor relatedness. Thus, recent insights into the molecular characteristics of odor perception in frogs may well be relevant to such processes as how mosquitoes detect host odors for a malaria-transmitting blood meal.
Collapse
Affiliation(s)
- Richard G Vogt
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
35
|
Abstract
Among a large number of homologous gene clusters in C. elegans, two gene families that appear to undergo concerted evolution were studied in detail. Both gene families are nematode specific and encode small secreted proteins of unknown function. For both families in three Caenorhabditis species, concerted groups of genes are characterized by close genomic proximity and by genes in inverted orientation. The rate of protein evolution in one of the two families could be calibrated by comparison with a closely related nonconcerted singleton gene with one-to-one orthologs in all three species. This comparison suggests that protein evolution in concerted gene clusters is two- to sevenfold accelerated. A broader survey of clustered gene families, focused on adjacent inverted gene pairs, identified an additional seven families in which concerted evolution probably occurs. All nine identified families encode relatively small proteins, eight of them encode putative secreted proteins, and most of these have very unusual amino acid composition or sequence. I speculate that these genes encode rapidly evolving antimicrobial peptides.
Collapse
Affiliation(s)
- James H Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
36
|
Thomas JH. Analysis of homologous gene clusters in Caenorhabditis elegans reveals striking regional cluster domains. Genetics 2005; 172:127-43. [PMID: 16291650 PMCID: PMC1456141 DOI: 10.1534/genetics.104.040030] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An algorithm for detecting local clusters of homologous genes was applied to the genome of Caenorhabditis elegans. Clusters of two or more homologous genes are abundant, totaling 1391 clusters containing 4607 genes, over one-fifth of all genes in C. elegans. Cluster genes are distributed unevenly in the genome, with the large majority located on autosomal chromosome arms, regions characterized by higher genetic recombination and more repeat sequences than autosomal centers and the X chromosome. Cluster genes are transcribed at much lower levels than average and very few have gross phenotypes as assayed by RNAi-mediated reduction of function. The molecular identity of cluster genes is unusual, with a preponderance of nematode-specific gene families that encode putative secreted and transmembrane proteins, and enrichment for genes implicated in xenobiotic detoxification and innate immunity. Gene clustering in Drosophila melanogaster is also substantial and the molecular identity of clustered genes follows a similar pattern. I hypothesize that autosomal chromosome arms in C. elegans undergo frequent local gene duplication and that these duplications support gene diversification and rapid evolution in response to environmental challenges. Although specific gene clusters have been documented in C. elegans, their abundance, genomic distribution, and unusual molecular identities were previously unrecognized.
Collapse
Affiliation(s)
- James H Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
37
|
Ono Y, Fujibuchi W, Suwa M. Automatic gene collection system for genome-scale overview of G-protein coupled receptors in eukaryotes. Gene 2005; 364:63-73. [PMID: 16126348 DOI: 10.1016/j.gene.2005.05.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 05/04/2005] [Accepted: 05/30/2005] [Indexed: 11/17/2022]
Abstract
We have developed an automatic system for identifying GPCR (G-protein coupled receptor) genes from various kinds of genomes, which is finally deposited in the SEVENS database (http://sevens.cbrc.jp/), by integrating such software as a gene finder, a sequence alignment tool, a motif and domain assignment tool, and a transmembrane helix predictor. SEVENS enables us to perform a genome-scale overview of the "GPCR universe" using sequences that are identified with high accuracy (99.4% sensitivity and 96.6% specificity). Using this system, we surveyed the complete genomes of 7 eukaryotes and 224 prokaryotes, and found that there are 4 to 1016 GPCR genes in the 7 eukaryotes, and only a total of 16 GPCR genes in all the prokaryotes. Our preliminary results indicate that 11 subfamilies of the Class A family, the Class 2(B) family, the Class 3(C) family and the fz/smo family are commonly found among human, fly, and nematode genomes. We also analyzed the chromosomal locations of the GPCR genes with the Kolmogorov-Smirnov test, and found that species-specific families, such as olfactory, taste, and chemokine receptors in human and nematode chemoreceptor in worm, tend to form clusters extensively, whereas no significant clusters were detected in fly and plant genomes.
Collapse
Affiliation(s)
- Yukiteru Ono
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), AIST Waterfront Bio-IT Research Building 10F, 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | | | | |
Collapse
|