1
|
Kour D, Bowen CA, Srivastava U, Nguyen HM, Kumari R, Kumar P, Brandelli AD, Bitarafan S, Tobin BR, Wood L, Seyfried NT, Wulff H, Rangaraju S. Identification of novel Kv1.3 channel-interacting proteins using proximity labelling in T-cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633279. [PMID: 39868101 PMCID: PMC11760797 DOI: 10.1101/2025.01.16.633279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Potassium channels regulate membrane potential, calcium flux, cellular activation and effector functions of adaptive and innate immune cells. The voltage-activated Kv1.3 channel is an important regulator of T cell-mediated autoimmunity and microglia-mediated neuroinflammation. Kv1.3 channels, via protein-protein interactions, are localized with key immune proteins and pathways, enabling functional coupling between K+ efflux and immune mechanisms. To gain insights into proteins and pathways that interact with Kv1.3 channels, we applied a proximity-labeling proteomics approach to characterize protein interactors of the Kv1.3 channel in activated T-cells. Biotin ligase TurboID was fused to either N or C termini of Kv1.3, stably expressed in Jurkat T cells and biotinylated proteins in proximity to Kv1.3 were enriched and quantified by mass spectrometry. We identified over 1,800 Kv1.3 interactors including known interactors (beta-integrins, Stat1) although majority were novel. We found that the N-terminus of Kv1.3 preferentially interacts with protein synthesis and protein trafficking machinery, while the C-terminus interacts with immune signaling and cell junction proteins. T-cell Kv1.3 interactors included 335 cell surface, T-cell receptor complex, mitochondrial, calcium and cytokine-mediated signaling pathway and lymphocyte migration proteins. 178 Kv1.3 interactors in T-cells also represent genetic risk factors of T cell-mediated autoimmunity, including STIM1, which was further validated using co-immunoprecipitation. Our studies reveal novel proteins and molecular pathways that interact with Kv1.3 channels in adaptive (T-cell) and innate immune (microglia), providing a foundation for how Kv1.3 channels may regulate immune mechanisms in autoimmune and neurological diseases.
Collapse
Affiliation(s)
- Dilpreet Kour
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Christine A. Bowen
- Center for Neurodegenerative Diseases, Emory University, Atlanta (GA), USA
- Department of Biochemistry, Emory University, Atlanta (GA), USA
| | - Upasna Srivastava
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Hai M. Nguyen
- Department of Pharmacology, University of California – Davis, Davis (CA), USA
| | - Rashmi Kumari
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Prateek Kumar
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Amanda D. Brandelli
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Sara Bitarafan
- Parker H. Petit Institute for Bioengineering, Georgia Institute of Technology, Atlanta (GA), USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
| | - Brendan R Tobin
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta (GA), USA
| | - Levi Wood
- Parker H. Petit Institute for Bioengineering, Georgia Institute of Technology, Atlanta (GA), USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Diseases, Emory University, Atlanta (GA), USA
- Department of Biochemistry, Emory University, Atlanta (GA), USA
| | - Heike Wulff
- Department of Pharmacology, University of California – Davis, Davis (CA), USA
| | - Srikant Rangaraju
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| |
Collapse
|
2
|
Sebestyén V, Nagy É, Mocsár G, Volkó J, Szilágyi O, Kenesei Á, Panyi G, Tóth K, Hajdu P, Vámosi G. Role of C-Terminal Domain and Membrane Potential in the Mobility of Kv1.3 Channels in Immune Synapse Forming T Cells. Int J Mol Sci 2022; 23:ijms23063313. [PMID: 35328733 PMCID: PMC8952507 DOI: 10.3390/ijms23063313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Voltage-gated Kv1.3 potassium channels are essential for maintaining negative membrane potential during T-cell activation. They interact with membrane-associated guanylate kinases (MAGUK-s) via their C-terminus and with TCR/CD3, leading to enrichment at the immunological synapse (IS). Molecular interactions and mobility may impact each other and the function of these proteins. We aimed to identify molecular determinants of Kv1.3 mobility, applying fluorescence correlation spectroscopy on human Jurkat T-cells expressing WT, C-terminally truncated (ΔC), and non-conducting mutants of mGFP-Kv1.3. ΔC cannot interact with MAGUK-s and is not enriched at the IS, whereas cells expressing the non-conducting mutant are depolarized. Here, we found that in standalone cells, mobility of ΔC increased relative to the WT, likely due to abrogation of interactions, whereas mobility of the non-conducting mutant decreased, similar to our previous observations on other membrane proteins in depolarized cells. At the IS formed with Raji B-cells, mobility of WT and non-conducting channels, unlike ΔC, was lower than outside the IS. The Kv1.3 variants possessing an intact C-terminus had lower mobility in standalone cells than in IS-engaged cells. This may be related to the observed segregation of F-actin into a ring-like structure at the periphery of the IS, leaving much of the cell almost void of F-actin. Upon depolarizing treatment, mobility of WT and ΔC channels decreased both in standalone and IS-engaged cells, contrary to non-conducting channels, which themselves caused depolarization. Our results support that Kv1.3 is enriched at the IS via its C-terminal region regardless of conductivity, and that depolarization decreases channel mobility.
Collapse
Affiliation(s)
- Veronika Sebestyén
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Éva Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Julianna Volkó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Orsolya Szilágyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Ádám Kenesei
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - György Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Katalin Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Péter Hajdu
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: (P.H.); (G.V.)
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
- Correspondence: (P.H.); (G.V.)
| |
Collapse
|
3
|
Kenesei Á, Volkó J, Szalóki N, Mocsár G, Jambrovics K, Balajthy Z, Bodnár A, Tóth K, Waldmann TA, Vámosi G. IL-15 Trans-Presentation Is an Autonomous, Antigen-Independent Process. THE JOURNAL OF IMMUNOLOGY 2021; 207:2489-2500. [PMID: 34654688 DOI: 10.4049/jimmunol.2100277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022]
Abstract
IL-15 plays a pivotal role in the long-term survival of T cells and immunological memory. Its receptor consists of three subunits (IL-15Rα, IL-2/15Rβ, and γc). IL-15 functions mainly via trans-presentation (TP), during which an APC expressing IL-15 bound to IL-15Rα presents the ligand to the βγc receptor-heterodimer on a neighboring T/NK cell. To date, no direct biophysical evidence for the intercellular assembly of the IL-15R heterotrimer exists. Ag presentation (AP), the initial step of T cell activation, is also based on APC-T cell interaction. We were compelled to ask whether AP has any effect on IL-15 TP or whether they are independent processes. In our human Raji B cell-Jurkat T cell model system, we monitored inter-/intracellular protein interactions upon formation of IL-15 TP and AP receptor complexes by Förster resonance energy transfer measurements. We detected enrichment of IL-15Rα and IL-2/15Rβ at the synapse and positive Förster resonance energy transfer efficiency if Raji cells were pretreated with IL-15, giving direct biophysical evidence for IL-15 TP. IL-15Rα and MHC class II interacted and translocated jointly to the immunological synapse when either ligand was present, whereas IL-2/15Rβ and CD3 moved independently of each other. IL-15 TP initiated STAT5 phosphorylation in Jurkat cells, which was not further enhanced by AP. Conversely, IL-15 treatment slightly attenuated Ag-induced phosphorylation of the CD3ζ chain. Our studies prove that in our model system, IL-15 TP and AP can occur independently, and although AP enhances IL-15R assembly, it has no significant effect on IL-15 signaling during TP. Thus, IL-15 TP can be considered an autonomous, Ag-independent process.
Collapse
Affiliation(s)
- Ádám Kenesei
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Julianna Volkó
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nikoletta Szalóki
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Károly Jambrovics
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Balajthy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Bodnár
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Tóth
- Division of Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany; and
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - György Vámosi
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary;
| |
Collapse
|
4
|
Markakis I, Charitakis I, Beeton C, Galani M, Repousi E, Aggeloglou S, Sfikakis PP, Pennington MW, Chandy KG, Poulopoulou C. Kv1.3 Channel Up-Regulation in Peripheral Blood T Lymphocytes of Patients With Multiple Sclerosis. Front Pharmacol 2021; 12:714841. [PMID: 34630091 PMCID: PMC8495199 DOI: 10.3389/fphar.2021.714841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/09/2021] [Indexed: 11/02/2022] Open
Abstract
Voltage-gated Kv1.3 potassium channels are key regulators of T lymphocyte activation, proliferation and cytokine production, by providing the necessary membrane hyper-polarization for calcium influx following immune stimulation. It is noteworthy that an accumulating body of in vivo and in vitro evidence links these channels to multiple sclerosis pathophysiology. Here we studied the electrophysiological properties and the transcriptional and translational expression of T lymphocyte Kv1.3 channels in multiple sclerosis, by combining patch clamp recordings, reverse transcription polymerase chain reaction and flow cytometry on freshly isolated peripheral blood T lymphocytes from two patient cohorts with multiple sclerosis, as well as from healthy and disease controls. Our data demonstrate that T lymphocytes in MS, manifest a significant up-regulation of Kv1.3 mRNA, Kv1.3 membrane protein and Kv1.3 current density and therefore of functional membrane channel protein, compared to control groups (p < 0.001). Interestingly, patient sub-grouping shows that Kv1.3 channel density is significantly higher in secondary progressive, compared to relapsing-remitting multiple sclerosis (p < 0.001). Taking into account the tight connection between Kv1.3 channel activity and calcium-dependent processes, our data predict and could partly explain the reported alterations of T lymphocyte function in multiple sclerosis, while they highlight Kv1.3 channels as potential therapeutic targets and peripheral biomarkers for the disease.
Collapse
Affiliation(s)
- Ioannis Markakis
- National and Kapodistrian University of Athens, Medical School, Athens, Greece.,Department of Neurology, "St. Panteleimon" General State Hospital, Nikaia, Greece
| | - Ioannis Charitakis
- National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Christine Beeton
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| | - Melpomeni Galani
- National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Elpida Repousi
- National and Kapodistrian University of Athens, Medical School, Athens, Greece.,Department of Neurology, "St. Panteleimon" General State Hospital, Nikaia, Greece
| | - Stella Aggeloglou
- Department of Neurology, "St. Panteleimon" General State Hospital, Nikaia, Greece
| | - Petros P Sfikakis
- National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - K George Chandy
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States.,Lee Kong Chian School of Medicine, Nanyang Technological University, Nanyang Ave, Singapore
| | | |
Collapse
|
5
|
Vallejo-Gracia A, Sastre D, Colomer-Molera M, Solé L, Navarro-Pérez M, Capera J, Roig SR, Pedrós-Gámez O, Estadella I, Szilágyi O, Panyi G, Hajdú P, Felipe A. KCNE4-dependent functional consequences of Kv1.3-related leukocyte physiology. Sci Rep 2021; 11:14632. [PMID: 34272451 PMCID: PMC8285421 DOI: 10.1038/s41598-021-94015-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
The voltage-dependent potassium channel Kv1.3 plays essential roles in the immune system, participating in leukocyte activation, proliferation and apoptosis. The regulatory subunit KCNE4 acts as an ancillary peptide of Kv1.3, modulates K+ currents and controls channel abundance at the cell surface. KCNE4-dependent regulation of the oligomeric complex fine-tunes the physiological role of Kv1.3. Thus, KCNE4 is crucial for Ca2+-dependent Kv1.3-related leukocyte functions. To better understand the role of KCNE4 in the regulation of the immune system, we manipulated its expression in various leukocyte cell lines. Jurkat T lymphocytes exhibit low KCNE4 levels, whereas CY15 dendritic cells, a model of professional antigen-presenting cells, robustly express KCNE4. When the cellular KCNE4 abundance was increased in T cells, the interaction between KCNE4 and Kv1.3 affected important T cell physiological features, such as channel rearrangement in the immunological synapse, cell growth, apoptosis and activation, as indicated by decreased IL-2 production. Conversely, ablation of KCNE4 in dendritic cells augmented proliferation. Furthermore, the LPS-dependent activation of CY15 cells, which induced Kv1.3 but not KCNE4, increased the Kv1.3-KCNE4 ratio and increased the expression of free Kv1.3 without KCNE4 interaction. Our results demonstrate that KCNE4 is a pivotal regulator of the Kv1.3 channelosome, which fine-tunes immune system physiology by modulating Kv1.3-associated leukocyte functions.
Collapse
Affiliation(s)
- Albert Vallejo-Gracia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Virology and Immunology, Gladstone Institutes, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Daniel Sastre
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Laura Solé
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Sara R Roig
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Oriol Pedrós-Gámez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Orsolya Szilágyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem Sq., Debrecen, 4032, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem Sq., Debrecen, 4032, Hungary
| | - Péter Hajdú
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem Sq., Debrecen, 4032, Hungary
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
6
|
Midazolam's Effects on Delayed-Rectifier K + Current and Intermediate-Conductance Ca 2+-Activated K + Channel in Jurkat T-lymphocytes. Int J Mol Sci 2021; 22:ijms22137198. [PMID: 34281255 PMCID: PMC8267671 DOI: 10.3390/ijms22137198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Midazolam (MDZ) could affect lymphocyte immune functions. However, the influence of MDZ on cell’s K+ currents has never been investigated. Thus, in the present study, the effects of MDZ on Jurkat T lymphocytes were studied using the patch-clamp technique. Results showed that MDZ suppressed the amplitude of delayed-rectifier K+ current (IK(DR)) in concentration-, time-, and state-dependent manners. The IC50 for MDZ-mediated reduction of IK(DR) density was 5.87 μM. Increasing MDZ concentration raised the rate of current-density inactivation and its inhibitory action on IK(DR) density was estimated with a dissociation constant of 5.14 μM. In addition, the inactivation curve of IK(DR) associated with MDZ was shifted to a hyperpolarized potential with no change on the slope factor. MDZ-induced inhibition of IK(DR) was not reversed by flumazenil. In addition, the activity of intermediate-conductance Ca2+-activated K+ (IKCa) channels was suppressed by MDZ. Furthermore, inhibition by MDZ on both IK(DR) and IKCa-channel activity appeared to be independent from GABAA receptors and affected immune-regulating cytokine expression in LPS/PMA-treated human T lymphocytes. In conclusion, MDZ suppressed current density of IK(DR) in concentration-, time-, and state-dependent manners in Jurkat T-lymphocytes and affected immune-regulating cytokine expression in LPS/PMA-treated human T lymphocytes.
Collapse
|
7
|
Fernández-Orth J, Rolfes L, Gola L, Bittner S, Andronic J, Sukhorukov VL, Sisario D, Landgraf P, Dieterich DC, Cerina M, Smalla KH, Kähne T, Budde T, Kovac S, Ruck T, Sauer M, Meuth SG. A role for TASK2 channels in the human immunological synapse. Eur J Immunol 2020; 51:342-353. [PMID: 33169379 DOI: 10.1002/eji.201948269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/30/2020] [Accepted: 11/05/2019] [Indexed: 12/29/2022]
Abstract
The immunological synapse is a transient junction that occurs when the plasma membrane of a T cell comes in close contact with an APC after recognizing a peptide from the antigen-MHC. The interaction starts when CRAC channels embedded in the T cell membrane open, flowing calcium ions into the cell. To counterbalance the ion influx and subsequent depolarization, Kv 1.3 and KCa3.1 channels are recruited to the immunological synapse, increasing the extracellular K+ concentration. These processes are crucial as they initiate gene expression that drives T cell activation and proliferation. The T cell-specific function of the K2P channel family member TASK2 channels and their role in autoimmune processes remains unclear. Using mass spectrometry analysis together with epifluorescence and super-resolution single-molecule localization microscopy, we identified TASK2 channels as novel players recruited to the immunological synapse upon stimulation. TASK2 localizes at the immunological synapse, upon stimulation with CD3 antibodies, likely interacting with these molecules. Our findings suggest that, together with Kv 1.3 and KCa3.1 channels, TASK2 channels contribute to the proper functioning of the immunological synapse, and represent an interesting treatment target for T cell-mediated autoimmune disorders.
Collapse
Affiliation(s)
| | - Leoni Rolfes
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| | - Lukas Gola
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| | - Stefan Bittner
- Department of Neurology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Joseph Andronic
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Vladimir L Sukhorukov
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Dmitri Sisario
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Peter Landgraf
- Neural Plasticity and Communication, Institute for Pharmacology and Toxicology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Daniela C Dieterich
- Neural Plasticity and Communication, Institute for Pharmacology and Toxicology, Otto-von-Guericke-University, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Manuela Cerina
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| | - Karl-Heinz Smalla
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| | - Tobias Ruck
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| |
Collapse
|
8
|
Farah A, Kabbage M, Atafi S, Gabteni AJ, Barbirou M, Madhioub M, Hamzaoui L, Mohamed MA, Touinsi H, Kchaou AO, Chelbi E, Boubaker S, Abderrazek RB, Bouhaouala-Zahar B. Selective expression of KCNA5 and KCNB1 genes in gastric and colorectal carcinoma. BMC Cancer 2020; 20:1179. [PMID: 33267786 PMCID: PMC7709444 DOI: 10.1186/s12885-020-07647-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/17/2020] [Indexed: 01/04/2023] Open
Abstract
Background Gastric and colorectal cancers are the most common malignant tumours, leading to a significant number of cancer-related deaths worldwide. Recently, increasing evidence has demonstrated that cancer cells exhibit a differential expression of potassium channels and this can contribute to cancer progression. However, their expression and localisation at the somatic level remains uncertain. In this study, we have investigated the expression levels of KCNB1 and KCNA5 genes encoding ubiquitous Kv2.1 and Kv1.5 potassium channels in gastric and colorectal tumours. Methods Gastric and colorectal tumoral and peritumoral tissues were collected to evaluate the expression of KCNB1 and KCNA5 mRNA by quantitative PCR. Moreover, the immunohistochemical staining profile of Kv2.1 and Kv1.5 was assessed on 40 Formalin-Fixed and Paraffin-Embedded (FFPE) gastric carcinoma tissues. Differences in gene expression between tumoral and peritumoral tissues were compared statistically with the Mann-Whitney U test. The association between the clinicopathological features of the GC patients and the expression of both Kv proteins was investigated with χ2 and Fisher’s exact tests. Results The mRNA fold expression of KCNB1 and KCNA5 genes showed a lower mean in the tumoral tissues (0.06 ± 0.17, 0.006 ± 0.009) compared to peritumoral tissues (0.08 ± 0.16, 0.16 ± 0.48, respectively) without reaching the significance rate (p = 0.861, p = 0.152, respectively). Interestingly, Kv2.1 and Kv1.5 immunostaining was detectable and characterised by a large distribution in peritumoral and tumoral epithelial cells. More interestingly, inflammatory cells were also stained. Surprisingly, Kv2.1 and Kv1.5 staining was undoubtedly and predominantly detected in the cytoplasm compartment of tumour cells. Indeed, the expression of Kv2.1 in tumour cells revealed a significant association with the early gastric cancer clinical stage (p = 0.026). Conclusion The data highlight, for the first time, the potential role of Kv1.5 and Kv2.1 in gastrointestinal-related cancers and suggests they may be promising prognostic markers for these tumours.
Collapse
Affiliation(s)
- Azer Farah
- Laboratory of Venoms and Therapeutic Biomolecules, LR16IPT08 Institute Pasteur Tunis, Tunis Belvédère- University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis, Tunisia
| | - Maria Kabbage
- Biomedical Genomics and Oncogenetics Laboratory, LR11IPT05 Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Salsabil Atafi
- Laboratory of Human and Experimental Pathology, Institute Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Amira Jaballah Gabteni
- Biomedical Genomics and Oncogenetics Laboratory, LR11IPT05 Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Mouadh Barbirou
- Laboratory of Venoms and Therapeutic Biomolecules, LR16IPT08 Institute Pasteur Tunis, Tunis Belvédère- University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis, Tunisia.,Center for Biomedical Informatics, Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Mouna Madhioub
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, 8000, Nabeul, Tunisia
| | - Lamine Hamzaoui
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, 8000, Nabeul, Tunisia
| | | | - Hassen Touinsi
- Surgical Department, Mohamed Tahar Maamouri Hospital, 8000, Nabeul, Tunisia
| | | | - Emna Chelbi
- Pathology Department, Mohamed Tahar Maamouri Hospital, 8000, Nabeul, Tunisia
| | - Samir Boubaker
- Laboratory of Human and Experimental Pathology, Institute Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rahma Ben Abderrazek
- Laboratory of Venoms and Therapeutic Biomolecules, LR16IPT08 Institute Pasteur Tunis, Tunis Belvédère- University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis, Tunisia.
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms and Therapeutic Biomolecules, LR16IPT08 Institute Pasteur Tunis, Tunis Belvédère- University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis, Tunisia. .,Medical School of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
9
|
Actions of FTY720 (Fingolimod), a Sphingosine-1-Phosphate Receptor Modulator, on Delayed-Rectifier K + Current and Intermediate-Conductance Ca 2+-Activated K + Channel in Jurkat T-Lymphocytes. Molecules 2020; 25:molecules25194525. [PMID: 33023219 PMCID: PMC7582672 DOI: 10.3390/molecules25194525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/01/2023] Open
Abstract
FTY720 (fingolimod), a modulator of sphingosine-1-phosphate receptors, is known to produce the immunomodulatory actions and to be beneficial for treating the relapsing multiple sclerosis. However, whether it exerts any effects on membrane ion currents in immune cells remains largely unknown. Herein, the effects of FTY720 on ionic currents in Jurkat T-lymphocytes were investigated. Cell exposure to FTY720 suppressed the amplitude of delayed-rectifier K+ current (IK(DR)) in a time- and concentration-dependent manner with an IC50 value of 1.51 μM. Increasing the FTY720 concentration not only decreased the IK(DR) amplitude but also accelerated the inactivation time course of the current. By using the minimal reaction scheme, the effect of FTY720 on IK(DR) inactivation was estimated with a dissociation constant of 3.14 μM. FTY720 also shifted the inactivation curve of IK(DR) to a hyperpolarized potential with no change in the slope factor, and recovery from IK(DR) became slow during the exposure to this compound. Cumulative inactivation for IK(DR) in response to repetitive depolarizations was enhanced in the presence of FTY720. In SEW2871-treated cells, FTY720-induced inhibition of IK(DR) was attenuated. This compound also exerted a stimulatory action on the activity of intermediate-conductance Ca2+-activated K+ channels in Jurkat T-lymphocytes. However, in NSC-34 neuronal cells, FTY720 did not modify the inactivation kinetics of KV3.1-encoded IK(DR), although it suppressed IK(DR) amplitude in these cells. Collectively, the perturbations by FTY720 on different types of K+ channels may contribute to the functional activities of immune cells, if similar findings appear in vivo.
Collapse
|
10
|
Ong ST, Bajaj S, Tanner MR, Chang SC, Krishnarjuna B, Ng XR, Morales RAV, Chen MW, Luo D, Patel D, Yasmin S, Ng JJH, Zhuang Z, Nguyen HM, El Sahili A, Lescar J, Patil R, Charman SA, Robins EG, Goggi JL, Tan PW, Sadasivam P, Ramasamy B, Hartimath SV, Dhawan V, Bednenko J, Colussi P, Wulff H, Pennington MW, Kuyucak S, Norton RS, Beeton C, Chandy KG. Modulation of Lymphocyte Potassium Channel K V1.3 by Membrane-Penetrating, Joint-Targeting Immunomodulatory Plant Defensin. ACS Pharmacol Transl Sci 2020; 3:720-736. [PMID: 32832873 DOI: 10.1021/acsptsci.0c00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Indexed: 12/23/2022]
Abstract
We describe a cysteine-rich, membrane-penetrating, joint-targeting, and remarkably stable peptide, EgK5, that modulates voltage-gated KV1.3 potassium channels in T lymphocytes by a distinctive mechanism. EgK5 enters plasma membranes and binds to KV1.3, causing current run-down by a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. EgK5 exhibits selectivity for KV1.3 over other channels, receptors, transporters, and enzymes. EgK5 suppresses antigen-triggered proliferation of effector memory T cells, a subset enriched among pathogenic autoreactive T cells in autoimmune disease. PET-CT imaging with 18F-labeled EgK5 shows accumulation of the peptide in large and small joints of rodents. In keeping with its arthrotropism, EgK5 treats disease in a rat model of rheumatoid arthritis. It was also effective in treating disease in a rat model of atopic dermatitis. No signs of toxicity are observed at 10-100 times the in vivo dose. EgK5 shows promise for clinical development as a therapeutic for autoimmune diseases.
Collapse
Affiliation(s)
- Seow Theng Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Saumya Bajaj
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Shih Chieh Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Xuan Rui Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Rodrigo A V Morales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ming Wei Chen
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Dharmeshkumar Patel
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sabina Yasmin
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jeremy Jun Heng Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Zhong Zhuang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Hai M Nguyen
- Department of Pharmacology, University of California, Davis, California 95616, United States
| | - Abbas El Sahili
- School of Biological Sciences, Nanyang Institute of Structural Biology, Experimental Medicine building, Singapore 636921
| | - Julien Lescar
- School of Biological Sciences, Nanyang Institute of Structural Biology, Experimental Medicine building, Singapore 636921
| | - Rahul Patil
- Centre for Drug Candidate Optimisation, Monash University, Parkville, Victoria 3052, Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash University, Parkville, Victoria 3052, Australia
| | - Edward G Robins
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667.,Singapore Bioimaging Consortium, NUS Clinical Imaging Research Centre (CIRC), Centre for Life Sciences, Singapore 117599
| | - Julian L Goggi
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Peng Wen Tan
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Pragalath Sadasivam
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Boominathan Ramasamy
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Siddana V Hartimath
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Vikas Dhawan
- Peptides International, Inc., Louisville, Kentucky 40269, United States.,AmbioPharm Inc., North Augusta, South Carolina 29842, United States
| | - Janna Bednenko
- TetraGenetics Inc, Arlington, Massachusetts 02474, United States
| | - Paul Colussi
- TetraGenetics Inc, Arlington, Massachusetts 02474, United States
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, California 95616, United States
| | - Michael W Pennington
- Peptides International, Inc., Louisville, Kentucky 40269, United States.,AmbioPharm Inc., North Augusta, South Carolina 29842, United States
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - K George Chandy
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| |
Collapse
|
11
|
Papp F, Hajdu P, Tajti G, Toth A, Nagy E, Fazekas Z, Kovacs S, Vámosi G, Varga Z, Panyi G. Periodic Membrane Potential and Ca 2+ Oscillations in T Cells Forming an Immune Synapse. Int J Mol Sci 2020; 21:ijms21051568. [PMID: 32106594 PMCID: PMC7084896 DOI: 10.3390/ijms21051568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 11/25/2022] Open
Abstract
The immunological synapse (IS) is a specialized contact area formed between a T cell and an antigen presenting cell (APC). Besides molecules directly involved in antigen recognition such as the TCR/CD3 complex, ion channels important in the membrane potential and intracellular free Ca2+ concentration control of T cells are also recruited into the IS. These are the voltage-gated Kv1.3 and Ca2+-activated KCa3.1 K+ channels and the calcium release-activated Ca2+ channel (CRAC). However, the consequence of this recruitment on membrane potential and Ca2+ level control is not known. Here we demonstrate that the membrane potential (MP) of murine T cells conjugated with APCs in an IS shows characteristic oscillations. We found that depolarization of the membrane by current injection or by increased extracellular K+ concentration produced membrane potential oscillations (MPO) significantly more frequently in conjugated T cells than in lone T cells. Furthermore, oscillation of the free intracellular Ca2+ concentration could also be observed more frequently in cells forming an IS than in lone cells. We suggest that in the IS the special arrangement of channels and the constrained space between the interacting cells creates a favorable environment for these oscillations, which may enhance the signaling process leading to T cell activation.
Collapse
Affiliation(s)
- Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (F.P.); (G.T.); (A.T.); (E.N.); (Z.F.); (G.V.); (Z.V.)
| | - Peter Hajdu
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Gabor Tajti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (F.P.); (G.T.); (A.T.); (E.N.); (Z.F.); (G.V.); (Z.V.)
| | - Agnes Toth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (F.P.); (G.T.); (A.T.); (E.N.); (Z.F.); (G.V.); (Z.V.)
| | - Eva Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (F.P.); (G.T.); (A.T.); (E.N.); (Z.F.); (G.V.); (Z.V.)
| | - Zsolt Fazekas
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (F.P.); (G.T.); (A.T.); (E.N.); (Z.F.); (G.V.); (Z.V.)
| | - Sandor Kovacs
- Institute of Sectoral Economics and Methodology, Faculty of Economics and Business, Department of Statistics and Research Methodology, University of Debrecen, 4032 Debrecen, Hungary;
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (F.P.); (G.T.); (A.T.); (E.N.); (Z.F.); (G.V.); (Z.V.)
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (F.P.); (G.T.); (A.T.); (E.N.); (Z.F.); (G.V.); (Z.V.)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (F.P.); (G.T.); (A.T.); (E.N.); (Z.F.); (G.V.); (Z.V.)
- Correspondence: ; Tel.: +36-52-258-603
| |
Collapse
|
12
|
Prosdocimi E, Checchetto V, Leanza L. Targeting the Mitochondrial Potassium Channel Kv1.3 to Kill Cancer Cells: Drugs, Strategies, and New Perspectives. SLAS DISCOVERY 2019; 24:882-892. [PMID: 31373829 DOI: 10.1177/2472555219864894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is the consequence of aberrations in cell growth or cell death. In this scenario, mitochondria and ion channels play a critical role in regard to cell proliferation, malignant angiogenesis, migration, and metastasis. In this review, we focus on Kv1.3 and specifically on mitoKv1.3, which showed an aberrant expression in cancer cells compared with healthy tissues and which is involved in the apoptotic pathway. In recent years, mitoKv1.3 has become an oncological target since its pharmacological modulation has been demonstrated to reduce tumor growth and progression both in vitro and in vivo using preclinical mouse models of different types of tumors.
Collapse
Affiliation(s)
| | | | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Marei HE, Althani A, Caceci T, Arriga R, Sconocchia T, Ottaviani A, Lanzilli G, Roselli M, Caratelli S, Cenciarelli C, Sconocchia G. Recent perspective on CAR and Fcγ-CR T cell immunotherapy for cancers: Preclinical evidence versus clinical outcomes. Biochem Pharmacol 2019; 166:335-346. [PMID: 31176617 DOI: 10.1016/j.bcp.2019.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
The chimeric antigen receptor T cell (CAR-T cell) immunotherapy currently represents a hot research trend and it is expected to revolutionize the field of cancer therapy. Promising outcomes have been achieved using CAR-T cell therapy for haematological malignancies. Despite encouraging results, several challenges still pose eminent hurdles before being fully recognized. Directing CAR-T cells to target a single tumour associated antigen (TAA) as the case in haematological malignancies might be much simpler than targeting the extensive inhibitory microenvironments associated with solid tumours. This review focuses on the basic principles involved in development of CAR-T cells, emphasizing the differences between humoral IgG, T-cell receptors, CAR and Fcγ-CR constructs. It also highlights the complex inhibitory network that is usually associated with solid tumours, and tackles recent advances in the clinical studies that have provided great hope for the future use of CAR-T cell immunotherapy. While current Fcγ-CR T cell immunotherapy is in pre-clinical stage, is expected to provide a sound therapeutic approach to add to existing classical chemo- and radio-therapeutic modalities.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35116, Egypt.
| | - Asma Althani
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Thomas Caceci
- Biomedical Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Roberto Arriga
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome "Tor Vergata", Rome, Italy
| | - Tommaso Sconocchia
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | | | | | - Mario Roselli
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome "Tor Vergata", Rome, Italy
| | - Sara Caratelli
- Institute of Translational Pharmacology-CNR, Rome, Italy
| | | | | |
Collapse
|
14
|
Voros O, Szilagyi O, Balajthy A, Somodi S, Panyi G, Hajdu P. The C-terminal HRET sequence of Kv1.3 regulates gating rather than targeting of Kv1.3 to the plasma membrane. Sci Rep 2018; 8:5937. [PMID: 29650988 PMCID: PMC5897520 DOI: 10.1038/s41598-018-24159-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/08/2018] [Indexed: 12/13/2022] Open
Abstract
Kv1.3 channels are expressed in several cell types including immune cells, such as T lymphocytes. The targeting of Kv1.3 to the plasma membrane is essential for T cell clonal expansion and assumed to be guided by the C-terminus of the channel. Using two point mutants of Kv1.3 with remarkably different features compared to the wild-type Kv1.3 (A413V and H399K having fast inactivation kinetics and tetraethylammonium-insensitivity, respectively) we showed that both Kv1.3 channel variants target to the membrane when the C-terminus was truncated right after the conserved HRET sequence and produce currents identical to those with a full-length C-terminus. The truncation before the HRET sequence (NOHRET channels) resulted in reduced membrane-targeting but non-functional phenotypes. NOHRET channels did not display gating currents, and coexpression with wild-type Kv1.3 did not rescue the NOHRET-A413V phenotype, no heteromeric current was observed. Interestingly, mutants of wild-type Kv1.3 lacking HRET(E) (deletion) or substituted with five alanines for the HRET(E) motif expressed current indistinguishable from the wild-type. These results demonstrate that the C-terminal region of Kv1.3 immediately proximal to the S6 helix is required for the activation gating and conduction, whereas the presence of the distal region of the C-terminus is not exclusively required for trafficking of Kv1.3 to the plasma membrane.
Collapse
Affiliation(s)
- Orsolya Voros
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary
| | - Orsolya Szilagyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary
| | - András Balajthy
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary
| | - Sándor Somodi
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 1 Egyetem sq., 4032, Hungary. MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, 400, Debrecen, Hungary
| | - Péter Hajdu
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary. .,Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, 400, 1 Egyetem sq., Debrecen, 4032, Hungary.
| |
Collapse
|
15
|
Lowinus T, Bose T, Busse S, Busse M, Reinhold D, Schraven B, Bommhardt UHH. Immunomodulation by memantine in therapy of Alzheimer's disease is mediated through inhibition of Kv1.3 channels and T cell responsiveness. Oncotarget 2018; 7:53797-53807. [PMID: 27462773 PMCID: PMC5288222 DOI: 10.18632/oncotarget.10777] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/09/2016] [Indexed: 12/20/2022] Open
Abstract
Memantine is approved for the treatment of advanced Alzheimer's disease (AD) and reduces glutamate-mediated neuronal excitotoxicity by antagonism of N-methyl-D-aspartate receptors. In the pathophysiology of AD immune responses deviate and infectious side effects are observed during memantine therapy. However, the particular effects of memantine on human T lymphocytes are unresolved. Here, we provide evidence that memantine blocks Kv1.3 potassium channels, inhibits CD3-antibody- and alloantigen-induced proliferation and suppresses chemokine-induced migration of peripheral blood T cells of healthy donors. Concurrent with the in vitro data, CD4+ T cells from AD patients receiving therapeutic doses of memantine show a transient decline of Kv1.3 channel activity and a long-lasting reduced proliferative response to alloantigens in mixed lymphocyte reactions. Furthermore, memantine treatment provokes a profound depletion of peripheral blood memory CD45RO+ CD4+ T cells. Thus, standard doses of memantine profoundly reduce T cell responses in treated patients through blockade of Kv1.3 channels. This may normalize deviant immunopathology in AD and contribute to the beneficial effects of memantine, but may also account for the enhanced infection rate.
Collapse
Affiliation(s)
- Theresa Lowinus
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Tanima Bose
- Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Current address: Lee Kong Chian School of Medicine, Singapore
| | - Stefan Busse
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Mandy Busse
- Department of Pediatric Pulmonology & Allergology, Medical University of Hannover, Hannover, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Department of Immune Control, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ursula H H Bommhardt
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
16
|
Chandy KG, Norton RS. Peptide blockers of K v 1.3 channels in T cells as therapeutics for autoimmune disease. Curr Opin Chem Biol 2017; 38:97-107. [DOI: 10.1016/j.cbpa.2017.02.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/24/2022]
|
17
|
Stambrook PJ, Maher J, Farzaneh F. Cancer Immunotherapy: Whence and Whither. Mol Cancer Res 2017; 15:635-650. [PMID: 28356330 DOI: 10.1158/1541-7786.mcr-16-0427] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/22/2016] [Accepted: 01/14/2017] [Indexed: 12/22/2022]
Abstract
The current concepts and practice of cancer immunotherapy evolved from classical experiments that distinguished "self" from "non-self" and the finding that humoral immunity is complemented by cellular immunity. Elucidation of the biology underlying immune checkpoints and interactions between ligands and ligand receptors that govern the immune system's ability to recognize tumor cells as foreign has led to the emergence of new strategies that mobilize the immune system to reverse this apparent tolerance. Some of these approaches have led to new therapies such as the use of mAbs to interfere with the immune checkpoint. Others have exploited molecular technologies to reengineer a subset of T cells to directly engage and kill tumor cells, particularly those of B-cell malignancies. However, before immunotherapy can become a more effective method of cancer care, there are many challenges that remain to be addressed and hurdles to overcome. Included are manipulation of tumor microenvironment (TME) to enhance T effector cell infiltration and access to the tumor, augmentation of tumor MHC expression for adequate presentation of tumor associated antigens, regulation of cytokines and their potential adverse effects, and reduced risk of secondary malignancies as a consequence of mutations generated by the various forms of genetic engineering of immune cells. Despite these challenges, the future of immunotherapy as a standard anticancer therapy is encouraging. Mol Cancer Res; 15(6); 635-50. ©2017 AACR.
Collapse
Affiliation(s)
- Peter J Stambrook
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - John Maher
- Kings College London, CAR Mechanics Group, Guy's Hospital, London, United Kingdom
| | - Farzin Farzaneh
- Division of Cancer Studies, Department of Haematological Medicine, Kings College London, London, United Kingdom
| |
Collapse
|
18
|
|
19
|
Dengue Virus Infection Is through a Cooperative Interaction between a Mannose Receptor and CLEC5A on Macrophage as a Multivalent Hetero-Complex. PLoS One 2016; 11:e0166474. [PMID: 27832191 PMCID: PMC5104462 DOI: 10.1371/journal.pone.0166474] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/28/2016] [Indexed: 01/01/2023] Open
Abstract
Dengue fever is a mosquito-borne viral pandemic disease that is widespread in the tropical and subtropical areas. Dengue virus uses human mannose-binding receptor (MR) and DC-SIGN on macrophages as primary receptors, and CLEC5A as signaling receptor to sense the dengue virus invasion and then to signal and stimulate macrophages to secrete cytokines. But the interplay between MR/DC-SIGN and CLEC5A is unknown. Here we demonstrate a plausible mechanism for the interaction, i.e. MR/DC-SIGN first attracts the virus with high avidity, and the virus concurrently interacts with CLEC5A in close proximity to form a multivalent hetero-complex and facilitate CLEC5A-mediated signal transduction. Our study suggests that the cooperation between a high-avidity lectin-virus interaction and a nearby low-avidity signaling receptor provides a necessary connection between binding and signaling. Understanding this mechanism may lead to the development of a new antiviral strategy.
Collapse
|
20
|
Peimine, a main active ingredient of Fritillaria, exhibits anti-inflammatory and pain suppression properties at the cellular level. Fitoterapia 2016; 111:1-6. [DOI: 10.1016/j.fitote.2016.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/19/2022]
|
21
|
Salinas DG. Flux theory for Poisson distributed pores with Gaussian permeability. Channels (Austin) 2015; 10:111-8. [PMID: 26488853 DOI: 10.1080/19336950.2015.1100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The mean of the solute flux through membrane pores depends on the random distribution and permeability of the pores. Mathematical models including such randomness factors make it possible to obtain statistical parameters for pore characterization. Here, assuming that pores follow a Poisson distribution in the lipid phase and that their permeabilities follow a Gaussian distribution, a mathematical model for solute dynamics is obtained by applying a general result from a previous work regarding any number of different kinds of randomly distributed pores. The new proposed theory is studied using experimental parameters obtained elsewhere, and a method for finding the mean single pore flux rate from liposome flux assays is suggested. This method is useful for pores without requiring studies by patch-clamp in single cells or single-channel recordings. However, it does not apply in the case of ion-selective channels, in which a more complex flux law combining the concentration and electrical gradient is required.
Collapse
Affiliation(s)
- Dino G Salinas
- a Centro de Investigación Biomédica, Facultad de Medicina , Universidad Diego Portales , Santiago , Chile
| |
Collapse
|
22
|
Grishkan IV, Tosi DM, Bowman MD, Harary M, Calabresi PA, Gocke AR. Antigenic Stimulation of Kv1.3-Deficient Th Cells Gives Rise to a Population of Foxp3-Independent T Cells with Suppressive Properties. THE JOURNAL OF IMMUNOLOGY 2015; 195:1399-1407. [PMID: 26150529 DOI: 10.4049/jimmunol.1403024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/12/2015] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the CNS that has been linked with defects in regulatory T cell function. Therefore, strategies to selectively target pathogenic cells via enhanced regulatory T cell activity may provide therapeutic benefit. Kv1.3 is a voltage-gated potassium channel expressed on myelin-reactive T cells from MS patients. Kv1.3-knockout (KO) mice are protected from experimental autoimmune encephalomyelitis, an animal model of MS, and Kv1.3-KO Th cells display suppressive capacity associated with increased IL-10. In this article, we demonstrate that myelin oligodendrocyte glycoprotein-specific Kv1.3-KO Th cells exhibit a unique regulatory phenotype characterized by high CD25, CTLA4, pSTAT5, FoxO1, and GATA1 expression without a corresponding increase in Foxp3. These phenotypic changes result from increased signaling through IL-2R. Moreover, myelin oligodendrocyte glycoprotein-specific Kv1.3-KO Th cells can ameliorate experimental autoimmune encephalomyelitis following transfer to wild-type recipients in a manner that is partially dependent on IL-2R and STAT5 signaling. The present study identifies a population of Foxp3(-) T cells with suppressive properties that arises in the absence of Kv1.3 and enhances the understanding of the molecular mechanism by which these cells are generated. This increased understanding could contribute to the development of novel therapies for MS patients that promote heightened immune regulation.
Collapse
Affiliation(s)
- Inna V Grishkan
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Dominique M Tosi
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Melissa D Bowman
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Maya Harary
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| | - Anne R Gocke
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, USA
| |
Collapse
|
23
|
Jang SH, Byun JK, Jeon WI, Choi SY, Park J, Lee BH, Yang JE, Park JB, O'Grady SM, Kim DY, Ryu PD, Joo SW, Lee SY. Nuclear localization and functional characteristics of voltage-gated potassium channel Kv1.3. J Biol Chem 2015; 290:12547-57. [PMID: 25829491 PMCID: PMC4432276 DOI: 10.1074/jbc.m114.561324] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/26/2015] [Indexed: 12/29/2022] Open
Abstract
It is widely known that ion channels are expressed in the plasma membrane. However, a few studies have suggested that several ion channels including voltage-gated K(+) (Kv) channels also exist in intracellular organelles where they are involved in the biochemical events associated with cell signaling. In the present study, Western blot analysis using fractionated protein clearly indicates that Kv1.3 channels are expressed in the nuclei of MCF7, A549, and SNU-484 cancer cells and human brain tissues. In addition, Kv1.3 is located in the plasma membrane and the nucleus of Jurkat T cells. Nuclear membrane hyperpolarization after treatment with margatoxin (MgTX), a specific blocker of Kv1.3 channels, provides evidence for functional channels at the nuclear membrane of A549 cells. MgTX-induced hyperpolarization is abolished in the nuclei of Kv1.3 silenced cells, and the effects of MgTX are dependent on the magnitude of the K(+) gradient across the nuclear membrane. Selective Kv1.3 blockers induce the phosphorylation of cAMP response element-binding protein (CREB) and c-Fos activation. Moreover, Kv1.3 is shown to form a complex with the upstream binding factor 1 in the nucleus. Chromatin immunoprecipitation assay reveals that Sp1 transcription factor is directly bound to the promoter region of the Kv1.3 gene, and the Sp1 regulates Kv1.3 expression in the nucleus of A549 cells. These results demonstrate that Kv1.3 channels are primarily localized in the nucleus of several types of cancer cells and human brain tissues where they are capable of regulating nuclear membrane potential and activation of transcription factors, such as phosphorylated CREB and c-Fos.
Collapse
Affiliation(s)
- Soo Hwa Jang
- From the Laboratories of Veterinary Pharmacology and the Biomedical Research Center, School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Jun Kyu Byun
- From the Laboratories of Veterinary Pharmacology and
| | - Won-Il Jeon
- From the Laboratories of Veterinary Pharmacology and
| | | | - Jin Park
- the Department of Chemistry, Soongsil University, Seoul 156-743, Korea
| | - Bo Hyung Lee
- From the Laboratories of Veterinary Pharmacology and
| | - Ji Eun Yang
- From the Laboratories of Veterinary Pharmacology and
| | - Jin Bong Park
- the Department of Physiology, School of Medicine, Chungnam National University, Daejeon 305-764, Korea, and
| | - Scott M O'Grady
- the Department of Animal Science and Integrative Biology and Physiology, University of Minnesota, St. Paul, Minnesota 55455
| | - Dae-Yong Kim
- Veterinary Pathology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Korea
| | - Pan Dong Ryu
- From the Laboratories of Veterinary Pharmacology and
| | - Sang-Woo Joo
- the Department of Chemistry, Soongsil University, Seoul 156-743, Korea
| | - So Yeong Lee
- From the Laboratories of Veterinary Pharmacology and
| |
Collapse
|
24
|
Placing ion channels into a signaling network of T cells: from maturing thymocytes to healthy T lymphocytes or leukemic T lymphoblasts. BIOMED RESEARCH INTERNATIONAL 2015; 2015:750203. [PMID: 25866806 PMCID: PMC4383400 DOI: 10.1155/2015/750203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022]
Abstract
T leukemogenesis is a multistep process, where the genetic errors during T cell maturation cause the healthy progenitor to convert into the leukemic precursor that lost its ability to differentiate but possesses high potential for proliferation, self-renewal, and migration. A new misdirecting "leukemogenic" signaling network appears, composed by three types of participants which are encoded by (1) genes implicated in determined stages of T cell development but deregulated by translocations or mutations, (2) genes which normally do not participate in T cell development but are upregulated, and (3) nondifferentially expressed genes which become highly interconnected with genes expressed differentially. It appears that each of three groups may contain genes coding ion channels. In T cells, ion channels are implicated in regulation of cell cycle progression, differentiation, activation, migration, and cell death. In the present review we are going to reveal a relationship between different genetic defects, which drive the T cell neoplasias, with calcium signaling and ion channels. We suggest that changes in regulation of various ion channels in different types of the T leukemias may provide the intracellular ion microenvironment favorable to maintain self-renewal capacity, arrest differentiation, induce proliferation, and enhance motility.
Collapse
|
25
|
Maity PC, Yang J, Klaesener K, Reth M. The nanoscale organization of the B lymphocyte membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:830-40. [PMID: 25450974 PMCID: PMC4547082 DOI: 10.1016/j.bbamcr.2014.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/30/2014] [Accepted: 11/07/2014] [Indexed: 12/13/2022]
Abstract
The fluid mosaic model of Singer and Nicolson correctly predicted that the plasma membrane (PM) forms a lipid bi-layer containing many integral trans-membrane proteins. This model also suggested that most of these proteins were randomly dispersed and freely diffusing moieties. Initially, this view of a dynamic and rather unorganized membrane was supported by early observations of the cell surfaces using the light microscope. However, recent studies on the PM below the diffraction limit of visible light (~250nm) revealed that, at nanoscale dimensions, membranes are highly organized and compartmentalized structures. Lymphocytes are particularly useful to study this nanoscale membrane organization because they grow as single cells and are not permanently engaged in cell:cell contacts within a tissue that can influence membrane organization. In this review, we describe the methods that can be used to better study the protein:protein interaction and nanoscale organization of lymphocyte membrane proteins, with a focus on the B cell antigen receptor (BCR). Furthermore, we discuss the factors that may generate and maintain these membrane structures.
Collapse
Affiliation(s)
- Palash Chandra Maity
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; Department of Molecular Immunology, Biology III, University of Freiburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Jianying Yang
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; Department of Molecular Immunology, Biology III, University of Freiburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Kathrin Klaesener
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; Department of Molecular Immunology, Biology III, University of Freiburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Reth
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; Department of Molecular Immunology, Biology III, University of Freiburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
26
|
Salinas DG. Fluxes theory in experiments with random distributed channels on vesicles. Channels (Austin) 2014; 8:258-63. [PMID: 24643013 DOI: 10.4161/chan.28011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
When channels are randomly distributed in a population of vesicles, disregarding the number of channels per vesicle, these channels follow a Poisson distribution. This has been verified in many cases, determining the average of channels per vesicle. However, to determine kinetic parameters in population studies, a mathematical expression for the mean flux of solute through channels per vesicle is necessary. Hence, here, this mean flux is calculated, assuming Poisson distributed channels in a population of vesicle. Moreover, this result has been generalized to any number of different kinds of channels (i.e., channels with different permeabilities). These results, useful for in vitro experiments with mixed both channels and vesicles, can be supplemented with those from other techniques, in order to understanding how the nature of the lipid membrane affects kinetic parameters of channel.
Collapse
|
27
|
Characterization of a novel CRAC inhibitor that potently blocks human T cell activation and effector functions. Mol Immunol 2013; 54:355-67. [DOI: 10.1016/j.molimm.2012.12.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 12/07/2012] [Accepted: 12/14/2012] [Indexed: 01/07/2023]
|
28
|
Sun Y, Rombola C, Jyothikumar V, Periasamy A. Förster resonance energy transfer microscopy and spectroscopy for localizing protein-protein interactions in living cells. Cytometry A 2013; 83:780-93. [PMID: 23813736 DOI: 10.1002/cyto.a.22321] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 04/08/2013] [Accepted: 05/23/2013] [Indexed: 12/15/2022]
Abstract
The fundamental theory of Förster resonance energy transfer (FRET) was established in the 1940s. Its great power was only realized in the past 20 years after different techniques were developed and applied to biological experiments. This success was made possible by the availability of suitable fluorescent probes, advanced optics, detectors, microscopy instrumentation, and analytical tools. Combined with state-of-the-art microscopy and spectroscopy, FRET imaging allows scientists to study a variety of phenomena that produce changes in molecular proximity, thereby leading to many significant findings in the life sciences. In this review, we outline various FRET imaging techniques and their strengths and limitations; we also provide a biological model to demonstrate how to investigate protein-protein interactions in living cells using both intensity- and fluorescence lifetime-based FRET microscopy methods.
Collapse
Affiliation(s)
- Yuansheng Sun
- The W.M. Keck Center for Cellular Imaging (KCCI), Department of Biology, Physical and Life Sciences Building, University of Virginia, Charlottesville, Virginia
| | | | | | | |
Collapse
|
29
|
Somodi S, Balajthy A, Szilágyi O, Pethő Z, Harangi M, Paragh G, Panyi G, Hajdu P. Analysis of the K+ current in human CD4+ T lymphocytes in hypercholesterolemic state. Cell Immunol 2013; 281:20-6. [PMID: 23416720 DOI: 10.1016/j.cellimm.2013.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 12/22/2012] [Accepted: 01/12/2013] [Indexed: 11/18/2022]
Abstract
Atherosclerosis involves immune mechanisms: T lymphocytes are found in atherosclerotic plaques, suggesting their activation during atherogenesis. The predominant voltage-gated potassium channel of T cells, Kv1.3 is a key regulator of the Ca(2+)-dependent activation pathway. In the present experiments we studied the proliferation capacity and functional changes of Kv1.3 channels in T cells from healthy and hypercholestaeremic patients. By means of CFSE-assay (carboxyfluorescein succinimidyl ester) we showed that spontaneous activation rate of lymphocytes in hypercholesterolemia was elevated and the antiCD3/antiCD28 co-stimulation was less effective as compared to the healthy group. Using whole-cell patch-clamping we obtained that the activation and deactivation kinetics of Kv1.3 channels were faster in hypercholesterolemic state but no change in other parameters of Kv1.3 were found (inactivation kinetics, steady-state activation, expression level). We suppose that incorporation of oxLDL species via its raft-rupturing effect can modify proliferative rate of T cells as well as the gating of Kv1.3 channels.
Collapse
Affiliation(s)
- Sándor Somodi
- 1st Department of Internal Medicine, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kuras Z, Yun YH, Chimote AA, Neumeier L, Conforti L. KCa3.1 and TRPM7 channels at the uropod regulate migration of activated human T cells. PLoS One 2012; 7:e43859. [PMID: 22952790 PMCID: PMC3428288 DOI: 10.1371/journal.pone.0043859] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
The migration of T lymphocytes is an essential part of the adaptive immune response as T cells circulate around the body to carry out immune surveillance. During the migration process T cells polarize, forming a leading edge at the cell front and a uropod at the cell rear. Our interest was in studying the involvement of ion channels in the migration of activated human T lymphocytes as they modulate intracellular Ca(2+) levels. Ca(2+) is a key regulator of cellular motility. To this purpose, we created protein surfaces made of the bio-polymer PNMP and coated with ICAM-1, ligand of LFA-1. The LFA-1 and ICAM-1 interaction facilitates T cell movement from blood into tissues and it is critical in immune surveillance and inflammation. Activated human T lymphocytes polarized and migrated on ICAM-1 surfaces by random walk with a mean velocity of ∼6 µm/min. Confocal microscopy indicated that Kv1.3, CRAC, and TRPM4 channels positioned in the leading-edge, whereas KCa3.1 and TRPM7 channels accumulated in the uropod. The localization of KCa3.1 and TRPM7 at the uropod was associated with oscillations in intracellular Ca(2+) levels that we measured in this cell compartment. Further studies with blockers against Kv1.3 (ShK), KCa3.1 (TRAM-34), CRAC (SKF-96365), TRPM7 (2-APB), and TRPM4 (glibenclamide) indicated that blockade of KCa3.1 and TRPM7, and not Kv1.3, CRAC or TRPM4, inhibits the T cell migration. The involvement of TRPM7 in cell migration was confirmed with siRNAs against TRPM7. Downregulation of TRPM7 significantly reduced the number of migrating T cells and the mean velocity of the migrating T cells. These results indicate that KCa3.1 and TRPM7 selectively localize at the uropod of migrating T lymphocytes and are key components of the T cell migration machinery.
Collapse
Affiliation(s)
- Zerrin Kuras
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Yeo-Heung Yun
- Department of Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
| | - Ameet A. Chimote
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Lisa Neumeier
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Laura Conforti
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
31
|
Martin GV, Yun Y, Conforti L. Modulation of T cell activation by localized K⁺ accumulation at the immunological synapse--a mathematical model. J Theor Biol 2012; 300:173-82. [PMID: 22285786 DOI: 10.1016/j.jtbi.2012.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 01/06/2023]
Abstract
The response of T cells to antigens (T cell activation) is marked by an increase in intracellular Ca²⁺ levels. Voltage-gated and Ca²⁺-dependent K⁺ channels control the membrane potential of human T cells and regulate Ca²⁺ influx. This regulation is dependent on proper accumulation of K⁺ channels at the immunological synapse (IS) a signaling zone that forms between a T cell and antigen presenting cell. It is believed that the IS provides a site for regulation of the activation response and that K⁺ channel inhibition occurs at the IS, but the underlying mechanisms are unknown. A mathematical model was developed to test whether K⁺ efflux through K⁺ channels leads to an accumulation of K⁺ in the IS cleft, ultimately reducing K⁺ channel function and intracellular Ca²⁺ concentration ([Ca²⁺](i)). Simulations were conducted in models of resting and activated T cell subsets, which express different levels of K⁺ channels, by varying the K⁺ diffusion constant and the spatial localization of K⁺ channels at the IS. K⁺ accumulation in the IS cleft was calculated to increase K⁺ concentration ([K⁺]) from its normal value of 5.0 mM to 5.2-10.0 mM. Including K⁺ accumulation in the model of the IS reduced calculated K⁺ current by 1-12% and consequently, reduced calculated [Ca²⁺](i) by 1-28%. Significant reductions in K⁺ current and [Ca²⁺](i) only occurred in activated T cell simulations when most K⁺ channels were centrally clustered at the IS. The results presented show that the localization of K⁺ channels at the IS can produce a rise in [K⁺] in the IS cleft and lead to a substantial decrease in K⁺ currents and [Ca²⁺](i) in activated T cells thus providing a feedback inhibitory mechanism during T cell activation.
Collapse
Affiliation(s)
- Geoffrey V Martin
- Department of Internal Medicine, 231 A. Sabin Way, Division of Nephrology, University of Cincinnati, Cincinnati, OH 45267-0585, USA
| | | | | |
Collapse
|
32
|
Reneer MC, Estes DJ, Vélez-Ortega AC, Norris A, Mayer M, Marti F. Peripherally induced human regulatory T cells uncouple Kv1.3 activation from TCR-associated signaling. Eur J Immunol 2011; 41:3170-5. [PMID: 21834013 PMCID: PMC3517126 DOI: 10.1002/eji.201141492] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/08/2011] [Accepted: 08/08/2011] [Indexed: 11/06/2022]
Abstract
Peripherally induced Tregs (iTregs) are being recognized as a functional and physiologically relevant T-cell subset. Understanding the molecular basis of their development is a necessary step before the therapeutic potential of iTreg manipulation can be exploited. In this study, we report that the differentiation of primary human T cells to suppressor iTregs involves the relocation of key proximal TCR signaling elements to the highly active IL-2-Receptor (IL-2-R) pathway. In addition to the recruitment of lymphocyte-specific protein tyrosine kinase (Lck) to the IL-2-R complex, we identified the dissociation of the voltage-gated K(+) channel Kv1.3 from the TCR pathway and its functional coupling to the IL-2-R. The regulatory switch of Kv1.3 activity in iTregs may constitute an important contributing factor in the signaling rewiring associated with the development of peripheral human iTregs and sheds new light upon the reciprocal crosstalk between the TCR and the IL-2-R pathways.
Collapse
Affiliation(s)
- Mary Catherine Reneer
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Daniel J. Estes
- Department of Biomedical Engineering and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| | - Alejandra Catalina Vélez-Ortega
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Andrea Norris
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Michael Mayer
- Department of Biomedical Engineering and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| | - Francesc Marti
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| |
Collapse
|
33
|
Dalfampridine in multiple sclerosis: from symptomatic treatment to immunomodulation. Clin Immunol 2011; 142:84-92. [PMID: 21742559 DOI: 10.1016/j.clim.2011.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 01/08/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease that is deemed to affect more than 2.1 million people worldwide, and for which there is no cure. Early symptoms of MS are believed to result from axonal demyelination leading to slowing or blockade of impulse conduction. The blockade of K+ channels has been proven to improve conduction deficiencies secondary to demyelination in patients with MS. Dalfampridine is a K+ channel blocker that was recently approved by FDA for the symptomatic treatment of ambulation hardship in MS. Understanding the mechanisms by which Dalfampridine exerts its therapeutic effects is a complex issue as it blocks a wide variety of K+ channels that are distributed across multiple cell types in the nervous system but also in the immune system, and because of their molecular identities remaining unknown. This review describes Dalfampridine potential roles at the cellular and molecular levels in MS pathogenesis.
Collapse
|
34
|
Doczi MA, Damon DH, Morielli AD. A C-terminal PDZ binding domain modulates the function and localization of Kv1.3 channels. Exp Cell Res 2011; 317:2333-41. [PMID: 21726550 DOI: 10.1016/j.yexcr.2011.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/07/2011] [Accepted: 06/20/2011] [Indexed: 01/12/2023]
Abstract
The voltage-gated potassium channel, Kv1.3, plays an important role in regulating membrane excitability in diverse cell types ranging from T-lymphocytes to neurons. In the present study, we test the hypothesis that the C-terminal PDZ binding domain modulates the function and localization of Kv1.3. We created a mutant form of Kv1.3 that lacked the last three amino acids of the C-terminal PDZ-binding domain (Kv1.3ΔTDV). This form of Kv1.3 did not bind the PDZ domain containing protein, PSD95. We transfected wild type and mutant Kv1.3 into HEK293 cells and determined if the mutation affected current, Golgi localization, and surface expression of the channel. We found that cells transfected with Kv1.3ΔTDV had greater current and lower Golgi localization than those transfected with Kv1.3. Truncation of the C-terminal PDZ domain did not affect surface expression of Kv1.3. These findings suggest that PDZ-dependent interactions affect both Kv1.3 localization and function. The finding that current and Golgi localization changed without a corresponding change in surface expression suggests that PDZ interactions affect localization and function via independent mechanisms.
Collapse
Affiliation(s)
- Megan A Doczi
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05401, USA
| | | | | |
Collapse
|
35
|
Felipe A, Soler C, Comes N. Kv1.5 in the immune system: the good, the bad, or the ugly? Front Physiol 2010; 1:152. [PMID: 21423392 PMCID: PMC3059964 DOI: 10.3389/fphys.2010.00152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/28/2010] [Indexed: 11/13/2022] Open
Abstract
For the last 20 years, knowledge of the physiological role of voltage-dependent potassium channels (Kv) in the immune system has grown exponentially. Leukocytes express a limited repertoire of Kv channels, which contribute to the membrane potential. These proteins are involved in the immune response and are therefore considered good pharmacological targets. Although there is a clear consensus about the physiological relevance of Kv1.3, the expression and the role of Kv1.5 are controversial. However, recent reports indicate that certain heteromeric Kv1.3/Kv1.5 associations may provide insight on Kv1.5. Here, we summarize what is known about this issue and highlight the role of Kv1.5 partnership interactions that could be responsible for this debate. The Kv1.3/Kv1.5 heterotetrameric composition of the channel and their possible differential associations with accessory regulatory proteins warrant further investigation.
Collapse
Affiliation(s)
- Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona Barcelona, Spain.
| | | | | |
Collapse
|
36
|
Krummel MF, Cahalan MD. The immunological synapse: a dynamic platform for local signaling. J Clin Immunol 2010; 30:364-72. [PMID: 20390326 PMCID: PMC2874029 DOI: 10.1007/s10875-010-9393-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 03/16/2010] [Indexed: 01/06/2023]
Abstract
The immunological synapse (IS) as a concept has evolved from a static view of the junction between T cells and their antigen-presenting cell partners. The entire process of IS formation and extinction is now known to entail a dynamic reorganization of membrane domains and proteins within and adjacent to those domains. Discussion The entire process is also intricately tied to the motility machinery—both as that machinery directs “scanning” prior to T-cell receptor engagement and as it is appropriated during the ongoing developments at the IS. While the synapse often remains dynamic in order to encourage surveillance of new antigen-presenting surfaces, cytoskeletal forces also regulate the development of signals, likely including the assembly of ion channels. In both neuronal and immunological synapses, localized Ca2+ signals and accumulation or depletion of ions in microdomains accompany the concentration of signaling molecules in the synapse. Such spatiotemporal signaling in the synapse greatly accelerates kinetics and provides essential checkpoints to validate effective cell–cell communication.
Collapse
Affiliation(s)
- Matthew F Krummel
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue HSW-0511, San Francisco, CA 94143, USA.
| | | |
Collapse
|
37
|
David Gerecht PS, Taylor MA, Port JD. Intracellular localization and interaction of mRNA binding proteins as detected by FRET. BMC Cell Biol 2010; 11:69. [PMID: 20843363 PMCID: PMC2949623 DOI: 10.1186/1471-2121-11-69] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/15/2010] [Indexed: 02/10/2023] Open
Abstract
Background A number of RNA binding proteins (BPs) bind to A+U rich elements (AREs), commonly present within 3'UTRs of highly regulated RNAs. Individual RNA-BPs proteins can modulate RNA stability, RNA localization, and/or translational efficiency. Although biochemical studies have demonstrated selectivity of ARE-BPs for individual RNAs, less certain is the in vivo composition of RNA-BP multiprotein complexes and how their composition is affected by signaling events and intracellular localization. Using FRET, we previously demonstrated that two ARE-BPs, HuR and AUF1, form stable homomeric and heteromeric associations in the nucleus and cytoplasm. In the current study, we use immuno-FRET of endogenous proteins to examine the intracellular localization and interactions of HuR and AUF1 as well as KSRP, TIA-1, and Hedls. These results were compared to those obtained with their exogenously expressed, fluorescently labeled counterparts. Results All ARE-BPs examined were found to colocalize and to form stable associations with selected other RNA-BPs in one or more cellular locations variably including the nucleus, cytoplasm (in general), or in stress granules or P bodies. Interestingly, FRET based interaction of the translational suppressor, TIA-1, and the decapping protein, Hedls, was found to occur at the interface of stress granules and P bodies, dynamic sites of intracellular RNA storage and/or turnover. To explore the physical interactions of RNA-BPs with ARE containing RNAs, in vitro transcribed Cy3-labeled RNA was transfected into cells. Interestingly, Cy3-RNA was found to coalesce in P body like punctate structures and, by FRET, was found to interact with the RNA decapping proteins, Hedls and Dcp1. Conclusions Biochemical methodologies, such as co-immunoprecipitation, and cell biological approaches such as standard confocal microscopy are useful in demonstrating the possibility of proteins and/or proteins and RNAs interacting. However, as demonstrated herein, colocalization of proteins and proteins and RNA is not always indicative of interaction. To this point, using FRET and immuno-FRET, we have demonstrated that RNA-BPs can visually colocalize without producing a FRET signal. In contrast, proteins that appear to be delimited to one or another intracellular compartment can be shown to interact when those compartments are juxtaposed.
Collapse
Affiliation(s)
- Pamela S David Gerecht
- Department of Medicine/Cardiology and Pharmacology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
38
|
Varga Z, Hajdu P, Panyi G. Ion channels in T lymphocytes: An update on facts, mechanisms and therapeutic targeting in autoimmune diseases. Immunol Lett 2010; 130:19-25. [DOI: 10.1016/j.imlet.2009.12.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 12/08/2009] [Accepted: 12/10/2009] [Indexed: 12/31/2022]
|
39
|
Sharma S, Rasool HI, Palanisamy V, Mathisen C, Schmidt M, Wong DT, Gimzewski JK. Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS NANO 2010; 4:1921-6. [PMID: 20218655 PMCID: PMC2866049 DOI: 10.1021/nn901824n] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
All living systems contain naturally occurring nanoparticles with unique structural, biochemical, and mechanical characteristics. Specifically, human saliva exosomes secreted by normal cells into saliva via exocytosis are novel biomarkers showing tumor-antigen enrichment during oral cancer. Here we show the substructure of single human saliva exosomes, using a new ultrasensitive low force atomic force microscopy (AFM) exhibiting substructural organization unresolvable in electron microscopy. We correlate the data with field emission scanning electron microscopy (FESEM) and AFM images to interpret the nanoscale structures of exosomes under varying forces. Single exosomes reveal reversible mechanical deformation displaying distinct elastic, 70-100 nm trilobed membrane with substructures carrying specific transmembrane receptors. Further, we imaged and investigated, using force spectroscopy with antiCD63 IgG functionalized AFM tips, highly specific and sensitive detection of antigenCD63, potentially useful cancer markers on individual exosomes. The quantitative nanoscale morphological, biomechanical, and surface biomolecular properties of single saliva exosomes are critical for the applications of exosomes for cancer diagnosis and as a model for developing new cell delivery systems.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA
- California NanoSystems Institute, University of California, Los Angeles, CA
| | - Haider I. Rasool
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA
| | | | | | | | - David T. Wong
- School of Dentistry and Dental Research Institute University of California Los Angeles, Los Angeles, CA
| | - James K. Gimzewski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA
- California NanoSystems Institute, University of California, Los Angeles, CA
- International Center for Materials Nanoarchitectonics Satellite (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- corresponding author: Fax: 310-206-4038
| |
Collapse
|
40
|
Rangaraju S, Chi V, Pennington MW, Chandy KG. Kv1.3 potassium channels as a therapeutic target in multiple sclerosis. Expert Opin Ther Targets 2010; 13:909-24. [PMID: 19538097 DOI: 10.1517/14728220903018957] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We discuss the potential use of inhibitors of Kv1.3 potassium channels in T lymphocytes as therapeutics for multiple sclerosis. Current treatment strategies target the immune system in a non-selective manner. The resulting general immunosuppression, toxic side-effects and increased risk of opportunistic infections create the need for more selective therapeutics. Autoreactive effector-memory T (T(EM)) cells, considered to be major mediators of autoimmunity, express large numbers of Kv1.3 channels. Selective blockers of Kv1.3 inhibit calcium signaling, cytokine production and proliferation of T(EM) cells in vitro, and T(EM) cell-motility in vivo. Kv1.3 blockers ameliorate disease in animal models of multiple sclerosis, rheumatoid arthritis, type 1 diabetes mellitus and contact dermatitis without compromising the protective immune response to acute infections. Kv1.3 blockers have a good safety profile in rodents and primates.
Collapse
Affiliation(s)
- Srikant Rangaraju
- University of California, Department of Physiology and Biophysics, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
41
|
Abstract
A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K(+) channels, voltage-gated K(+) channels, Ca(+2) sensitive K(+) channels, voltage-gated Na(+) channels, N-type voltage-gated Ca(+2) channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na(+) channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K(+) channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed.
Collapse
Affiliation(s)
- Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
For more than 25 years, it has been widely appreciated that Ca2+ influx is essential to trigger T-lymphocyte activation. Patch clamp analysis, molecular identification, and functional studies using blockers and genetic manipulation have shown that a unique contingent of ion channels orchestrates the initiation, intensity, and duration of the Ca2+ signal. Five distinct types of ion channels--Kv1.3, KCa3.1, Orai1+ stromal interacting molecule 1 (STIM1) [Ca2+-release activating Ca2+ (CRAC) channel], TRPM7, and Cl(swell)--comprise a network that performs functions vital for ongoing cellular homeostasis and for T-cell activation, offering potential targets for immunomodulation. Most recently, the roles of STIM1 and Orai1 have been revealed in triggering and forming the CRAC channel following T-cell receptor engagement. Kv1.3, KCa3.1, STIM1, and Orai1 have been found to cluster at the immunological synapse following contact with an antigen-presenting cell; we discuss how channels at the synapse might function to modulate local signaling. Immuno-imaging approaches are beginning to shed light on ion channel function in vivo. Importantly, the expression pattern of Ca2+ and K+ channels and hence the functional network can adapt depending upon the state of differentiation and activation, and this allows for different stages of an immune response to be targeted specifically.
Collapse
Affiliation(s)
- Michael D Cahalan
- Department of Physiology and Biophysics, and the Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4561, USA.
| | | |
Collapse
|
43
|
Kummerow C, Junker C, Kruse K, Rieger H, Quintana A, Hoth M. The immunological synapse controls local and global calcium signals in T lymphocytes. Immunol Rev 2009; 231:132-47. [DOI: 10.1111/j.1600-065x.2009.00811.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Affiliation(s)
- Parveen Yaqoob
- School of Chemistry, Food Biosciences and Pharmacy, The University of Reading, Reading RG6 6AP, United Kingdom;
| |
Collapse
|
45
|
Tóth A, Szilágyi O, Krasznai Z, Panyi G, Hajdú P. Functional consequences of Kv1.3 ion channel rearrangement into the immunological synapse. Immunol Lett 2009; 125:15-21. [PMID: 19477198 DOI: 10.1016/j.imlet.2009.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/12/2009] [Accepted: 05/16/2009] [Indexed: 01/29/2023]
Abstract
Formation of immunological synapse (IS), the interface between T cells and antigen presenting cells, is a crucial step in T cell activation. This conjugation formation results in the rearrangement and segregation of a set of membrane bound and cytosolic proteins, including that of the T cell receptor, into membrane domains. It was showed earlier that Kv1.3, the dominant voltage-gated potassium channel of T cells redistributes into the IS on interaction with its specific APC. In the present experiments we investigated the functional consequences of the translocation of Kv1.3 channels into the IS formed between mouse helper T (T(h)2) and B cells. Biophysical characteristics of whole-cell Kv1.3 current in standalone cells (c) or ones in IS (IS) were determined using voltage-clamp configuration of standard whole-cell patch-clamp technique. Patch-clamp recordings showed that the activation of Kv1.3 current slowed (tau(a,IS)=2.36+/-0.13 ms (n=7); tau(a,c)=1.36+/-0.06 ms (n=18)) whereas the inactivation rate increased (tau(i,IS)=263+/-29 ms (n=7); tau(i,c)=365+/-27 ms (n=17)) in cells being in IS compared to the standalone cells. The equilibrium distribution between the open and the closed states of Kv1.3 (voltage-dependence of steady-state activation) was shifted toward the depolarizing potentials in T cells engaged into IS (V(1/2,IS)=-20.9+/-2 mV (n=7), V(1/2,c)=-26.4+/-1.5 mV (n=12)). Thus, segregation of Kv1.3 channels into the IS modifies the gating properties of the channels. Application of protein kinase (PK) inhibitors (PKC: GF109203X, PKA: H89, p56Lck: damnacanthal) demonstrated that increase in the inactivation rate can be explained by the dephosphorylation of the channel protein. However, the slower activation kinetics of Kv1.3 in IS is likely to be the consequence of the redistribution of the channels into distinct membrane domains.
Collapse
Affiliation(s)
- Agnes Tóth
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
46
|
Nicolaou SA, Szigligeti P, Neumeier L, Lee SM, Duncan HJ, Kant SK, Mongey AB, Filipovich AH, Conforti L. Altered dynamics of Kv1.3 channel compartmentalization in the immunological synapse in systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2007; 179:346-56. [PMID: 17579055 PMCID: PMC2453311 DOI: 10.4049/jimmunol.179.1.346] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aberrant T cell responses during T cell activation and immunological synapse (IS) formation have been described in systemic lupus erythematosus (SLE). Kv1.3 potassium channels are expressed in T cells where they compartmentalize at the IS and play a key role in T cell activation by modulating Ca(2+) influx. Although Kv1.3 channels have such an important role in T cell function, their potential involvement in the etiology and progression of SLE remains unknown. This study compares the K channel phenotype and the dynamics of Kv1.3 compartmentalization in the IS of normal and SLE human T cells. IS formation was induced by 1-30 min exposure to either anti-CD3/CD28 Ab-coated beads or EBV-infected B cells. We found that although the level of Kv1.3 channel expression and their activity in SLE T cells is similar to normal resting T cells, the kinetics of Kv1.3 compartmentalization in the IS are markedly different. In healthy resting T cells, Kv1.3 channels are progressively recruited and maintained in the IS for at least 30 min from synapse formation. In contrast, SLE, but not rheumatoid arthritis, T cells show faster kinetics with maximum Kv1.3 recruitment at 1 min and movement out of the IS by 15 min after activation. These kinetics resemble preactivated healthy T cells, but the K channel phenotype of SLE T cells is identical to resting T cells, where Kv1.3 constitutes the dominant K conductance. The defective temporal and spatial Kv1.3 distribution that we observed may contribute to the abnormal functions of SLE T cells.
Collapse
Affiliation(s)
- Stella A. Nicolaou
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Peter Szigligeti
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Lisa Neumeier
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Susan Molleran Lee
- Division of Hematology/Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45267, USA
| | - Heather J. Duncan
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Shashi K. Kant
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Anne Barbara Mongey
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Alexandra H. Filipovich
- Division of Hematology/Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45267, USA
| | - Laura Conforti
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| |
Collapse
|
47
|
Székely A, Kitajka K, Panyi G, Márián T, Gáspár R, Krasznai Z. Nutrition and immune system: certain fatty acids differently modify membrane composition and consequently kinetics of KV1.3 channels of human peripheral lymphocytes. Immunobiology 2007; 212:213-27. [PMID: 17412288 DOI: 10.1016/j.imbio.2007.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 11/21/2006] [Accepted: 01/16/2007] [Indexed: 10/23/2022]
Abstract
Potassium (K(+)) channels of human peripheral lymphocytes play a considerable role in the signalling processes required for immune responses. Modification of the fatty acid composition of the membrane influences the functions of various membrane enzymes and ion channels. We set out to establish how the incorporation of fatty acids with different carbon chain lengths and degrees of unsaturation into the cell membrane influences the function of K(V)1.3 channels of lymphocytes, thereby potentially modifying the immune responses of the cells. The incorporation of the fatty acids into the cell membrane was monitored by gas chromatography. Whole-cell patch-clamp experiments demonstrated that the polyunsaturated linoleic acid, arachidonic acid and docosahexaenoic acid all decreased the activation and inactivation time constants of the K(V)1.3 channels, but did not affect the voltage-dependence of steady-state activation and steady-state inactivation of the channels. Treatment with the saturated palmitic acid, stearic acid and the monounsaturated oleic acid did not result in significant changes in the biophysical parameters of K(V)1.3 gating studied. We conclude that the incorporation of fatty acids unsaturated to different degrees into the cell membrane of lymphocytes influenced the rate of gating transitions but not the equilibrium distribution of the channels between different states. This effect depended on the degree of unsaturation and the chain length of the fatty acids: no effects of saturated and monounsaturated fatty acids (16:0, 18:0 and 18:1) were observed whereas treatment with polyunsaturated fatty acids (18:2, 20:4 and 22:6) resulted in significant changes in the channel kinetics.
Collapse
Affiliation(s)
- Andrea Székely
- Faculty of Medicine, Department of Biophysics and Cell Biology, Medical and Health Science Centre, University of Debrecen, H-4032 Debrecen, Nagyerdei krt, 98, Hungary
| | | | | | | | | | | |
Collapse
|
48
|
Pottosin II, Valencia-Cruz G, Bonales-Alatorre E, Shabala SN, Dobrovinskaya OR. Methyl-beta-cyclodextrin reversibly alters the gating of lipid rafts-associated Kv1.3 channels in Jurkat T lymphocytes. Pflugers Arch 2007; 454:235-44. [PMID: 17242956 DOI: 10.1007/s00424-007-0208-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/15/2006] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
The voltage-dependent Kv1.3 potassium channels mediate a variety of physiological functions in human T lymphocytes. These channels, along with their multiple regulatory components, are localized in cholesterol-enriched microdomains of plasma membrane (lipid rafts). In this study, patch-clamp technique was applied to explore the impact of the lipid-raft integrity on the Kv1.3 channel functional characteristics. T lymphoma Jurkat cells were treated for 1 h with cholesterol-binding oligosaccharide methyl-beta-cyclodextrin (MbetaCD) in 1 or 2 mM concentration, resulting in depletion of cholesterol by 63 +/- 5 or 75 +/- 4%, respectively. Treatment with 2 mM MbetaCD did not affect the cells viability but retarded the cell proliferation. The latter treatment caused a depolarizing shift of the Kv1.3 channel activation and inactivation by 11 and 6 mV, respectively, and more than twofold decrease in the steady-state activity at depolarizing potentials. Altogether, these changes underlie the depolarization of membrane potential, recorded in a current-clamp mode. The effects of MbetaCD were concentration- and time-dependent and reversible. Both development and recovery of the MbetaCD effects were completed within 1-2 h. Therefore, cholesterol depletion causes significant alterations in the Kv1.3 channel function, whereas T cells possess a potential to reverse these changes.
Collapse
Affiliation(s)
- Igor I Pottosin
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Av. 25 de Julio 965, Villa San Sebastian, 28045 Colima, Colima, Mexico
| | | | | | | | | |
Collapse
|
49
|
Nicolaou SA, Neumeier L, Peng Y, Devor DC, Conforti L. The Ca(2+)-activated K(+) channel KCa3.1 compartmentalizes in the immunological synapse of human T lymphocytes. Am J Physiol Cell Physiol 2006; 292:C1431-9. [PMID: 17151145 PMCID: PMC2553516 DOI: 10.1152/ajpcell.00376.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T cell receptor engagement results in the reorganization of intracellular and membrane proteins at the T cell-antigen presenting cell interface forming the immunological synapse (IS), an event required for Ca(2+) influx. KCa3.1 channels modulate Ca(2+) signaling in activated T cells by regulating the membrane potential. Nothing is known regarding KCa3.1 membrane distribution during T cell activation. Herein, we determined whether KCa3.1 translocates to the IS in human T cells using YFP-tagged KCa3.1 channels. These channels showed electrophysiological and pharmacological properties identical to wild-type channels. IS formation was induced by either anti-CD3/CD28 antibody-coated beads for fixed microscopy experiments or Epstein-Barr virus-infected B cells for fixed and live cell microscopy. In fixed microscopy experiments, T cells were also immunolabeled for F-actin or CD3epsilon, which served as IS formation markers. The distribution of KCa3.1 was determined with confocal and fluorescence microscopy. We found that, upon T cell activation, KCa3.1 channels localize with F-actin and CD3epsilon to the IS but remain evenly distributed on the cell membrane when no stimulus is provided. Detailed imaging experiments indicated that KCa3.1 channels are recruited in the IS shortly after antigen presentation and are maintained there for at least 15-30 min. Interestingly, pretreatment of activated T cells with the specific KCa3.1 blocker TRAM-34 blocked Ca(2+) influx, but channel redistribution to the IS was not prevented. These results indicate that KCa3.1 channels are a part of the signaling complex that forms at the IS upon antigen presentation.
Collapse
Affiliation(s)
- Stella A. Nicolaou
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lisa Neumeier
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - YouQing Peng
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Daniel C. Devor
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Laura Conforti
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
50
|
Vicente R, Escalada A, Villalonga N, Texidó L, Roura-Ferrer M, Martín-Satué M, López-Iglesias C, Soler C, Solsona C, Tamkun MM, Felipe A. Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J Biol Chem 2006; 281:37675-85. [PMID: 17038323 DOI: 10.1074/jbc.m605617200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-dependent K(+) (Kv) currents in macrophages are mainly mediated by Kv1.3, but biophysical properties indicate that the channel composition could be different from that of T-lymphocytes. K(+) currents in mouse bone marrow-derived and Raw-264.7 macrophages are sensitive to Kv1.3 blockers, but unlike T-cells, macrophages express Kv1.5. Because Shaker subunits (Kv1) may form heterotetrameric complexes, we investigated whether Kv1.5 has a function in Kv currents in macrophages. Kv1.3 and Kv1.5 co-localize at the membrane, and half-activation voltages and pharmacology indicate that K(+) currents may be accounted for by various Kv complexes in macrophages. Co-expression of Kv1.3 and Kv1.5 in human embryonic kidney 293 cells showed that the presence of Kv1.5 leads to a positive shift in K(+) current half-activation voltages and that, like Kv1.3, Kv1.3/Kv1.5 heteromers are sensitive to r-margatoxin. In addition, both proteins co-immunoprecipitate and co-localize. Fluorescence resonance energy transfer studies further demonstrated that Kv1.5 and Kv1.3 form heterotetramers. Electrophysiological and pharmacological studies of different ratios of Kv1.3 and Kv1.5 co-expressed in Xenopus oocytes suggest that various hybrids might be responsible for K(+) currents in macrophages. Tumor necrosis factor-alpha-induced activation of macrophages increased Kv1.3 with no changes in Kv.1.5, which is consistent with a hyperpolarized shift in half-activation voltage and a lower IC(50) for margatoxin. Taken together, our results demonstrate that Kv1.5 co-associates with Kv1.3, generating functional heterotetramers in macrophages. Changes in the oligomeric composition of functional Kv channels would give rise to different biophysical and pharmacological properties, which could determine specific cellular responses.
Collapse
Affiliation(s)
- Rubén Vicente
- Molecular Physiology Laboratory, Departament de Bioquiámica i Biologia Molecular, Departament de Fisiologia, and Unitat de Reconeixement Molecular in situ, Serveis Cientificotècnics Universitat de Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|