1
|
Pouresmaeil M, Dall'Ara M, Salvato M, Turri V, Ratti C. Cauliflower mosaic virus: Virus-host interactions and its uses in biotechnology and medicine. Virology 2023; 580:112-119. [PMID: 36812696 DOI: 10.1016/j.virol.2023.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Cauliflower mosaic virus (CaMV) was the first discovered plant virus with genomic DNA that uses reverse transcriptase for replication. The CaMV 35S promoter is a constitutive promoter and thus, an attractive driver of gene expression in plant biotechnology. It is used in most transgenic crops to activate foreign genes which have been artificially inserted into the host plant. In the last century, producing food for the world's population while preserving the environment and human health is the main topic of agriculture. The damage caused by viral diseases has a significant negative economic impact on agriculture, and disease control is based on two strategies: immunization and prevention to contain virus spread, so correct identification of plant viruses is important for disease management. Here, we discuss CaMV from different aspects: taxonomy, structure and genome, host plants and symptoms, transmission and pathogenicity, prevention, control and application in biotechnology as well as in medicine. Also, we calculated the CAI index for three ORFs IV, V, and VI of the CaMV virus in host plants, the results of which can be used in the discussion of gene transfer or antibody production to identify the CaMV.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Department of Biotechnology, Faculty of Agriculture, Azarbijan Shahid Madani University, Tabriz, Iran.
| | - Mattia Dall'Ara
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, 40127, Bologna, Italy
| | - Maria Salvato
- University of Maryland, Department of Veterinary Medicine, College Park, MD, 20742, USA
| | - Valentina Turri
- Healthcare Direction, Istituto Scientifico Romagnolo per Lo Studio e La Cura Dei Tumori, IRCCS, 47014, Meldola, FC, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, 40127, Bologna, Italy
| |
Collapse
|
2
|
Verdier M, Chesnais Q, Pirolles E, Blanc S, Drucker M. The cauliflower mosaic virus transmission helper protein P2 modifies directly the probing behavior of the aphid vector Myzus persicae to facilitate transmission. PLoS Pathog 2023; 19:e1011161. [PMID: 36745680 PMCID: PMC9934384 DOI: 10.1371/journal.ppat.1011161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 01/27/2023] [Indexed: 02/07/2023] Open
Abstract
There is growing evidence that plant viruses manipulate their hosts and vectors in ways that increase transmission. However, to date only few viral components underlying these phenomena have been identified. Here we show that cauliflower mosaic virus (CaMV) protein P2 modifies the feeding behavior of its aphid vector. P2 is necessary for CaMV transmission because it mediates binding of virus particles to the aphid mouthparts. We compared aphid feeding behavior on plants infected with the wild-type CaMV strain Cabb B-JI or with a deletion mutant strain, Cabb B-JIΔP2, which does not produce P2. Only aphids probing Cabb B-JI infected plants doubled the number of test punctures during the first contact with the plant, indicating a role of P2. Membrane feeding assays with purified P2 and virus particles confirmed that these viral products alone are sufficient to cause the changes in aphid probing. The behavior modifications were not observed on plants infected with a CaMV mutant expressing P2Rev5, unable to bind to the mouthparts. These results are in favor of a virus manipulation, where attachment of P2 to a specific region in the aphid stylets-the acrostyle-exercises a direct effect on vector behavior at a crucial moment, the first vector contact with the infected plant, which is essential for virus acquisition.
Collapse
Affiliation(s)
- Maxime Verdier
- SVQV UMR 1131 INRAE Centre Grand Est–Colmar, Université Strasbourg, Colmar, France
| | - Quentin Chesnais
- SVQV UMR 1131 INRAE Centre Grand Est–Colmar, Université Strasbourg, Colmar, France,* E-mail: (QC); (MD)
| | - Elodie Pirolles
- PHIM, INRAE Centre Occitanie–Montpellier, CIRAD, IRD, Université Montpellier, Institut Agro, Montferrier-sur-Lez, France
| | - Stéphane Blanc
- PHIM, INRAE Centre Occitanie–Montpellier, CIRAD, IRD, Université Montpellier, Institut Agro, Montferrier-sur-Lez, France
| | - Martin Drucker
- SVQV UMR 1131 INRAE Centre Grand Est–Colmar, Université Strasbourg, Colmar, France,* E-mail: (QC); (MD)
| |
Collapse
|
3
|
Hoffmann G, Mahboubi A, Bente H, Garcia D, Hanson J, Hafrén A. Arabidopsis RNA processing body components LSM1 and DCP5 aid in the evasion of translational repression during Cauliflower mosaic virus infection. THE PLANT CELL 2022; 34:3128-3147. [PMID: 35511183 PMCID: PMC9338796 DOI: 10.1093/plcell/koac132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Viral infections impose extraordinary RNA stress, triggering cellular RNA surveillance pathways such as RNA decapping, nonsense-mediated decay, and RNA silencing. Viruses need to maneuver among these pathways to establish infection and succeed in producing high amounts of viral proteins. Processing bodies (PBs) are integral to RNA triage in eukaryotic cells, with several distinct RNA quality control pathways converging for selective RNA regulation. In this study, we investigated the role of Arabidopsis thaliana PBs during Cauliflower mosaic virus (CaMV) infection. We found that several PB components are co-opted into viral factories that support virus multiplication. This pro-viral role was not associated with RNA decay pathways but instead, we established that PB components are helpers in viral RNA translation. While CaMV is normally resilient to RNA silencing, dysfunctions in PB components expose the virus to this pathway, which is similar to previous observations for transgenes. Transgenes, however, undergo RNA quality control-dependent RNA degradation and transcriptional silencing, whereas CaMV RNA remains stable but becomes translationally repressed through decreased ribosome association, revealing a unique dependence among PBs, RNA silencing, and translational repression. Together, our study shows that PB components are co-opted by the virus to maintain efficient translation, a mechanism not associated with canonical PB functions.
Collapse
Affiliation(s)
- Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
- Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Amir Mahboubi
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Heinrich Bente
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
- Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Damien Garcia
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Johannes Hanson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
4
|
Chesnais Q, Verdier M, Burckbuchler M, Brault V, Pooggin M, Drucker M. Cauliflower mosaic virus protein P6-TAV plays a major role in alteration of aphid vector feeding behaviour but not performance on infected Arabidopsis. MOLECULAR PLANT PATHOLOGY 2021; 22:911-920. [PMID: 33993609 PMCID: PMC8295513 DOI: 10.1111/mpp.13069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Emerging evidence suggests that viral infection modifies host plant traits that in turn alter behaviour and performance of vectors colonizing the plants in a way conducive for transmission of both nonpersistent and persistent viruses. Similar evidence for semipersistent viruses like cauliflower mosaic virus (CaMV) is scarce. Here we compared the effects of Arabidopsis infection with mild (CM) and severe (JI) CaMV isolates on the feeding behaviour (recorded by the electrical penetration graph technique) and fecundity of the aphid vector Myzus persicae. Compared to mock-inoculated plants, feeding behaviour was altered similarly on CM- and JI-infected plants, but only aphids on JI-infected plants had reduced fecundity. To evaluate the role of the multifunctional CaMV protein P6-TAV, aphid feeding behaviour and fecundity were tested on transgenic Arabidopsis plants expressing wild-type (wt) and mutant versions of P6-TAV. In contrast to viral infection, aphid fecundity was unchanged on all transgenic lines, suggesting that other viral factors compromise fecundity. Aphid feeding behaviour was modified on wt P6-CM-, but not on wt P6-JI-expressing plants. Analysis of plants expressing P6 mutants identified N-terminal P6 domains contributing to modification of feeding behaviour. Taken together, we show that CaMV infection can modify both aphid fecundity and feeding behaviour and that P6 is only involved in the latter.
Collapse
Affiliation(s)
- Quentin Chesnais
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Maxime Verdier
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Myriam Burckbuchler
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Véronique Brault
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Mikhail Pooggin
- DEFENSIRNA, PHIM, INRAECIRADSupAgroIRDMUSEINRAE Centre Occitanie‐MontpellierMontferrier‐sur‐LezFrance
| | - Martin Drucker
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
- Present address:
Insect Models of Innate Immunity, IBMCUniversité de StrasbourgInstitut de Biologie Moléculaire et Cellulaire2 allée Konrad Roentgen67084 Strasbourg cedexFrance
| |
Collapse
|
5
|
Rajarapu SP, Ullman DE, Uzest M, Rotenberg D, Ordaz NA, Whitfield AE. Plant–Virus–Vector Interactions. Virology 2021. [DOI: 10.1002/9781119818526.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Then C, Bak A, Morisset A, Dáder B, Ducousso M, Macia JL, Drucker M. The N-terminus of the cauliflower mosaic virus aphid transmission protein P2 is involved in transmission body formation and microtubule interaction. Virus Res 2021; 297:198356. [PMID: 33667624 DOI: 10.1016/j.virusres.2021.198356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/01/2023]
Abstract
Cauliflower mosaic virus (CaMV) is transmitted by aphids using the non-circulative transmission mode: when the insects feed on infected leaves, virus particles from infected cells attach rapidly to their stylets and are transmitted to a new host when the aphids change plants. Mandatory for CaMV transmission, the viral helper protein P2 mediates as a molecular linker binding of the virus particles to the aphid stylets. P2 is available in infected plant cells in a viral inclusion that is specialized for transmission and named the transmission body (TB). When puncturing an infected leaf cell, the aphid triggers an ultra-rapid viral response, necessary for virus acquisition and called transmission activation: The TB disrupts and P2 is redistributed onto cortical microtubules, together with virus particles that are simultaneously set free from virus factories and join P2 on the microtubules to form the so-called mixed networks (MNs). The MNs are the predominant structure from which CaMV is acquired by aphids. However, the P2 domains involved in microtubule interaction are not known. To identify P2 regions involved in its functions, we generated a set of P2 mutants by alanine scanning and analyzed them in the viral context for their capacity to form a TB, to interact with microtubules and to transmit CaMV. Our results show that contrary to the previously characterized P2-P2 and P2-virion binding sites in its C-terminus, the microtubule binding site is contained in the N-terminal half of P2. Further, this region is important for TB formation since some P2 mutant proteins did not accumulate in TBs but were retained in the viral factories where P2 is translated. Taken together, the N-terminus of P2 is not only involved in vector interaction as previously reported, but also in interaction with microtubules and in formation of TBs.
Collapse
Affiliation(s)
| | - Aurélie Bak
- INRAE Centre Occitanie - Montpellier, France
| | | | | | | | | | - Martin Drucker
- INRAE Centre Occitanie - Montpellier, France; INRAE Centre Grand Est - Colmar, France.
| |
Collapse
|
7
|
Agranovsky A. Enhancing Capsid Proteins Capacity in Plant Virus-Vector Interactions and Virus Transmission. Cells 2021; 10:cells10010090. [PMID: 33430410 PMCID: PMC7827187 DOI: 10.3390/cells10010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/02/2022] Open
Abstract
Vector transmission of plant viruses is basically of two types that depend on the virus helper component proteins or the capsid proteins. A number of plant viruses belonging to disparate groups have developed unusual capsid proteins providing for interactions with the vector. Thus, cauliflower mosaic virus, a plant pararetrovirus, employs a virion associated p3 protein, the major capsid protein, and a helper component for the semi-persistent transmission by aphids. Benyviruses encode a capsid protein readthrough domain (CP-RTD) located at one end of the rod-like helical particle, which serves for the virus transmission by soil fungal zoospores. Likewise, the CP-RTD, being a minor component of the luteovirus icosahedral virions, provides for persistent, circulative aphid transmission. Closteroviruses encode several CPs and virion-associated proteins that form the filamentous helical particles and mediate transmission by aphid, whitefly, or mealybug vectors. The variable strategies of transmission and evolutionary ‘inventions’ of the unusual capsid proteins of plant RNA viruses are discussed.
Collapse
|
8
|
Chen Q, Wei T. Cell Biology During Infection of Plant Viruses in Insect Vectors and Plant Hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:18-25. [PMID: 31729283 DOI: 10.1094/mpmi-07-19-0184-cr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plant viruses typically cause severe pathogenicity in plants, even resulting in the death of plants. Many pathogenic plant viruses are transmitted in a persistent manner via insect vectors. Interestingly, unlike in the plant hosts, persistent viruses are either nonpathogenic or show limited pathogenicity in their insect vectors, while taking advantage of the cellular machinery of insect vectors for completing their life cycles. This review discusses why persistent plant viruses are nonpathogenic or have limited pathogenicity to their insect vectors while being pathogenic to plants hosts. Current advances in cell biology of virus-insect vector interactions are summarized, including virus-induced inclusion bodies, changes of insect cellular ultrastructure, and immune response of insects to the viruses, especially autophagy and apoptosis. The corresponding findings of virus-plant interactions are compared. An integrated view of the balance strategy achieved by the interaction between viral attack and the immune response of insect is presented. Finally, we outline progress gaps between virus-insect and virus-plant interactions, thus highlighting the contributions of cultured cells to the cell biology of virus-insect interactions. Furthermore, future prospects of studying the cell biology of virus-vector interactions are presented.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
9
|
Oluwole OSA. Circatidal rhythm of void volume in young healthy adults. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2018.1474570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Turnip Mosaic Virus Is a Second Example of a Virus Using Transmission Activation for Plant-to-Plant Propagation by Aphids. J Virol 2019; 93:JVI.01822-18. [PMID: 30760573 DOI: 10.1128/jvi.01822-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/06/2019] [Indexed: 12/16/2022] Open
Abstract
Cauliflower mosaic virus (CaMV; family Caulimoviridae) responds to the presence of aphid vectors on infected plants by forming specific transmission morphs. This phenomenon, coined transmission activation (TA), controls plant-to-plant propagation of CaMV. A fundamental question is whether other viruses rely on TA. Here, we demonstrate that transmission of the unrelated turnip mosaic virus (TuMV; family Potyviridae) is activated by the reactive oxygen species H2O2 and inhibited by the calcium channel blocker LaCl3 H2O2-triggered TA manifested itself by the induction of intermolecular cysteine bonds between viral helper component protease (HC-Pro) molecules and by the formation of viral transmission complexes, composed of TuMV particles and HC-Pro that mediates vector binding. Consistently, LaCl3 inhibited intermolecular HC-Pro cysteine bonds and HC-Pro interaction with viral particles. These results show that TuMV is a second virus using TA for transmission but using an entirely different mechanism than CaMV. We propose that TuMV TA requires reactive oxygen species (ROS) and calcium signaling and that it is operated by a redox switch.IMPORTANCE Transmission activation, i.e., a viral response to the presence of vectors on infected hosts that regulates virus acquisition and thus transmission, is an only recently described phenomenon. It implies that viruses contribute actively to their transmission, something that has been shown before for many other pathogens but not for viruses. However, transmission activation has been described so far for only one virus, and it was unknown whether other viruses also rely on transmission activation. Here we present evidence that a second virus uses transmission activation, suggesting that it is a general transmission strategy.
Collapse
|
11
|
Tenuivirus utilizes its glycoprotein as a helper component to overcome insect midgut barriers for its circulative and propagative transmission. PLoS Pathog 2019; 15:e1007655. [PMID: 30921434 PMCID: PMC6456217 DOI: 10.1371/journal.ppat.1007655] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/09/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022] Open
Abstract
Many persistent transmitted plant viruses, including rice stripe virus (RSV), cause serious damage to crop production worldwide. Although many reports have indicated that a successful insect-mediated virus transmission depends on a proper interaction between the virus and its insect vector, the mechanism(s) controlling this interaction remained poorly understood. In this study, we used RSV and its small brown planthopper (SBPH) vector as a working model to elucidate the molecular mechanisms underlying the entrance of RSV virions into SBPH midgut cells for virus circulative and propagative transmission. We have determined that this non-enveloped tenuivirus uses its non-structural glycoprotein NSvc2 as a helper component to overcome the midgut barrier(s) for RSV replication and transmission. In the absence of this glycoprotein, purified RSV virions were unable to enter SBPH midgut cells. In the RSV-infected cells, this glycoprotein was processed into two mature proteins: an amino-terminal protein (NSvc2-N) and a carboxyl-terminal protein (NSvc2-C). Both NSvc2-N and NSvc2-C interact with RSV virions. Our results showed that the NSvc2-N could bind directly to the surface of midgut lumen via its N-glycosylation sites. Upon recognition, the midgut cells underwent endocytosis followed by compartmentalization of RSV virions and NSvc2 into early and then late endosomes. The NSvc2-C triggered cell membrane fusion via its highly conserved fusion loop motifs under the acidic condition inside the late endosomes, leading to the release of RSV virions from endosomes into cytosol. In summary, our results showed for the first time that a rice tenuivirus utilized its glycoprotein NSvc2 as a helper component to ensure a proper interaction between its virions and SBPH midgut cells for its circulative and propagative transmission. Over 75% of the known plant viruses are insect transmitted. Understanding how plant viruses interact with their insect vectors during virus transmission is a key step towards the successful management of plant viruses worldwide. Several models for the direct or indirect virus–insect vector interactions have been proposed for the non-persistent or semi-persistent virus transmissions. However, the mechanisms controlling the interactions between viruses and their insect vector midgut barriers are poorly understood. In this study, we demonstrated that the circulative and propagative transmitted rice stripe virus (RSV) utilized its glycoprotein NSvc2 as a helper component to ensure a specific interaction between its virions and SBPH midgut cells to overcome the midgut barriers inside this vector. This is the first report of a viral helper component mediated mechanism for persistent-propagative virus transmission. Our new findings and working model should expand our knowledge on the molecular mechanism(s) controlling the interaction between virus and its insect vector during virus circulative and propagative transmission in nature.
Collapse
|
12
|
Dáder B, Burckbuchler M, Macia JL, Alcon C, Curie C, Gargani D, Zhou JS, Ng JCK, Brault V, Drucker M. Split green fluorescent protein as a tool to study infection with a plant pathogen, Cauliflower mosaic virus. PLoS One 2019; 14:e0213087. [PMID: 30840696 PMCID: PMC6402836 DOI: 10.1371/journal.pone.0213087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/14/2019] [Indexed: 12/03/2022] Open
Abstract
The split GFP technique is based on the auto-assembly of GFP when two polypeptides–GFP1-10 (residues 1–214; the detector) and GFP11 (residues 215–230; the tag)–both non-fluorescing on their own, associate spontaneously to form a fluorescent molecule. We evaluated this technique for its efficacy in contributing to the characterization of Cauliflower mosaic virus (CaMV) infection. A recombinant CaMV with GFP11 fused to the viral protein P6 (a key player in CaMV infection and major constituent of viral factory inclusions that arise during infection) was constructed and used to inoculate transgenic Arabidopsis thaliana expressing GFP1-10. The mutant virus (CaMV11P6) was infectious, aphid-transmissible and the insertion was stable over many passages. Symptoms on infected plants were delayed and milder. Viral protein accumulation, especially of recombinant 11P6, was greatly decreased, impeding its detection early in infection. Nonetheless, spread of infection from the inoculated leaf to other leaves was followed by whole plant imaging. Infected cells displayed in real time confocal laser scanning microscopy fluorescence in wild type-looking virus factories. Thus, it allowed for the first time to track a CaMV protein in vivo in the context of an authentic infection. 11P6 was immunoprecipitated with anti-GFP nanobodies, presenting a new application for the split GFP system in protein-protein interaction assays and proteomics. Taken together, split GFP can be an attractive alternative to using the entire GFP for protein tagging.
Collapse
Affiliation(s)
- Beatriz Dáder
- BGPI, INRA Centre Occitanie–Montpellier, SupAgro, CIRAD, Montpellier, France
| | - Myriam Burckbuchler
- SVQV, INRA Centre Grand Est—Colmar, Université de Strasbourg, Colmar, France
| | - Jean-Luc Macia
- BGPI, INRA Centre Occitanie–Montpellier, SupAgro, CIRAD, Montpellier, France
| | - Carine Alcon
- BPMP, CNRS, INRA Centre Occitanie—Montpellier, SupAgro, Univ Montpellier, Montpellier, France
| | - Catherine Curie
- BPMP, CNRS, INRA Centre Occitanie—Montpellier, SupAgro, Univ Montpellier, Montpellier, France
| | - Daniel Gargani
- BGPI, INRA Centre Occitanie–Montpellier, SupAgro, CIRAD, Montpellier, France
| | - Jaclyn S. Zhou
- Department of Microbiology and Plant Pathology, Center for Infectious Diseases and Vector Research, University of California, Riverside, Riverside, CA, United States of America
| | - James C. K. Ng
- Department of Microbiology and Plant Pathology, Center for Infectious Diseases and Vector Research, University of California, Riverside, Riverside, CA, United States of America
| | - Véronique Brault
- SVQV, INRA Centre Grand Est—Colmar, Université de Strasbourg, Colmar, France
| | - Martin Drucker
- BGPI, INRA Centre Occitanie–Montpellier, SupAgro, CIRAD, Montpellier, France
- SVQV, INRA Centre Grand Est—Colmar, Université de Strasbourg, Colmar, France
- * E-mail:
| |
Collapse
|
13
|
Abstract
Viruses transmitted by whiteflies are predominantly classified as having either persistent circulative or semipersistent transmission, and the majority of studies have addressed transmission of viruses in the genera Begomovirus (family Geminiviridae) and Crinivirus (family Closteroviridae), respectively. Early studies on vector transmission primarily addressed individual aspects of transmission; however, with the breadth of new technology now available, an increasingly greater number of studies involve coordinated research that is beginning to assemble a more complete picture of how whiteflies and viruses have coevolved to facilitate transmission. In particular the integration of gene expression and metabolomic studies into broader research topics is providing knowledge of changes within the whitefly vector in response to the presence of viruses that would have been impossible to identify previously. Examples include comparative studies on the response of Bemisia tabaci to begomovirus and crinivirus infection of common host plants, evolution of whitefly endosymbiont relationships, and opportunities to evaluate responses to specific transmission-related events. Integration of metabolomics, as well as the application of electrical penetration graphing, can lead to an ability to monitor the changes that occur in vector insects associated with specific aspects of virus transmission. Through gaining more complete knowledge of the mechanisms behind whitefly transmission of viruses new control strategies will undoubtedly emerge for control of whiteflies and the viruses they transmit.
Collapse
|
14
|
Geldreich A, Haas G, Kubina J, Bouton C, Tanguy M, Erhardt M, Keller M, Ryabova L, Dimitrova M. Formation of large viroplasms and virulence of Cauliflower mosaic virus in turnip plants depend on the N-terminal EKI sequence of viral protein TAV. PLoS One 2017; 12:e0189062. [PMID: 29253877 PMCID: PMC5734791 DOI: 10.1371/journal.pone.0189062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) TAV protein (TransActivator/Viroplasmin) plays a pivotal role during the infection cycle since it activates translation reinitiation of viral polycistronic RNAs and suppresses RNA silencing. It is also the major component of cytoplasmic electron-dense inclusion bodies (EDIBs) called viroplasms that are particularly evident in cells infected by the virulent CaMV Cabb B-JI isolate. These EDIBs are considered as virion factories, vehicles for CaMV intracellular movement and reservoirs for CaMV transmission by aphids. In this study, focused on different TAV mutants in vivo, we demonstrate that three physically separated domains collectively participate to the formation of large EDIBs: the N-terminal EKI motif, a sequence of the MAV domain involved in translation reinitiation and a C-terminal region encompassing the zinc finger. Surprisingly, EKI mutant TAVm3, corresponding to a substitution of the EKI motif at amino acids 11-13 by three alanines (AAA), which completely abolished the formation of large viroplasms, was not lethal for CaMV but highly reduced its virulence without affecting the rate of systemic infection. Expression of TAVm3 in a viral context led to formation of small irregularly shaped inclusion bodies, mild symptoms and low levels of viral DNA and particles accumulation, despite the production of significant amounts of mature capsid proteins. Unexpectedly, for CaMV-TAVm3 the formation of viral P2-containing electron-light inclusion body (ELIB), which is essential for CaMV aphid transmission, was also altered, thus suggesting an indirect role of the EKI tripeptide in CaMV plant-to-plant propagation. This important functional contribution of the EKI motif in CaMV biology can explain the strict conservation of this motif in the TAV sequences of all CaMV isolates.
Collapse
Affiliation(s)
- Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Gabrielle Haas
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Julie Kubina
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Clément Bouton
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Mélanie Tanguy
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Mario Keller
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Lyubov Ryabova
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
15
|
Schoelz JE, Leisner S. Setting Up Shop: The Formation and Function of the Viral Factories of Cauliflower mosaic virus. FRONTIERS IN PLANT SCIENCE 2017; 8:1832. [PMID: 29163571 PMCID: PMC5670102 DOI: 10.3389/fpls.2017.01832] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 05/23/2023]
Abstract
Similar to cells, viruses often compartmentalize specific functions such as genome replication or particle assembly. Viral compartments may contain host organelle membranes or they may be mainly composed of viral proteins. These compartments are often termed: inclusion bodies (IBs), viroplasms or viral factories. The same virus may form more than one type of IB, each with different functions, as illustrated by the plant pararetrovirus, Cauliflower mosaic virus (CaMV). CaMV forms two distinct types of IBs in infected plant cells, those composed mainly of the viral proteins P2 (which are responsible for transmission of CaMV by insect vectors) and P6 (required for viral intra-and inter-cellular infection), respectively. P6 IBs are the major focus of this review. Much of our understanding of the formation and function of P6 IBs comes from the analyses of their major protein component, P6. Over time, the interactions and functions of P6 have been gradually elucidated. Coupled with new technologies, such as fluorescence microscopy with fluorophore-tagged viral proteins, these data complement earlier work and provide a clearer picture of P6 IB formation. As the activities and interactions of the viral proteins have gradually been determined, the functions of P6 IBs have become clearer. This review integrates the current state of knowledge on the formation and function of P6 IBs to produce a coherent model for the activities mediated by these sophisticated virus-manufacturing machines.
Collapse
Affiliation(s)
- James E. Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Scott Leisner
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
16
|
Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proc Natl Acad Sci U S A 2017; 114:E2026-E2035. [PMID: 28223514 DOI: 10.1073/pnas.1610687114] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Autophagy plays a paramount role in mammalian antiviral immunity including direct targeting of viruses and their individual components, and many viruses have evolved measures to antagonize or even exploit autophagy mechanisms for the benefit of infection. In plants, however, the functions of autophagy in host immunity and viral pathogenesis are poorly understood. In this study, we have identified both anti- and proviral roles of autophagy in the compatible interaction of cauliflower mosaic virus (CaMV), a double-stranded DNA pararetrovirus, with the model plant Arabidopsis thaliana We show that the autophagy cargo receptor NEIGHBOR OF BRCA1 (NBR1) targets nonassembled and virus particle-forming capsid proteins to mediate their autophagy-dependent degradation, thereby restricting the establishment of CaMV infection. Intriguingly, the CaMV-induced virus factory inclusions seem to protect against autophagic destruction by sequestering capsid proteins and coordinating particle assembly and storage. In addition, we found that virus-triggered autophagy prevents extensive senescence and tissue death of infected plants in a largely NBR1-independent manner. This survival function significantly extends the timespan of virus production, thereby increasing the chances for virus particle acquisition by aphid vectors and CaMV transmission. Together, our results provide evidence for the integration of selective autophagy into plant immunity against viruses and reveal potential viral strategies to evade and adapt autophagic processes for successful pathogenesis.
Collapse
|
17
|
Minor Coat and Heat Shock Proteins Are Involved in the Binding of Citrus Tristeza Virus to the Foregut of Its Aphid Vector, Toxoptera citricida. Appl Environ Microbiol 2016; 82:6294-6302. [PMID: 27520823 DOI: 10.1128/aem.01914-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
Vector transmission is a critical stage in the viral life cycle, yet for most plant viruses how they interact with their vector is unknown or is explained by analogy with previously described relatives. Here we examined the mechanism underlying the transmission of citrus tristeza virus (CTV) by its aphid vector, Toxoptera citricida, with the objective of identifying what virus-encoded proteins it uses to interact with the vector. Using fluorescently labeled virions, we demonstrated that CTV binds specifically to the lining of the cibarium of the aphid. Through in vitro competitive binding assays between fluorescent virions and free viral proteins, we determined that the minor coat protein is involved in vector interaction. We also found that the presence of two heat shock-like proteins, p61 and p65, reduces virion binding in vitro Additionally, treating the dissected mouthparts with proteases did not affect the binding of CTV virions. In contrast, chitinase treatment reduced CTV binding to the foregut. Finally, competition with glucose, N-acetyl-β-d-glucosamine, chitobiose, and chitotriose reduced the binding. These findings together suggest that CTV binds to the sugar moieties of the cuticular surface of the aphid cibarium, and the binding involves the concerted activity of three virus-encoded proteins. IMPORTANCE Limited information is known about the specific interactions between citrus tristeza virus and its aphid vectors. These interactions are important for the process of successful transmission. In this study, we localized the CTV retention site as the cibarium of the aphid foregut. Moreover, we demonstrated that the nature of these interactions is protein-carbohydrate binding. The viral proteins, including the minor coat protein and two heat shock proteins, bind to sugar moieties on the surface of the foregut. These findings will help in understanding the transmission mechanism of CTV by the aphid vector and may help in developing control strategies which interfere with the CTV binding to its insect vector to block the transmission.
Collapse
|
18
|
Drucker M, Then C. Transmission activation in non-circulative virus transmission: a general concept? Curr Opin Virol 2015; 15:63-8. [PMID: 26318641 DOI: 10.1016/j.coviro.2015.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/29/2015] [Accepted: 08/09/2015] [Indexed: 11/26/2022]
Abstract
Many viruses are transmitted by arthropod vectors. An important mode of transmission is the noncirculative or mechanical transmission where viruses attach to the vector mouthparts for transport to a new host. It has long been assumed that noncirculative transmission is an unsophisticated mode of viral spread, and in the simplest case mere contamination of the vector mouthparts. However, emerging evidence strongly suggests that noncirculative transmission, like other transmission strategies, results from specific interactions between pathogens, hosts, and vectors. Recently, new insights into this concept have been obtained, by demonstrating that a plant virus responds instantly to the presence of its aphid vector on the host by forming transmission morphs. This novel concept, named Transmission Activation (TA), where viruses respond directly or via the host to the outside world, opens new research horizons.
Collapse
Affiliation(s)
- Martin Drucker
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), TA A54K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France.
| | - Christiane Then
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), TA A54K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| |
Collapse
|
19
|
Insect vector-mediated transmission of plant viruses. Virology 2015; 479-480:278-89. [DOI: 10.1016/j.virol.2015.03.026] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 02/17/2015] [Accepted: 03/06/2015] [Indexed: 12/24/2022]
|
20
|
Virus factories of cauliflower mosaic virus are virion reservoirs that engage actively in vector transmission. J Virol 2013; 87:12207-15. [PMID: 24006440 DOI: 10.1128/jvi.01883-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) forms two types of inclusion bodies within infected plant cells: numerous virus factories, which are the sites for viral replication and virion assembly, and a single transmission body (TB), which is specialized for virus transmission by aphid vectors. The TB reacts within seconds to aphid feeding on the host plant by total disruption and redistribution of its principal component, the viral transmission helper protein P2, onto microtubules throughout the cell. At the same time, virions also associate with microtubules. This redistribution of P2 and virions facilitates transmission and is reversible; the TB reforms within minutes after vector departure. Although some virions are present in the TB before disruption, their subsequent massive accumulation on the microtubule network suggests that they also are released from virus factories. Using drug treatments, mutant viruses, and exogenous supply of viral components to infected protoplasts, we show that virions can rapidly exit virus factories and, once in the cytoplasm, accumulate together with the helper protein P2 on the microtubule network. Moreover, we show that during reversion of this phenomenon, virions from the microtubule network can either be incorporated into the reverted TB or return to the virus factories. Our results suggest that CaMV factories are dynamic structures that participate in vector transmission by controlled release and uptake of virions during TB reaction.
Collapse
|
21
|
Martinière A, Bak A, Macia JL, Lautredou N, Gargani D, Doumayrou J, Garzo E, Moreno A, Fereres A, Blanc S, Drucker M. A virus responds instantly to the presence of the vector on the host and forms transmission morphs. eLife 2013; 2:e00183. [PMID: 23358702 PMCID: PMC3552618 DOI: 10.7554/elife.00183] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/17/2012] [Indexed: 01/08/2023] Open
Abstract
Many plant and animal viruses are spread by insect vectors. Cauliflower mosaic virus (CaMV) is aphid-transmitted, with the virus being taken up from specialized transmission bodies (TB) formed within infected plant cells. However, the precise events during TB-mediated virus acquisition by aphids are unknown. Here, we show that TBs react instantly to the presence of the vector by ultra-rapid and reversible redistribution of their key components onto microtubules throughout the cell. Enhancing or inhibiting this TB reaction pharmacologically or by using a mutant virus enhanced or inhibited transmission, respectively, confirming its requirement for efficient virus-acquisition. Our results suggest that CaMV can perceive aphid vectors, either directly or indirectly by sharing the host perception. This novel concept in virology, where viruses respond directly or via the host to the outside world, opens new research horizons, that is, investigating the impact of ‘perceptive behaviors’ on other steps of the infection cycle. DOI:http://dx.doi.org/10.7554/eLife.00183.001 Viruses are infectious agents that can replicate only inside a living host cell. When a virus infects an animal or plant, it introduces its own genetic material and tricks the host cells into producing viral proteins that can be used to assemble new viruses. An essential step in the life cycle of any virus is transmission to a new host: understanding this process can be crucial in the fight against viral epidemics. Many viruses use living organisms, or vectors, to move between hosts. In the case of plant viruses such as cauliflower mosaic virus, the vectors are often aphids. When an aphid sucks sap out of a leaf, virus particles already present in the leaf become attached to its mouth, and these viruses can be transferred to the next plant that the insect feeds on. However, in order for cauliflower mosaic virus particles to become attached to the aphid, structures called transmission bodies must form beforehand in the infected plant cells. These structures are known to contain helper proteins that bind the viruses to the mouth of the aphid, but the precise role of the transmission body has remained obscure. Now Martinière et al. show that the transmission body is in fact a dynamic structure that reacts to the presence of aphids and, in so doing, boosts the efficiency of viral transmission. In particular, they show that the action of an aphid feeding on an infected leaf triggers a rapid and massive influx of a protein called tubulin into the transmission body. The transmission body then bursts open, dispersing helper protein-virus particle complexes throughout the cell, where they become more accessible to aphids. This series of events increases viral transmission rates twofold to threefold. The results show that a virus can detect insect vectors, likely by using the sensory system of its host, and trigger a response that boosts viral uptake and thus transmission. This is a novel concept in virology. It will be important to discover whether similar mechanisms are used by other viruses, including those that infect animals and humans. DOI:http://dx.doi.org/10.7554/eLife.00183.002
Collapse
Affiliation(s)
- Alexandre Martinière
- Virus Insect Plant Laboratory, INRA, Mixed Research Unit 385 , Campus International de Baillarguet , Montpellier , France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bragard C, Caciagli P, Lemaire O, Lopez-Moya JJ, MacFarlane S, Peters D, Susi P, Torrance L. Status and prospects of plant virus control through interference with vector transmission. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:177-201. [PMID: 23663003 DOI: 10.1146/annurev-phyto-082712-102346] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most plant viruses rely on vector organisms for their plant-to-plant spread. Although there are many different natural vectors, few plant virus-vector systems have been well studied. This review describes our current understanding of virus transmission by aphids, thrips, whiteflies, leafhoppers, planthoppers, treehoppers, mites, nematodes, and zoosporic endoparasites. Strategies for control of vectors by host resistance, chemicals, and integrated pest management are reviewed. Many gaps in the knowledge of the transmission mechanisms and a lack of available host resistance to vectors are evident. Advances in genome sequencing and molecular technologies will help to address these problems and will allow innovative control methods through interference with vector transmission. Improved knowledge of factors affecting pest and disease spread in different ecosystems for predictive modeling is also needed. Innovative control measures are urgently required because of the increased risks from vector-borne infections that arise from environmental change.
Collapse
Affiliation(s)
- C Bragard
- Earth & Life Institute, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Moshe A, Gorovits R. Virus-induced aggregates in infected cells. Viruses 2012; 4:2218-32. [PMID: 23202461 PMCID: PMC3497049 DOI: 10.3390/v4102218] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/27/2012] [Accepted: 09/29/2012] [Indexed: 12/21/2022] Open
Abstract
During infection, many viruses induce cellular remodeling, resulting in the formation of insoluble aggregates/inclusions, usually containing viral structural proteins. Identification of aggregates has become a useful diagnostic tool for certain viral infections. There is wide variety of viral aggregates, which differ by their location, size, content and putative function. The role of aggregation in the context of a specific virus is often poorly understood, especially in the case of plant viruses. The aggregates are utilized by viruses to house a large complex of proteins of both viral and host origin to promote virus replication, translation, intra- and intercellular transportation. Aggregated structures may protect viral functional complexes from the cellular degradation machinery. Alternatively, the activation of host defense mechanisms may involve sequestration of virus components in aggregates, followed by their neutralization as toxic for the host cell. The diversity of virus-induced aggregates in mammalian and plant cells is the subject of this review.
Collapse
Affiliation(s)
- Adi Moshe
- Institute of Plant Sciences and Genetics in Agriculture and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | |
Collapse
|
24
|
Bak A, Irons SL, Martinière A, Blanc S, Drucker M. Host cell processes to accomplish mechanical and non-circulative virus transmission. PROTOPLASMA 2012; 249:529-39. [PMID: 21984344 DOI: 10.1007/s00709-011-0328-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/28/2011] [Indexed: 05/22/2023]
Abstract
Mechanical vector-less transmission of viruses, as well as vector-mediated non-circulative virus transmission, where the virus attaches only to the exterior of the vector during the passage to a new host, are apparently simple processes: the viruses are carried along with the wind, the food or by the vector to a new host. We discuss here, using the examples of the non-circulatively transmitted Cauliflower mosaic virus that binds to its aphid vector's exterior mouthparts, and that of the mechanically (during feeding activity) transmitted Autographa californica multicapsid nucleopolyhedrovirus, that transmission of these viruses is not so simple as previously thought. Rather, these viruses prepare their transmission carefully and long before the actual acquisition event. Host-virus interactions play a pivotal and specialised role in the future encounter with the vector or the new host. This ensures optimal propagation and enlarges the tremendous bottleneck transmission presents for viruses and other pathogens.
Collapse
Affiliation(s)
- Aurélie Bak
- INRA, Equipe CaGeTE, UMR BGPI Plant Pathogen Interactions, TA A54K Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
25
|
Moreno A, Tjallingii WF, Fernandez-Mata G, Fereres A. Differences in the mechanism of inoculation between a semi-persistent and a non-persistent aphid-transmitted plant virus. J Gen Virol 2011; 93:662-667. [PMID: 22090212 DOI: 10.1099/vir.0.037887-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inoculation of the semi-persistent cauliflower mosaic virus (CaMV, genus Caulimovirus) is associated with successive brief (5-10 s) intracellular stylet punctures (pd) when aphids probe in epidermal and mesophyll cells. In contrast to non-persistent viruses, there is no evidence for which of the pd subphases (II-1, II-2 and II-3) is involved in the inoculation of CaMV. Experiments were conducted using the electrical penetration graph (EPG) technique to investigate which particular subphases of the pd are associated with the inoculation of CaMV to turnip by its aphid vector Brevicoryne brassicae. In addition, the same aphid species/test plant combination was used to compare the role of the pd subphases in the inoculation of the non-persistent turnip mosaic virus (TuMV, genus Potyvirus). Inoculation of TuMV was found to be related to subphase II-1, confirming earlier results, but CaMV inoculation appeared to be related exclusively to subphase II-2 instead. The mechanism of CaMV inoculation and the possible nature of subphase II-2 are discussed in the scope of our findings.
Collapse
Affiliation(s)
- Aranzazu Moreno
- Departamento de Protección Vegetal, Instituto de Ciencias Agrarias, CSIC, Serrano 115 Dpdo, 28006 Madrid, Spain
| | - W Freddy Tjallingii
- EPG systems, Dillenburg 12, 6703 CJ Wageningen, The Netherlands.,Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands
| | - Gabriela Fernandez-Mata
- Departamento de Protección Vegetal, Instituto de Ciencias Agrarias, CSIC, Serrano 115 Dpdo, 28006 Madrid, Spain
| | - Alberto Fereres
- Departamento de Protección Vegetal, Instituto de Ciencias Agrarias, CSIC, Serrano 115 Dpdo, 28006 Madrid, Spain
| |
Collapse
|
26
|
VAPA, an innovative "virus-acquisition phenotyping assay" opens new horizons in research into the vector-transmission of plant viruses. PLoS One 2011; 6:e23241. [PMID: 21853093 PMCID: PMC3154327 DOI: 10.1371/journal.pone.0023241] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/08/2011] [Indexed: 11/24/2022] Open
Abstract
Host-to-host transmission—a key step in plant virus infection cycles—is ensured predominantly by vectors, especially aphids and related insects. A deeper understanding of the mechanisms of virus acquisition, which is critical to vector-transmission, might help to design future virus control strategies, because any newly discovered molecular or cellular process is a potential target for hampering viral spread within host populations. With this aim in mind, an aphid membrane-feeding assay was developed where aphids transmitted two non-circulative viruses [cauliflower mosaic virus (CaMV) and turnip mosaic virus] from infected protoplasts. In this assay, virus acquisition occurs exclusively from living cells. Most interestingly, we also show that CaMV is less efficiently transmitted by aphids in the presence of oryzalin—a microtubule-depolymerising drug. The example presented here demonstrates that our technically simple “virus-acquisition phenotyping assay” (VAPA) provides a first opportunity to implement correlative studies relating the physiological state of infected plant cells to vector-transmission efficiency.
Collapse
|
27
|
Blanc S, Uzest M, Drucker M. New research horizons in vector-transmission of plant viruses. Curr Opin Microbiol 2011; 14:483-91. [DOI: 10.1016/j.mib.2011.07.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/28/2011] [Accepted: 07/05/2011] [Indexed: 12/24/2022]
|
28
|
Gutiérrez S, Yvon M, Thébaud G, Monsion B, Michalakis Y, Blanc S. Dynamics of the multiplicity of cellular infection in a plant virus. PLoS Pathog 2010; 6:e1001113. [PMID: 20862320 PMCID: PMC2940754 DOI: 10.1371/journal.ppat.1001113] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 08/18/2010] [Indexed: 01/22/2023] Open
Abstract
Recombination, complementation and competition profoundly influence virus evolution and epidemiology. Since viruses are intracellular parasites, the basic parameter determining the potential for such interactions is the multiplicity of cellular infection (cellular MOI), i.e. the number of viral genome units that effectively infect a cell. The cellular MOI values that prevail in host organisms have rarely been investigated, and whether they remain constant or change widely during host invasion is totally unknown. Here, we fill this experimental gap by presenting the first detailed analysis of the dynamics of the cellular MOI during colonization of a host plant by a virus. Our results reveal ample variations between different leaf levels during the course of infection, with values starting close to 2 and increasing up to 13 before decreasing to initial levels in the latest infection stages. By revealing wide dynamic changes throughout a single infection, we here illustrate the existence of complex scenarios where the opportunity for recombination, complementation and competition among viral genomes changes greatly at different infection phases and at different locations within a multi-cellular host. Viruses are fast evolving organisms for which changes in fitness and virulence are driven by interactions between genomes such as recombination, functional complementation, and competition. Viruses being intra-cellular parasites, one basic parameter determines the potential for such interactions: the cellular multiplicity of infection (cellular MOI), defined as the number of genome units actually penetrating and co-replicating within individual cells of the host. Despite its importance for virus evolution, this trait has scarcely been investigated. For example, there are only three point estimates for eukaryote-infecting viruses while the possibility that the cellular MOI may vary during the infection or across organs of a given host individual has never been conclusively addressed. By monitoring the cellular MOI in plants infected by the Cauliflower mosaic virus we found remarkably ample variations during the development of the infection process in successive leaf levels. Our results reveal that the opportunities for recombination, complementation and competition among viral genomes can greatly change at different infection phases and at different locations within a multi-cellular host.
Collapse
Affiliation(s)
- Serafín Gutiérrez
- Unité Mixte de Recherche BGPI, INRA-CIRAD-SupAgro, TA A-54/K, Campus International de Baillarguet, Montpellier, France
| | - Michel Yvon
- Unité Mixte de Recherche BGPI, INRA-CIRAD-SupAgro, TA A-54/K, Campus International de Baillarguet, Montpellier, France
| | - Gaël Thébaud
- Unité Mixte de Recherche BGPI, INRA-CIRAD-SupAgro, TA A-54/K, Campus International de Baillarguet, Montpellier, France
| | - Baptiste Monsion
- Unité Mixte de Recherche BGPI, INRA-CIRAD-SupAgro, TA A-54/K, Campus International de Baillarguet, Montpellier, France
| | - Yannis Michalakis
- Unité Mixte de Recherche GEMI 2724, CNRS-IRD, Avenue Agropolis, B.P. 64501, Montpellier, France
| | - Stéphane Blanc
- Unité Mixte de Recherche BGPI, INRA-CIRAD-SupAgro, TA A-54/K, Campus International de Baillarguet, Montpellier, France
- * E-mail:
| |
Collapse
|
29
|
Bencharki B, Boissinot S, Revollon S, Ziegler-Graff V, Erdinger M, Wiss L, Dinant S, Renard D, Beuve M, Lemaitre-Guillier C, Brault V. Phloem protein partners of Cucurbit aphid borne yellows virus: possible involvement of phloem proteins in virus transmission by aphids. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:799-810. [PMID: 20459319 DOI: 10.1094/mpmi-23-6-0799] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Poleroviruses are phytoviruses strictly transmitted by phloem-feeding aphids in a circulative and nonpropagative mode. During ingestion, aphids sample virions in sieve tubes along with sap. Therefore, any sap protein bound to virions will be acquired by the insects and could potentially be involved in the transmission process. By developing in vitro virus-overlay assays on sap proteins collected from cucumber, we observed that approximately 20 proteins were able to bind to purified particles of Cucurbit aphid borne yellows virus (CABYV). Among them, eight proteins were identified by mass spectrometry. The role of two candidates belonging to the PP2-like family (predominant lectins found in cucurbit sap) in aphid transmission was further pursued by using purified orthologous PP2 proteins from Arabidopsis. Addition of these proteins to the virus suspension in the aphid artificial diet greatly increased virus transmission rate. This shift was correlated with an increase in the number of viral genomes in insect cells and with an increase of virion stability in vitro. Surprisingly, increase of the virus transmission rate was also monitored after addition of unrelated proteins in the aphid diet, suggesting that any soluble protein at sufficiently high concentration in the diet and acquired together with virions could stimulate virus transmission.
Collapse
Affiliation(s)
- B Bencharki
- INRA Université de Strasbourg, UMR SVQV, 28 rue de Herrlisheim BP 20507, 68021 Colmar, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Structural insights into the molecular mechanisms of cauliflower mosaic virus transmission by its insect vector. J Virol 2010; 84:4706-13. [PMID: 20181714 DOI: 10.1128/jvi.02662-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) is transmitted from plant to plant through a seemingly simple interaction with insect vectors. This process involves an aphid receptor and two viral proteins, P2 and P3. P2 binds to both the aphid receptor and P3, itself tightly associated with the virus particle, with the ensemble forming a transmissible viral complex. Here, we describe the conformations of both unliganded CaMV P3 protein and its virion-associated form. X-ray crystallography revealed that the N-terminal domain of unliganded P3 is a tetrameric parallel coiled coil with a unique organization showing two successive four-stranded subdomains with opposite supercoiling handedness stabilized by a ring of interchain disulfide bridges. A structural model of virus-liganded P3 proteins, folding as an antiparallel coiled-coil network coating the virus surface, was derived from molecular modeling. Our results highlight the structural and biological versatility of this coiled-coil structure and provide new insights into the molecular mechanisms involved in CaMV acquisition and transmission by the insect vector.
Collapse
|
31
|
Martinière A, Zancarini A, Drucker M. Aphid transmission of cauliflower mosaic virus: the role of the host plant. PLANT SIGNALING & BEHAVIOR 2009; 4:548-50. [PMID: 19816139 PMCID: PMC2688309 DOI: 10.4161/psb.4.6.8712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 04/10/2009] [Indexed: 05/21/2023]
Abstract
Transmission of plant viruses is the result of interactions between a given virus, the host plant and the vector. Most research has focused on molecular and cellular virus-vector interactions, and the host has only been regarded as a reservoir from which the virus is acquired by the vector more or less accidentally. However, a growing body of evidence suggests that the host can play a crucial role in transmission. Indeed, at least one virus, Cauliflower mosaic virus, exploits the host's cellular pathways to form specialized intracellular structures that optimize virus uptake by the vector and hence transmission.
Collapse
Affiliation(s)
- Alexandre Martinière
- Equipe CaGeTE, UMR 385 BGPI, INRA-CIRAD-SupAgro, Campus International de Baillarguet, Montpellier, France
| | | | | |
Collapse
|
32
|
Martinière A, Gargani D, Uzest M, Lautredou N, Blanc S, Drucker M. A role for plant microtubules in the formation of transmission-specific inclusion bodies of Cauliflower mosaic virus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:135-146. [PMID: 19077170 DOI: 10.1111/j.1365-313x.2008.03768.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Interactions between microtubules and viruses play important roles in viral infection. The best-characterized examples involve transport of animal viruses by microtubules to the nucleus or other intracellular destinations. In plant viruses, most work to date has focused on interaction between viral movement proteins and the cytoskeleton, which is thought to be involved in viral cell-to-cell spread. We show here, in Cauliflower mosaic virus (CaMV)-infected plant cells, that viral electron-lucent inclusion bodies (ELIBs), whose only known function is vector transmission, require intact microtubules for their efficient formation. The kinetics of the formation of CaMV-related inclusion bodies in transfected protoplasts showed that ELIBs represent newly emerging structures, appearing at late stages of the intracellular viral life cycle. Viral proteins P2 and P3 are first produced in multiple electron-dense inclusion bodies, and are later specifically exported to transiently co-localize with microtubules, before concentrating in a single, massive ELIB in each infected cell. Treatments with cytoskeleton-affecting drugs suggested that P2 and P3 might be actively transported on microtubules, by as yet unknown motors. In addition to providing information on the intracellular life cycle of CaMV, our results show that specific interactions between host cell and virus may be dedicated to a later role in vector transmission. More generally, they indicate a new unexpected function for plant cell microtubules in the virus life cycle, demonstrating that microtubules act not only on immediate intracellular or intra-host phenomena, but also on processes ultimately controlling inter-host transmission.
Collapse
Affiliation(s)
- Alexandre Martinière
- Equipe CaGeTE, UMR 385 BGPI CIRAD-INRA-SupAgro, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
A variety of techniques have been used to examine plant viral genomes, the functions of virus-encoded proteins, plant responses induced by virus infection and plant-virus interactions. This overview considers these technologies and how they have been used to identify novel viral and plant proteins or genes involved in disease and resistance responses, as well as defense signaling. These approaches include analysis of spatial and temporal responses by plants to infection, and techniques that allow the expression of viral genes transiently or transgenically in planta, the expression of plant and foreign genes from virus vectors, the silencing of plants genes, imaging of live, infected cells, and the detection of interactions between viral proteins and plant gene products, both in planta and in various in vitro or in vivo systems. These methods and some of the discoveries made using these approaches are discussed.
Collapse
Affiliation(s)
- Peter Palukaitis
- Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | |
Collapse
|
34
|
Abstract
Most phytoviruses rely on vectors for their spread and survival. Although a great variety of virus vectors have been described, there are relatively few different mechanisms mediating virus transmission by vectors: virions can either be internalized into vector cells where replication may or may not take place or they can simply be adsorbed on the vector's surface or cuticle. Virus transmission by vectors requires tight associations between viral proteins, generally capsid proteins, and vector compounds, usually referred to as receptors. This review will focus on the viral determinants involved in virus transmission. Only the best-known models for which molecular data are available are described.
Collapse
Affiliation(s)
- Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, Strasbourg, 67084, France
| | | |
Collapse
|
35
|
Khelifa M, Journou S, Krishnan K, Gargani D, Espérandieu P, Blanc S, Drucker M. Electron-lucent inclusion bodies are structures specialized for aphid transmission of cauliflower mosaic virus. J Gen Virol 2007; 88:2872-2880. [PMID: 17872542 DOI: 10.1099/vir.0.83009-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) is transmitted by aphids. For acquisition by the vector, a transmissible complex must form, composed of the virus particle, the viral coat-associated protein P3 and the helper protein P2. However, the components of the transmissible complex are largely separated in infected plant cells: most P3 virions are confined in electron-dense inclusion bodies, whereas P2 is sequestered in electron-lucent inclusion bodies (elIBs). This spatial separation controls virus acquisition by favouring the binding of virus-free P2 to the vector first, rendering the vector competent for later uptake of P3 virions. Consequently, sequential acquisition of virus from different cells or tissues is possible, with important implications for the biology of CaMV transmission. CaMV strains Campbell and CM1841 contain a single amino acid mutation (G94R) in the helper protein P2, rendering them non-transmissible from plant to plant. However, the mutant P2-94 protein supports aphid transmission when expressed heterologously and supplied to P3-CaMV complexes in vitro. The non-transmissibility of P2-94 was re-examined in vivo and it is shown here that the non-transmissibility of this P2 mutant is not due to low accumulation levels in infected plants, as suggested previously, but more specifically to the failure to form elIBs within infected plant cells. This demonstrates that elIBs are complex viral structures specialized for aphid transmission and suggests that viral inclusion bodies other than viral factories, most often considered as 'garbage cans', can in fact exhibit specific functions.
Collapse
Affiliation(s)
- Mounia Khelifa
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Sandra Journou
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Kalpana Krishnan
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Daniel Gargani
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Pascal Espérandieu
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Stéphane Blanc
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Martin Drucker
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| |
Collapse
|
36
|
A protein key to plant virus transmission at the tip of the insect vector stylet. Proc Natl Acad Sci U S A 2007; 104:17959-64. [PMID: 17962414 DOI: 10.1073/pnas.0706608104] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hundreds of species of plant viruses, many of them economically important, are transmitted by noncirculative vector transmission (acquisition by attachment of virions to vector mouthparts and inoculation by subsequent release), but virus receptors within the vector remain elusive. Here we report evidence for the existence, precise location, and chemical nature of the first receptor for a noncirculative virus, cauliflower mosaic virus, in its insect vector. Electron microscopy revealed virus-like particles in a previously undescribed anatomical zone at the extreme tip of the aphid maxillary stylets. A novel in vitro interaction assay characterized binding of cauliflower mosaic virus protein P2 (which mediates virus-vector interaction) to dissected aphid stylets. A P2-GFP fusion exclusively labeled a tiny cuticular domain located in the bottom-bed of the common food/salivary duct. No binding to stylets of a non-vector species was observed, and a point mutation abolishing P2 transmission activity correlated with impaired stylet binding. The novel receptor appears to be a nonglycosylated protein deeply embedded in the chitin matrix. Insight into such insect receptor molecules will begin to open the major black box of this scientific field and might lead to new strategies to combat viral spread.
Collapse
|
37
|
Ng JCK, Falk BW. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2006; 44:183-212. [PMID: 16602948 DOI: 10.1146/annurev.phyto.44.070505.143325] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most plant viruses are absolutely dependent on a vector for plant-to-plant spread. Although a number of different types of organisms are vectors for different plant viruses, phloem-feeding Hemipterans are the most common and transmit the great majority of plant viruses. The complex and specific interactions between Hemipteran vectors and the viruses they transmit have been studied intensely, and two general strategies, the capsid and helper strategies, are recognized. Both strategies are found for plant viruses that are transmitted by aphids in a nonpersistent manner. Evidence suggests that these strategies are found also for viruses transmitted in a semipersistent manner. Recent applications of molecular and cell biology techniques have helped to elucidate the mechanisms underlying the vector transmission of several plant viruses. This review examines the fundamental contributions and recent developments in this area.
Collapse
Affiliation(s)
- James C K Ng
- Department of Plant Pathology, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
38
|
Moreno A, Hébrard E, Uzest M, Blanc S, Fereres A. A single amino acid position in the helper component of cauliflower mosaic virus can change the spectrum of transmitting vector species. J Virol 2005; 79:13587-93. [PMID: 16227279 PMCID: PMC1262581 DOI: 10.1128/jvi.79.21.13587-13593.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses frequently use insect vectors to effect rapid spread through host populations. In plant viruses, vector transmission is the major mode of transmission, used by nearly 80% of species described to date. Despite the importance of this phenomenon in epidemiology, the specificity of the virus-vector relationship is poorly understood at both the molecular and the evolutionary level, and very limited data are available on the precise viral protein motifs that control specificity. Here, using the aphid-transmitted Cauliflower mosaic virus (CaMV) as a biological model, we confirm that the "noncirculative" mode of transmission dominant in plant viruses (designated "mechanical vector transmission" in animal viruses) involves extremely specific virus-vector recognition, and we identify an amino acid position in the "helper component" (HC) protein of CaMV involved in such recognition. Site-directed mutagenesis revealed that changing the residue at this position can differentially affect transmission rates obtained with various aphid species, thus modifying the spectrum of vector species for CaMV. Most interestingly, in a virus line transmitted by a single vector species, we observed the rapid appearance of a spontaneous mutant specifically losing its transmissibility by another aphid species. Hence, in addition to the first identification of an HC motif directly involved in specific vector recognition, we demonstrate that change of a virus to a different vector species requires only a single mutation and can occur rapidly and spontaneously.
Collapse
Affiliation(s)
- Aranzazu Moreno
- UMR Biologie et Génétique des Interactions Plantes-Parasites, CIRAD-INRA-ENSAM, TA 41/K, Campus International de Baillarguet, 34398 Montpellier cedex 05, France
| | | | | | | | | |
Collapse
|
39
|
Stenger DC, Hein GL, Gildow FE, Horken KM, French R. Plant virus HC-Pro is a determinant of eriophyid mite transmission. J Virol 2005; 79:9054-61. [PMID: 15994799 PMCID: PMC1168748 DOI: 10.1128/jvi.79.14.9054-9061.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 03/25/2005] [Indexed: 11/20/2022] Open
Abstract
The eriophyid mite transmitted Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) shares a common genome organization with aphid transmitted species of the genus Potyvirus. Although both tritimoviruses and potyviruses encode helper component-proteinase (HC-Pro) homologues (required for nonpersistent aphid transmission of potyviruses), sequence conservation is low (amino acid identity, approximately 16%), and a role for HC-Pro in semipersistent transmission of WSMV by the wheat curl mite (Aceria tosichella [Keifer]) has not been investigated. Wheat curl mite transmissibility was abolished by replacement of WSMV HC-Pro with homologues of an aphid transmitted potyvirus (Turnip mosaic virus), a rymovirus (Agropyron mosaic virus) vectored by a different eriophyid mite, or a closely related tritimovirus (Oat necrotic mottle virus; ONMV) with no known vector. In contrast, both WSMV-Sidney 81 and a chimeric WSMV genome bearing HC-Pro of a divergent strain (WSMV-El Batán 3; 86% amino acid sequence identity) were efficiently transmitted by A. tosichella. Replacing portions of WSMV-Sidney 81 HC-Pro with the corresponding regions from ONMV showed that determinants of wheat curl mite transmission map to the 5'-proximal half of HC-Pro. WSMV genomes bearing HC-Pro of heterologous species retained the ability to form virions, indicating that loss of vector transmissibility was not a result of failure to encapsidate. Although titer in systemically infected leaves was reduced for all chimeric genomes relative to WSMV-Sidney 81, titer was not correlated with loss of vector transmissibility. Collectively, these results demonstrate for the first time that HC-Pro is required for virus transmission by a vector other than aphids.
Collapse
Affiliation(s)
- Drake C Stenger
- United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, 344 Keim Hall, University of Nebraska, Lincoln, NE 68583, USA.
| | | | | | | | | |
Collapse
|
40
|
Stavolone L, Villani ME, Leclerc D, Hohn T. A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement. Proc Natl Acad Sci U S A 2005; 102:6219-24. [PMID: 15837934 PMCID: PMC1087906 DOI: 10.1073/pnas.0407731102] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The function of the virion-associated protein (VAP) of cauliflower mosaic virus (CaMV) has long been only poorly understood. VAP is associated with the virion but is dispensable for virus morphogenesis and replication. It mediates virus transmission by aphids through simultaneous interaction with both the aphid transmission factor and the virion. However, although insect transmission is not fundamental to CaMV survival, VAP is indispensable for spreading the virus infection within the host plant. We used a GST pull-down technique to demonstrate that VAP interacts with the viral movement protein through coiled-coil domains and surface plasmon resonance to measure the interaction kinetics. We mapped the movement protein coiled-coil to the C terminus of the protein and proved that it self-assembles as a trimer. Immunogold labeling/electron microscopy revealed that the VAP and viral movement protein colocalize on CaMV particles within plasmodesmata. These results highlight the multifunctional potential of the VAP protein conferred by its efficient coiled-coil interaction system and show a plant virus possessing a surface-exposed protein (VAP) mediating viral entry into host cells.
Collapse
Affiliation(s)
- Livia Stavolone
- Friedrich Miescher Institute, P.O. Box 2543, CH-4002, Basel, Switzerland.
| | | | | | | |
Collapse
|
41
|
Haas M, Geldreich A, Bureau M, Dupuis L, Leh V, Vetter G, Kobayashi K, Hohn T, Ryabova L, Yot P, Keller M. The open reading frame VI product of Cauliflower mosaic virus is a nucleocytoplasmic protein: its N terminus mediates its nuclear export and formation of electron-dense viroplasms. THE PLANT CELL 2005; 17:927-43. [PMID: 15746075 PMCID: PMC1069709 DOI: 10.1105/tpc.104.029017] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 12/09/2004] [Indexed: 05/20/2023]
Abstract
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replication and assembly occur. In this study, the mechanism involved in viroplasm formation was investigated by in vitro and in vivo experiments. Far protein gel blot assays using a collection of P6 deletion mutants demonstrated that the N-terminal alpha-helix of P6 mediates interaction between P6 molecules. Transient expression in tobacco (Nicotiana tabacum) BY-2 cells of full-length P6 and P6 mutants fused to enhanced green fluorescent protein revealed that viroplasms are formed at the periphery of the nucleus and that the N-terminal domain of P6 is an important determinant in this process. Finally, this study led to the unexpected finding that P6 is a nucleocytoplasmic shuttle protein and that its nuclear export is mediated by a Leu-rich sequence that is part of the alpha-helix domain implicated in viroplasm formation. The discovery that P6 can localize to the nucleus opens new prospects for understanding yet unknown roles of this viral protein in the course of the CaMV infection cycle.
Collapse
Affiliation(s)
- Muriel Haas
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche, Centre National de la Recherche Scientifique 2357, Université Louis Pasteur, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Froissart R, Roze D, Uzest M, Galibert L, Blanc S, Michalakis Y. Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biol 2005; 3:e89. [PMID: 15737066 PMCID: PMC1054884 DOI: 10.1371/journal.pbio.0030089] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 01/09/2005] [Indexed: 12/17/2022] Open
Abstract
Viral recombination can dramatically impact evolution and epidemiology. In viruses, the recombination rate depends on the frequency of genetic exchange between different viral genomes within an infected host cell and on the frequency at which such co-infections occur. While the recombination rate has been recently evaluated in experimentally co-infected cell cultures for several viruses, direct quantification at the most biologically significant level, that of a host infection, is still lacking. This study fills this gap using the cauliflower mosaic virus as a model. We distributed four neutral markers along the viral genome, and co-inoculated host plants with marker-containing and wild-type viruses. The frequency of recombinant genomes was evaluated 21 d post-inoculation. On average, over 50% of viral genomes recovered after a single host infection were recombinants, clearly indicating that recombination is very frequent in this virus. Estimates of the recombination rate show that all regions of the genome are equally affected by this process. Assuming that ten viral replication cycles occurred during our experiment—based on data on the timing of coat protein detection—the per base and replication cycle recombination rate was on the order of 2 × 10−5 to 4 × 10−5. This first determination of a virus recombination rate during a single multi-cellular host infection indicates that recombination is very frequent in the everyday life of this virus. An analysis of recombination of the cauliflower mosaic virus during an infection reveals that recombination is extremely frequent and provides the first range of estimates for a plant virus
Collapse
Affiliation(s)
- Remy Froissart
- 1Biologie et Génétique des Interactions Plante-Parasite, Unité Mixte de Recherche Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)–Institut National de la Recherche Agronomique (INRA)–Ecole National Supérieure Agronomique de Montpellier (ENSAM)TA 41/K, Campus International de Baillarguet, MontpellierFrance
| | - Denis Roze
- 2Génétique et Evolution des Maladies Infectieuses, Unité Mixte de Recherche Centre National de la Recherche Scientifique (CNRS)–Institut de Recherche pour le Développement (IRD) 2724MontpellierFrance
| | - Marilyne Uzest
- 1Biologie et Génétique des Interactions Plante-Parasite, Unité Mixte de Recherche Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)–Institut National de la Recherche Agronomique (INRA)–Ecole National Supérieure Agronomique de Montpellier (ENSAM)TA 41/K, Campus International de Baillarguet, MontpellierFrance
| | - Lionel Galibert
- 1Biologie et Génétique des Interactions Plante-Parasite, Unité Mixte de Recherche Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)–Institut National de la Recherche Agronomique (INRA)–Ecole National Supérieure Agronomique de Montpellier (ENSAM)TA 41/K, Campus International de Baillarguet, MontpellierFrance
| | - Stephane Blanc
- 1Biologie et Génétique des Interactions Plante-Parasite, Unité Mixte de Recherche Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)–Institut National de la Recherche Agronomique (INRA)–Ecole National Supérieure Agronomique de Montpellier (ENSAM)TA 41/K, Campus International de Baillarguet, MontpellierFrance
| | - Yannis Michalakis
- 2Génétique et Evolution des Maladies Infectieuses, Unité Mixte de Recherche Centre National de la Recherche Scientifique (CNRS)–Institut de Recherche pour le Développement (IRD) 2724MontpellierFrance
| |
Collapse
|
43
|
Plisson C, Uzest M, Drucker M, Froissart R, Dumas C, Conway J, Thomas D, Blanc S, Bron P. Structure of the Mature P3-virus Particle Complex of Cauliflower Mosaic Virus Revealed by Cryo-electron Microscopy. J Mol Biol 2005; 346:267-77. [PMID: 15663943 DOI: 10.1016/j.jmb.2004.11.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 11/15/2004] [Accepted: 11/17/2004] [Indexed: 11/30/2022]
Abstract
The cauliflower mosaic virus (CaMV) has an icosahedral capsid composed of the viral protein P4. The viral product P3 is a multifunctional protein closely associated with the virus particle within host cells. The best-characterized function of P3 is its implication in CaMV plant-to-plant transmission by aphid vectors, involving a P3-virion complex. In this transmission process, the viral protein P2 attaches to virion-bound P3, and creates a molecular bridge between the virus and a putative receptor in the aphid's stylets. Recently, the virion-bound P3 has been suggested to participate in cell-to-cell or long-distance movement of CaMV within the host plant. Thus, as new data accumulate, the importance of the P3-virion complex during the virus life-cycle is becoming more and more evident. To provide a first insight into the knowledge of the transmission process of the virus, we determined the 3D structures of native and P3-decorated virions by cryo-electron microscopy and computer image processing. By difference mapping and biochemical analysis, we show that P3 forms a network around the capsomers and we propose a structural model for the binding of P3 to CaMV capsid in which its C terminus is anchored deeply in the inner shell of the virion, while the N-terminal extremity is facing out of the CaMV capsid, forming dimers by coiled-coil interactions. Our results combined with existing data reinforce the hypothesis that this coiled-coil N-terminal region of P3 could coordinate several functions during the virus life-cycle, such as cell-to-cell movement and aphid-transmission.
Collapse
Affiliation(s)
- Célia Plisson
- Université Rennes I, UMR 6026 CNRS, Campus de Beaulieu, 35042 Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Froissart R, Uzest M, Ruiz-Ferrer V, Drucker M, Hébrard E, Hohn T, Blanc S. Splicing of Cauliflower mosaic virus 35S RNA serves to downregulate a toxic gene product. J Gen Virol 2004; 85:2719-2726. [PMID: 15302965 DOI: 10.1099/vir.0.80029-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing usually leads to an increase in the number of gene products that can be derived from a single transcript. Here, a different and novel use of alternative splicing – as a means to control the amount of a potentially toxic gene product in the plant pararetrovirus Cauliflower mosaic virus (CaMV) – is reported. About 70 % of the CaMV 35S RNA, which serves as a substrate for both reverse transcription and polycistronic mRNA, is spliced into four additional RNA species. Splicing occurs between four donor sites – one in the 5′ untranslated region and three within open reading frame (ORF) I – and one unique acceptor site at position 1508 in ORF II. A previous study revealed that the acceptor site is vital for CaMV infectivity and expression of ORFs III and IV from one of the spliced RNA species suggested that splicing may facilitate expression of downstream CaMV ORFs. However, it is shown here that deleting the splice acceptor site and replacing ORF II with a cargo ORF that lacks splice acceptor sites does not interfere with virus proliferation. Furthermore, it is demonstrated that whenever P2 cannot accumulate in infected tissues, the splice acceptor site at position 1508 is no longer vital and has little effect on virus replication. This suggests that the vital role of splicing in CaMV is regulation of P2 expression and that P2 exhibits biological properties that, whilst indispensable for virus–vector interactions, can block in planta virus infection if this regulation is abolished.
Collapse
Affiliation(s)
- Rémy Froissart
- UMR BGPI, CIRAD-INRA-ENSAM, TA 41/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Maryline Uzest
- UMR BGPI, CIRAD-INRA-ENSAM, TA 41/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Virginia Ruiz-Ferrer
- UMR BGPI, CIRAD-INRA-ENSAM, TA 41/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Martin Drucker
- UMR BGPI, CIRAD-INRA-ENSAM, TA 41/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Eugénie Hébrard
- UMR BGPI, CIRAD-INRA-ENSAM, TA 41/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Thomas Hohn
- Friedrich Miescher Institut, PO Box 2543, CH-4002 Basel, Switzerland
| | - Stéphane Blanc
- UMR BGPI, CIRAD-INRA-ENSAM, TA 41/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| |
Collapse
|
45
|
Rich RL, Myszka DG. A survey of the year 2002 commercial optical biosensor literature. J Mol Recognit 2004; 16:351-82. [PMID: 14732928 DOI: 10.1002/jmr.649] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have compiled 819 articles published in the year 2002 that involved commercial optical biosensor technology. The literature demonstrates that the technology's application continues to increase as biosensors are contributing to diverse scientific fields and are used to examine interactions ranging in size from small molecules to whole cells. Also, the variety of available commercial biosensor platforms is increasing and the expertise of users is improving. In this review, we use the literature to focus on the basic types of biosensor experiments, including kinetics, equilibrium analysis, solution competition, active concentration determination and screening. In addition, using examples of particularly well-performed analyses, we illustrate the high information content available in the primary response data and emphasize the impact of including figures in publications to support the results of biosensor analyses.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
46
|
Abstract
SUMMARY Aphids are the most common vector of plant viruses. Mechanisms of transmission are best understood by considering the routes of virus movement in the aphid (circulative versus non-circulative) and the sites of retention or target tissues (e.g. stylets, salivary glands). Capsid proteins are a primary, but not necessarily sole, viral determinant of transmission. A summary is presented of the taxonomic affiliations of the aphid transmitted viruses, including 8 families, 18 genera, and taxonomically unassigned viruses.
Collapse
Affiliation(s)
- James C K Ng
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
47
|
Andret-Link P, Schmitt-Keichinger C, Demangeat G, Komar V, Fuchs M. The specific transmission of Grapevine fanleaf virus by its nematode vector Xiphinema index is solely determined by the viral coat protein. Virology 2004; 320:12-22. [PMID: 15003859 DOI: 10.1016/j.virol.2003.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 11/18/2003] [Accepted: 11/19/2003] [Indexed: 11/24/2022]
Abstract
The viral determinants involved in the specific transmission of Grapevine fanleaf virus (GFLV) by its nematode vector Xiphinema index are located within the 513 C-terminal residues of the RNA2-encoded polyprotein, that is, the 9 C-terminal amino acids of the movement protein (2BMP) and contiguous 504 amino acids of the coat protein (2CCP) [Virology 291 (2001) 161]. To further delineate the viral determinants responsible for the specific spread, the four amino acids that are different within the 9 C-terminal 2BMP residues between GFLV and Arabis mosaic virus (ArMV), another nepovirus which is transmitted by Xiphinema diversicaudatum but not by X. index, were subjected to mutational analysis. Of the recombinant viruses derived from transcripts of GFLV RNA1 and RNA2 mutants that systemically infected herbaceous host plants, all with the 2CCP of GFLV were transmitted by X. index unlike none with the 2CCP of ArMV, regardless of the mutations within the 2BMP C-terminus. These results demonstrate that the coat protein is the sole viral determinant for the specific spread of GFLV by X. index.
Collapse
Affiliation(s)
- Peggy Andret-Link
- Laboratoire de Virologie, Institut National de la Recherche Agronomique, Unité Mixte de Recherche INRA-Université Louis Pasteur Vigne et Vins d'Alsace, 68021 Colmar, France
| | | | | | | | | |
Collapse
|
48
|
Palacios I, Drucker M, Blanc S, Leite S, Moreno A, Fereres A. Cauliflower mosaic virus is preferentially acquired from the phloem by its aphid vectors. J Gen Virol 2002; 83:3163-3171. [PMID: 12466494 DOI: 10.1099/0022-1317-83-12-3163] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) is transmitted in a non-circulative manner by aphids following the helper strategy. Helper proteins P2 and P3 act as a bridge between virions and the aphid cuticle. Electronic monitoring of aphid stylet activities (EPG technique), transmission tests and electron microscopy showed that CaMV is preferentially acquired from the phloem by its most common aphid vectors, Brevycorine brassicae and Myzus persicae. We also found that CaMV is semipersistently transmitted and that the rate of acquisition does not follow a typical bimodal curve. Instead, the virus could be acquired from non-phloem tissues at a low and fairly constant rate after one or more intracellular punctures within a few minutes, but the probability of acquisition rose significantly when aphids reached the phase of committed ingestion from the phloem. The acquisition rate of CaMV did not increase with increasing number of intracellular punctures, but the total duration of intracellular puncture was one of the variables selected by the stepwise logistic regression model used to fit the data that best explained acquisition of CaMV. Furthermore, aphids reaching the phloem faster had a higher probability of acquiring the virus. Our results support the hypothesis that multiple intracellular punctures of epidermal and mesophyll cells result in loading aphids with the CaMV-encoded aphid transmission factor (P2), and that aphids, in most cases, subsequently acquire CaMV particles during phloem sap ingestion. Consistently, immunoelectron microscopy showed that P3-virions are frequently found in the sieve element lumen, whereas P2 could not be detected.
Collapse
Affiliation(s)
- Itziar Palacios
- Centro de Ciencias Medioambientales, CSIC, Serrano 115 dpo, 28006 Madrid, Spain1
| | - Martin Drucker
- Station de Recherches de Pathologie Comparée, INRA-CNRS-UM II, 30380 Saint Christol-les-Alès, France2
| | - Stéphane Blanc
- Station de Recherches de Pathologie Comparée, INRA-CNRS-UM II, 30380 Saint Christol-les-Alès, France2
| | - Silvia Leite
- Centro de Ciencias Medioambientales, CSIC, Serrano 115 dpo, 28006 Madrid, Spain1
| | - Aranzazu Moreno
- Centro de Ciencias Medioambientales, CSIC, Serrano 115 dpo, 28006 Madrid, Spain1
| | - Alberto Fereres
- Centro de Ciencias Medioambientales, CSIC, Serrano 115 dpo, 28006 Madrid, Spain1
| |
Collapse
|
49
|
Haas M, Bureau M, Geldreich A, Yot P, Keller M. Cauliflower mosaic virus: still in the news. MOLECULAR PLANT PATHOLOGY 2002; 3:419-29. [PMID: 20569349 DOI: 10.1046/j.1364-3703.2002.00136.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
SUMMARY Taxonomic relationship: Cauliflower mosaic virus (CaMV) is the type member of the Caulimovirus genus in the Caulimoviridae family, which comprises five other genera. CaMV replicates its DNA genome by reverse transcription of a pregenomic RNA and thus belongs to the pararetrovirus supergroup, which includes the Hepadnaviridae family infecting vertebrates. Physical properties: Virions are non-enveloped isometric particles, 53 nm in diameter (Fig. 1). They are constituted by 420 capsid protein subunits organized following T= 7 icosahedral symmetry (Cheng, R.H., Olson, N.H. and Baker, T.S. (1992) Cauliflower mosaic virus: a 420 subunit (T= 7), multilayer structure. Virology, 16, 655-668). The genome consists of a double-stranded circular DNA of approximately 8000 bp that is embedded in the inner surface of the capsid. Viral proteins: The CaMV genome encodes six proteins, a cell-to-cell movement protein (P1), two aphid transmission factors (P2 and P3), the precursor of the capsid proteins (P4), a polyprotein precursor of proteinase, reverse transcriptase and ribonuclease H (P5) and an inclusion body protein/translation transactivator (P6). Hosts: The host range of CaMV is limited to plants of the Cruciferae family, i.e. Brassicae species and Arabidopsis thaliana, but some viral strains can also infect solanaceous plants. In nature, CaMV is transmitted by aphids in a non-circulative manner.
Collapse
Affiliation(s)
- Muriel Haas
- Institut de Biologie Moléculaire des Plantes CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
50
|
Froissart R, Michalakis Y, Blanc S. Helper component-transcomplementation in the vector transmission of plant viruse. PHYTOPATHOLOGY 2002; 92:576-579. [PMID: 18944252 DOI: 10.1094/phyto.2002.92.6.576] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Plant viruses are most frequently transmitted from one host plant to another by vectors. In noncirculative vector transmission, the virus does not process through a cycle within the vector body. Instead, upon acquisition by the vector, viruses are retained in the mouth parts or the anterior gut; from there, they will be subsequently released in a new host plant. Two molecular strategies have been described for the virus-vector interaction. In the capsid strategy, the virus coat interacts directly with binding sites in the vector mouth parts, whereas an additional nonstructural protein, designated helper component (HC), is required in the helper strategy. The HC and virus particles can be acquired sequentially, and this property introduces the possibility that an HC acquired first by the vector assists the transmission of virus particles located in the same cell, in other cells, or even in other host plants probed by the vector. Such a phenomenon is here called HC-transcomplementation. Surprisingly, the existing definition of HC does not explicitly include the concept of HC-transcomplementation, and it is generally omitted in the literature in any consideration of the virus biology other than the molecular interaction with the vector. Here we propose an extended definition of HC and emphasize the concept of HC-transcomplementation that distinguishes the helper strategy from any other type of vector transmission and may have consequences at the level of the virus population genetics and evolution.
Collapse
|