1
|
Qin S, Wang H, Wang M, Shao B, Ma C, Yang B, Jin X. Mitochondrial genome evolution in the orchid subfamily Cypripedioideae (Orchidaceae). Funct Integr Genomics 2025; 25:96. [PMID: 40304813 DOI: 10.1007/s10142-025-01596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
In this study, the mitogenomes of nine species in the subfamily Cypripedioideae were newly sequenced and assembled using both short and long reads for evolutionary analyses. Complete multi-chromosomal mitogenomes were obtained for Cypripedium subtropicum, C. henryi, Phragmipedium humboldtii, Phr. kovachii, and Paphiopedilum micranthum, and draft assemblies were obtained for four additional Paphiopedilum species. Thirty-nine protein-coding genes were annotated and shared in nine sampled species. sdh4 was discovered in all species of Cypripedioideae, and rpl10 was detected in four species of Paphiopedilum. These two genes might have been horizontally transferred from non-orchid plants at different times. Approximately 101 to 998 repeat sequences were identified with total lengths of 417,136 to 785,960 bp in the mitogenomes of Cypripedioideae. There were 634 and 662 RNA editing sites in C. subtropicum and Pa. gratrixianum, respectively, and C-to-U editing was dominant. The nad and ccm genes exhibited high frequencies of RNA editing. Our study revealed the complexity of orchid mitogenomes, including evidence for the horizontal transfer of rpl10 and sdh4.
Collapse
Affiliation(s)
- Shiyu Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Hanchen Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Gardens, Beijing, China
| | | | - Bingyi Shao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chongbo Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Boyun Yang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| | - Xiaohua Jin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Gardens, Beijing, China.
| |
Collapse
|
2
|
Liao G, Liang W, Yu H, Zhang K, Li L, Feng S, Song L, Yang C, Wan L, Zeng D, Zhang Z, Wei S. Assembly and Comparative Analysis of the Complete Mitochondrial Genomes of Smilax glabra and Smilax zeylanica. Genes (Basel) 2025; 16:450. [PMID: 40282410 PMCID: PMC12026766 DOI: 10.3390/genes16040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Smilax glabra (S. glabra) and Smilax zeylanica (S. zeylanica), two medicinally important species within the genus Smilax, have been widely used in Traditional Chinese Medicine (TCM) for the treatment of rheumatism, traumatic injuries, and related ailments. Despite their medicinal significance, research on the mitochondrial DNA (mtDNA) of Smilax species remains limited. METHODS We utilized NovaSeq 6000 and PromethION sequencing platforms to assemble the complete mitochondrial genomes of Smilax glabra and Smilax zeylanica, and conducted in-depth comparative genomic and evolutionary analyses. RESULTS The complete mitochondrial genomes of S. glabra and S. zeylanica were assembled and annotated, with total lengths of 535,215 bp and 471,049 bp, respectively. Both genomes encode 40 unique protein-coding genes (PCGs), composed of 24 core and 16 non-core genes, alongside multiple tRNA and rRNA genes. Repetitive element analysis identified 158 and 403 dispersed repeats in S. glabra and S. zeylanica, respectively, as well as 123 and 139 simple sequence repeats (SSRs). RNA editing site predictions revealed C-to-U conversions in both species. Additionally, chloroplast-to-mitochondrial DNA migration analysis detected 34 homologous fragments in S. glabra and 28 homologous fragments in S. zeylanica. Phylogenetically, S. glabra and S. zeylanica cluster within the Liliales order and Smilacaceae family, closely related to Lilium species. Collinearity analysis indicated numerous syntenic blocks between Smilax and three other Liliopsida species, though gene order was not conserved. CONCLUSIONS This study presents high-quality mitochondrial genome assemblies for S. glabra and S. zeylanica, providing valuable insights into molecular identification and conservation efforts of these traditional medicinal plants.
Collapse
Affiliation(s)
- Guojian Liao
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; (G.L.); (W.L.); (H.Y.); (S.F.); (L.S.); (C.Y.); (L.W.)
- College of Agriculture, Guangxi University, Nanning 530024, China;
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
| | - Wenjing Liang
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; (G.L.); (W.L.); (H.Y.); (S.F.); (L.S.); (C.Y.); (L.W.)
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
| | - Haixia Yu
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; (G.L.); (W.L.); (H.Y.); (S.F.); (L.S.); (C.Y.); (L.W.)
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
| | - Kun Zhang
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
| | - Linxuan Li
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Shixin Feng
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; (G.L.); (W.L.); (H.Y.); (S.F.); (L.S.); (C.Y.); (L.W.)
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
| | - Lisha Song
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; (G.L.); (W.L.); (H.Y.); (S.F.); (L.S.); (C.Y.); (L.W.)
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
| | - Cuihong Yang
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; (G.L.); (W.L.); (H.Y.); (S.F.); (L.S.); (C.Y.); (L.W.)
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
| | - Lingyun Wan
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; (G.L.); (W.L.); (H.Y.); (S.F.); (L.S.); (C.Y.); (L.W.)
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
| | - Dongqiang Zeng
- College of Agriculture, Guangxi University, Nanning 530024, China;
| | - Zhanjiang Zhang
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; (G.L.); (W.L.); (H.Y.); (S.F.); (L.S.); (C.Y.); (L.W.)
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Shugen Wei
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; (G.L.); (W.L.); (H.Y.); (S.F.); (L.S.); (C.Y.); (L.W.)
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
- National Center for Traditional Chinese Medicine Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China;
| |
Collapse
|
3
|
Zhu Z, Qin X, Li P, Lu Y, Mo X, Fang Y, Zhang Q. Characterize the Complete Mitogenome of Semiaquilegia guangxiensis and Assess the Efficiency of the Mitochondrial Genes in Ranunculales Phylogeny. Ecol Evol 2025; 15:e71165. [PMID: 40170818 PMCID: PMC11949572 DOI: 10.1002/ece3.71165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025] Open
Abstract
Plant mitochondrial genome (mitogenome) has crucial functions underpinning survive, development, and reproduction of organisms. However, the complete mitogenomes have been far less assembled and annotated than plastomes and even nuclear genomes in plants, due to their highly frequent and long repeat sequences and genomic structural variations. These further hinder the understanding of the mitogenome evolution and restrict potential applications in phylogenetic analyses. In this study, we sequenced, assembled, and annotated the complete mitogenome of Semiaquilegia guangxiensis and explored its evolution and usefulness in phylogenetics. The results showed that the mitogenome was composed of two independent molecules, which had a total length of 522,981 bp, a GC content of 45.69%, and 58 genes including 34 protein-coding genes (PCGs), 21 tRNA genes, and three rRNA genes. A generalized codon usage preference was observed among the mitochondrial PCGs, and a total of 665 potential RNA editing sites were identified across the 34 mitochondrial PCGs, all of which were base C-to-U edits. Moreover, a large number of repetitive mitogenome sequences and chloroplast-sourced sequences transferred to the mitogenome were detected. The largest collinear block identified between S. guangxiensis and Paropyrum anemonoides was 4282 bp in length. The phylogenetic analyses based on the mitochondrial gene sequences resolved the phylogenetic relationships within Ranunculales, in which Semiaquilegia was close to Paropyrum. The 19 PCGs were ranked according to their efficiencies on phylogenetic resolution based on several metrics, and the combined metric suggested matR, rps3, and nad5 were the top three loci contributing most to phylogeny. As the first reported mitogenome in Semiaquilegia, our findings enrich the limited mitogenome library of plants, reecho the complex evolutionary dynamics of the mitogenome, and highlight the usefulness of mitochondrial gene sequences in phylogenetics.
Collapse
Affiliation(s)
- Zheng‐Juan Zhu
- College of Life SciencesGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst TerrainGuangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuilinChina
| | - Xin‐Mei Qin
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst TerrainGuangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuilinChina
| | - Peng‐Wei Li
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst TerrainGuangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuilinChina
| | - Yong‐Bin Lu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst TerrainGuangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuilinChina
| | - Xiao‐Yuan Mo
- College of Life SciencesGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst TerrainGuangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuilinChina
| | - Yuan Fang
- College of Life SciencesGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst TerrainGuangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuilinChina
| | - Qiang Zhang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst TerrainGuangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuilinChina
| |
Collapse
|
4
|
Yang X, He J, Zhou M, Bi C, Kong J, Wang J, Kong F, Wu Z, Wang Z, Li M. Genomic variation and evolutionary patterns in organelle genomes between annual and perennial Glycine species. BMC PLANT BIOLOGY 2025; 25:353. [PMID: 40102717 PMCID: PMC11917018 DOI: 10.1186/s12870-025-06312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/26/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND The complexity of structural variations and long stretches of repetitive DNA make the analysis of plant mitochondrial genomes (mitogenomes) exceptionally challenging. A thorough investigation of plant mitogenomes is essential for uncovering the evolutionary processes of plant organelles and optimizing traits related to plant cellular metabolism. The genus Glycine includes groups with both perennial and annual life strategies, making it an ideal subject for studying the complexity and variations of plant mitogenomes during evolution across different life strategies. RESULTS Here, we assembled 20 complete mitochondrial and plastid genomes of Glycine accessions, including both annual and perennial species using the latest organelle genome assembly tool. Significant structural variations and differences in tRNA content were observed in the mitogenomes between the two life-history strategy subgenera, while protein-coding genes and rRNAs content were highly conserved. Distinct patterns of nuclear plastid DNAs and nuclear mitochondrial DNAs (NUPTs/NUMTs) were uncovered among annual and perennial species. Genes residing in NUMTs (NUMGs) showed a substantial presence in Glycine accessions, with annual soybeans exhibiting a higher proportion of protein-coding genes fully integrated into the nuclear genome. Phylogenetic analysis indicated a closely related evolutionary trajectory between mitochondrial and nuclear genomes in Glycine, providing supplementary evidence relevant to the evolutionary history of Glycine. CONCLUSIONS This study showed the structural variations and evolutionary patterns of mitochondrial genomes between annual and perennial Glycine species. These findings contribute to our understanding of plant organelle complexity, variation and history of intracellular genomic integration.
Collapse
Affiliation(s)
- Xuchen Yang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jiaxian He
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Minghui Zhou
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Changwei Bi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiali Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Zefu Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Meina Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Zhu W, Zhang D, Xu W, Gan Y, Huang J, Liu Y, Tan Y, Song Y, Xin P. Comparative genomics and phylogenetic analysis of mitochondrial genomes of Neocinnamomum. BMC PLANT BIOLOGY 2025; 25:289. [PMID: 40045193 PMCID: PMC11883965 DOI: 10.1186/s12870-025-06238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Neocinnamomum plants are considered a promising feedstock for biodiesel in China, due to the richness in long-chain fatty acids (LCFAs) found in their seeds. However, the mitochondrial genome (mitogenome) of this genus has not yet been systematically described, and the exploration of species relationships within this genus using mitogenome sequences is also an uncharted territory. This has hindered our understanding of mitogenome diversity and the evolutionary relationships within Neocinnamomum. RESULTS In this study, a total of 24 individuals representing seven distinct taxa from the genus Neocinnamomum were subjected to Illumina sequencing, and the species N. delavayi was sequenced using Oxford Nanopore sequencing technology. We successfully assembled the mitogenome of N. delavayi, which is 778,066 bp in size and exhibits a single circular structure. The analysis identified 659 dispersed repeats, 211 simple sequence repeats (SSRs), and 30 tandem repeats within the mitogenome. Additionally, 37 homologous fragments, totaling 9929 bp, were found between the mitogenome and the plastid genome (plastome). The codons of 41 protein-coding genes (PCGs) had a preference for ending in A/T, and the codon usage bias of the majority of these genes was influenced by natural selection pressures. Comparative genomic analysis revealed low collinearity and significant gene rearrangements between species. Phylogenetic analysis resulted in the classification of Neocinnamomum into six distinct clades, contradicting previous findings which based on complete plastomes and nuclear ribosomal cistron (nrDNA). In the PCGs of 24 individuals, 86 mutation events were identified, which included three indels and 83 SNPs. Notably, the ccmC gene underwent positive selection in pairwise comparisons of three species pairs. Furthermore, 748 RNA editing sites were predicted within the PCGs of the N. delavayi mitogenome. CONCLUSIONS This study enriches our knowledge of the mitogenomes in the family Lauraceae, and provides valuable data and a foundation for genomic evolution research, genetic resource conservation, and molecular breeding in Neocinnamomum.
Collapse
Affiliation(s)
- Wen Zhu
- Engineering Technology Research Center of National Forestry and Grassland Administration on Southwest Landscape Architecture, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Di Zhang
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Wenbin Xu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Yi Gan
- College of Advanced Agricultural Science Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jiepeng Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Yanyu Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Yunhong Tan
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, 541004, China.
| | - Peiyao Xin
- Engineering Technology Research Center of National Forestry and Grassland Administration on Southwest Landscape Architecture, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| |
Collapse
|
6
|
Gatica-Soria LM, Roulet ME, Tulle WD, Sato HA, Barrandeguy ME, Sanchez-Puerta MV. Highly variable mitochondrial chromosome content in a holoparasitic plant due to recurrent gains of foreign circular DNA. PHYSIOLOGIA PLANTARUM 2025; 177:e70231. [PMID: 40259521 DOI: 10.1111/ppl.70231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025]
Abstract
Multichromosomal mitochondrial genomes (mtDNAs) in eukaryotes exhibit remarkable structural diversity, yet intraspecific variability and the origin of the individual chromosomes remain poorly understood. We focus on a holoparasitic angiosperm with an mtDNA consisting of 65 chromosomes largely composed of foreign DNA acquired by horizontal gene transfer (HGT) from its mimosoid hosts. The frequency, timing and population dynamics of these HGT events have not been examined. Here, we sampled different individuals of the holoparasite Lophophytum mirabile, along with their host plants, to assess mtDNA intraspecific variability and capture recent events that may bring insights into the HGT process. We also gathered mitochondrial data from 43 mimosoids to identify older and recent HGT events and assess precisely the proportion of foreign DNA. Through comparative genomic and evolutionary analyses, we uncovered great intraspecific variability in chromosome content and defined the mitochondrial pangenome of L. mirabile with 105 distinct chromosomes. The estimated foreign content reaches 93.5% of the mtDNA, including 73 fully foreign chromosomes that support the circle-mediated HGT model as a key mechanism for their acquisition. We inferred recurrent DNA transfers from the host plants, leading to new mitochondrial chromosomes that replicate autonomously. Our results emphasize the importance of adopting a pangenomic approach to fully capture the genetic diversity and evolution of multichromosomal mitochondrial genomes. This study shows that HGT can strongly influence the mtDNA content and generate enormous intraspecific variability even in geographically close individuals.
Collapse
Affiliation(s)
- Leonardo Martin Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Chacras de Coria, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Chacras de Coria, Argentina
| | - Walter D Tulle
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Chacras de Coria, Argentina
| | - Hector A Sato
- Facultad de Ciencias Agrarias (UNJu), Catedra de Botanica General-Herbario JUA, Jujuy, CP, Argentina
| | - M Eugenia Barrandeguy
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales. Laboratorio de Genética de Poblaciones y del Paisaje, Posadas, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Subtropical-Nodo Posadas (UNaM- CONICET), Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Chacras de Coria, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
7
|
Lin D, Shao B, Gao Z, Li J, Li Z, Li T, Huang W, Zhong X, Xu C, Chase MW, Jin X. Phylogenomics of angiosperms based on mitochondrial genes: insights into deep node relationships. BMC Biol 2025; 23:45. [PMID: 39948594 PMCID: PMC11827323 DOI: 10.1186/s12915-025-02135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Angiosperms are the largest plant group and play an essential role in the biosphere. Phylogenetic relationships of many families and orders remain contentious, and, in an attempt to address these, we performed the most extensive sampling of mitochondrial genes to date. RESULTS We reconstructed a seed plant phylogenetic framework based on 41 mitochondrial protein-coding sequences (mtCDSs), representing 335 families and 63 orders with 481 angiosperm species. The results for major clades of angiosperms produced moderate to strong support (> 70% bootstrap) for more than 80% of nodes and strong support for most orders. Eight major nodes were supported, including the three paraphyletic ANA orders (Amborellales, Nymphaeales, and Austrobaileyales) and five major core-angiosperm clades. Chloranthales and Ceratophyllales are sister to the eudicots, whereas the monocots are sister to the magnoliids. Although well-supported, relationships within the asterids and rosids were in some cases unresolved or weakly supported, due to the low levels of variability detected in these genes. CONCLUSIONS Our results indicated that mitochondrial genomic data were effective at resolving deep node relationships of angiosperm phylogeny and thus represent an important resource for phylogenetics and evolutionary studies of angiosperm.
Collapse
Affiliation(s)
- Dongliang Lin
- State Key Laboratory of Plant Diversity and Speciality Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Bingyi Shao
- State Key Laboratory of Plant Diversity and Speciality Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhiyuan Gao
- State Key Laboratory of Plant Diversity and Speciality Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jianwu Li
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Zhanghai Li
- State Key Laboratory of Plant Diversity and Speciality Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tingyu Li
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Weichang Huang
- Shanghai Chenshan Botanical Garden, Chenhua Road 3888, Songjiang, Shanghai, 201602, China
| | - Xin Zhong
- Shanghai Chenshan Botanical Garden, Chenhua Road 3888, Songjiang, Shanghai, 201602, China
| | - Chao Xu
- State Key Laboratory of Plant Diversity and Speciality Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, China
| | - Mark W Chase
- The Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK.
- Department of Environment and Agriculture, Curtin University, Bentley, WA, 6102, Australia.
| | - Xiaohua Jin
- State Key Laboratory of Plant Diversity and Speciality Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
8
|
Li ZZ, Wang Y, He XY, Li WG. The Taihangia mitogenome provides new insights into its adaptation and organelle genome evolution in Rosaceae. PLANTA 2025; 261:59. [PMID: 39939538 DOI: 10.1007/s00425-025-04629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/19/2025] [Indexed: 02/14/2025]
Abstract
MAIN CONCLUSION We present the first Taihangia mitogenome, uncovering frequent rearrangements and significant length variation in Rosaceae, likely driven by hybridization and repeat content, alongside widespread mito-chloroplast phylogenetic conflicts. Taihangia, an ancient and endangered monotypic genus within the subfamily Rosoideae of the family Rosaceae, is endemic to cliffs and serves as an ideal material for studying the adaptations of cliff-dwelling plants and the evolutionary processes of the Rosaceae family. In this study, the mitogenome and plastome of T. rupestris var. ciliata were assembled, with lengths of 265,633 bp and 155,467 bp, both exhibiting typical circular structures. Positive selection was detected in the nad4L and sdh4 genes, likely playing a role in adaptation to harsh environments. Comparative genomic analysis indicated that repetitive sequences are likely the main contributors to genome size variation in Rosaceae and also influence horizontal gene transfer between organelle genomes. In T. rupestris var. ciliata, 20 mitochondrial plastid DNA sequences were identified, including 16 complete plastid genes. Moreover, frequent rearrangements were observed in the non-coding regions of mitogenome within the subfamily Rosoideae, potentially linked to the complex evolutionary history and the presence of repetitive sequences. In contrast, coding regions remained highly conserved (over 83% similarity) to maintain essential mitochondrial functions. Phylogenomic analysis of the two organelle genomes revealed conflicts in the phylogenetic relationships within Rosaceae, potentially due to the inconsistent mutation rates and frequent hybridization events in the evolutionary history of the family. In conclusion, the organelle genome analysis of Taihangia provides crucial genomic resources for understanding the evolution and adaptation of Rosaceae species.
Collapse
Affiliation(s)
- Zhi-Zhong Li
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in WanjiangBasin Co-Funded By Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| | - Ying Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in WanjiangBasin Co-Funded By Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Xiang-Yan He
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Guo Li
- School of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000, Henan, China.
| |
Collapse
|
9
|
Park S, Hwang Y, Kim H, Choi K. Insights into the nuclear-organelle DNA integration in Cicuta virosa (Apiaceae) provided by complete plastid and mitochondrial genomes. BMC Genomics 2025; 26:102. [PMID: 39901091 PMCID: PMC11792336 DOI: 10.1186/s12864-025-11230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Gene transfer between the organelles and the nucleus plays a central role in shaping plant genome evolution. The identification and analysis of nuclear DNA of plastid (NUPTs) and mitochondrial (NUMTs) origins are important for exploring the extent of intracellular DNA transfer in genomes. RESULTS We report the complete plastid and mitochondrial genomes (plastome and mitogenome) of Cicuta virosa (Apiaceae) as well as a draft nuclear genome using high-fidelity (HiFi) PacBio sequencing technologies. The C. virosa plastome (154,449 bp) is highly conserved, with a quadripartite structure, whereas the mitogenome (406,112 bp) exhibits two chromosomes (352,718 bp and 53,394 bp). The mitochondrial-encoded genes (rpl2, rps14, rps19, and sdh3) were successfully transferred to the nuclear genome. Our findings revealed extensive DNA transfer from organelles to the nucleus, with 6,686 NUPTs and 6,237 NUMTs detected, covering nearly the entire plastome (99.93%) and a substantial portion of the mitogenome (77.04%). These transfers exhibit a range of sequence identities (80-100%), suggesting multiple transfer events over evolutionary timescales. Recent DNA transfer between organelles and the nucleus is more frequent in mitochondria than that in plastids. CONCLUSIONS This study contributes to the understanding of ongoing genome evolution in C. virosa and underscores the significance of the organelle-nuclear genome interplay in plant species. Our findings provide valuable insights into the evolutionary processes that shape organelle genomes in Apiaceae, with implications for broader plant genome evolution.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Yong Hwang
- Biological Specimen Conservation Division, Diversity Conservation Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, 37242, South Korea
| | - Heesoo Kim
- Divesity Forecast & Evaluation Division, Diversity Conservation Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, 37242, South Korea
| | - KyoungSu Choi
- Department of Biology, College of Natural Science, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
10
|
Zhang R, Liu Y, Liu S, Zhao Y, Xiang N, Gao X, Yuan T. Comparative organelle genomics in Daphniphyllaceae reveal phylogenetic position and organelle structure evolution. BMC Genomics 2025; 26:40. [PMID: 39815181 PMCID: PMC11737216 DOI: 10.1186/s12864-025-11213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
The family Daphniphyllaceae has a single genus, and no relevant comparative phylogenetic study has been reported on it. To explore the phylogenetic relationships and organelle evolution mechanisms of Daphniphyllaceae species, we sequenced and assembled the chloroplast and mitochondrial genomes of Daphniphyllum macropodum. We also conducted comparative analyses of organelles in Daphniphyllaceae species in terms of genome structure, phylogenetic relationships, divergence times, RNA editing events, and evolutionary rates, etc. Results indicated differences in the evolutionary patterns of the plastome and mitogenome in D. macropodum. The plastome had a more conserved structure but a faster nucleotide substitution rate, and the mitogenome showed a more complex structure while the mitotic genome shows a more complex structure but a slower nucleotide substitution rate. We identified several unidirectional protein-coding gene transfer events from the plastome to the mitogenome based on homology analysis, but no transfer events occurred from the mitogenome to the plastome. Multiple TE fragments existed in organelle genomes, and two organelles showed different preferences for nuclear TE insertion types. The estimation of divergence time indicated that the differentiation of Daphniphyllaceae and Altingiaceae at around 29.86 Mya might be due to the dramatic uplift of Tibetan Plateau during the Oligocene. About 75% of codon changes in organelles were found to be hydrophilic to hydrophobic amino acids. The RNA editing in protein-coding transcripts is the result of amino acid changes to increase their hydrophobicity and conservation in alleles, which may contribute to the formation of functional 3D structures in proteins. This study would enrich genomic resources and provide valuable insights into the structural dynamics and molecular biology of Daphniphyllaceae species.
Collapse
Affiliation(s)
- Rongxiang Zhang
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Ying Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuwen Liu
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Yuemei Zhao
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Niyan Xiang
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
- School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Xiaoman Gao
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Tao Yuan
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
| |
Collapse
|
11
|
Trinca V, Silva SR, Almeida JVA, Miranda VFO, Costa-Macedo JV, Carnaval TKBA, Araújo DB, Prosdocimi F, Varani AM. Unraveling the organellar genomic landscape of the therapeutic and entheogenic plant Mimosa tenuiflora: insights into genetic, structural, and evolutionary dynamics. Funct Integr Genomics 2024; 25:3. [PMID: 39738702 DOI: 10.1007/s10142-024-01511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/22/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Mimosa tenuiflora, popularly known as "Jurema-Preta", is a perennial tree or shrub native to the tropical regions of the Americas, particularly among Afro-Brazilian and Indigenous Brazilian communities. Known for producing N,N-Dimethyltryptamine, a psychedelic compound with profound psychological effects, Jurema-Preta has been studied for its therapeutic potential in mental health. This study offers a comprehensive analysis of the plastid (ptDNA) and mitochondrion (mtDNA) genomes of M. tenuiflora. The 165,639 bp ptDNA sequence features the classical quadripartite structure with 130 protein-coding genes. Comparative genomics among Mimosa species shows high sequence identity in protein-coding genes, with variation in the rpoC1, clpP, ndhA, and ycf1 genes. The ptDNA junctions display distinct features, such as the deletion of the rpl22 gene, and specific simple sequence repeats highlight genetic variation and unique motifs as valuable genetic markers for population studies. Phylogenetic analysis places M. tenuiflora in the Caesalpinioideae, closely related to M. pigra and M. pudica. The 617,839 bp mtDNA sequence exhibits a complex structure with multiple genomic arrangements due to large repeats, encoding 107 protein-coding genes, including the ptDNA petG and psaA genes, and non-retroviral RNA mitoviruses sequences. Comparative analysis across Fabaceae species reveals limited conservation, emphasizing the dynamic nature of plant mitochondrial genomes. The genomic characterization of M. tenuiflora enhances understanding of its evolutionary dynamics, providing insights for population studies and potential applications in ethnopharmacology and conservation.
Collapse
Affiliation(s)
- Vitor Trinca
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Saura R Silva
- Department of Biology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - João V A Almeida
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Vitor F O Miranda
- Department of Biology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - José V Costa-Macedo
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Tatiane K B A Carnaval
- Jundiaí Agricultural School, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Draulio B Araújo
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Francisco Prosdocimi
- Laboratory of Genomics and Biodiversity, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alessandro M Varani
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil.
| |
Collapse
|
12
|
Earley TS, Whitlock N, Taylor SJ, Machado-Allison A, Chernoff B. Description and phylogenetic implications of a de novo mitochondrial genome of Rhinichthys atratulus (Teleostei: Leuciscidae) from Connecticut. Sci Rep 2024; 14:31834. [PMID: 39738627 PMCID: PMC11686256 DOI: 10.1038/s41598-024-83134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
We present a de novo mitogenome assembly from a specimen of Rhinichthys atratulus, the Eastern Blacknose Dace, collected in the Connecticut River drainage. R. atratulus is a fish species widely distributed across Atlantic slope drainages from Nova Scotia, Canada to the Roanoke River Drainage, Virginia, United States. The assembly has a total length of 16,646 bp; consists of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a 974 bp D-loop; and has a GC content of 45.7%. We performed two phylogenetic analyses using the de novo assembly and 28 additional cyprinoid mitochondrial genomes: with and without the D-loop. The resulting phylogenetic trees showed the same branching patterns. However, inclusion of the D-loop resulted in nodes with equal or greater support. The trees largely match previously published analyses, while offering new insights into relationships among leuciscid genera. Our findings indicate that the inclusion of the D-loop in mitogenome phylogenetic analyses can help improve bootstrap support at otherwise unresolved nodes.
Collapse
Affiliation(s)
- Timothy S Earley
- Bailey College of the Environment, Wesleyan University, Middletown, CT, USA.
| | - Naomi Whitlock
- Department of Biology, Wesleyan University, Middletown, CT, USA
- Department of Earth & Environmental Sciences, Wesleyan University, Middletown, CT, USA
| | - Samuel J Taylor
- Department of Biology, Wesleyan University, Middletown, CT, USA
| | | | - Barry Chernoff
- Bailey College of the Environment, Wesleyan University, Middletown, CT, USA
- Department of Biology, Wesleyan University, Middletown, CT, USA
- Department of Earth & Environmental Sciences, Wesleyan University, Middletown, CT, USA
| |
Collapse
|
13
|
Chen Y, Wang W, Zhang S, Zhao Y, Feng L, Zhu C. Assembly and analysis of the complete mitochondrial genome of Carya illinoinensis to provide insights into the conserved sequences of tRNA genes. Sci Rep 2024; 14:28571. [PMID: 39562577 PMCID: PMC11576845 DOI: 10.1038/s41598-024-75324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/04/2024] [Indexed: 11/21/2024] Open
Abstract
Carya illinoinensis is an economically important nut tree, and its chloroplast (cp.) genome has been reported; however, its mitochondrial (mt) genome remains unknown. In the present study, we assembled the first mt genome of C. illinoinensis. The circular mt genome of C. illinoinensis is 495,205 bp long, with 37 protein-coding genes(PCGs), 24 tRNA genes, and 3 rRNA genes. All the tRNAs could be folded into typical cloverleaf secondary structures, with lengths of 58-88 bp. A conserved U-U-C-x-A-x2 consensus nucleotide sequence was discovered in the Ψ-loops of tRNA sequences. In addition, 447 dispersed repeats were detected, as well as found 482 RNA editing sites and 9,960 codons in the mt genome. Furthermore, a total of 27 DNA sequences with a length of 43,277 bp were transferred from the cp. to the mt genome, and eight integrated cp-derived genes (trnL-CAA, trnV-GAC, trnD-GUC, trnW-CCA, trnN-GUU, trnH-GUG, trnM-CAU, and rps7) were identified. We also obtained 1,086 hits, including 364.023 kp of nuclear genome sequences, that were transferred to the mt genome. To determine the evolutionary position of C. illinoinensis, we conducted a phylogenetic analysis of the mitogenomes of C. illinoinensis and 14 other taxa. The results strongly suggested that C. illinoinensis and Fagus sylvatica formed a single clade with 100% bootstrap support. This study sequenced comprehensive data on the C. illinoinensis mitochondrial genome and provided insights into the conserved sequences of tRNA genes, which could facilitate evolutionary research in other Carya trees in the future.
Collapse
Affiliation(s)
- Yu Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| | - Wu Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Shijie Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Liuchun Feng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Cancan Zhu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| |
Collapse
|
14
|
Lyu ZY, Yang GM, Zhou XL, Wang SQ, Zhang R, Shen SK. Deciphering the complex organelle genomes of two Rhododendron species and insights into adaptive evolution patterns in high-altitude. BMC PLANT BIOLOGY 2024; 24:1054. [PMID: 39511517 PMCID: PMC11545642 DOI: 10.1186/s12870-024-05761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND The genomes within organelles are crucial for physiological functions such as respiration and photosynthesis and may also contribute to environmental adaptation. However, the limited availability of genetic resources, particularly mitochondrial genomes, poses significant challenges for in-depth investigations. RESULTS Here, we explored various assembly methodologies and successfully reconstructed the complex organelle genomes of two Rhododendron species: Rhododendron nivale subsp. boreale and Rhododendron vialii. The mitogenomes of these species exhibit various conformations, as evidenced by long-reads mapping. Notably, only the mitogenome of R. vialii can be depicted as a singular circular molecule. The plastomes of both species conform to the typical quadripartite structure but exhibit elongated inverted repeat (IR) regions. Compared to the high similarity between plastomes, the mitogenomes display more obvious differences in structure, repeat sequences, and codon usage. Based on the analysis of 58 organelle genomes from angiosperms inhabiting various altitudes, we inferred the genetic adaptations associated with high-altitude environments. Phylogenetic analysis revealed partial inconsistencies between plastome- and mitogenome-derived phylogenies. Additionally, evolutionary lineage was determined to exert a greater influence on codon usage than altitude. Importantly, genes such as atp4, atp9, mttB, and clpP exhibited signs of positive selection in several high-altitude species, suggesting a potential link to alpine adaptation. CONCLUSIONS We tested the effectiveness of different organelle assembly methods for dealing with complex genomes, while also providing and validating high-quality organelle genomes of two Rhododendron species. Additionally, we hypothesized potential strategies for high-altitude adaptation of organelles. These findings offer a reference for the assembly of complex organelle genomes, while also providing new insights and valuable resources for understanding their adaptive evolution patterns.
Collapse
Affiliation(s)
- Zhen-Yu Lyu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China
| | - Gao-Ming Yang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China
| | - Xiong-Li Zhou
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China
| | - Si-Qi Wang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China
| | - Rui Zhang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China
| | - Shi-Kang Shen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China.
| |
Collapse
|
15
|
Zhang K, Qu G, Zhang Y, Liu J. Assembly and comparative analysis of the first complete mitochondrial genome of Astragalus membranaceus (Fisch.) Bunge: an invaluable traditional Chinese medicine. BMC PLANT BIOLOGY 2024; 24:1055. [PMID: 39511474 PMCID: PMC11546474 DOI: 10.1186/s12870-024-05780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Astragalus membranaceus (Fisch.) Bunge is one of the most well-known tonic herbs in traditional Chinese medicine, renowned for its remarkable medicinal value in various clinical contexts. The corresponding chloroplast (cp) and nuclear genomes have since been accordingly sequenced, providing valuable information for breeding and phylogeny studies. However, the mitochondrial genome (mitogenome) of A. membranaceus remains unexplored, which hinders comprehensively understanding the evolution of its genome. RESULTS For this study, we de novo assembled the mitogenome of A. membranaceus (Fisch.) Bunge var. mongholicus (Bunge) P. K. Hsiao using a strategy integrating Illumina and Nanopore sequencing technology and subsequently performed comparative analysis with its close relatives. The mitogenome has a multi-chromosome structure, consisting of two circular chromosomes with a total length of 398,048 bp and an overall GC content of 45.3%. It encodes 54 annotated functional genes, comprising 33 protein-coding genes (PCGs), 18 tRNA genes, and 3 rRNA genes. An investigation of codon usage in the PCGs revealed an obvious preference for codons ending in A or U (T) bases, given their high frequency. RNA editing identified 500 sites in the coding regions of mt PCGs that exhibit a perfect conversion of the base C to U, a process that tends to lead to the conversion of hydrophilic amino acids into hydrophobic amino acids. From the mitogenome analysis, a total of 399 SSRs, 4 tandem repeats, and 77 dispersed repeats were found, indicating that A. membranaceus possesses fewer repeats compared to its close relatives with similarly sized mitogenomes. Selection pressure analysis indicated that most mt PCGs were purifying selection genes, while only five PCGs (ccmB, ccmFc, ccmFn, nad3, and nad9) were positive selection genes. Notably, positive selection emerged as a critical factor in the evolution of ccmB and nad9 in all the pairwise species comparisons, suggesting the extremely critical role of these genes in the evolution of A. membranaceus. Moreover, we inferred that 22 homologous fragments have been transferred from cp to mitochondria (mt), in which 5 cp-derived tRNA genes remain intact in the mitogenome. Further comparative analysis revealed that the syntenic region and mt gene organization are relatively conserved within the provided legumes. The comparison of gene content indicated that the gene composition of Fabaceae mitogenomes differed. Finally, the phylogenetic tree established from analysis is largely congruent with the taxonomic relationships of Fabaceae species and highlights the close relationship between Astragalus and Oxytropis. CONCLUSIONS We provide the first report of the assembled and annotated A. membranaceus mitogenome, which enriches the genetic resources available for the Astragalus genus and lays the foundation for comprehensive exploration of this invaluable medicinal plant.
Collapse
Affiliation(s)
- Kun Zhang
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China.
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, Datong, Shanxi, China.
| | - Gaoyang Qu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yue Zhang
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China
| | - Jianxia Liu
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, Datong, Shanxi, China
| |
Collapse
|
16
|
Li L, Jiang Z, Xiong Y, Akogwu CO, Tolulope OM, Zhou H, Sun Y, Wang H, Zhang H. Comparative Analyses of the Complete Mitogenomes of Two Oxyria Species (Polygonaceae) Provide Insights into Understanding the Mitogenome Evolution Within the Family. Int J Mol Sci 2024; 25:11930. [PMID: 39595999 PMCID: PMC11594269 DOI: 10.3390/ijms252211930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Oxyria (Polygonaceae) is a small genus only comprising two species, Oxyria digyna and O. sinensis. Both species have well-documented usage in Chinese herbal medicine. We sequenced and assembled the complete mitogenomes of these two species and conducted a comparative analysis of the mitogenomes within Polygonaceae. Both O. digyna and O. sinensis displayed distinctive multi-branched conformations, consisting of one linear and one circular molecule. These two species shared similar gene compositions and exhibited distinct codon preferences, with mononucleotides as the most abundant type of simple sequence repeats. In the mitogenome of O. sinensis, a pair of long forward repeat sequences can mediate the division of molecule 1 into two sub-genomic circular molecules. Homologous sequence analysis revealed the occurrence of gene transfer between the chloroplast and mitochondrial genomes within Oxyria species. Additionally, a substantial number of homologous collinear blocks with varied arrangements were observed across different Polygonaceae species. Phylogenetic analysis suggested that mitogenome genes can serve as reliable markers for constructing phylogenetic relationships within Polygonaceae. Comparative analysis of eight species revealed Polygonaceae mitogenomes exhibited variability in gene presence, and most protein-coding genes (PCGs) have undergone negative selection. Overall, our study provided a comprehensive overview of the structural, functional, and evolutionary characteristics of the Polygonaceae mitogenomes.
Collapse
Affiliation(s)
- Lijuan Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.L.); (Z.J.); (Y.X.); (C.O.A.); (O.M.T.); (Y.S.)
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.L.); (Z.J.); (Y.X.); (C.O.A.); (O.M.T.); (Y.S.)
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Xiong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.L.); (Z.J.); (Y.X.); (C.O.A.); (O.M.T.); (Y.S.)
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caleb Onoja Akogwu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.L.); (Z.J.); (Y.X.); (C.O.A.); (O.M.T.); (Y.S.)
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Olutayo Mary Tolulope
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.L.); (Z.J.); (Y.X.); (C.O.A.); (O.M.T.); (Y.S.)
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.L.); (Z.J.); (Y.X.); (C.O.A.); (O.M.T.); (Y.S.)
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.L.); (Z.J.); (Y.X.); (C.O.A.); (O.M.T.); (Y.S.)
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (L.L.); (Z.J.); (Y.X.); (C.O.A.); (O.M.T.); (Y.S.)
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
17
|
Chen S, Pan Y, Qiu S, Qiu G. Assembly and comparative analysis of the multichromosomal mitochondrial genome of globally endangered seagrass Halophila beccarii. BMC PLANT BIOLOGY 2024; 24:1040. [PMID: 39491042 PMCID: PMC11533286 DOI: 10.1186/s12870-024-05765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Halophila beccarii is one of the oldest two generations of seagrass plants and one of the 10 species of seagrass currently at risk of extinction worldwide. Therefore, how to effectively protect the H. beccarii resources from extinction is a huge challenge. Molecular biology research can provide a scientific basis for species conservation. So far, there has been no detailed analysis of the mitochondrial genome of the genus Halophila. RESULTS The mitochondrial genome of H. beccarii was assembled into 28 circular chromosomes, ranging in length from 41,738 bp to 104,744 bp, with a total length of 1,964,072 bp and a GC content of 46.71%. It contains 39 genes, including 26 protein coding genes, 10 tRNA genes, and 3 rRNA genes. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 850 dispersed repeats, 1,205 simple repeats, 61 tandem repeats, and 120 RNA editing sites. Analysis of codon usage indicates that codons ending in A/U are preferred. Gene migration between the mitochondrial genome and the chloroplast genome was observed through homologous fragment detection. In addition, Ka/Ks analysis showed that most protein coding genes in the mitochondrial genome experienced negative selection, while only the nad3 gene experienced potential positive selection in most Alismatales. Nucleotide polymorphism analysis revealed variations in each gene, with rpl10 being the most significant. In addition, comparative analysis shows that the GC content is conserved, but there are significant differences in the size and structure of mitochondrial genomes among different species of Alismatales. The phylogenetic analysis based on the mitochondrial genome reflects the exact evolutionary and taxonomic status of H. beccarii. CONCLUSION In this study, we sequenced and annotated the mitochondrial genome of H. beccarii, and compared it with the mitochondrial genomes of other plants in Alismatales. Our findings enrich the mitogenome database of seagrass plants and highlight the potential for mitochondrial genes to help decipher plant evolutionary history.
Collapse
Affiliation(s)
- Siting Chen
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, Guangxi, 536007, China
| | - Yuanfang Pan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, Guangxi, 536007, China
| | - Siting Qiu
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, Guangxi, 536007, China
| | - Guanglong Qiu
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, Guangxi, 536007, China.
| |
Collapse
|
18
|
Wang Z, Wang R, Sang Y, Wang T, Su Y, Liao W. Comparative analysis of mitochondrial genomes of invasive weed Mikania micrantha and its indigenous congener Mikania cordata. Int J Biol Macromol 2024; 281:136357. [PMID: 39378918 DOI: 10.1016/j.ijbiomac.2024.136357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/21/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Mikania micrantha and Mikania cordata are two distinct species in China. The former is notorious as one of the top 100 worst invasive species, whereas the latter is an indigenous species harmless to native plants or the environment. They form an ideal congener pair for comparative studies aimed at deeply understanding the invasion mechanisms of the exotic weed. In this study, we have assembled and annotated the mitogenomes of both species using Illumina and PacBio sequencing data and compared their characteristic differences. The complete mitogenome of M. micrantha is a double-stranded DNA with a length of 336,564 bp, while the mitogenome of M. cordata exhibits a branching structure, consisting of two small circular molecules and six linear molecules, with a combined length totaling 335,444 bp. Compared to M. cordata, M. micrantha has less SSRs, tandem repeats, dispersed repeats, mitochondrial protein coding genes (PCGs). The two plants show similar codon usage patterns. This comparative study has revealed the structure and function of the mitogenomes of the two species and laid a solid foundation for investigating the effects of gene loss and duplication on the development of invasive traits in M. micrantha.
Collapse
Affiliation(s)
- Zhen Wang
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Ruonan Wang
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Yatong Sang
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, 510642 Guangzhou, China; Research Institute of Sun Yat-sen University in Shenzhen, 518057 Shenzhen, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China; Research Institute of Sun Yat-sen University in Shenzhen, 518057 Shenzhen, China.
| | - Wenbo Liao
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| |
Collapse
|
19
|
Tu XD, Xin YX, Fu HH, Zhou CY, Liu QL, Tang XH, Zou LH, Liu ZJ, Chen SP, Lin WJ, Li MH. The complete mitochondrial genome of Castanopsis carlesii and Castanea henryi reveals the rearrangement and size differences of mitochondrial DNA molecules. BMC PLANT BIOLOGY 2024; 24:988. [PMID: 39428457 PMCID: PMC11492686 DOI: 10.1186/s12870-024-05618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Castanopsis carlesii is a dominant tree species in subtropical evergreen broad-leaved forests and holds significant ecological value. It serves as an excellent timber tree species and raw material for cultivating edible fungi. Henry Chinquapin (Castanea henryi) wood is known for its hardness and resistance to water and moisture, making it an exceptional timber species. Additionally, its fruit has a sweet and fruity taste, making it a valuable food source. However, the mitogenomes of these species have not been previously reported. To gain a better understanding of them, this study successfully assembled high-quality mitogenomes of C. carlesii and Ca. henryi for the first time. RESULTS Our research reveals that the mitochondrial DNA (mtDNA) of C. carlesii exhibits a unique multi-branched conformation, while Ca. henryi primarily exists in the form of two independent molecules that can be further divided into three independent molecules through one pair of long repetitive sequences. The size of the mitogenomes of C. carlesii and Ca. henryi are 592,702 bp and 379,929 bp respectively, which are currently the largest and smallest Fagaceae mitogenomes recorded thus far. The primary factor influencing mitogenome size is dispersed repeats. Comparison with published mitogenomes from closely related species highlights differences in size, gene loss patterns, codon usage preferences, repetitive sequences, as well as mitochondrial plastid DNA segments (MTPTs). CONCLUSIONS Our study enhances the understanding of mitogenome structure and evolution in Fagaceae, laying a crucial foundation for future research on cell respiration, disease resistance, and other traits in this family.
Collapse
Affiliation(s)
- Xiong-De Tu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ya-Xuan Xin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hou-Hua Fu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cheng-Yuan Zhou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing-Long Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xing-Hao Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shi-Pin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wen-Jun Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ming-He Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
20
|
Li Z, Ran Z, Xiao X, Yan C, Xu J, Tang M, An M. Comparative analysis of the whole mitochondrial genomes of four species in sect. Chrysantha (Camellia L.), endemic taxa in China. BMC PLANT BIOLOGY 2024; 24:955. [PMID: 39395971 PMCID: PMC11475203 DOI: 10.1186/s12870-024-05673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND The sect. Chrysantha Chang of plants with yellow flowers of Camellia species as the "Queen of the Tea Family", most of these species are narrowly distributed endemics of China and are currently listed Grde-II in National Key Protected Wild Plant of China. They are commercially important plants with horticultural medicinal and scientific research value. However, the study of the sect. Chrysantha species genetics are still in its infancy, to date, the mitochondrial genome in sect. Chrysantha has been still unexplored. RESULTS In this study, we provide a comprehensive assembly and annotation of the mitochondrial genomes for four species within the sect. Chrysantha. The results showed that the mitochondrial genomes were composed of closed-loop DNA molecules with sizes ranging from 850,836 bp (C. nitidissima) to 1,098,121 bp (C. tianeensis) with GC content of 45.71-45.78% and contained 48-58 genes, including 28-37 protein-coding genes, 17-20 tRNA genes and 2 rRNA genes. We also examined codon usage, sequence repeats, RNA editing and selective pressure in the four species. Then, we performed a comprehensive comparison of their basic structures, GC contents, codon preferences, repetitive sequences, RNA editing sites, Ka/Ks ratios, haplotypes, and RNA editing sites. The results showed that these plants differ little in gene type and number. C. nitidissima has the greatest variety of genes, while C. tianeensis has the greatest loss of genes. The Ka/Ks values of the atp6 gene in all four plants were greater than 1, indicating positive selection. And the codons ending in A and T were highly used. In addition, the RNA editing sites differed greatly in number, type, location, and efficiency. Twelve, six, five, and twelve horizontal gene transfer (HGT) fragments were found in C. tianeensis, Camellia huana, Camellia liberofilamenta, and C. nitidissima, respectively. The phylogenetic tree clusters the four species of sect. Chrysantha plants into one group, and C. huana and C. liberofilamenta have closer affinities. CONCLUSIONS In this study, the mitochondrial genomes of four sect. Chrysantha plants were assembled and annotated, and these results contribute to the development of new genetic markers, DNA barcode databases, genetic improvement and breeding, and provide important references for scientific research, population genetics, and kinship identification of sect. Chrysantha plants.
Collapse
Affiliation(s)
- Zhi Li
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zhaohui Ran
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Xu Xiao
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Chao Yan
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Jian Xu
- Guizhou Botanical Garden, Guiyang, 550000, China
| | - Ming Tang
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang, 330045, China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Mingtai An
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
21
|
Chang X, Li X, Li Z, Hywel-Jones N, Li G, Chen M. Comparative Mitogenomics Analysis Revealed Evolutionary Divergence among Purpureocillium Species and Gene Arrangement and Intron Dynamics of Ophiocordycipitaceae. Microorganisms 2024; 12:2053. [PMID: 39458362 PMCID: PMC11509744 DOI: 10.3390/microorganisms12102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The species of Purpureocillium are cosmopolitan and multitrophic fungi that can infect a wide range of invertebrate hosts. This study reports the mitogenome of P. atypicola, a specialized spider pathogenic fungus. The 112,465 bp mitogenome encoded genes typically found in fungal mitogenomes, and a total of 52 introns inserted into seven genes. A comparison with three other Purpureocillium species revealed significant differences in length and intron number, primarily due to intron variation; however, there was no dynamic variation in the introns of the cox1 gene within the same species of the Purpureocillium genus. Different mitochondrial protein-coding genes showed variable degrees of genetic differentiation among these species, but they were all under purifying selection. Additionally, frequent intron loss or gain events were detected to have occurred during the evolution of the Ophiocordycipitaceae mitogenomes, yet the gene arrangement remains conserved. A phylogenetic analysis of the combined mitochondrial gene set gave identical and well-supported tree topologies. The estimated age of the crown of Ophiocordycipitaceae and Purpureocillium were around the Early Cretaceous period (127 Mya) and Late Cretaceous period (83 Mya), respectively. The results of this study advance our understanding of the genomics, evolution, and taxonomy of this important fungal group.
Collapse
Affiliation(s)
- Xiaoyun Chang
- Anhui Province Key Laboratory of Green Control for Major Forestry Pests, Anhui Agricultural University, Hefei 230036, China; (X.C.); (X.L.); (Z.L.)
| | - Xiang Li
- Anhui Province Key Laboratory of Green Control for Major Forestry Pests, Anhui Agricultural University, Hefei 230036, China; (X.C.); (X.L.); (Z.L.)
| | - Zengzhi Li
- Anhui Province Key Laboratory of Green Control for Major Forestry Pests, Anhui Agricultural University, Hefei 230036, China; (X.C.); (X.L.); (Z.L.)
- BioAsia Life Science Institute, Pinghu 314200, China;
| | | | - Guangshuo Li
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China;
| | - Mingjun Chen
- Anhui Province Key Laboratory of Green Control for Major Forestry Pests, Anhui Agricultural University, Hefei 230036, China; (X.C.); (X.L.); (Z.L.)
| |
Collapse
|
22
|
Lian Q, Zhang S, Wu Z, Zhang C, Negrão S. Assembly and comparative analysis of the mitochondrial genome in diploid potatoes. PLANT CELL REPORTS 2024; 43:249. [PMID: 39358565 DOI: 10.1007/s00299-024-03326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
KEY MESSAGE We report the mitochondrial genome of 39 diploid potatoes and identify a candidate ORF potentially linked to cytoplasmic male sterility in potatoes. Potato (Solanum tuberosum L.) holds a critical position as the foremost non-grain food crop, playing a pivotal role in ensuring global food security. Diploid potatoes constitute a vital genetic resource pool, harboring the potential to revolutionize modern potato breeding. Nevertheless, diploid potatoes are relatively understudied, and mitochondrial DNA can provide valuable insights into key potato breeding traits such as CMS. In this study, we examine and assemble the mitochondrial genome evolution and diversity of 39 accessions of diploid potatoes using high-fidelity (HiFi) sequencing. We annotated 54 genes for all the investigated accessions, comprising 34 protein-coding genes, 3 rRNA genes, and 17 tRNA genes. Our analyses revealed differences in repeats sequences between wild and cultivated landraces. To understand the evolution of diploid maternal lineage inheritance, we conducted phylogenetic analysis, which clearly distinguished mitochondrial from nuclear gene trees, further supporting the evidence-based of clustering between wild and cultivated landraces accessions. Our study discovers new candidate ORFs associated with CMS in potatoes, including ORF137, which is homologous to other CMS in Solanaceae. Ultimately, this work bridges the gap in mitochondrial genome research for diploid potatoes, providing a steppingstone into evolutionary studies and potato breeding.
Collapse
Affiliation(s)
- Qun Lian
- School of Biology & Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shuo Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Chunzhi Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Sónia Negrão
- School of Biology & Environmental Science, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
23
|
Wu H, Dongchen W, Li Y, Brown SE, Wei S, Lin C, Mao Z, Liu Z. Mitogenomes comparison of 3 species of Asparagus L shedding light on their functions due to domestication and adaptative evolution. BMC Genomics 2024; 25:857. [PMID: 39266980 PMCID: PMC11396758 DOI: 10.1186/s12864-024-10768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Asparagus L., widely distributed in the old world is a genus under Asparagaceae, Asparagales. The species of the genus were mainly used as vegetables, traditional medicines as well as ornamental plants. However, the evolution and functions of mitochondrial (Mt) genomes (mitogenomes) remains largely unknown. In this study, the typical herbal medicine A. taliensis and ornamental plant A. setaceus were used to assemble and annotate the mitogenomes, and the resulting mitogenomes were further compared with published mitogenome of A. officinalis for the analysis of their functions in the context of domestication and adaptative evolution. RESULTS The mitochondrial genomes of both A. taliensis and A. setaceus were assembled as complete circular ones. The phylogenetic trees based on conserved protein-coding genes of Mt genomes and whole chloroplast (Cp) genomes showed that, the phylogenetic relationship of the sampled 13 species of Asparagus L. were not exactly consistent. The collinear analyses between the nuclear (Nu) and Mt genomes confirmed the existence of mutual horizontal genes transfers (HGTs) between Nu and Mt genomes within these species. Based on RNAseq data, the Mt RNA editing were predicted and atp1 and ccmB RNA editing of A. taliensis were further confirmed by DNA sequencing. Simultaneously homologous search found 5 Nu coding gene families including pentatricopeptide-repeats (PPRs) involved in Mt RNA editing. Finally, the Mt genome variations, gene expressions and mutual HGTs between Nu and Mt were detected with correlation to the growth and developmental phenotypes respectively. The results suggest that, both Mt and Nu genomes co-evolved and maintained the Mt organella replication and energy production through TCA and oxidative phosphorylation . CONCLUSION The assembled and annotated complete mitogenomes of both A. taliensis and A. setaceus provide valuable information for their phylogeny and concerted action of Nu and Mt genomes to maintain the energy production system of Asparagus L. in the context of domestication and adaptation to environmental niches.
Collapse
Affiliation(s)
- He Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan, 650201, China
| | - Wenhua Dongchen
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan, 650201, China
| | - Yunbin Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan, 650201, China
| | - Sylvia E Brown
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan, 650201, China
| | - Shugu Wei
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610023, China
| | - Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan, 650201, China
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan, 650201, China.
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China.
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China.
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan, 650201, China.
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China.
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China.
| |
Collapse
|
24
|
Zhang M, Zhang X, Huang Y, Chen Z, Chen B. Comparative mitochondrial genomics of Terniopsis yongtaiensis in Malpighiales: structural, sequential, and phylogenetic perspectives. BMC Genomics 2024; 25:853. [PMID: 39267005 PMCID: PMC11391645 DOI: 10.1186/s12864-024-10765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Terniopsis yongtaiensis, a member of the Podostemaceae family, is an aquatic flowering plant displaying remarkable adaptive traits that enable survival in submerged, turbulent habitats. Despite the progressive expansion of chloroplast genomic information within this family, mitochondrial genome sequences have yet to be reported. RESULTS In current study, the mitochondrial genome of the T. yongtaiensis was characterized by a circular genome of 426,928 bp encoding 31 protein-coding genes (PCGs), 18 tRNAs, and 3 rRNA genes. Our comprehensive analysis focused on gene content, repeat sequences, RNA editing processes, intracellular gene transfer, phylogeny, and codon usage bias. Numerous repeat sequences were identified, including 130 simple sequence repeats, 22 tandem repeats, and 220 dispersed repeats. Phylogenetic analysis positioned T. yongtaiensis (Podostemaceae) within the Malpighiales order, showing a close relationship with the Calophyllaceae family, which was consistent with the APG IV classification. A comparative analysis with nine other Malpighiales species revealed both variable and conserved regions, providing insights into the genomic evolution within this order. Notably, the GC content of T. yongtaiensis was distinctively lower compared to other Malpighilales, primarily due to variations in non-coding regions and specific protein-coding genes, particularly the nad genes. Remarkably, the number of RNA editing sites was low (276), distributed unevenly across 27 PCGs. The dN/dS analysis showed only the ccmB gene of T. yongtaiensis was positively selected, which plays a crucial role in cytochrome c biosynthesis. Additionally, there were 13 gene-containing homologous regions between the mitochondrial and chloroplast genomes of T. yongtaiensis, suggesting the gene transfer events between these organellar genomes. CONCLUSIONS This study assembled and annotated the first mitochondrial genome of the Podostemaceae family. The comparison results of mitochondrial gene composition, GC content, and RNA editing sites provided novel insights into the adaptive traits and genetic reprogramming of this aquatic eudicot group and offered a foundation for future research on the genomic evolution and adaptive mechanisms of Podostemaceae and related plant families in the Malpighiales order.
Collapse
Affiliation(s)
- Miao Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xiaohui Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Normal University, Fuzhou, 350117, China
| | - Yinglin Huang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Normal University, Fuzhou, 350117, China
| | - Zhangxue Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Normal University, Fuzhou, 350117, China
| | - Binghua Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
- Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
25
|
Ou T, Wu Z, Tian C, Yang Y, Li Z. Complete mitochondrial genome of Agropyron cristatum reveals gene transfer and RNA editing events. BMC PLANT BIOLOGY 2024; 24:830. [PMID: 39232676 PMCID: PMC11373303 DOI: 10.1186/s12870-024-05558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND As an important forage in arid and semi-arid regions, Agropyron cristatum provides livestock with exceptionally high nutritional value. Additionally, A. cristatum exhibits outstanding genetic characteristics to endure drought and disease. Therefore, rich genetic diversity serves as a cornerstone for the improvement of major food crops. The purposes of this study were to systematically describe mitogenome of A.cristatum and preliminarily analyze its internal variations. RESULT The A. cristatum mitogenome was a single-ring molecular structure of 381,065 bp that comprised 52 genes, including 35 protein-coding, 3 rRNA and 14 tRNA genes. Among these, two pseudoprotein-coding genes and multiple copies of tRNA genes were observed. A total of 320 repetitive sequences was found to cover more than 10% of the mitogenome (105 simple sequences, 185 dispersed and 30 tandem repeats), which led to a large number of fragment rearrangements in the mitogenome of A. cristatum. Leucine was the most frequent amino acid (n = 1087,10.8%) in the protein-coding genes of A. cristatum mitogenome, and the highest usage codon was ATG (initiation codon). The number of A/T changes at the third base of the codon was much higher than that of G/C. Among 23 PCGs, the range of Pi values is from 0.0021 to 0.0539, with an average of 0.013. Additionally, 81 RNA editing sites were predicted, which were considerably fewer than those reported in other plant mitogenomes. Most of the RNA editing site base positions were concentrated at the first and second codon bases, which were C to T transitions. Moreover, we identified 95 sequence fragments (total length of 34, 343 bp) that were transferred from the chloroplast to mitochondria genes, introns, and intergenic regions. The stability of the tRNA genes was maintained during this process. Selection pressure analysis of 23 protein-coding genes shared by 15 Poaceae plants, showed that most genes were subjected to purifying selection during evolution, whereas rps4, cob, mttB, and ccmB underwent positive selection in different plants. Finally, a phylogenetic tree was constructed based on 22 plant mitogenomes, which showed that Agropyron plants have a high degree of independent heritability in Triticeae. CONCLUSION The findings of this study provide new data for a better understanding of A. cristatum genes, and demonstrate that mitogenomes are suitable for the study of plant classifications, such as those of Agropyron. Moreover, it provides a reference for further exploration of the phylogenetic relationships within Agropyron species, and establishes a theoretical basis for the subsequent development and utilization of A. cristatum plant germplasm resources.
Collapse
Affiliation(s)
- Taiyou Ou
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China.
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China.
| | - Chunyu Tian
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| |
Collapse
|
26
|
Li L, Li X, Liu Y, Li J, Zhen X, Huang Y, Ye J, Fan L. Comparative analysis of the complete mitogenomes of Camellia sinensis var. sinensis and C. sinensis var. assamica provide insights into evolution and phylogeny relationship. FRONTIERS IN PLANT SCIENCE 2024; 15:1396389. [PMID: 39239196 PMCID: PMC11374768 DOI: 10.3389/fpls.2024.1396389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Introduction Among cultivated tea plants (Camellia sinensis), only four mitogenomes for C. sinensis var. assamica (CSA) have been reported so far but none for C. sinensis var. sinensis (CSS). Here, two mitogenomes of CSS (CSSDHP and CSSRG) have been sequenced and assembled. Methods Using a combination of Illumina and Nanopore data for the first time. Comparison between CSS and CSA mitogenomes revealed a huge heterogeneity. Results The number of the repetitive sequences was proportional to the mitogenome size and the repetitive sequences dominated the intracellular gene transfer segments (accounting for 88.7%- 92.8% of the total length). Predictive RNA editing analysis revealed that there might be significant editing in NADH dehydrogenase subunit transcripts. Codon preference analysis showed a tendency to favor A/T bases and T was used more frequently at the third base of the codon. ENc plots analysis showed that the natural selection play an important role in shaping the codon usage bias, and Ka/Ks ratios analysis indicated Nad1 and Sdh3 genes may have undergone positive selection. Further, phylogenetic analysis shows that six C. sinensis clustered together, with the CSA and CSS forming two distinct branches, suggesting two different evolutionary pathway. Discussion Altogether, this investigation provided an insight into evolution and phylogeny relationship of C. sinensis mitogenome, thereby enhancing comprehension of the evolutionary patterns within C. sinensis species.
Collapse
Affiliation(s)
- Li Li
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Xiangru Li
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Yun Liu
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Junda Li
- College of Tea and Food Science, Wuyi University, Wuyishan, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyun Zhen
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Yu Huang
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Li Fan
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| |
Collapse
|
27
|
Zeng Z, Zhang Z, Tso N, Zhang S, Chen Y, Shu Q, Li J, Liang Z, Wang R, Wang J, Qiong L. Complete mitochondrial genome of Hippophae tibetana: insights into adaptation to high-altitude environments. FRONTIERS IN PLANT SCIENCE 2024; 15:1449606. [PMID: 39170791 PMCID: PMC11335646 DOI: 10.3389/fpls.2024.1449606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Hippophae tibetana, belonging to the Elaeagnaceae family, is an endemic plant species of the Qinghai-Tibet Plateau, valued for its remarkable ecological restoration capabilities, as well as medicinal and edible properties. Despite being acknowledged as a useful species, its mitochondrial genome data and those of other species of the Elaeagnaceae family are lacking to date. In this study, we, for the first time, successfully assembled the mitochondrial genome of H. tibetana, which is 464,208 bp long and comprises 31 tRNA genes, 3 rRNA genes, 37 protein-coding genes, and 3 pseudogenes. Analysis of the genome revealed a high copy number of the trnM-CAT gene and a high prevalence of repetitive sequences, both of which likely contribute to genome rearrangement and adaptive evolution. Through nucleotide diversity and codon usage bias analyses, we identified specific genes that are crucial for adaptation to high-altitude conditions. Notably, genes such as atp6, ccmB, nad4L, and nad7 exhibited signs of positive selection, indicating the presence of unique adaptive traits for survival in extreme environments. Phylogenetic analysis confirmed the close relationship between the Elaeagnaceae family and other related families, whereas intergenomic sequence transfer analysis revealed a substantial presence of homologous fragments among the mitochondrial, chloroplast, and whole genomes, which may be linked to the high-altitude adaptation mechanisms of H. tibetana. The findings of this study not only enrich our knowledge of H. tibetana molecular biology but also advance our understanding of the adaptive evolution of plants on the Qinghai-Tibet Plateau. This study provides a solid scientific foundation for the molecular breeding, conservation, and utilization of H. tibetana genetic resources.
Collapse
Affiliation(s)
- Zhefei Zeng
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
- Yani Observation and Research Station for Wetland Ecosystem of the Tibet (Xizang) Autonomous Region, Tibet University, Lhasa, China
| | - Zhengyan Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Norzin Tso
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Shutong Zhang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Yan Chen
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Qi Shu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Junru Li
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Ziyi Liang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Ruoqiu Wang
- Tech X Academy, Shenzhen Polytechnic University, Shenzhen, China
| | - Junwei Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
- Yani Observation and Research Station for Wetland Ecosystem of the Tibet (Xizang) Autonomous Region, Tibet University, Lhasa, China
| | - La Qiong
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
- Yani Observation and Research Station for Wetland Ecosystem of the Tibet (Xizang) Autonomous Region, Tibet University, Lhasa, China
| |
Collapse
|
28
|
Zhang X, Ding Z, Lou H, Han R, Ma C, Yang S. A Systematic Review and Developmental Perspective on Origin of CMS Genes in Crops. Int J Mol Sci 2024; 25:8372. [PMID: 39125940 PMCID: PMC11312923 DOI: 10.3390/ijms25158372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cytoplasmic male sterility (CMS) arises from the incompatibility between the nucleus and cytoplasm as typical representatives of the chimeric structures in the mitochondrial genome (mitogenome), which has been extensively applied for hybrid seed production in various crops. The frequent occurrence of chimeric mitochondrial genes leading to CMS is consistent with the mitochondrial DNA (mtDNA) evolution. The sequence conservation resulting from faithfully maternal inheritance and the chimeric structure caused by frequent sequence recombination have been defined as two major features of the mitogenome. However, when and how these chimeric mitochondrial genes appear in the context of the highly conserved reproduction of mitochondria is an enigma. This review, therefore, presents the critical view of the research on CMS in plants to elucidate the mechanisms of this phenomenon. Generally, distant hybridization is the main mechanism to generate an original CMS source in natural populations and in breeding. Mitochondria and mitogenomes show pleomorphic and dynamic changes at key stages of the life cycle. The promitochondria in dry seeds develop into fully functioning mitochondria during seed imbibition, followed by massive mitochondria or mitogenome fusion and fission in the germination stage along with changes in the mtDNA structure and quantity. The mitogenome stability is controlled by nuclear loci, such as the nuclear gene Msh1. Its suppression leads to the rearrangement of mtDNA and the production of heritable CMS genes. An abundant recombination of mtDNA is also often found in distant hybrids and somatic/cybrid hybrids. Since mtDNA recombination is ubiquitous in distant hybridization, we put forward a hypothesis that the original CMS genes originated from mtDNA recombination during the germination of the hybrid seeds produced from distant hybridizations to solve the nucleo-cytoplasmic incompatibility resulting from the allogenic nuclear genome during seed germination.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Zhengpin Ding
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Hongbo Lou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Rui Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
29
|
Wang L, Liu X, Wang Y, Ming X, Qi J, Zhou Y. Comparative analysis of the mitochondrial genomes of four Dendrobium species (Orchidaceae) reveals heterogeneity in structure, synteny, intercellular gene transfer, and RNA editing. FRONTIERS IN PLANT SCIENCE 2024; 15:1429545. [PMID: 39139720 PMCID: PMC11319272 DOI: 10.3389/fpls.2024.1429545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
The genus Dendrobium, part of the Orchidaceae family, encompasses species of significant medicinal, nutritional, and economic value. However, many Dendrobium species are threatened by environmental stresses, low seed germination rates, and overharvesting. Mitochondria generate the energy necessary for various plant life activities. Despite their importance, research on the mitochondrial genomes of Dendrobium species is currently limited. To address this gap, we performed a comprehensive genetic analysis of four Dendrobium species-D. flexicaule, D. nobile, D. officinale, and D. huoshanense-focusing on their mitochondrial and chloroplast genomes to elucidate their genetic architecture and support conservation efforts. We utilized advanced sequencing technologies, including Illumina for high-throughput sequencing and Nanopore for long-read sequencing capabilities. Our findings revealed the multichromosomal mitochondrial genome structures, with total lengths ranging from 596,506 bp to 772,523 bp. The mitochondrial genomes contained 265 functional genes, including 64-69 protein-coding genes, 23-28 tRNA genes, and 3 rRNA genes. We identified 647 simple sequence repeats (SSRs) and 352 tandem repeats, along with 440 instances of plastid-to-mitochondrial gene transfer. Additionally, we predicted 2,023 RNA editing sites within the mitochondrial protein-coding genes, predominantly characterized by cytosine-to-thymine transitions. Comparative analysis of mitochondrial DNA across the species highlighted 25 conserved genes, with evidence of positive selection in five genes: ccmFC, matR, mttB, rps2, and rps10. Phylogenetic assessments suggested a close sister relationship between D. nobile and D. huoshanense, and a similar proximity between D. officinale and D. flexicaule. This comprehensive genomic study provides a critical foundation for further exploration into the genetic mechanisms and biodiversity of Dendrobium species, contributing valuable insights for their conservation and sustainable utilization.
Collapse
Affiliation(s)
- Le Wang
- Chongqing Key Laboratory of Special Chinese Materia Medica Resources Utilization and Evaluation, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- College of Life Science and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Xue Liu
- Chongqing Key Laboratory of Special Chinese Materia Medica Resources Utilization and Evaluation, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yongde Wang
- Chongqing Key Laboratory of Special Chinese Materia Medica Resources Utilization and Evaluation, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xingjia Ming
- Chongqing Key Laboratory of Special Chinese Materia Medica Resources Utilization and Evaluation, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Junsheng Qi
- College of Life Science and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yiquan Zhou
- Chongqing Key Laboratory of Special Chinese Materia Medica Resources Utilization and Evaluation, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Daba Mountain Medical Animals and Plants of Chongqing Observation and Research Station, Chongqing Academy of Chinese Materia Medicinal, Chongqing, China
| |
Collapse
|
30
|
Zheng Q, Luo X, Huang Y, Ke SJ, Liu ZJ. The Complete Mitogenome of Apostasia fujianica Y.Li & S.Lan and Comparative Analysis of Mitogenomes across Orchidaceae. Int J Mol Sci 2024; 25:8151. [PMID: 39125719 PMCID: PMC11311346 DOI: 10.3390/ijms25158151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Apostasia fujianica belongs to the genus Apostasia and is part of the basal lineage in the phylogenetic tree of the Orchidaceae. Currently, there are only ten reported complete mitochondrial genomes in orchids, which greatly hinders the understanding of mitochondrial evolution in Orchidaceae. Therefore, we assembled and annotated the mitochondrial genome of A. fujianica, which has a length of 573,612 bp and a GC content of 44.5%. We annotated a total of 44 genes, including 30 protein-coding genes, 12 tRNA genes, and two rRNA genes. We also performed relative synonymous codon usage (RSCU) analysis, repeat sequence analysis, intergenomic transfer (IGT) analysis, and Ka/Ks analysis for A. fujianica and conducted RNA editing site analysis on the mitochondrial genomes of eight orchid species. We found that most protein-coding genes are under purifying selection, but nad6 is under positive selection, with a Ka/Ks value of 1.35. During the IGT event in A. fujianica's mitogenome, the trnN-GUU, trnD-GUC, trnW-CCA, trnP-UGG, and psaJ genes were identified as having transferred from the plastid to the mitochondrion. Compared to other monocots, the family Orchidaceae appears to have lost the rpl10, rpl14, sdh3, and sdh4 genes. Additionally, to further elucidate the evolutionary relationships among monocots, we constructed a phylogenetic tree based on the complete mitogenomes of monocots. Our study results provide valuable data on the mitogenome of A. fujianica and lay the groundwork for future research on genetic variation, evolutionary relationships, and breeding of Orchidaceae.
Collapse
Affiliation(s)
- Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoting Luo
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi-Jie Ke
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
31
|
Song X, Geng Y, Xu C, Li J, Guo Y, Shi Y, Ma Q, Li Q, Zhang M. The complete mitochondrial genomes of five critical phytopathogenic Bipolaris species: features, evolution, and phylogeny. IMA Fungus 2024; 15:15. [PMID: 38863028 PMCID: PMC11167856 DOI: 10.1186/s43008-024-00149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
In the present study, three mitogenomes from the Bipolaris genus (Bipolaris maydis, B. zeicola, and B. oryzae) were assembled and compared with the other two reported Bipolaris mitogenomes (B. oryzae and B. sorokiniana). The five mitogenomes were all circular DNA molecules, with lengths ranging from 106,403 bp to 135,790 bp. The mitogenomes of the five Bipolaris species mainly comprised the same set of 13 core protein-coding genes (PCGs), two rRNAs, and a certain number of tRNAs and unidentified open reading frames (ORFs). The PCG length, AT skew and GC skew showed large variability among the 13 PCGs in the five mitogenomes. Across the 13 core PCGs tested, nad6 had the least genetic distance among the 16 Pleosporales species we investigated, indicating that this gene was highly conserved. In addition, the Ka/Ks values for all 12 core PCGs (excluding rps3) were < 1, suggesting that these genes were subject to purifying selection. Comparative mitogenomic analyses indicate that introns were the main factor contributing to the size variation of Bipolaris mitogenomes. The introns of the cox1 gene experienced frequent gain/loss events in Pleosporales species. The gene arrangement and collinearity in the mitogenomes of the five Bipolaris species were almost highly conserved within the genus. Phylogenetic analysis based on combined mitochondrial gene datasets showed that the five Bipolaris species formed well-supported topologies. This study is the first report on the mitogenomes of B. maydis and B. zeicola, as well as the first comparison of mitogenomes among Bipolaris species. The findings of this study will further advance investigations into the population genetics, evolution, and genomics of Bipolaris species.
Collapse
Affiliation(s)
- Xinzheng Song
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuehua Geng
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chao Xu
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiaxin Li
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yashuang Guo
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yan Shi
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qingzhou Ma
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| | - Meng Zhang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
32
|
Dallagnol LC, Cônsoli FL. Evolutionary and phylogenetic insights from the mitochondrial genomic analysis of Diceraeus melacanthus and D. furcatus (Hemiptera: Pentatomidae). Sci Rep 2024; 14:12861. [PMID: 38834792 DOI: 10.1038/s41598-024-63584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
The mitochondrial genomes of D. melacanthus and D. furcatus were sequenced and used to investigate the phylogenetic relationships with 54 species of Pentatomidae. Their mitogenomes are 17,197 and 15,444 bp-long, respectively, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22/21 transfer RNA genes, with conserved gene arrangement. Leu, Lys, and Ser were the most common amino acids in their PCGs. PCGs evolutionary analysis indicated their mitogenomes are under purifying selection, and the most conserved genes are from the cytochrome complex, reinforcing their suitability as markers for molecular taxonomy. We identified 490 mtSSRs in 56 Pentatomidae species, with large variation and a positive correlation between mtSSR number and genome size. Three mtSSRs were identified in each Diceraeus species. Only the mtSSR in the nad6 (D. melacanthus) and nad4 (D. furcatus) appear to have application as molecular markers for species characterization. Phylogenetic analysis confirmed the monophyly of Pentatomidae. However, our analysis challenged the monophyly of Pentatominae and Podopinae. We also detected unexpected relationships among some tribes and genera, highlighting the complexity of the internal taxonomic structure of Pentatomidae. Both Diceraeus species were grouped in the same clade with the remaining Carpocorini analyzed.
Collapse
Affiliation(s)
- Lilian Cris Dallagnol
- Insect Interactions Laboratory, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Fernando Luís Cônsoli
- Insect Interactions Laboratory, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
| |
Collapse
|
33
|
Zhang X, Li P, Wang J, Fu D, Zhao B, Dong W, Liu Y. Comparative genomic and phylogenetic analyses of mitochondrial genomes of hawthorn (Crataegus spp.) in Northeast China. Int J Biol Macromol 2024; 272:132795. [PMID: 38830497 DOI: 10.1016/j.ijbiomac.2024.132795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/18/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Hawthorn (Crataegus spp.) plants are major sources of health food and medicines. Twenty species and seven variations of Crataegus are present in China. A variety of unique Crataegus species was found in their natural distribution in northeast China. In the present study, we assembled and annotated the mitochondrial genomes of five Crataegus species from northeastern China. The sizes of the newly sequenced mitochondrial genomes ranged from 245,907 bp to 410,837 bp. A total of 45-55 genes, including 12-19 transfer RNA genes, three ribosomal RNA genes, and 29-33 protein-coding genes (PCGs) were encoded by these mitochondrial genomes. Seven divergent hotspot regions were identified by comparative analyses: atp6, nad3, ccmFN, matR, nad1, nad5, and rps1. The most conserved genes among the Crataegus species, according to the whole-genome correlation analysis, were nad1, matR, nad5, ccmFN, cox1, nad4, trnQ-TTG, trnK-TTT, trnE-TTC, and trnM-CAT. Horizontal gene transfer between organellar genomes was common in Crataegus plants. Based on the phylogenetic trees of mitochondrial PCGs, C. maximowiczii, C. maximowiczii var. ninganensis, and C. bretschneideri shared similar maternal relationships. This study improves Crataegus mitochondrial genome resources and offers important insights into the taxonomy and species identification of this genus.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; National Field Genebank for Hawthorn, Shenyang, Liaoning 110866, China
| | - Peihao Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jian Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Dongxu Fu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Baipeng Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; National Field Genebank for Hawthorn, Shenyang, Liaoning 110866, China
| | - Yuexue Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; National Field Genebank for Hawthorn, Shenyang, Liaoning 110866, China.
| |
Collapse
|
34
|
Keeling PJ. Horizontal gene transfer in eukaryotes: aligning theory with data. Nat Rev Genet 2024; 25:416-430. [PMID: 38263430 DOI: 10.1038/s41576-023-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Abstract
Horizontal gene transfer (HGT), or lateral gene transfer, is the non-sexual movement of genetic information between genomes. It has played a pronounced part in bacterial and archaeal evolution, but its role in eukaryotes is less clear. Behaviours unique to eukaryotic cells - phagocytosis and endosymbiosis - have been proposed to increase the frequency of HGT, but nuclear genomes encode fewer HGTs than bacteria and archaea. Here, I review the existing theory in the context of the growing body of data on HGT in eukaryotes, which suggests that any increased chance of acquiring new genes through phagocytosis and endosymbiosis is offset by a reduced need for these genes in eukaryotes, because selection in most eukaryotes operates on variation not readily generated by HGT.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
35
|
Zeng T, Ni Y, Li J, Chen H, Lu Q, Jiang M, Xu L, Liu C, Xiao P. Comprehensive analysis of the mitochondrial genome of Rehmannia glutinosa: insights into repeat-mediated recombinations and RNA editing-induced stop codon acquisition. FRONTIERS IN PLANT SCIENCE 2024; 15:1326387. [PMID: 38807783 PMCID: PMC11130359 DOI: 10.3389/fpls.2024.1326387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
Rehmannia glutinosa is an economically significant medicinal plant. Yet, the structure and sequence of its mitochondrial genome has not been published, which plays a crucial role in evolutionary analysis and regulating respiratory-related macromolecule synthesis. In this study, the R. glutinosa mitogenome was sequenced employing a combination of Illumina short reads and Nanopore long reads, with subsequent assembly using a hybrid strategy. We found that the predominant configuration of the R. glutinosa mitogenome comprises two circular chromosomes. The primary structure of the mitogenome encompasses two mitochondrial chromosomes corresponding to the two major configurations, Mac1-1 and Mac1-2. The R. glutinosa mitogenome encoded an angiosperm-typical set of 24 core genes, nine variable genes, three rRNA genes, and 15 tRNA genes. A phylogenetic analysis using the 16 shared protein-coding genes (PCG) yielded a tree consistent with the phylogeny of Lamiales species and two outgroup taxa. Mapping RNA-seq data to the coding sequences (CDS) of the PCGs revealed 507 C-to-U RNA editing sites across 31 PCGs of the R. glutinosa mitogenome. Furthermore, one start codon (nad4L) and two stop codons (rpl10 and atp6) were identified as products of RNA editing events in the R. glutinosa mitogenome.
Collapse
Affiliation(s)
- Tiexin Zeng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jingling Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qianqi Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Shen B, Shen A, Liu L, Tan Y, Li S, Tan Z. Assembly and comparative analysis of the complete multichromosomal mitochondrial genome of Cymbidium ensifolium, an orchid of high economic and ornamental value. BMC PLANT BIOLOGY 2024; 24:255. [PMID: 38594641 PMCID: PMC11003039 DOI: 10.1186/s12870-024-04962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Orchidaceae is one of the largest groups of angiosperms, and most species have high economic value and scientific research value due to their ornamental and medicinal properties. In China, Chinese Cymbidium is a popular ornamental orchid with high economic value and a long history. However, to date, no detailed information on the mitochondrial genome of any species of Chinese Cymbidium has been published. RESULTS Here, we present the complete assembly and annotation of the mitochondrial genome of Cymbidium ensifolium (L.) Sw. The mitogenome of C. ensifolium was 560,647 bp in length and consisted of 19 circular subgenomes ranging in size from 21,995 bp to 48,212 bp. The genome encoded 35 protein-coding genes, 36 tRNAs, 3 rRNAs, and 3405 ORFs. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 915 dispersed repeats, 162 simple repeats, 45 tandem repeats, and 530 RNA editing sites. Analysis of codon usage showed a preference for codons ending in A/T. Interorganellar DNA transfer was identified in 13 of the 19 chromosomes, with plastid-derived DNA fragments representing 6.81% of the C. ensifolium mitochondrial genome. The homologous fragments of the mitochondrial genome and nuclear genome were also analysed. Comparative analysis showed that the GC content was conserved, but the size, structure, and gene content of the mitogenomes varied greatly among plants with multichromosomal mitogenome structure. Phylogenetic analysis based on the mitogenomes reflected the evolutionary and taxonomic statuses of C. ensifolium. Interestingly, compared with the mitogenomes of Cymbidium lancifolium Hook. and Cymbidium macrorhizon Lindl., the mitogenome of C. ensifolium lost 8 ribosomal protein-coding genes. CONCLUSION In this study, we assembled and annotated the mitogenome of C. ensifolium and compared it with the mitogenomes of other Liliidae and plants with multichromosomal mitogenome structures. Our findings enrich the mitochondrial genome database of orchid plants and reveal the rapid structural evolution of Cymbidium mitochondrial genomes, highlighting the potential for mitochondrial genes to help decipher plant evolutionary history.
Collapse
Affiliation(s)
- Baoming Shen
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Airong Shen
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Lina Liu
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Yun Tan
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Sainan Li
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Zhuming Tan
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China.
| |
Collapse
|
37
|
Fukasawa Y, Driguez P, Bougouffa S, Carty K, Putra A, Cheung MS, Ermini L. Plasticity of repetitive sequences demonstrated by the complete mitochondrial genome of Eucalyptus camaldulensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1339594. [PMID: 38601302 PMCID: PMC11005031 DOI: 10.3389/fpls.2024.1339594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
The tree Eucalyptus camaldulensis is a ubiquitous member of the Eucalyptus genus, which includes several hundred species. Despite the extensive sequencing and assembly of nuclear genomes from various eucalypts, the genus has only one fully annotated and complete mitochondrial genome (mitogenome). Plant mitochondria are characterized by dynamic genomic rearrangements, facilitated by repeat content, a feature that has hindered the assembly of plant mitogenomes. This complexity is evident in the paucity of available mitogenomes. This study, to the best of our knowledge, presents the first E. camaldulensis mitogenome. Our findings suggest the presence of multiple isomeric forms of the E. camaldulensis mitogenome and provide novel insights into minor rearrangements triggered by nested repeat sequences. A comparative sequence analysis of the E. camaldulensis and E. grandis mitogenomes unveils evolutionary changes between the two genomes. A significant divergence is the evolution of a large repeat sequence, which may have contributed to the differences observed between the two genomes. The largest repeat sequences in the E. camaldulensis mitogenome align well with significant yet unexplained structural variations in the E. grandis mitogenome, highlighting the adaptability of repeat sequences in plant mitogenomes.
Collapse
Affiliation(s)
- Yoshinori Fukasawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Patrick Driguez
- Core Labs, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Karen Carty
- Core Labs, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexander Putra
- Core Labs, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ming-Sin Cheung
- Core Labs, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Luca Ermini
- NORLUX NeuroOncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
38
|
Bi C, Shen F, Han F, Qu Y, Hou J, Xu K, Xu LA, He W, Wu Z, Yin T. PMAT: an efficient plant mitogenome assembly toolkit using low-coverage HiFi sequencing data. HORTICULTURE RESEARCH 2024; 11:uhae023. [PMID: 38469379 PMCID: PMC10925850 DOI: 10.1093/hr/uhae023] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 03/13/2024]
Abstract
Complete mitochondrial genomes (mitogenomes) of plants are valuable resources for nucleocytoplasmic interactions, plant evolution, and plant cytoplasmic male sterile line breeding. However, the complete assembly of plant mitogenomes is challenging due to frequent recombination events and horizontal gene transfers. Previous studies have adopted Illumina, PacBio, and Nanopore sequencing data to assemble plant mitogenomes, but the poor assembly completeness, low sequencing accuracy, and high cost limit the sampling capacity. Here, we present an efficient assembly toolkit (PMAT) for de novo assembly of plant mitogenomes using low-coverage HiFi sequencing data. PMAT has been applied to the de novo assembly of 13 broadly representative plant mitogenomes, outperforming existing organelle genome assemblers in terms of assembly accuracy and completeness. By evaluating the assembly of plant mitogenomes from different sequencing data, it was confirmed that PMAT only requires 1× HiFi sequencing data to obtain a complete plant mitogenome. The source code for PMAT is available at https://github.com/bichangwei/PMAT. The developed PMAT toolkit will indeed accelerate the understanding of evolutionary variation and breeding application of plant mitogenomes.
Collapse
Affiliation(s)
- Changwei Bi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
- Department of artificial intelligence, College of Information Science and Technology, College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Shen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fuchuan Han
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yanshu Qu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Hou
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Kewang Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Li-an Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Tongming Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
39
|
Cadorna CAE, Pahayo DG, Rey JD. The first mitochondrial genome of Calophyllum soulattri Burm.f. Sci Rep 2024; 14:5112. [PMID: 38429360 PMCID: PMC10907642 DOI: 10.1038/s41598-024-55016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
Calophyllum soulattri Burm.f. is traditionally used to treat skin infections and reduce rheumatic pain, yet genetic and genomic studies are still limited. Here, we present the first complete mitochondrial genome of C. soulattri. It is 378,262 bp long with 43.97% GC content, containing 55 genes (30 protein-coding, 5 rRNA, and 20 tRNA). Repeat analysis of the mitochondrial genome revealed 194 SSRs, mostly mononucleotides, and 266 pairs of dispersed repeats ( ≥ 30 bp) that were predominantly palindromic. There were 23 homologous fragments found between the mitochondrial and plastome genomes. We also predicted 345 C-to-U RNA editing sites from 30 protein-coding genes (PCGs) of the C. soulatrii mitochondrial genome. These RNA editing events created the start codon of nad1 and the stop codon of ccmFc. Most PCGs of the C. soulattri mitochondrial genome underwent negative selection, but atp4 and ccmB experienced positive selection. Phylogenetic analyses showed C. soulattri is a sister taxon of Garcinia mangostana. This study has shed light on C. soulattri's evolution and Malpighiales' phylogeny. As the first complete mitochondrial genome in Calophyllaceae, it can be used as a reference genome for other medicinal plant species within the family for future genetic studies.
Collapse
Affiliation(s)
- Charles Anthon E Cadorna
- Plant Molecular Phylogenetics Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Dexter G Pahayo
- Plant Molecular Phylogenetics Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Jessica D Rey
- Plant Molecular Phylogenetics Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, 1101, Quezon City, Philippines.
| |
Collapse
|
40
|
Xu L, Wang J, Zhang T, Xiao H, Wang H. Characterizing complete mitochondrial genome of Aquilegia amurensis and its evolutionary implications. BMC PLANT BIOLOGY 2024; 24:142. [PMID: 38413922 PMCID: PMC10900605 DOI: 10.1186/s12870-024-04844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Aquilegia is a model system for studying the evolution of adaptive radiation. However, very few studies have been conducted on the Aquilegia mitochondrial genome. Since mitochondria play a key role in plant adaptation to abiotic stress, analyzing the mitochondrial genome may provide a new perspective for understanding adaptive evolution. RESULTS The Aquilegia amurensis mitochondrial genome was characterized by a circular chromosome and two linear chromosomes, with a total length of 538,736 bp; the genes included 33 protein-coding genes, 24 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. We subsequently conducted a phylogenetic analysis based on single nucleotide polymorphisms (SNPs) in the mitochondrial genomes of 18 Aquilegia species, which were roughly divided into two clades: the European-Asian clade and the North American clade. Moreover, the genes mttB and rpl5 were shown to be positively selected in European-Asian species, and they may help European and Asian species adapt to environmental changes. CONCLUSIONS In this study, we assembled and annotated the first mitochondrial genome of the adaptive evolution model plant Aquilegia. The subsequent analysis provided us with a basis for further molecular studies on Aquilegia mitochondrial genomes and valuable information on adaptive evolution in Aquilegia.
Collapse
Affiliation(s)
- Luyuan Xu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Jinghan Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Tengjiao Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Hongxing Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Huaying Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
41
|
Lian Q, Li S, Kan S, Liao X, Huang S, Sloan DB, Wu Z. Association Analysis Provides Insights into Plant Mitonuclear Interactions. Mol Biol Evol 2024; 41:msae028. [PMID: 38324417 PMCID: PMC10875325 DOI: 10.1093/molbev/msae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
Cytonuclear interaction refers to the complex and ongoing process of coevolution between nuclear and organelle genomes, which are responsible for cellular respiration, photosynthesis, lipid metabolism, etc. and play a significant role in adaptation and speciation. There have been a large number of studies to detect signatures of cytonuclear interactions. However, identification of the specific nuclear and organelle genetic polymorphisms that are involved in these interactions within a species remains relatively rare. The recent surge in whole genome sequencing has provided us an opportunity to explore cytonuclear interaction from a population perspective. In this study, we analyzed a total of 3,439 genomes from 7 species to identify signals of cytonuclear interactions by association (linkage disequilibrium) analysis of variants in both the mitochondrial and nuclear genomes across flowering plants. We also investigated examples of nuclear loci identified based on these association signals using subcellular localization assays, gene editing, and transcriptome sequencing. Our study provides a novel perspective on the investigation of cytonuclear coevolution, thereby enriching our understanding of plant fitness and offspring sterility.
Collapse
Affiliation(s)
- Qun Lian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuai Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Marine College, Shandong University, Weihai 264209, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
42
|
Yang L, Liu J, Guo W, Zheng Z, Xu Y, Xia H, Xiao T. Insights into the multi-chromosomal mitochondrial genome structure of the xero-halophytic plant Haloxylon Ammodendron (C.A.Mey.) Bunge ex Fenzl. BMC Genomics 2024; 25:123. [PMID: 38287293 PMCID: PMC10823707 DOI: 10.1186/s12864-024-10026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Haloxylon ammodendron holds significance as an ecological plant, showcasing remarkable adaptability to desert conditions, halophytic environments, and sand fixation. With its potential for carbon sequestration, it emerges as a promising candidate for environmental sustainability. Furthermore, it serves as a valuable C4 plant model, offering insights into the genetic foundations of extreme drought tolerance. Despite the availability of plastid and nuclear genomes, the absence of a mitochondrial genome (mitogenome or mtDNA) hinders a comprehensive understanding of its its mtDNA structure, organization, and phylogenetic implications. RESULTS In the present study, the mitochondrial genome of H. ammodendron was assembled and annotated, resulting in a multi-chromosomal configuration with two circular chromosomes. The mtDNA measured 210,149 bp in length and contained 31 protein-coding genes, 18 tRNA and three rRNA. Our analysis identified a total of 66 simple sequence repeats along with 27 tandem repeats, 312 forward repeats, and 303 palindromic repeats were found. Notably, 17 sequence fragments displayed homology between the mtDNA and chloroplast genome (cpDNA), spanning 5233 bp, accounting for 2.49% of the total mitogenome size. Additionally, we predicted 337 RNA editing sites, all of the C-to-U conversion type. Phylogenetic inference confidently placed H. ammodendron in the Amaranthacea family and its close relative, Suaeda glacum. CONCLUSIONS H. ammodendron mtDNA showed a multi-chromosomal structure with two fully circularized molecules. This newly characterized mtDNA represents a valuable resource for gaining insights into the basis of mtDNA structure variation within Caryophyllales and the evolution of land plants, contributing to their identification, and classification.
Collapse
Affiliation(s)
- Lulu Yang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Jia Liu
- Biomedical Research Center, Tongji University Suzhou Institute, Suzhou, Jiangsu, 215101, China
| | - Wenjun Guo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Zehan Zheng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yafei Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Houjun Xia
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong, 518055, China.
| | - Tian Xiao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
43
|
Li X, Jiang Y. Research Progress of Group II Intron Splicing Factors in Land Plant Mitochondria. Genes (Basel) 2024; 15:176. [PMID: 38397166 PMCID: PMC10887915 DOI: 10.3390/genes15020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondria are important organelles that provide energy for the life of cells. Group II introns are usually found in the mitochondrial genes of land plants. Correct splicing of group II introns is critical to mitochondrial gene expression, mitochondrial biological function, and plant growth and development. Ancestral group II introns are self-splicing ribozymes that can catalyze their own removal from pre-RNAs, while group II introns in land plant mitochondria went through degenerations in RNA structures, and thus they lost the ability to self-splice. Instead, splicing of these introns in the mitochondria of land plants is promoted by nuclear- and mitochondrial-encoded proteins. Many proteins involved in mitochondrial group II intron splicing have been characterized in land plants to date. Here, we present a summary of research progress on mitochondrial group II intron splicing in land plants, with a major focus on protein splicing factors and their probable functions on the splicing of mitochondrial group II introns.
Collapse
Affiliation(s)
| | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China;
| |
Collapse
|
44
|
Liu J, Hu JY, Li DZ. Remarkable mitochondrial genome heterogeneity in Meniocus linifolius (Brassicaceae). PLANT CELL REPORTS 2024; 43:36. [PMID: 38200362 DOI: 10.1007/s00299-023-03102-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/06/2023] [Indexed: 01/12/2024]
Abstract
KEY MESSAGE Detailed analyses of 16 genomes identified a remarkable acceleration of mutation rate, hence mitochondrial sequence and structural heterogeneity, in Meniocus linifolius (Brassicaceae). The powerhouse, mitochondria, in plants feature high levels of structural variation, while the encoded genes are normally conserved. However, the substitution rates and spectra of mitochondria DNA within the Brassicaceae, a family with substantial scientific and economic importance, have not been adequately deciphered. Here, by analyzing three newly assembled and 13 known mitochondrial genomes (mitogenomes), we report the highly variable genome structure and mutation rates in Brassicaceae. The genome sizes and GC contents are 196,604 bp and 46.83%, 288,122 bp and 44.79%, and 287,054 bp and 44.93%, for Meniocus linifolius (Mli), Crucihimalaya lasiocarpa (Cla), and Lepidium sativum (Lsa), respectively. In total, 29, 33, and 34 protein-coding genes (PCGs) and 14, 18, and 18 tRNAs are annotated for Mli, Cla, and Lsa, respectively, while all mitogenomes contain one complete circular molecule with three rRNAs and abundant RNA editing sites. The Mli mitogenome features four conformations likely mediated by the two pairs of long repeats, while at the same time seems to have an unusual evolutionary history due to higher GC content, loss of more genes and sequences, but having more repeats and plastid DNA insertions. Corroborating with these, an ambiguous phylogenetic position with long branch length and elevated synonymous substitution rate in nearly all PCGs are observed for Mli. Taken together, our results reveal a high level of mitogenome heterogeneity at the family level and provide valuable resources for further understanding the evolutionary pattern of organelle genomes in Brassicaceae.
Collapse
Affiliation(s)
- Jie Liu
- CAS Key Laboratory for Plant Diversity, Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity, Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
45
|
Park S, Park S. Intrageneric structural variation in organelle genomes from the genus Dystaenia (Apiaceae): genome rearrangement and mitochondrion-to-plastid DNA transfer. FRONTIERS IN PLANT SCIENCE 2023; 14:1283292. [PMID: 38116150 PMCID: PMC10728875 DOI: 10.3389/fpls.2023.1283292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Introduction During plant evolution, intracellular DNA transfer (IDT) occurs not only from organelles to the nucleus but also between organelles. To further comprehend these events, both organelle genomes and transcriptomes are needed. Methods In this study, we constructed organelle genomes and transcriptomes for two Dystaenia species and described their dynamic IDTs between their nuclear and mitochondrial genomes, or plastid and mitochondrial genomes (plastome and mitogenome). Results and Discussion We identified the putative functional transfers of the mitochondrial genes 5' rpl2, rps10, rps14, rps19, and sdh3 to the nucleus in both Dystaenia species and detected two transcripts for the rpl2 and sdh3 genes. Additional transcriptomes from the Apicaceae species also provided evidence for the transfers and duplications of these mitochondrial genes, showing lineage-specific patterns. Intrageneric variations of the IDT were found between the Dystaenia organelle genomes. Recurrent plastid-to-mitochondrion DNA transfer events were only identified in the D. takeshimana mitogenome, and a pair of mitochondrial DNAs of plastid origin (MIPTs) may generate minor alternative isoforms. We only found a mitochondrion-to-plastid DNA transfer event in the D. ibukiensis plastome. This event may be linked to inverted repeat boundary shifts in its plastome. We inferred that the insertion region involved an MIPT that had already acquired a plastid sequence in its mitogenome via IDT. We propose that the MIPT acts as a homologous region pairing between the donor and recipient sequences. Our results provide insight into the evolution of organelle genomes across the family Apiaceae.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
46
|
Cruz Plancarte D, Solórzano S. Structural and gene composition variation of the complete mitochondrial genome of Mammillaria huitzilopochtli (Cactaceae, Caryophyllales), revealed by de novo assembly. BMC Genomics 2023; 24:509. [PMID: 37653379 PMCID: PMC10468871 DOI: 10.1186/s12864-023-09607-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/20/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Structural descriptions of complete genomes have elucidated evolutionary processes in angiosperms. In Cactaceae (Caryophyllales), a high structural diversity of the chloroplast genome has been identified within and among genera. In this study, we assembled the first mitochondrial genome (mtDNA) for the short-globose cactus Mammillaria huitzilopochtli. For comparative purposes, we used the published genomes of 19 different angiosperms and the gymnosperm Cycas taitungensis as an external group for phylogenetic issues. RESULTS The mtDNA of M. huitzilopochtli was assembled into one linear chromosome of 2,052,004 bp, in which 65 genes were annotated. These genes account for 57,606 bp including 34 protein-coding genes (PCGs), 27 tRNAs, and three rRNAs. In the non-coding sequences, repeats were abundant, with a total of 4,550 (179,215 bp). In addition, five complete genes (psaC and four tRNAs) of chloroplast origin were documented. Negative selection was estimated for most (23) of the PCGs. The phylogenetic tree showed a topology consistent with previous analyses based on the chloroplast genome. CONCLUSIONS The number and type of genes contained in the mtDNA of M. huitzilopochtli were similar to those reported in 19 other angiosperm species, regardless of their phylogenetic relationships. Although other Caryophyllids exhibit strong differences in structural arrangement and total size of mtDNA, these differences do not result in an increase in the typical number and types of genes found in M. huitzilopochtli. We concluded that the total size of mtDNA in angiosperms increases by the lengthening of the non-coding sequences rather than a significant gain of coding genes.
Collapse
Affiliation(s)
- David Cruz Plancarte
- Laboratorio de Ecología Molecular y Evolución, Universidad Nacional Autónoma de México, FES Iztacala, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla de Baz, 54090, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Sofía Solórzano
- Laboratorio de Ecología Molecular y Evolución, Universidad Nacional Autónoma de México, FES Iztacala, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla de Baz, 54090, Mexico.
| |
Collapse
|
47
|
Contreras-Díaz R, Carevic FS, van den Brink L. Comparative analysis of the complete mitogenome of Geoffroea decorticans: a native tree surviving in the Atacama Desert. Front Genet 2023; 14:1226052. [PMID: 37636265 PMCID: PMC10448962 DOI: 10.3389/fgene.2023.1226052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Chañar (Geoffroea decorticans (Gill., ex Hook. & Arn.) Burkart) has been highly significant for indigenous people in the Atacama Desert for over 3,000 years. Through evolutionary processes, the G. decorticans mitogenome likely underwent changes facilitating its adaptation to the extreme conditions of the Atacama Desert. Here, we compare the mitochondrial genome of G. decorticans with those of other Papilionoideae family species. The complete mitogenome of G. decorticans was sequenced and assembled, making it the first in the genus Geoffroea. The mitogenome contained 383,963 base pairs, consisting of 33 protein coding genes, 21 transfer RNA genes, and 3 ribosomal RNA genes. The Chañar mitogenome is relatively compact, and has two intact genes (sdh4 and nad1) which were not observed in most other species. Additionally, Chañar possessed the highest amount of mitochondrial DNA of plastid origin among angiosperm species. The phylogenetic analysis of the mitogenomes of Chañar and 12 other taxa displayed a high level of consistency in taxonomic classification, when compared to those of the plastid genome. Atp8 was subjected to positive selection, while the ccmFc and rps1 were subjected to neutral selection. This study provides valuable information regarding its ability to survive the extreme environmental conditions of the Atacama Desert.
Collapse
Affiliation(s)
- Roberto Contreras-Díaz
- Núcleo Milenio de Ecología Histórica Aplicada para los Bosques Áridos (AFOREST), CRIDESAT, Universidad de Atacama, Copiapó, Chile
| | - Felipe S. Carevic
- Laboratorio de Ecología Vegetal, Facultad de Recursos Naturales Renovables, Núcleo Milenio de Ecología Histórica Aplicada para los Bosques Áridos (AFOREST), Universidad Arturo Prat, Iquique, Chile
| | - Liesbeth van den Brink
- Institute of Evolution and Ecology, Plant Ecology Group, Universität Tübingen, Tübingen, Germany
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, ECOBIOSIS, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
48
|
Li Q, Xiao W, Wu P, Zhang T, Xiang P, Wu Q, Zou L, Gui M. The first two mitochondrial genomes from Apiotrichum reveal mitochondrial evolution and different taxonomic assignment of Trichosporonales. IMA Fungus 2023; 14:7. [PMID: 37004131 PMCID: PMC10064765 DOI: 10.1186/s43008-023-00112-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Apiotrichum is a diverse anamorphic basidiomycetous yeast genus, and its mitogenome characterization has not been revealed. In this study, we assembled two Apiotrichum mitogenomes and compared them with mitogenomes from Agaricomycotina, Pucciniomycotina and Ustilaginomycotina. The mitogenomes of Apiotrichum gracile and A. gamsii comprised circular DNA molecules, with sizes of 34,648 bp and 38,096 bp, respectively. Intronic regions were found contributed the most to the size expansion of A. gamsii mitogenome. Comparative mitogenomic analysis revealed that 6.85-38.89% of nucleotides varied between tRNAs shared by the two Apiotrichum mitogenomes. The GC content of all core PCGs in A. gamsii was lower than that of A. gracile, with an average low value of 4.97%. The rps3 gene differentiated the most among Agaricomycotina, Pucciniomycotina and Ustilaginomycotina species, while nad4L gene was the most conserved in evolution. The Ka/Ks values for cob and rps3 genes were > 1, indicating the two genes may be subjected to positive selection in Agaricomycotina, Pucciniomycotina and Ustilaginomycotina. Frequent intron loss/gain events and potential intron transfer events have been detected in evolution of Agaricomycotina, Pucciniomycotina and Ustilaginomycotina. We further detected large-scale gene rearrangements between the 19 mitogenomes from Agaricomycotina, Pucciniomycotina and Ustilaginomycotina, and fifteen of the 17 mitochondrial genes shared by Apiotrichum varied in gene arrangements. Phylogenetic analyses based on maximum likelihood and Bayesian inference methods using a combined mitochondrial gene dataset revealed different taxonomic assignment of two Apiotrichum species, wherein A. gamsii had a more closely relationship with Trichosporon asahii. This study served as the first report on mitogenomes from the genus Apiotrichum, which promotes the understanding of evolution, genomics, and phylogeny of Apiotrichum.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
- School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, Chengdu, 610106, Sichuan, China.
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China.
- School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, Chengdu, 610106, Sichuan, China.
| |
Collapse
|
49
|
Yu X, Wei P, Chen Z, Li X, Zhang W, Yang Y, Liu C, Zhao S, Li X, Liu X. Comparative analysis of the organelle genomes of three Rhodiola species provide insights into their structural dynamics and sequence divergences. BMC PLANT BIOLOGY 2023; 23:156. [PMID: 36944988 PMCID: PMC10031898 DOI: 10.1186/s12870-023-04159-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Plant organelle genomes are a valuable resource for evolutionary biology research, yet their genome architectures, evolutionary patterns and environmental adaptations are poorly understood in many lineages. Rhodiola species is a type of flora mainly distributed in highland habitats, with high medicinal value. Here, we assembled the organelle genomes of three Rhodiola species (R. wallichiana, R. crenulata and R. sacra) collected from the Qinghai-Tibet plateau (QTP), and compared their genome structure, gene content, structural rearrangements, sequence transfer and sequence evolution rates. RESULTS The results demonstrated the contrasting evolutionary pattern between plastomes and mitogenomes in three Rhodiola species, with the former possessing more conserved genome structure but faster evolutionary rates of sequence, while the latter exhibiting structural diversity but slower rates of sequence evolution. Some lineage-specific features were observed in Rhodiola mitogenomes, including chromosome fission, gene loss and structural rearrangement. Repeat element analysis shows that the repeats occurring between the two chromosomes may mediate the formation of multichromosomal structure in the mitogenomes of Rhodiola, and this multichromosomal structure may have recently formed. The identification of homologous sequences between plastomes and mitogenomes reveals several unidirectional protein-coding gene transfer events from chloroplasts to mitochondria. Moreover, we found that their organelle genomes contained multiple fragments of nuclear transposable elements (TEs) and exhibited different preferences for TEs insertion type. Genome-wide scans of positive selection identified one gene matR from the mitogenome. Since the matR is crucial for plant growth and development, as well as for respiration and stress responses, our findings suggest that matR may participate in the adaptive response of Rhodiola species to environmental stress of QTP. CONCLUSION The study analyzed the organelle genomes of three Rhodiola species and demonstrated the contrasting evolutionary pattern between plastomes and mitogenomes. Signals of positive selection were detected in the matR gene of Rhodiola mitogenomes, suggesting the potential role of this gene in Rhodiola adaptation to QTP. Together, the study is expected to enrich the genomic resources and provide valuable insights into the structural dynamics and sequence divergences of Rhodiola species.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Zhuyifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xinzhong Li
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, Tibet, 850000, China
| | - Wencai Zhang
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, Tibet, 850000, China
| | - Yujiao Yang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Chenlai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Shuqi Zhao
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xiaoyan Li
- Biology Experimental Teaching Center, School of Life Science, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, Tibet, 850000, China.
| |
Collapse
|
50
|
Yang H, Chen H, Ni Y, Li J, Cai Y, Wang J, Liu C. Mitochondrial Genome Sequence of Salvia officinalis (Lamiales: Lamiaceae) Suggests Diverse Genome Structures in Cogeneric Species and Finds the Stop Gain of Genes through RNA Editing Events. Int J Mol Sci 2023; 24:ijms24065372. [PMID: 36982448 PMCID: PMC10048906 DOI: 10.3390/ijms24065372] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Our previous study was the first to confirm that the predominant conformation of mitochondrial genome (mitogenome) sequence of Salvia species contains two circular chromosomes. To further understand the organization, variation, and evolution of Salvia mitogenomes, we characterized the mitogenome of Salvia officinalis. The mitogenome of S. officinalis was sequenced using Illumina short reads and Nanopore long reads and assembled using a hybrid assembly strategy. We found that the predominant conformation of the S. officinalis mitogenome also had two circular chromosomes that were 268,341 bp (MC1) and 39,827 bp (MC2) in length. The S. officinalis mitogenome encoded an angiosperm-typical set of 24 core genes, 9 variable genes, 3 rRNA genes, and 16 tRNA genes. We found many rearrangements of the Salvia mitogenome through inter- and intra-specific comparisons. A phylogenetic analysis of the coding sequences (CDs) of 26 common protein-coding genes (PCGs) of 11 Lamiales species and 2 outgroup taxa strongly indicated that the S. officinalis was a sister taxon to S. miltiorrhiza, consistent with the results obtained using concatenated CDs of common plastid genes. The mapping of RNA-seq data to the CDs of PCGs led to the identification of 451 C-to-U RNA editing sites from 31 PCGs of the S. officinalis mitogenome. Using PCR amplification and Sanger sequencing methods, we successfully validated 113 of the 126 RNA editing sites from 11 PCGs. The results of this study suggest that the predominant conformation of the S. officinalis mitogenome are two circular chromosomes, and the stop gain of rpl5 was found through RNA editing events of the Salvia mitogenome.
Collapse
Affiliation(s)
- Heyu Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jingling Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yisha Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Correspondence: (J.W.); (C.L.); Tel.: +86-022-8740-2072 (J.W.); +86-10-5783-3111 (C.L.); Fax: +86-022-2740-7956 (J.W.); +86-10-62899715 (C.L.)
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Correspondence: (J.W.); (C.L.); Tel.: +86-022-8740-2072 (J.W.); +86-10-5783-3111 (C.L.); Fax: +86-022-2740-7956 (J.W.); +86-10-62899715 (C.L.)
| |
Collapse
|