1
|
Dan J, Zhou Z, Wang F, Wang H, Guo R, Keefe DL, Liu L. Zscan4 Contributes to Telomere Maintenance in Telomerase-Deficient Late Generation Mouse ESCs and Human ALT Cancer Cells. Cells 2022; 11:cells11030456. [PMID: 35159266 PMCID: PMC8834411 DOI: 10.3390/cells11030456] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Proper telomere length is essential for indefinite self-renewal of embryonic stem (ES) cells and cancer cells. Telomerase-deficient late generation mouse ES cells and human ALT cancer cells are able to propagate for numerous passages, suggesting telomerase-independent mechanisms responding for telomere maintenance. However, the underlying mechanisms ensuring the telomere length maintenance are unclear. Here, using late generation telomerase KO (G4 Terc-/-) ESCs as a model, we show that Zscan4, highly upregulated in G4 Terc-/- ESCs, is responsible for the prolonged culture of these cells with stably short telomeres. Mechanistically, G4 Terc-/- ESCs showed reduced levels of DNA methylation and H3K9me3 at Zscan4 promoter and subtelomeres, which relieved the expression of Zscan4. Similarly, human ZSCAN4 was also derepressed by reduced H3K9me3 at its promoter in ALT U2 OS cells, and depletion of ZSCAN4 significantly shortened telomeres. Our results define a similar conserved pathway contributing to the telomere maintenance in telomerase-deficient late generation mESCs and human ALT U2OS cancer cells.
Collapse
Affiliation(s)
- Jiameng Dan
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (H.W.); (R.G.)
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
- Correspondence: (J.D.); (L.L.)
| | - Zhongcheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (H.W.); (R.G.)
| | - Fang Wang
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY 10016, USA; (F.W.); (D.L.K.)
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (H.W.); (R.G.)
| | - Renpeng Guo
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (H.W.); (R.G.)
| | - David L. Keefe
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY 10016, USA; (F.W.); (D.L.K.)
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (H.W.); (R.G.)
- Correspondence: (J.D.); (L.L.)
| |
Collapse
|
2
|
Baquero JM, Benítez-Buelga C, Rajagopal V, Zhenjun Z, Torres-Ruiz R, Müller S, Hanna BMF, Loseva O, Wallner O, Michel M, Rodríguez-Perales S, Gad H, Visnes T, Helleday T, Benítez J, Osorio A. Small molecule inhibitor of OGG1 blocks oxidative DNA damage repair at telomeres and potentiates methotrexate anticancer effects. Sci Rep 2021; 11:3490. [PMID: 33568707 PMCID: PMC7876102 DOI: 10.1038/s41598-021-82917-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
The most common oxidative DNA lesion is 8-oxoguanine which is mainly recognized and excised by the 8-oxoG DNA glycosylase 1 (OGG1), initiating the base excision repair (BER) pathway. Telomeres are particularly sensitive to oxidative stress (OS) which disrupts telomere homeostasis triggering genome instability. In the present study, we have investigated the effects of inactivating BER in OS conditions, by using a specific inhibitor of OGG1 (TH5487). We have found that in OS conditions, TH5487 blocks BER initiation at telomeres causing an accumulation of oxidized bases, that is correlated with telomere losses, micronuclei formation and mild proliferation defects. Moreover, the antimetabolite methotrexate synergizes with TH5487 through induction of intracellular reactive oxygen species (ROS) formation, which potentiates TH5487-mediated telomere and genome instability. Our findings demonstrate that OGG1 is required to protect telomeres from OS and present OGG1 inhibitors as a tool to induce oxidative DNA damage at telomeres, with the potential for developing new combination therapies for cancer treatment.
Collapse
Affiliation(s)
- Juan Miguel Baquero
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Carlos Benítez-Buelga
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden.
| | - Varshni Rajagopal
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Zhao Zhenjun
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- Department of Biomedicine, School of Medicine, Josep Carreras Leukemia Research Institute, University of Barcelona, 08036, Barcelona, Spain
| | - Sarah Müller
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Bishoy M F Hanna
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Olov Wallner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Maurice Michel
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Helge Gad
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield, S10 2RX, UK
| | - Torkild Visnes
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465, Trondheim, Norway
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield, S10 2RX, UK
| | - Javier Benítez
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- Spanish Network on Rare Diseases (CIBERER), 28029, Madrid, Spain
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Ana Osorio
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain.
- Spanish Network on Rare Diseases (CIBERER), 28029, Madrid, Spain.
| |
Collapse
|
3
|
Pandey S, Banks KM, Kumar R, Kuo A, Wen D, Hla T, Evans T. Sphingosine kinases protect murine embryonic stem cells from sphingosine-induced cell cycle arrest. Stem Cells 2020; 38:613-623. [PMID: 31916656 PMCID: PMC7217063 DOI: 10.1002/stem.3145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/29/2019] [Indexed: 12/11/2022]
Abstract
Sphingosine‐1‐phosphate (S1P) is a bioactive lipid molecule regulating organogenesis, angiogenesis, cell proliferation, and apoptosis. S1P is generated by sphingosine kinases (SPHK1 and SPHK2) through the phosphorylation of ceramide‐derived sphingosine. Phenotypes caused by manipulating S1P metabolic enzymes and receptors suggested several possible functions for S1P in embryonic stem cells (ESCs), yet the mechanisms by which S1P and related sphingolipids act in ESCs are controversial. We designed a rigorous test to evaluate the requirement of S1P in murine ESCs by knocking out both Sphk1 and Sphk2 to create cells incapable of generating S1P. To accomplish this, we created lines mutant for Sphk2 and conditionally mutant (floxed) for Sphk1, allowing evaluation of ESCs that transition to double‐null state. The Sphk1/2‐null ESCs lack S1P and accumulate the precursor sphingosine. The double‐mutant cells fail to grow due to a marked cell cycle arrest at G2/M. Mutant cells activate expression of telomere elongation factor genes Zscan4, Tcstv1, and Tcstv3 and display longer telomeric repeats. Adding exogenous S1P to the medium had no impact, but the cell cycle arrest is partially alleviated by the expression of a ceramide synthase 2, which converts excess sphingosine into ceramide. The results indicate that sphingosine kinase activity is essential in mouse ESCs for limiting the accumulation of sphingosine that otherwise drives cell cycle arrest.
Collapse
Affiliation(s)
- Suveg Pandey
- Department of Surgery, Weill Cornell Medicine, New York, New York
| | - Kelly M Banks
- Department of Surgery, Weill Cornell Medicine, New York, New York
| | - Ritu Kumar
- Department of Surgery, Weill Cornell Medicine, New York, New York
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Duancheng Wen
- Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, New York
| |
Collapse
|
4
|
The role of telomere-binding modulators in pluripotent stem cells. Protein Cell 2019; 11:60-70. [PMID: 31350723 PMCID: PMC6949317 DOI: 10.1007/s13238-019-0651-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/07/2019] [Indexed: 01/24/2023] Open
Abstract
Pluripotent stem cells (PSCs) such as embryonic stem cells (ESCs), ESCs derived by somatic cell nuclear transfer (ntESCs), and induced pluripotent stem cells (iPSCs) have unlimited capacity for self-renewal and pluripotency and can give rise to all types of somatic cells. In order to maintain their self-renewal and pluripotency, PSCs need to preserve their telomere length and homeostasis. In recent years, increasing studies have shown that telomere reprogramming is essential for stem cell pluripotency maintenance and its induced pluripotency process. Telomere-associated proteins are not only required for telomere maintenance in both stem cells, their extra-telomeric functions have also been found to be critical as well. Here, we will discuss how telomeres and telomere-associated factors participate and regulate the maintenance of stem cell pluripotency.
Collapse
|
5
|
Huang C, Jia P, Chastain M, Shiva O, Chai W. The human CTC1/STN1/TEN1 complex regulates telomere maintenance in ALT cancer cells. Exp Cell Res 2017; 355:95-104. [PMID: 28366536 DOI: 10.1016/j.yexcr.2017.03.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/24/2022]
Abstract
Maintaining functional telomeres is important for long-term proliferation of cells. About 15% of cancer cells are telomerase-negative and activate the alternative-lengthening of telomeres (ALT) pathway to maintain their telomeres. Recent studies have shown that the human CTC1/STN1/TEN1 complex (CST) plays a multi-faceted role in telomere maintenance in telomerase-expressing cancer cells. However, the role of CST in telomere maintenance in ALT cells is unclear. Here, we report that human CST forms a functional complex localizing in the ALT-associated PML bodies (APBs) in ALT cells throughout the cell cycle. Suppression of CST induces telomere instabilities including telomere fragility and elevates telomeric DNA recombination, leading to telomere dysfunction. In addition, CST deficiency significantly diminishes the abundance of extrachromosomal circular telomere DNA known as C-circles and t-circles. Suppression of CST also results in multinucleation in ALT cells and impairs cell proliferation. Our findings imply that the CST complex plays an important role in regulating telomere maintenance in ALT cells.
Collapse
Affiliation(s)
- Chenhui Huang
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, PO BOX 1495, Spokane, WA 99210, United States
| | - Pingping Jia
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, PO BOX 1495, Spokane, WA 99210, United States
| | - Megan Chastain
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, PO BOX 1495, Spokane, WA 99210, United States
| | - Olga Shiva
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, PO BOX 1495, Spokane, WA 99210, United States
| | - Weihang Chai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, PO BOX 1495, Spokane, WA 99210, United States.
| |
Collapse
|
6
|
A balance between elongation and trimming regulates telomere stability in stem cells. Nat Struct Mol Biol 2016; 24:30-39. [PMID: 27918544 PMCID: PMC5215970 DOI: 10.1038/nsmb.3335] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/06/2016] [Indexed: 02/07/2023]
Abstract
Telomere length maintenance ensures self-renewal of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), however the mechanisms governing telomere length homeostasis in these cell types are unclear. Here, we report that telomere length is determined by the balance between telomere elongation mediated by telomerase and telomere trimming, controlled by the homologous recombination proteins XRCC3 and Nbs1 that generate single-stranded C-rich telomeric DNA and double-stranded telomeric circular DNA (T-circles), respectively. We found that reprogramming of differentiated cells induces T-circle and single stranded C-rich telomeric DNA accumulation, indicating the activation of telomere trimming pathways that compensate telomerase dependent telomere elongation in hiPSCs. Excessive telomere elongation compromises telomere stability and promotes the formation of partially single-stranded telomeric DNA circles (C-circles) in hESCs, suggesting heightened sensitivity of stem cells to replication stress at overly long telomeres. Thus, tight control of telomere length homeostasis is essential to maintain telomere stability in hESCs.
Collapse
|
7
|
Liu L. Linking Telomere Regulation to Stem Cell Pluripotency. Trends Genet 2016; 33:16-33. [PMID: 27889084 DOI: 10.1016/j.tig.2016.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022]
Abstract
Embryonic stem cells (ESCs), somatic cell nuclear transfer ESCs, and induced pluripotent stem cells (iPSCs) represent the most studied group of PSCs. Unlimited self-renewal without incurring chromosomal instability and pluripotency are essential for the potential use of PSCs in regenerative therapy. Telomere length maintenance is critical for the unlimited self-renewal, pluripotency, and chromosomal stability of PSCs. While telomerase has a primary role in telomere maintenance, alternative lengthening of telomere pathways involving recombination and epigenetic modifications are also required for telomere length regulation, notably in mouse PSCs. Telomere rejuvenation is part of epigenetic reprogramming to pluripotency. Insights into telomere reprogramming and maintenance in PSCs may have implications for understanding of aging and tumorigenesis. Here, I discuss the link between telomere elongation and homeostasis to the acquisition and maintenance of stem cell pluripotency, and their regulatory mechanisms by epigenetic modifications.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin 300071, China.
| |
Collapse
|
8
|
Fujii S, Nishikawa-Torikai S, Futatsugi Y, Toyooka Y, Yamane M, Ohtsuka S, Niwa H. Nr0b1 is a negative regulator of Zscan4c in mouse embryonic stem cells. Sci Rep 2015; 5:9146. [PMID: 25772165 PMCID: PMC5390923 DOI: 10.1038/srep09146] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/09/2015] [Indexed: 01/26/2023] Open
Abstract
Nuclear receptor subfamily 0, group B, member 1 (Nr0b1, also known as Dax1) is regarded as an important component of the transcription factor network that governs pluripotency in mouse embryonic stem (ES) cells. Here we generated inducible knockout ES cells for Nr0b1 using the Cre-loxP system and analyzed its precise function. We succeeded in establishing the Nr0b1-null ES cells and confirmed their pluripotency by showing their contribution to chimeric embryos. However, they proliferated slowly with over-expression of 2-cell stage specific transcripts including Zscan4c, which is known to be involved in telomere elongation in ES cells. We revealed that over-expression of Zscan4c prevents normal self-renewal by inducing arrest at G2 phase followed by cell death and that Nr0b1 directly represses the Zscan4c promoter. These data indicated that Nr0b1 is not essential to maintain pluripotency but is involved in the proper activation of 2-cell specific transcripts for self-renewal.
Collapse
Affiliation(s)
- Setsuko Fujii
- 1] Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan [2] JST, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Satomi Nishikawa-Torikai
- 1] Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan [2] JST, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yoko Futatsugi
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yayoi Toyooka
- 1] Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan [2] Division of Embryology, National Institute for Basic Biology (NIBB), Okazaki 444-8787, Japan
| | - Mariko Yamane
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Satoshi Ohtsuka
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hitoshi Niwa
- 1] Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan [2] Laboratory for Development and Regenerative Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan [3] JST, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
9
|
Li T, Shi Y, Wang P, Guachalla LM, Sun B, Joerss T, Chen YS, Groth M, Krueger A, Platzer M, Yang YG, Rudolph KL, Wang ZQ. Smg6/Est1 licenses embryonic stem cell differentiation via nonsense-mediated mRNA decay. EMBO J 2015; 34:1630-47. [PMID: 25770585 PMCID: PMC4475398 DOI: 10.15252/embj.201489947] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 02/18/2015] [Indexed: 12/12/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a post-transcriptional mechanism that targets aberrant transcripts and regulates the cellular RNA reservoir. Genetic modulation in vertebrates suggests that NMD is critical for cellular and tissue homeostasis, although the underlying mechanism remains elusive. Here, we generate knockout mice lacking Smg6/Est1, a key nuclease in NMD and a telomerase cofactor. While the complete loss of Smg6 causes mouse lethality at the blastocyst stage, inducible deletion of Smg6 is compatible with embryonic stem cell (ESC) proliferation despite the absence of telomere maintenance and functional NMD. Differentiation of Smg6-deficient ESCs is blocked due to sustained expression of pluripotency genes, normally repressed by NMD, and forced down-regulation of one such target, c-Myc, relieves the differentiation block. Smg6-null embryonic fibroblasts are viable as well, but are refractory to cellular reprograming into induced pluripotent stem cells (iPSCs). Finally, depletion of all major NMD factors compromises ESC differentiation, thus identifying NMD as a licensing factor for the switch of cell identity in the process of stem cell differentiation and somatic cell reprograming.
Collapse
Affiliation(s)
- Tangliang Li
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Yue Shi
- Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Pei Wang
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Luis Miguel Guachalla
- Institute of Molecular Medicine and Max-Planck-Research Department of Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Baofa Sun
- Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Tjard Joerss
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Yu-Sheng Chen
- Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Marco Groth
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Anja Krueger
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Matthias Platzer
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Yun-Gui Yang
- Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Karl Lenhard Rudolph
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany Institute of Molecular Medicine and Max-Planck-Research Department of Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Zhao-Qi Wang
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany Faculty of Biology and Pharmacy, Friedrich-Schiller University of Jena, Jena, Germany
| |
Collapse
|
10
|
Vallabhaneni H, Zhou F, Maul RW, Sarkar J, Yin J, Lei M, Harrington L, Gearhart PJ, Liu Y. Defective repair of uracil causes telomere defects in mouse hematopoietic cells. J Biol Chem 2015; 290:5502-11. [PMID: 25572391 DOI: 10.1074/jbc.m114.607101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Uracil in the genome can result from misincorporation of dUTP instead of dTTP during DNA synthesis, and is primarily removed by uracil DNA glycosylase (UNG) during base excision repair. Telomeres contain long arrays of TTAGGG repeats and may be susceptible to uracil misincorporation. Using model telomeric DNA substrates, we showed that the position and number of uracil substitutions of thymine in telomeric DNA decreased recognition by the telomere single-strand binding protein, POT1. In primary mouse hematopoietic cells, uracil was detectable at telomeres, and UNG deficiency further increased uracil loads and led to abnormal telomere lengthening. In UNG-deficient cells, the frequencies of sister chromatid exchange and fragility in telomeres also significantly increased in the absence of telomerase. Thus, accumulation of uracil and/or UNG deficiency interferes with telomere maintenance, thereby underscoring the necessity of UNG-initiated base excision repair for the preservation of telomere integrity.
Collapse
Affiliation(s)
| | - Fang Zhou
- From the Laboratory of Molecular Gerontology
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Jaya Sarkar
- From the Laboratory of Molecular Gerontology
| | - Jinhu Yin
- From the Laboratory of Molecular Gerontology
| | - Ming Lei
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Lea Harrington
- Department of Medicine, Institute for Research in Immunology and Cancer, University of Montréal, Montréal, Québec H3C 3J7, Canada
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224,
| | - Yie Liu
- From the Laboratory of Molecular Gerontology,
| |
Collapse
|
11
|
Zhao Z, Pan X, Liu L, Liu N. Telomere length maintenance, shortening, and lengthening. J Cell Physiol 2014; 229:1323-9. [PMID: 24374808 DOI: 10.1002/jcp.24537] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 12/28/2022]
Abstract
Telomeres maintain chromosome stability and cell replicative capacity. Telomere shortening occurs concomitant with aging. Short telomeres are associated with some diseases, such as dyskeratosis congenita, idiopathic pulmonary fibrosis, and aplastic anemia. Telomeres are longer in pluripotent stem cells than in somatic cells and lengthen significantly during preimplantation development. Furthermore, telomere elongation during somatic cell reprogramming is of great importance in the acquisition of authentic pluripotency. This review focuses primarily on regulatory mechanisms of telomere length maintenance in pluripotent cells, telomere length extension in early embryo development, and also telomere rejuvenation in somatic cell reprogramming. Telomere related diseases are also discussed in this review.
Collapse
Affiliation(s)
- Zhenrong Zhao
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | | | | | | |
Collapse
|
12
|
Shi J, Yang XR, Ballew B, Rotunno M, Calista D, Fargnoli MC, Ghiorzo P, Bressac-de Paillerets B, Nagore E, Avril MF, Caporaso NE, McMaster ML, Cullen M, Wang Z, Zhang X, Bruno W, Pastorino L, Queirolo P, Banuls-Roca J, Garcia-Casado Z, Vaysse A, Mohamdi H, Riazalhosseini Y, Foglio M, Jouenne F, Hua X, Hyland PL, Yin J, Vallabhaneni H, Chai W, Minghetti P, Pellegrini C, Ravichandran S, Eggermont A, Lathrop M, Peris K, Scarra GB, Landi G, Savage SA, Sampson JN, He J, Yeager M, Goldin LR, Demenais F, Chanock SJ, Tucker MA, Goldstein AM, Liu Y, Landi MT. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat Genet 2014; 46:482-486. [PMID: 24686846 PMCID: PMC4056593 DOI: 10.1038/ng.2941] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 03/07/2014] [Indexed: 12/15/2022]
Abstract
Although CDKN2A is the most frequent high-risk melanoma susceptibility gene, the underlying genetic factors for most melanoma-prone families remain unknown. Using whole-exome sequencing, we identified a rare variant that arose as a founder mutation in the telomere shelterin gene POT1 (chromosome 7, g.124493086C>T; p.Ser270Asn) in five unrelated melanoma-prone families from Romagna, Italy. Carriers of this variant had increased telomere lengths and numbers of fragile telomeres, suggesting that this variant perturbs telomere maintenance. Two additional rare POT1 variants were identified in all cases sequenced in two separate Italian families, one variant per family, yielding a frequency for POT1 variants comparable to that for CDKN2A mutations in this population. These variants were not found in public databases or in 2,038 genotyped Italian controls. We also identified two rare recurrent POT1 variants in US and French familial melanoma cases. Our findings suggest that POT1 is a major susceptibility gene for familial melanoma in several populations.
Collapse
Affiliation(s)
- Jianxin Shi
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA. [2]
| | - Xiaohong R Yang
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA. [2]
| | - Bari Ballew
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Melissa Rotunno
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Donato Calista
- Department of Dermatology, Maurizio Bufalini Hospital, Cesena, Italy
| | | | - Paola Ghiorzo
- 1] Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy. [2] Genetics of Rare Hereditary Cancers, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | - Eduardo Nagore
- 1] Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain. [2] Department of Dermatology, Universidad Católica de Valencia, Valencia, Spain
| | - Marie Francoise Avril
- Université Paris Descartes, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin, Paris, France
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Mary L McMaster
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Michael Cullen
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA. [2] Cancer Genomics Research Laboratory, NCI-Frederick, SAIC-Frederick, Inc., Frederick, Maryland, USA
| | - Zhaoming Wang
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA. [2] Cancer Genomics Research Laboratory, NCI-Frederick, SAIC-Frederick, Inc., Frederick, Maryland, USA
| | - Xijun Zhang
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA. [2] Cancer Genomics Research Laboratory, NCI-Frederick, SAIC-Frederick, Inc., Frederick, Maryland, USA
| | - William Bruno
- 1] Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy. [2] Genetics of Rare Hereditary Cancers, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Lorenza Pastorino
- 1] Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy. [2] Genetics of Rare Hereditary Cancers, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Paola Queirolo
- Genetics of Rare Hereditary Cancers, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Jose Banuls-Roca
- Department of Dermatology, Hospital General Universitario de Alicante, Alicante, Spain
| | - Zaida Garcia-Casado
- Laboratory of Molecular Biology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Amaury Vaysse
- 1] INSERM, UMR 946, Genetic Variation and Human Diseases Unit, Paris, France. [2] Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Hamida Mohamdi
- 1] INSERM, UMR 946, Genetic Variation and Human Diseases Unit, Paris, France. [2] Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Yasser Riazalhosseini
- 1] McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada. [2] Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | | | - Xing Hua
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Paula L Hyland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Jinhu Yin
- Laboratory of Molecular Gerontology, National Institute on Aging, US National Institutes of Health, US Department of Health and Human Services, Baltimore, Maryland, USA
| | - Haritha Vallabhaneni
- Laboratory of Molecular Gerontology, National Institute on Aging, US National Institutes of Health, US Department of Health and Human Services, Baltimore, Maryland, USA
| | - Weihang Chai
- Section of Medical Sciences, School of Molecular Biosciences, Washington State University, Spokane, Washington, USA
| | - Paola Minghetti
- Department of Dermatology, Maurizio Bufalini Hospital, Cesena, Italy
| | - Cristina Pellegrini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sarangan Ravichandran
- SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Simulation, Analysis and Mathematical Modeling Group, Advanced Biomedical Computing Center, Frederick, Maryland, USA
| | - Alexander Eggermont
- 1] Service de Génétique, Gustave Roussy, Villejuif, France. [2] Université Paris-Sud, Kremlin Bicêtre France, Gustave Roussy, Villejuif, France
| | - Mark Lathrop
- 1] McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada. [2] Department of Human Genetics, McGill University, Montreal, Quebec, Canada. [3] Fondation Jean Dausset-Centre d'Etude du Polymorphisme Humain (CEPH), Paris, France
| | - Ketty Peris
- Department of Dermatology, University of L'Aquila, L'Aquila, Italy
| | | | - Giorgio Landi
- Department of Dermatology, Maurizio Bufalini Hospital, Cesena, Italy
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Ji He
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA. [2] Cancer Genomics Research Laboratory, NCI-Frederick, SAIC-Frederick, Inc., Frederick, Maryland, USA
| | - Meredith Yeager
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA. [2] Cancer Genomics Research Laboratory, NCI-Frederick, SAIC-Frederick, Inc., Frederick, Maryland, USA
| | - Lynn R Goldin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Florence Demenais
- 1] INSERM, UMR 946, Genetic Variation and Human Diseases Unit, Paris, France. [2] Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Yie Liu
- Laboratory of Molecular Gerontology, National Institute on Aging, US National Institutes of Health, US Department of Health and Human Services, Baltimore, Maryland, USA
| | - Maria Teresa Landi
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA. [2]
| |
Collapse
|
13
|
Batista LFZ. Telomere biology in stem cells and reprogramming. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 125:67-88. [PMID: 24993698 DOI: 10.1016/b978-0-12-397898-1.00003-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Telomerase expression in humans is restricted to different populations of stem and progenitor cells, being silenced in most somatic tissues. Efficient telomere homeostasis is essential for embryonic and adult stem cell function and therefore essential for tissue homeostasis throughout organismal life. Accordingly, the mutations in telomerase culminate in reduced stem cell function both in vivo and in vitro and have been associated with tissue dysfunction in human patients. Despite the importance of telomerase for stem cell biology, the mechanisms behind telomerase regulation during development are still poorly understood, mostly due to difficulties in acquiring and maintaining pluripotent stem cell populations in culture. In this chapter, we will analyze recent developments in this field, including the importance of efficient telomere homeostasis in different stem cell types and the role of telomerase in different techniques used for cellular reprogramming.
Collapse
Affiliation(s)
- Luis F Z Batista
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Four recombinant pluripotency transcriptional factors containing a protein transduction domain maintained the in vitro pluripotency of chicken embryonic stem cells. SCIENCE CHINA-LIFE SCIENCES 2013; 56:40-50. [DOI: 10.1007/s11427-012-4426-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
|
15
|
Jiang J, Lv W, Ye X, Wang L, Zhang M, Yang H, Okuka M, Zhou C, Zhang X, Liu L, Li J. Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Res 2012; 23:92-106. [PMID: 23147797 DOI: 10.1038/cr.2012.157] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Induced pluripotent stem (iPS) cells generated using Yamanaka factors have great potential for use in autologous cell therapy. However, genomic abnormalities exist in human iPS cells, and most mouse iPS cells are not fully pluripotent, as evaluated by the tetraploid complementation assay (TCA); this is most likely associated with the DNA damage response (DDR) occurred in early reprogramming induced by Yamanaka factors. In contrast, nuclear transfer can faithfully reprogram somatic cells into embryonic stem (ES) cells that satisfy the TCA. We thus hypothesized that factors involved in oocyte-induced reprogramming may stabilize the somatic genome during reprogramming, and improve the quality of the resultant iPS cells. To test this hypothesis, we screened for factors that could decrease DDR signals during iPS cell induction. We determined that Zscan4, in combination with the Yamanaka factors, not only remarkably reduced the DDR but also markedly promoted the efficiency of iPS cell generation. The inclusion of Zscan4 stabilized the genomic DNA, resulting in p53 downregulation. Furthermore, Zscan4 also enhanced telomere lengthening as early as 3 days post-infection through a telomere recombination-based mechanism. As a result, iPS cells generated with addition of Zscan4 exhibited longer telomeres than classical iPS cells. Strikingly, more than 50% of iPS cell lines (11/19) produced via this "Zscan4 protocol" gave rise to live-borne all-iPS cell mice as determined by TCA, compared to 1/12 for lines produced using the classical Yamanaka factors. Our findings provide the first demonstration that maintaining genomic stability during reprogramming promotes the generation of high quality iPS cells.
Collapse
Affiliation(s)
- Jing Jiang
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hallows SE, Regnault TRH, Betts DH. The long and short of it: the role of telomeres in fetal origins of adult disease. J Pregnancy 2012; 2012:638476. [PMID: 23094159 PMCID: PMC3471439 DOI: 10.1155/2012/638476] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 08/24/2012] [Indexed: 12/30/2022] Open
Abstract
Placental insufficiency, maternal malnutrition, and other causes of intrauterine growth restriction (IUGR) can significantly affect short-term growth and long-term health. Following IUGR, there is an increased risk for cardiovascular disease and Type 2 Diabetes. The etiology of these diseases is beginning to be elucidated, and premature aging or cellular senescence through increased oxidative stress and DNA damage to telomeric ends may be initiators of these disease processes. This paper will explore the areas where telomere and telomerase biology can have significant effects on various tissues in the body in IUGR outcomes.
Collapse
Affiliation(s)
- Stephanie E. Hallows
- Department of Physiology and Pharmacology, University of Western Ontario, Ontario, London, ON, Canada N6A 5C1
| | - Timothy R. H. Regnault
- Department of Physiology and Pharmacology, University of Western Ontario, Ontario, London, ON, Canada N6A 5C1
- Department of Obstetrics and Gynaecology, University of Western Ontario, Ontario, London, ON, Canada N6H 5W9
- Children's Health Research Institute, Lawson Health Research Institute, London, ON, Canada N6C 2V5
| | - Dean H. Betts
- Department of Physiology and Pharmacology, University of Western Ontario, Ontario, London, ON, Canada N6A 5C1
- Children's Health Research Institute, Lawson Health Research Institute, London, ON, Canada N6C 2V5
| |
Collapse
|
17
|
Min J, Choi ES, Hwang K, Kim J, Sampath S, Venkitaraman AR, Lee H. The breast cancer susceptibility gene BRCA2 is required for the maintenance of telomere homeostasis. J Biol Chem 2012; 287:5091-101. [PMID: 22187435 PMCID: PMC3281639 DOI: 10.1074/jbc.m111.278994] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 12/19/2011] [Indexed: 11/06/2022] Open
Abstract
Inactivating mutations in the breast cancer susceptibility gene BRCA2 cause gross chromosomal rearrangements. Chromosome structural instability in the absence of BRCA2 is thought to result from defective homology-directed DNA repair. Here, we show that BRCA2 links the fidelity of telomere maintenance with genetic integrity. Absence of BRCA2 resulted in signs of dysfunctional telomeres, such as telomere shortening, erosions, and end fusions in proliferating mouse fibroblasts. BRCA2 localized to the telomeres in S phase in an ATR-dependent manner, and its absence resulted in the accumulation of common fragile sites, particularly at the G-rich lagging strand, and increased the telomere sister chromatid exchange in unchallenged cells. The incidence of common fragile sites and telomere sister chromatid exchange increased markedly after treatment with replication inhibitors. Congruently, telomere-induced foci were frequently observed in the absence of Brca2, denoting activation of the DNA damage response and abnormal chromosome end joining. These telomere end fusions constituted a significant portion of chromosome aberrations in Brca2-deficient cells. Our results suggest that BRCA2 is required for telomere homeostasis and may be particularly important for the replication of G-rich telomeric lagging strands.
Collapse
Affiliation(s)
- Jaewon Min
- From the Department of Biological Sciences and the Institute of Molecular Biology and Genetics, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Korea and
| | - Eun Shik Choi
- From the Department of Biological Sciences and the Institute of Molecular Biology and Genetics, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Korea and
| | - Kwangwoo Hwang
- From the Department of Biological Sciences and the Institute of Molecular Biology and Genetics, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Korea and
| | - Jimi Kim
- From the Department of Biological Sciences and the Institute of Molecular Biology and Genetics, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Korea and
| | - Srihari Sampath
- the Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Ashok R. Venkitaraman
- the Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Hyunsook Lee
- From the Department of Biological Sciences and the Institute of Molecular Biology and Genetics, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Korea and
| |
Collapse
|
18
|
Wang F, Yin Y, Ye X, Liu K, Zhu H, Wang L, Chiourea M, Okuka M, Ji G, Dan J, Zuo B, Li M, Zhang Q, Liu N, Chen L, Pan X, Gagos S, Keefe DL, Liu L. Molecular insights into the heterogeneity of telomere reprogramming in induced pluripotent stem cells. Cell Res 2011; 22:757-68. [PMID: 22184006 DOI: 10.1038/cr.2011.201] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rejuvenation of telomeres with various lengths has been found in induced pluripotent stem cells (iPSCs). Mechanisms of telomere length regulation during induction and proliferation of iPSCs remain elusive. We show that telomere dynamics are variable in mouse iPSCs during reprogramming and passage, and suggest that these differences likely result from multiple potential factors, including the telomerase machinery, telomerase-independent mechanisms and clonal influences including reexpression of exogenous reprogramming factors. Using a genetic model of telomerase-deficient (Terc(-/-) and Terc(+/-)) cells for derivation and passages of iPSCs, we found that telomerase plays a critical role in reprogramming and self-renewal of iPSCs. Further, telomerase maintenance of telomeres is necessary for induction of true pluripotency while the alternative pathway of elongation and maintenance by recombination is also required, but not sufficient. Together, several aspects of telomere biology may account for the variable telomere dynamics in iPSCs. Notably, the mechanisms employed to maintain telomeres during iPSC reprogramming are very similar to those of embryonic stem cells. These findings may also relate to the cloning field where these mechanisms could be responsible for telomere heterogeneity after nuclear reprogramming by somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Fang Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bolzán AD. Chromosomal aberrations involving telomeres and interstitial telomeric sequences. Mutagenesis 2011; 27:1-15. [PMID: 21857006 DOI: 10.1093/mutage/ger052] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Telomeres are specialised nucleoproteic complexes localised at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. In vertebrate chromosomes, the DNA component of telomeres is constituted by (TTAGGG)n repeats, which can be localised at the terminal regions of chromosomes (true telomeres) or at intrachromosomal sites (interstitial telomeric sequences or ITSs, located at the centromeric region or between the centromere and the telomere). In the past two decades, the use of molecular cytogenetic techniques has led to a new spectrum of spontaneous and clastogen-induced chromosomal aberrations being identified, involving telomeres and ITSs. Some aberrations involve the chromosome ends and, indirectly, the telomeric repeats located at the terminal regions of chromosomes (true telomeres). A second type of aberrations directly involves the telomeric sequences located at the chromosome ends. Finally, there is a third class of aberrations that specifically involves the ITSs. The aims of this review are to provide a detailed description of these aberrations and to summarise the available data regarding their induction by physical and chemical mutagens.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- La Carrera del Investigador Científico y Tecnológico del CONICET, Argentina, Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (CCT-CONICET La Plata-CICPBA), C.C. 403, 1900 La Plata, Argentina.
| |
Collapse
|
20
|
Zadesenets KS, Katokhin AV, Mordvinov VA, Rubtsov NB. Telomeric DNA in chromosomes of five opisthorchid species. Parasitol Int 2011; 61:81-3. [PMID: 21708281 DOI: 10.1016/j.parint.2011.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 06/07/2011] [Accepted: 06/11/2011] [Indexed: 12/21/2022]
Abstract
The analysis of telomere repeat distribution in chromosomes of five opisthorchid species (Opisthorchis felineus (Rivolta, 1884), Opisthorchis viverrini (Poirier, 1886), Metorchis xanthosomus (Creplin, 1846), Metorchis bilis (Braun, 1890), Clonorchis sinensis (Cobbold, 1875)) was performed with fluorescent in situ hybridization (FISH) of labeled (TTAGGG)n DNA-probe and PNA telomere probe on mitotic and meiotic chromosomes of these species. It was shown that chromosome telomeres of all studied species contain large clusters of (TTAGGG)n telomeric repeats. Interstitial clusters of the (TTAGGG)n repeats have not been revealed in the chromosomes of any studied species even when FISH of PNA telomere probe on pachytene chromosomes was performed. Furthermore interstitial clusters of the (TTAGGG)n repeats have not been detected in the chromosomes of O. viverrini, one of chromosomes of this species is the result of a fusion of two ancestral opisthorchid chromosomes.
Collapse
Affiliation(s)
- Kira S Zadesenets
- Institute of Cytology and Genetics Siberian Branch of RAS, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
21
|
Huang J, Wang F, Okuka M, Liu N, Ji G, Ye X, Zuo B, Li M, Liang P, Ge WW, Tsibris JC, Keefe DL, Liu L. Association of telomere length with authentic pluripotency of ES/iPS cells. Cell Res 2011; 21:779-92. [PMID: 21283131 DOI: 10.1038/cr.2011.16] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Telomerase and telomeres are important for indefinite replication of stem cells. Recently, telomeres of somatic cells were found to be reprogrammed to elongate in induced pluripotent stem cells (iPSCs). The role of telomeres in developmental pluripotency in vivo of embryonic stem cells (ESCs) or iPSCs, however, has not been directly addressed. We show that ESCs with long telomeres exhibit authentic developmental pluripotency, as evidenced by generation of complete ESC pups as well as germline-competent chimeras, the most stringent tests available in rodents. ESCs with short telomeres show reduced teratoma formation and chimera production, and fail to generate complete ESC pups. Telomere lengths are highly correlated (r > 0.8) with the developmental pluripotency of ESCs. Short telomeres decrease the proliferative rate or capacity of ESCs, alter the expression of genes related to telomere epigenetics, down-regulate genes important for embryogenesis and disrupt germ cell differentiation. Moreover, iPSCs with longer telomeres generate chimeras with higher efficiency than those with short telomeres. Our data show that functional telomeres are essential for the developmental pluripotency of ESCs/iPSCs and suggest that telomere length may provide a valuable marker to evaluate stem cell pluripotency, particularly when the stringent tests are not feasible.
Collapse
Affiliation(s)
- Junjiu Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Blagoev KB, Goodwin EH, Bailey SM. Telomere sister chromatid exchange and the process of aging. Aging (Albany NY) 2010; 2:727-730. [PMID: 20952810 PMCID: PMC2993801 DOI: 10.18632/aging.100206] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 09/22/2010] [Indexed: 05/30/2023]
Abstract
Telomeres are a hotspot for sister chromatid exchange (T-SCE). Any biological consequence of this form of instability remained obscure until quantitative modeling revealed a link between elevated T-SCE rates and accelerated cellular replicative senescence. This work strongly suggests that progressive telomere erosion is not the only determinant of replicative capacity; instead, T-SCE need to be considered as an independent factor controlling colony growth and senescence. Additionally high T-SCE rates have been observed in cells with deficiencies in WRN and BLM, the genes that are defective in Werner's and Bloom's syndromes, implying a connection to premature aging. In this Research Perspective we will explore some of the implications this recent work has for human health.
Collapse
Affiliation(s)
| | | | - Susan M. Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| |
Collapse
|
23
|
Henson JD, Reddel RR. Assaying and investigating Alternative Lengthening of Telomeres activity in human cells and cancers. FEBS Lett 2010; 584:3800-11. [PMID: 20542034 DOI: 10.1016/j.febslet.2010.06.009] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 06/08/2010] [Indexed: 12/14/2022]
Abstract
Alternative Lengthening of Telomeres (ALT) activity can be deduced from the presence of telomere length maintenance in the absence of telomerase activity. More convenient assays for ALT utilize phenotypic markers of ALT activity, but only a few of these assays are potentially definitive. Here we assess each of the current ALT assays and their implications for understanding the ALT mechanism. We also review the clinical situations where availability of an ALT activity assay would be advantageous. The prevalence of ALT ranges from 25% to 60% in sarcomas and 5% to 15% in carcinomas. Patients with many of these types of ALT[+] tumors have a poor prognosis.
Collapse
Affiliation(s)
- Jeremy D Henson
- Children's Medical Research Institute, Sydney, NSW, Australia
| | | |
Collapse
|
24
|
Wang Z, Rhee DB, Lu J, Bohr CT, Zhou F, Vallabhaneni H, de Souza-Pinto NC, Liu Y. Characterization of oxidative guanine damage and repair in mammalian telomeres. PLoS Genet 2010; 6:e1000951. [PMID: 20485567 PMCID: PMC2869316 DOI: 10.1371/journal.pgen.1000951] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/13/2010] [Indexed: 12/15/2022] Open
Abstract
8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1)-initiated DNA base excision repair (BER). Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere-FISH), by chromosome orientation-FISH (CO-FISH), and by indirect immunofluorescence in combination with telomere-FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1(-/-)) mouse tissues and primary embryonic fibroblasts (MEFs) cultivated in hypoxia condition (3% oxygen), whereas telomere shortening was detected in Ogg1(-/-) mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen) or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1(-/-) mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1(-/-) mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1(-/-) MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity in mammals.
Collapse
Affiliation(s)
- Zhilong Wang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - David B. Rhee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- University of Tennessee–Oak Ridge National Laboratory Graduate School of Genome Science and Technology, Knoxville, Tennessee, United States of America
| | - Jian Lu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Christina T. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Fang Zhou
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Haritha Vallabhaneni
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Nadja C. de Souza-Pinto
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yie Liu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Zalzman M, Falco G, Sharova LV, Nishiyama A, Thomas M, Lee SL, Stagg CA, Hoang HG, Yang HT, Indig FE, Wersto RP, Ko MSH. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 2010; 464:858-63. [PMID: 20336070 PMCID: PMC2851843 DOI: 10.1038/nature08882] [Citation(s) in RCA: 343] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 02/08/2010] [Indexed: 01/21/2023]
Abstract
Exceptional genomic stability is one of the hallmarks of mouse embryonic stem (ES) cells. However, the genes contributing to this stability remain obscure. We previously identified Zscan4 as a specific marker for two-cell embryo and ES cells. Here we show that Zscan4 is involved in telomere maintenance and long-term genomic stability in ES cells. Only 5% of ES cells express Zscan4 at a given time, but nearly all ES cells activate Zscan4 at least once during nine passages. The transient Zscan4-positive state is associated with rapid telomere extension by telomere recombination and upregulation of meiosis-specific homologous recombination genes, which encode proteins that are colocalized with ZSCAN4 on telomeres. Furthermore, Zscan4 knockdown shortens telomeres, increases karyotype abnormalities and spontaneous sister chromatid exchange, and slows down cell proliferation until reaching crisis by passage eight. Together, our data show a unique mode of genome maintenance in ES cells.
Collapse
Affiliation(s)
- Michal Zalzman
- Developmental Genomics and Aging Section, Laboratory of Genetics, NIH, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rhee DB, Wang Y, Mizesko M, Zhou F, Haneline L, Liu Y. FANCC suppresses short telomere-initiated telomere sister chromatid exchange. Hum Mol Genet 2009; 19:879-87. [PMID: 20022886 DOI: 10.1093/hmg/ddp556] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Telomere shortening has been linked to rare human disorders that present with bone marrow failure including Fanconi anemia (FA). FANCC is one of the most commonly mutated FA genes in FA patients and the FANCC subtype tends to have a relatively early onset of bone marrow failure and hematologic malignancies. Here, we studied the role of Fancc in telomere length regulation in mice. Deletion of Fancc (Fancc(-/-)) did not affect telomerase activity, telomere length or telomeric end-capping in a mouse strain possessing intrinsically long telomeres. However, ablation of Fancc did exacerbate telomere attrition when murine bone marrow cells experienced high cell turnover after serial transplantation. When Fancc(-/-) mice were crossed into a telomerase reverse transcriptase heterozygous or null background (Tert(+/-) or Tert(-/-)) with short telomeres, Fancc deficiency led to an increase in the incidence of telomere sister chromatid exchange. In contrast, these phenotypes were not observed in Tert mutant mice with long telomeres. Our data indicate that Fancc deficiency accelerates telomere shortening during high turnover of hematopoietic cells and promotes telomere recombination initiated by short telomeres.
Collapse
Affiliation(s)
- David B Rhee
- Laboratory of Molecular Gerontology, NIH Biomedical Research Center, National Institute on Aging, Baltimore, MD 21224-6825, USA
| | | | | | | | | | | |
Collapse
|
27
|
Singh DK, Ahn B, Bohr VA. Roles of RECQ helicases in recombination based DNA repair, genomic stability and aging. Biogerontology 2009; 10:235-52. [PMID: 19083132 PMCID: PMC2713741 DOI: 10.1007/s10522-008-9205-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 11/24/2008] [Indexed: 12/28/2022]
Abstract
The maintenance of the stability of genetic material is an essential feature of every living organism. Organisms across all kingdoms have evolved diverse and highly efficient repair mechanisms to protect the genome from deleterious consequences of various genotoxic factors that might tend to destabilize the integrity of the genome in each generation. One such group of proteins that is actively involved in genome surveillance is the RecQ helicase family. These proteins are highly conserved DNA helicases, which have diverse roles in multiple DNA metabolic processes such as DNA replication, recombination and DNA repair. In humans, five RecQ helicases have been identified and three of them namely, WRN, BLM and RecQL4 have been linked to genetic diseases characterized by genome instability, premature aging and cancer predisposition. This helicase family plays important roles in various DNA repair pathways including protecting the genome from illegitimate recombination during chromosome segregation in mitosis and assuring genome stability. This review mainly focuses on various roles of human RecQ helicases in the process of recombination-based DNA repair to maintain genome stability and physiological consequences of their defects in the development of cancer and premature aging.
Collapse
Affiliation(s)
- Dharmendra Kumar Singh
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Byungchan Ahn
- Department of Life Sciences, University of Ulsan, Ulsan 680-749, South Korea
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
28
|
Morrish TA, Greider CW. Short telomeres initiate telomere recombination in primary and tumor cells. PLoS Genet 2009; 5:e1000357. [PMID: 19180191 PMCID: PMC2627939 DOI: 10.1371/journal.pgen.1000357] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 12/23/2008] [Indexed: 01/24/2023] Open
Abstract
Human tumors that lack telomerase maintain telomeres by alternative lengthening mechanisms. Tumors can also form in telomerase-deficient mice; however, the genetic mechanism responsible for tumor growth without telomerase is unknown. In yeast, several different recombination pathways maintain telomeres in the absence of telomerase-some result in telomere maintenance with minimal effects on telomere length. To examine non-telomerase mechanisms for telomere maintenance in mammalian cells, we used primary cells and lymphomas from telomerase-deficient mice (mTR-/- and Emumyc+mTR-/-) and CAST/EiJ mouse embryonic fibroblast cells. These cells were analyzed using pq-ratio analysis, telomere length distribution outliers, CO-FISH, Q-FISH, and multicolor FISH to detect subtelomeric recombination. Telomere length was maintained during long-term growth in vivo and in vitro. Long telomeres, characteristic of human ALT cells, were not observed in either late passage or mTR-/- tumor cells; instead, we observed only minimal changes in telomere length. Telomere length variation and subtelomeric recombination were frequent in cells with short telomeres, indicating that length maintenance is due to telomeric recombination. We also detected telomere length changes in primary mTR-/- cells that had short telomeres. Using mouse mTR+/- and human hTERT+/- primary cells with short telomeres, we found frequent length changes indicative of recombination. We conclude that telomere maintenance by non-telomerase mechanisms, including recombination, occurs in primary cells and is initiated by short telomeres, even in the presence of telomerase. Most intriguing, our data indicate that some non-telomerase telomere maintenance mechanisms occur without a significant increase in telomere length.
Collapse
Affiliation(s)
- Tammy A. Morrish
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Carol W. Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Fan Q, Zhang F, Barrett B, Ren K, Andreassen PR. A role for monoubiquitinated FANCD2 at telomeres in ALT cells. Nucleic Acids Res 2009; 37:1740-54. [PMID: 19129235 PMCID: PMC2665210 DOI: 10.1093/nar/gkn995] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Both Fanconi anemia (FA) and telomere dysfunction are associated with chromosome instability and an increased risk of cancer. Because of these similarities, we have investigated whether there is a relationship between the FA protein, FANCD2 and telomeres. We find that FANCD2 nuclear foci colocalize with telomeres and PML bodies in immortalized telomerase-negative cells. These cells maintain telomeres by alternative lengthening of telomeres (ALT). In contrast, FANCD2 does not colocalize with telomeres or PML bodies in cells which express telomerase. Using a siRNA approach we find that FANCA and FANCL, which are components of the FA nuclear core complex, regulate FANCD2 monoubiquitination and the telomeric localization of FANCD2 in ALT cells. Transient depletion of FANCD2, or FANCA, results in a dramatic loss of detectable telomeres in ALT cells but not in telomerase-expressing cells. Furthermore, telomere loss following depletion of these proteins in ALT cells is associated with decreased homologous recombination between telomeres (T-SCE). Thus, the FA pathway has a novel function in ALT telomere maintenance related to DNA repair. ALT telomere maintenance is therefore one mechanism by which monoubiquitinated FANCD2 may promote genetic stability.
Collapse
Affiliation(s)
- Qiang Fan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
30
|
Tarasov KV, Tarasova YS, Tam WL, Riordon DR, Elliott ST, Kania G, Li J, Yamanaka S, Crider DG, Testa G, Li RA, Lim B, Stewart CL, Liu Y, Van Eyk JE, Wersto RP, Wobus AM, Boheler KR. B-MYB is essential for normal cell cycle progression and chromosomal stability of embryonic stem cells. PLoS One 2008; 3:e2478. [PMID: 18575582 PMCID: PMC2423619 DOI: 10.1371/journal.pone.0002478] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 05/19/2008] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The transcription factor B-Myb is present in all proliferating cells, and in mice engineered to remove this gene, embryos die in utero just after implantation due to inner cell mass defects. This lethal phenotype has generally been attributed to a proliferation defect in the cell cycle phase of G1. METHODOLOGY/PRINCIPAL FINDINGS In the present study, we show that the major cell cycle defect in murine embryonic stem (mES) cells occurs in G2/M. Specifically, knockdown of B-Myb by short-hairpin RNAs results in delayed transit through G2/M, severe mitotic spindle and centrosome defects, and in polyploidy. Moreover, many euploid mES cells that are transiently deficient in B-Myb become aneuploid and can no longer be considered viable. Knockdown of B-Myb in mES cells also decreases Oct4 RNA and protein abundance, while over-expression of B-MYB modestly up-regulates pou5f1 gene expression. The coordinated changes in B-Myb and Oct4 expression are due, at least partly, to the ability of B-Myb to directly modulate pou5f1 gene promoter activity in vitro. Ultimately, the loss of B-Myb and associated loss of Oct4 lead to an increase in early markers of differentiation prior to the activation of caspase-mediated programmed cell death. CONCLUSIONS/SIGNIFICANCE Appropriate B-Myb expression is critical to the maintenance of chromosomally stable and pluripotent ES cells, but its absence promotes chromosomal instability that results in either aneuploidy or differentiation-associated cell death.
Collapse
Affiliation(s)
- Kirill V. Tarasov
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yelena S. Tarasova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Wai Leong Tam
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Daniel R. Riordon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Steven T. Elliott
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Gabriela Kania
- In vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Jinliang Li
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Satoshi Yamanaka
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - David G. Crider
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Gianluca Testa
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ronald A. Li
- Laboratory of Stem Cell Engineering & Bioelectricity, Stem Cell Institute, University of California Davis, Davis, California, United States of America
| | - Bing Lim
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
- Harvard Institutes of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Colin L. Stewart
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, Maryland, United States of America
| | - Yie Liu
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Jennifer E. Van Eyk
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Robert P. Wersto
- Flow Cytometry Group, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Anna M. Wobus
- In vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Kenneth R. Boheler
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| |
Collapse
|
31
|
Lee JY, Kozak M, Martin JD, Pennock E, Johnson FB. Evidence that a RecQ helicase slows senescence by resolving recombining telomeres. PLoS Biol 2007; 5:e160. [PMID: 17550308 PMCID: PMC1885831 DOI: 10.1371/journal.pbio.0050160] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 04/13/2007] [Indexed: 12/27/2022] Open
Abstract
RecQ helicases, including Saccharomyces cerevisiae Sgs1p and the human Werner syndrome protein, are important for telomere maintenance in cells lacking telomerase activity. How maintenance is accomplished is only partly understood, although there is evidence that RecQ helicases function in telomere replication and recombination. Here we use two-dimensional gel electrophoresis (2DGE) and telomere sequence analysis to explore why cells lacking telomerase and Sgs1p (tlc1 sgs1 mutants) senesce more rapidly than tlc1 mutants with functional Sgs1p. We find that apparent X-shaped structures accumulate at telomeres in senescing tlc1 sgs1 mutants in a RAD52- and RAD53-dependent fashion. The X-structures are neither Holliday junctions nor convergent replication forks, but instead may be recombination intermediates related to hemicatenanes. Direct sequencing of examples of telomere I-L in senescing cells reveals a reduced recombination frequency in tlc1 sgs1 compared with tlc1 mutants, indicating that Sgs1p is needed for tlc1 mutants to complete telomere recombination. The reduction in recombinants is most prominent at longer telomeres, consistent with a requirement for Sgs1p to generate viable progeny following telomere recombination. We therefore suggest that Sgs1p may be required for efficient resolution of telomere recombination intermediates, and that resolution failure contributes to the premature senescence of tlc1 sgs1 mutants. Because telomeres are situated at the ends of chromosomes, they are both essential for chromosome integrity and particularly susceptible to processes that lead to loss of their own DNA sequences. The enzyme telomerase can counter these losses, but there are also other means of telomere maintenance, some of which depend on DNA recombination. The RecQ family of DNA helicases process DNA recombination intermediates and also help ensure telomere integrity, but the relationship between these activities is poorly understood. Family members include yeast Sgs1p and human WRN and BLM, which are deficient in the Werner premature aging syndrome and the Bloom cancer predisposition syndrome, respectively. We have found that the telomeres of yeast cells lacking both telomerase and Sgs1p accumulate structures that resemble recombination intermediates. Further, we provide evidence that the inability of cells lacking Sgs1p to process these telomere recombination intermediates leads to the premature arrest of cell division. We predict that similar defects in the processing of recombination intermediates may contribute to telomere defects in human Werner and Bloom syndrome cells. Yeast cells lacking the RecQ helicase Sgs1p show an accumulation of telomere recombination intermediates associated with premature senescence.
Collapse
Affiliation(s)
- Julia Y Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Marina Kozak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joel D Martin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Erin Pennock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - F. Brad Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Opresko PL. Telomere ResQue and preservation--roles for the Werner syndrome protein and other RecQ helicases. Mech Ageing Dev 2007; 129:79-90. [PMID: 18054793 DOI: 10.1016/j.mad.2007.10.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/12/2007] [Accepted: 10/23/2007] [Indexed: 12/30/2022]
Abstract
Werner syndrome is an autosomal recessive disorder resulting from loss of function of the RecQ helicase, WRN protein. WS patients prematurely develop numerous clinical symptoms and diseases associated with aging early in life and are predisposed to cancer. WRN protein and many other RecQ helicases in general, seem to function during DNA replication in the processing of stalled replication forks. Genetic, cellular and biochemical evidence support roles for WRN in proper replication and repair of telomeric DNA, and indicate that telomere dysfunction contributes to the WS disease pathology.
Collapse
Affiliation(s)
- Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Bridgeside Pt., Pittsburgh, PA 15219, United States.
| |
Collapse
|
33
|
Foroni C, Galli R, Cipelletti B, Caumo A, Alberti S, Fiocco R, Vescovi A. Resilience to transformation and inherent genetic and functional stability of adult neural stem cells ex vivo. Cancer Res 2007; 67:3725-33. [PMID: 17440085 DOI: 10.1158/0008-5472.can-06-4577] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent observations have suggested that extensive culturing of adult neural stem cells (ANSCs) by exploiting the NeuroSphere assay might select for aggressive cell clones, endowed with neoplastic potential, that overgrow the rest of the native stem cells. However, a detailed study of the propensity of ANSCs to transform has never been thoroughly undertaken. Here, we report the first demonstration that ANSCs can be propagated in vitro for over a year, maintaining a strikingly stable profile with regard to self-renewal, differentiation, growth factor dependence, karyotype, and molecular profiling. Most importantly, the long-term culturing of ANSCs did not result in the formation of tumors in vivo, even when ANSCs were transduced with Myc and Ras oncogenes. The cancer resistance could depend on specific mechanisms aimed at protecting ANSCs and preserved by optimal nonstressful culture conditions. In conclusion, besides a plentiful and safe source of cells for therapeutic applications, ANSCs provide an ideal model to study aging and cancer in the context of stemness.
Collapse
Affiliation(s)
- Chiara Foroni
- Stem Cell Research Institute-DIBIT, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Celli GB, Denchi EL, de Lange T. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat Cell Biol 2006; 8:885-90. [PMID: 16845382 DOI: 10.1038/ncb1444] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 05/04/2006] [Indexed: 01/03/2023]
Abstract
Ku70-Ku80 heterodimers promote the non-homologous end-joining (NHEJ) of DNA breaks and, as shown here, the fusion of dysfunctional telomeres. Paradoxically, this heterodimer is also located at functional mammalian telomeres and interacts with components of shelterin, the protein complex that protects telomeres. To determine whether Ku contributes to telomere protection, we analysed Ku70(-/-) mouse cells. Telomeres of Ku70(-/-) cells had a normal DNA structure and did not activate a DNA damage signal. However, Ku70 repressed exchanges between sister telomeres - a form of homologous recombination implicated in the alternative lengthening of telomeres (ALT) pathway. Sister telomere exchanges occurred at approximately 15% of the chromosome ends when Ku70 and the telomeric protein TRF2 were absent. Combined deficiency of TRF2 and another NHEJ factor, DNA ligase IV, did not elicit this phenotype. Sister telomere exchanges were not elevated at telomeres with functional TRF2, indicating that TRF2 and Ku70 act in parallel to repress recombination. We conclude that mammalian chromosome ends are highly susceptible to homologous recombination, which can endanger cell viability if an unequal exchange generates a critically shortened telomere. Therefore, Ku- and TRF2-mediated repression of homologous recombination is an important aspect of telomere protection.
Collapse
Affiliation(s)
- Giulia B Celli
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
35
|
Hsiao SJ, Poitras MF, Cook BD, Liu Y, Smith S. Tankyrase 2 poly(ADP-ribose) polymerase domain-deleted mice exhibit growth defects but have normal telomere length and capping. Mol Cell Biol 2006; 26:2044-54. [PMID: 16507985 PMCID: PMC1430302 DOI: 10.1128/mcb.26.6.2044-2054.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Regulation of telomere length maintenance and capping are a critical cell functions in both normal and tumor cells. Tankyrase 2 (Tnks2) is a poly(ADP-ribose) polymerase (PARP) that has been shown to modify itself and TRF1, a telomere-binding protein. We show here by overexpression studies that tankyrase 2, like its closely related homolog tankyrase 1, can function as a positive regulator of telomere length in human cells, dependent on its catalytic PARP activity. To study the role of Tnks2 in vivo, we generated mice with the Tnks2 PARP domain deleted. These mice are viable and fertile but display a growth retardation phenotype. Telomere analysis by quantitative fluorescence in situ hybridization (FISH), flow-FISH, and restriction fragment analysis showed no change in telomere length or telomere capping in these mice. To determine the requirement for Tnks2 in long-term maintenance of telomeres, we generated embryonic stem cells with the Tnks2 PARP domain deleted and observed no change, even upon prolonged growth, in telomere length or telomere capping. Together, these results suggest that Tnks2 has a role in normal growth and development but is not essential for telomere length maintenance or telomere capping in mice.
Collapse
Affiliation(s)
- Susan J Hsiao
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, 2nd Floor, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
36
|
Bolzán AD, Bianchi MS. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat Res 2006; 612:189-214. [PMID: 16490380 DOI: 10.1016/j.mrrev.2005.12.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/29/2005] [Accepted: 12/30/2005] [Indexed: 11/18/2022]
Abstract
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900 La Plata, Argentina.
| | - Martha S Bianchi
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900 La Plata, Argentina
| |
Collapse
|
37
|
Gomez M, Wu J, Schreiber V, Dunlap J, Dantzer F, Wang Y, Liu Y. PARP1 Is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomeres. Mol Biol Cell 2006; 17:1686-96. [PMID: 16436506 PMCID: PMC1415310 DOI: 10.1091/mbc.e05-07-0672] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Poly(ADP-ribose)polymerase 1 (PARP1) is well characterized for its role in base excision repair (BER), where it is activated by and binds to DNA breaks and catalyzes the poly(ADP-ribosyl)ation of several substrates involved in DNA damage repair. Here we demonstrate that PARP1 associates with telomere repeat binding factor 2 (TRF2) and is capable of poly(ADP-ribosyl)ation of TRF2, which affects binding of TRF2 to telomeric DNA. Immunostaining of interphase cells or metaphase spreads shows that PARP1 is detected sporadically at normal telomeres, but it appears preferentially at eroded telomeres caused by telomerase deficiency or damaged telomeres induced by DNA-damaging reagents. Although PARP1 is dispensable in the capping of normal telomeres, Parp1 deficiency leads to an increase in chromosome end-to-end fusions or chromosome ends without detectable telomeric DNA in primary murine cells after induction of DNA damage. Our results suggest that upon DNA damage, PARP1 is recruited to damaged telomeres, where it can help protect telomeres against chromosome end-to-end fusions and genomic instability.
Collapse
Affiliation(s)
- Marla Gomez
- Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6445, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Bhattacharyya MK, Lustig AJ. Telomere dynamics in genome stability. Trends Biochem Sci 2006; 31:114-22. [PMID: 16406636 DOI: 10.1016/j.tibs.2005.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 10/19/2005] [Accepted: 12/15/2005] [Indexed: 01/11/2023]
Abstract
The past several years have seen an increasing interest in telomere recombinational interactions that provide many functions in telomere capping, in telomere size homeostasis and in overcoming the catastrophic effects of telomerase deficiency. Several key recombination mechanisms have emerged from recent investigations. In the yeasts, these mechanisms include exchange between subtelomeric regions and telomere sequences, rapid telomere expansion and telomere deletion. These processes proceed by pathways that use both the cellular recombination machinery and novel mechanisms such as rolling circle replication. The insights gained from recent studies extend our understanding of similar processes in higher eukaryotes and suggest that the recombinational dynamics of telomeres have additional roles that contribute to genomic stability and instability.
Collapse
Affiliation(s)
- Mrinal K Bhattacharyya
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
39
|
Drets ME, Santiñaque FF, Obe G. A proposal of a standardised nomenclature for terminal minute sister chromatid exchanges. Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000300007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|