1
|
Montandon SA, Beaudier P, Ullate-Agote A, Helleboid PY, Kummrow M, Roig-Puiggros S, Jabaudon D, Andersson L, Milinkovitch MC, Tzika AC. Regulatory and disruptive variants in the CLCN2 gene are associated with modified skin color pattern phenotypes in the corn snake. Genome Biol 2025; 26:73. [PMID: 40140900 PMCID: PMC11948899 DOI: 10.1186/s13059-025-03539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Snakes exhibit a broad variety of adaptive colors and color patterns, generated by the spatial arrangement of chromatophores, but little is known of the mechanisms responsible for these spectacular traits. Here, we investigate a mono-locus trait with two recessive alleles, motley and stripe, that both cause pattern aberrations in the corn snake. RESULTS We use mapping-by-sequencing to identify the genomic interval where the causal mutations reside. With our differential gene expression analyses, we find that CLCN2 (Chloride Voltage-Gated Channel 2), a gene within the genomic interval, is significantly downregulated in Motley embryonic skin. Furthermore, we identify the stripe allele as the insertion of an LTR-retrotransposon in CLCN2, resulting in a disruptive mutation of the protein. We confirm the involvement of CLCN2 in color pattern formation by producing knock-out snakes that present a phenotype similar to Stripe. In humans and mice, disruption of CLCN2 results in leukoencephalopathy, as well as retinal and testes degeneration. Our single-cell transcriptomic analyses in snakes reveal that CLCN2 is indeed expressed in chromatophores during embryogenesis and in the adult brain, but the behavior and fertility of Motley and Stripe corn snakes are not impacted. CONCLUSIONS Our genomic, transcriptomic, and functional analyses identify a plasma membrane anion channel to be involved in color pattern development in snakes and show that an active LTR-retrotransposon might be a key driver of trait diversification in corn snakes.
Collapse
Affiliation(s)
- Sophie A Montandon
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Present address: Bracco Suisse S.A., Plan-les-Ouates, Switzerland
| | - Pierre Beaudier
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Asier Ullate-Agote
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Present address: Biomedical Engineering Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pierre-Yves Helleboid
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Maya Kummrow
- Tierspital, University of Zurich, Zurich, Switzerland
| | - Sergi Roig-Puiggros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Michel C Milinkovitch
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
| | - Athanasia C Tzika
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Choi JD, Del Pinto LA, Sutter NB. SINE retrotransposons import polyadenylation signals to 3'UTRs in dog (Canis familiaris). Mob DNA 2025; 16:1. [PMID: 39755632 DOI: 10.1186/s13100-024-00338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Messenger RNA 3' untranslated regions (3'UTRs) control many aspects of gene expression and determine where the transcript will terminate. The polyadenylation signal (PAS) AAUAAA (AATAAA in DNA) is a key regulator of transcript termination and this hexamer, or a similar sequence, is very frequently found within 30 bp of 3'UTR ends. Short interspersed element (SINE) retrotransposons are found throughout genomes in high copy numbers. When inserted into genes they can disrupt expression, alter splicing, or cause nuclear retention of mRNAs. The genomes of the domestic dog and other carnivores carry hundreds of thousands of Can-SINEs, a tRNA-related SINE with transcription termination potential. Because of this we asked whether Can-SINEs may terminate transcript in some dog genes. RESULTS Each of the dog's nine Can-SINE consensus sequences carry an average of three AATAAA PASs on their sense strands but zero on their antisense strands. Consistent with the idea that Can-SINEs can terminate transcripts, we find that sense-oriented Can-SINEs are approximately ten times more frequent at 3' ends of 3'UTRs compared to further upstream within 3'UTRs. Furthermore, the count of AATAAA PASs on head-to-tail SINE sequences differs significantly between sense and antisense-oriented retrotransposons in transcripts. Can-SINEs near 3'UTR ends are likely to carry an AATAAA motif on the mRNA sense strand while those further upstream are not. We identified loci where Can-SINE insertion has truncated or altered a 3'UTR of the dog genome (dog 3'UTR) compared to the human ortholog. Dog 3'UTRs have peaks of AATAAA PAS frequency at 28, 32, and 36 bp from the end. The periodicity is partly explained by TAAA(n) repeats within Can-SINE AT-rich tails. We annotated all repeat-masked Can-SINE copies in the Boxer reference genome and found that the young SINEC_Cf type has a mode of 15 bp length for target site duplications (TSDs). All dog Can-SINE types favor integration at TSDs beginning with A(4). CONCLUSION Dog Can-SINE retrotransposition has imported AATAAA PASs into gene transcripts and led to alteration of 3'UTRs. AATAAA sequences are selectively removed from Can-SINEs in introns and upstream 3'UTR regions but are retained at the far downstream end of 3'UTRs, which we infer reflects their role as termination sequences for these transcripts.
Collapse
Affiliation(s)
- Jessica D Choi
- Department of Biology, La Sierra University, Riverside, CA, USA.
- The Jackson Laboratory, Bar Harbor, ME, USA.
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| | | | - Nathan B Sutter
- Department of Biology, La Sierra University, Riverside, CA, USA
| |
Collapse
|
3
|
Tzika AC, Ullate-Agote A, Helleboid PY, Kummrow M. PMEL is involved in snake colour pattern transition from blotches to stripes. Nat Commun 2024; 15:7655. [PMID: 39227572 PMCID: PMC11371805 DOI: 10.1038/s41467-024-51927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Corn snakes are emerging models for animal colouration studies. Here, we focus on the Terrazzo morph, whose skin pattern is characterized by stripes rather than blotches. Using genome mapping, we discover a disruptive mutation in the coding region of the Premelanosome protein (PMEL) gene. Our transcriptomic analyses reveal that PMEL expression is significantly downregulated in Terrazzo embryonic tissues. We produce corn snake PMEL knockouts, which present a comparable colouration phenotype to Terrazzo and the subcellular structure of their melanosomes and xanthosomes is also similarly impacted. Our single-cell expression analyses of wild-type embryonic dorsal skin demonstrate that all chromatophore progenitors express PMEL at varying levels. Finally, we show that in wild-type embryos PMEL-expressing cells are initially uniformly spread before forming aggregates and eventually blotches, as seen in the adults. In Terrazzo embryos, the aggregates fail to form. Our results provide insights into the mechanisms governing colouration patterning in reptiles.
Collapse
Affiliation(s)
- Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
| | - Asier Ullate-Agote
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Biomedical Engineering Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pierre-Yves Helleboid
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Maya Kummrow
- Tierspital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Lin RC, Ferreira BT, Yuan YW. The molecular basis of phenotypic evolution: beyond the usual suspects. Trends Genet 2024; 40:668-680. [PMID: 38704304 PMCID: PMC11303103 DOI: 10.1016/j.tig.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
It has been well documented that mutations in coding DNA or cis-regulatory elements underlie natural phenotypic variation in many organisms. However, the development of sophisticated functional tools in recent years in a wide range of traditionally non-model systems have revealed many 'unusual suspects' in the molecular bases of phenotypic evolution, including upstream open reading frames (uORFs), cryptic splice sites, and small RNAs. Furthermore, large-scale genome sequencing, especially long-read sequencing, has identified a cornucopia of structural variation underlying phenotypic divergence and elucidated the composition of supergenes that control complex multi-trait polymorphisms. In this review article we highlight recent studies that demonstrate this great diversity of molecular mechanisms producing adaptive genetic variation and the panoply of evolutionary paths leading to the 'grandeur of life'.
Collapse
Affiliation(s)
- Rong-Chien Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Bianca T Ferreira
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
5
|
Murgiano L, Banjeree E, O'Connor C, Miyadera K, Werner P, Niggel JK, Aguirre GD, Casal ML. A naturally occurring canine model of syndromic congenital microphthalmia. G3 (BETHESDA, MD.) 2024; 14:jkae067. [PMID: 38682429 DOI: 10.1093/g3journal/jkae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
In humans, the prevalence of congenital microphthalmia is estimated to be 0.2-3.0 for every 10,000 individuals, with nonocular involvement reported in ∼80% of cases. Inherited eye diseases have been widely and descriptively characterized in dogs, and canine models of ocular diseases have played an essential role in unraveling the pathophysiology and development of new therapies. A naturally occurring canine model of a syndromic disorder characterized by microphthalmia was discovered in the Portuguese water dog. As nonocular findings included tooth enamel malformations, stunted growth, anemia, and thrombocytopenia, we hence termed this disorder Canine Congenital Microphthalmos with Hematopoietic Defects. Genome-wide association study and homozygosity mapping detected a 2 Mb candidate region on canine chromosome 4. Whole-genome sequencing and mapping against the Canfam4 reference revealed a Short interspersed element insertion in exon 2 of the DNAJC1 gene (g.74,274,883ins[T70]TGCTGCTTGGATT). Subsequent real-time PCR-based mass genotyping of a larger Portuguese water dog population found that the homozygous mutant genotype was perfectly associated with the Canine Congenital Microphthalmos with Hematopoietic Defects phenotype. Biallelic variants in DNAJC21 are mostly found to be associated with bone marrow failure syndrome type 3, with a phenotype that has a certain degree of overlap with Fanconi anemia, dyskeratosis congenita, Shwachman-Diamond syndrome, Diamond-Blackfan anemia, and reports of individuals showing thrombocytopenia, microdontia, and microphthalmia. We, therefore, propose Canine Congenital Microphthalmos with Hematopoietic Defects as a naturally occurring model for DNAJC21-associated syndromes.
Collapse
Affiliation(s)
- Leonardo Murgiano
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Esha Banjeree
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cynthia O'Connor
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- East Bridgewater Veterinary Hospitla, East Bridgewater, MA 02333, USA
| | - Keiko Miyadera
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Petra Werner
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Genetic Diagnostic Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica K Niggel
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo D Aguirre
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margret L Casal
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Beckwith-Cohen B, Petersen-Jones SM. Manifestations of systemic disease in the retina and fundus of cats and dogs. Front Vet Sci 2024; 11:1337062. [PMID: 38444779 PMCID: PMC10912207 DOI: 10.3389/fvets.2024.1337062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024] Open
Abstract
The fundus is unique in that it is the only part of the body that allows for a noninvasive and uninterrupted view of vasculature and nervous tissue. Utilization of this can be a powerful tool in uncovering salient incidental findings which point to underlying systemic diseases, and for monitoring response to therapy. Retinal venules and arterioles allow the clinician to assess changes in vascular color, diameter, outline, and tortuosity. The retina and optic nerve may exhibit changes associated with increased or decreased thickness, inflammatory infiltrates, hemorrhages, and detachments. While some retinal manifestations of systemic disease may be nonspecific, others are pathognomonic, and may be the presenting sign for a systemic illness. The examination of the fundus is an essential part of the comprehensive physical examination. Systemic diseases which may present with retinal abnormalities include a variety of disease classifications, as represented by the DAMNIT-V acronym, for Degenerative/Developmental, Anomalous, Metabolic, Neoplastic, Nutritional, Inflammatory (Infectious/Immune-mediated/ischemic), Toxic, Traumatic and Vascular. This review details systemic illnesses or syndromes that have been reported to manifest in the fundus of companion animals and discusses key aspects in differentiating their underlying cause. Normal variations in retinal anatomy and morphology are also considered.
Collapse
Affiliation(s)
- Billie Beckwith-Cohen
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Simon M. Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
7
|
Smeds L, Huson LSA, Ellegren H. Structural genomic variation in the inbred Scandinavian wolf population contributes to the realized genetic load but is positively affected by immigration. Evol Appl 2024; 17:e13652. [PMID: 38333557 PMCID: PMC10848878 DOI: 10.1111/eva.13652] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
When populations decrease in size and may become isolated, genomic erosion by loss of diversity from genetic drift and accumulation of deleterious mutations is likely an inevitable consequence. In such cases, immigration (genetic rescue) is necessary to restore levels of genetic diversity and counteract inbreeding depression. Recent work in conservation genomics has studied these processes focusing on the genetic diversity of single nucleotide polymorphisms. In contrast, our knowledge about structural genomic variation (insertions, deletions, duplications and inversions) in endangered species is limited. We analysed whole-genome, short-read sequences from 212 wolves from the inbred Scandinavian population and from neighbouring populations in Finland and Russia, and detected >35,000 structural variants (SVs) after stringent quality and genotype frequency filtering; >26,000 high-confidence variants remained after manual curation. The majority of variants were shorter than 1 kb, with a distinct peak in the length distribution of deletions at 190 bp, corresponding to insertion events of SINE/tRNA-Lys elements. The site frequency spectrum of SVs in protein-coding regions was significantly shifted towards rare alleles compared to putatively neutral variants, consistent with purifying selection. The realized genetic load of SVs in protein-coding regions increased with inbreeding levels in the Scandinavian population, but immigration provided a genetic rescue effect by lowering the load and reintroducing ancestral alleles at loci fixed for derived SVs. Our study shows that structural variation comprises a common type of in part deleterious mutations in endangered species and that establishing gene flow is necessary to mitigate the negative consequences of loss of diversity.
Collapse
Affiliation(s)
- Linnéa Smeds
- Department of Ecology and Genetics, Evolutionary BiologyUppsala UniversityUppsalaSweden
| | - Lars S. A. Huson
- Department of Ecology and Genetics, Evolutionary BiologyUppsala UniversityUppsalaSweden
| | - Hans Ellegren
- Department of Ecology and Genetics, Evolutionary BiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
8
|
Wang J, Fan T, Du Z, Xu L, Chen Y, Zhang L, Gao H, Li J, Ma Y, Gao X. Genome-Wide Association Analysis Identifies the PMEL Gene Affecting Coat Color and Birth Weight in Simmental × Holstein. Animals (Basel) 2023; 13:3821. [PMID: 38136858 PMCID: PMC10740715 DOI: 10.3390/ani13243821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Coat color and birth weight, as easily selected traits in cattle, play important roles in cattle breeding. Therefore, we carried out a genome-wide association study on birth weight and coat color to identify loci or potential linkage regions in 233 Simmental × Holstein crossbred beef cattle. The results revealed that nine SNPs were significantly associated with coat color (rs137169378, rs110022687, rs136002689, Hypotrichosis_PMel17, PMEL_1, rs134930689, rs383170073, rs109924971, and rs109146332), and these were in RNF41, ZC3H10, ERBB3, PMEL, and OR10A7 on BTA5. Interestingly, rs137169378, rs110022687, rs136002689, Hypotrichosis_PMel17, and PMEL_1 showed strong linkage disequilibrium (r2 > 0.8) and were significantly associated with coat color. Notably, Hypotrichosis_PMel17 and PMEL_1 were located in the gene PMEL (p = 2.22 × 10-18). Among the five significant SNPs associated with coat color, the birth weight of heterozygous individuals (AB) was greater than that of homozygous individuals (AA). Notably, the birth weight of heterozygous individuals with Hypotrichosis_PMel17 and PMEL_1 genotypes was significantly greater than that of homozygous individuals (0.01 < p < 0.05). Interestingly, the two loci were homozygous in black/white individuals and heterozygous in gray/white individuals, and the birth weight of heterozygous brown/white individuals (43.82 ± 5.25 kg) was greater than that of homozygous individuals (42.58 ± 3.09 kg). The birth weight of calves with the parental color (41.95 ± 3.53 kg) was significantly lower than that of calves with a non-parental color (43.54 ± 4.78 kg) (p < 0.05), and the birth weight of gray/white individuals (49.40 ± 7.11 kg) was the highest. Overall, PMEL appears to be a candidate gene affecting coat color in cattle, and coat color may have a selective effect on birth weight. This study provides a foundation for the breeding of beef cattle through GWAS for coat color and birth weight.
Collapse
Affiliation(s)
- Jing Wang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (T.F.); (Z.D.); (L.X.); (Y.C.); (L.Z.); (H.G.); (J.L.)
| | - Tingting Fan
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (T.F.); (Z.D.); (L.X.); (Y.C.); (L.Z.); (H.G.); (J.L.)
| | - Zhenwei Du
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (T.F.); (Z.D.); (L.X.); (Y.C.); (L.Z.); (H.G.); (J.L.)
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (T.F.); (Z.D.); (L.X.); (Y.C.); (L.Z.); (H.G.); (J.L.)
| | - Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (T.F.); (Z.D.); (L.X.); (Y.C.); (L.Z.); (H.G.); (J.L.)
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (T.F.); (Z.D.); (L.X.); (Y.C.); (L.Z.); (H.G.); (J.L.)
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (T.F.); (Z.D.); (L.X.); (Y.C.); (L.Z.); (H.G.); (J.L.)
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (T.F.); (Z.D.); (L.X.); (Y.C.); (L.Z.); (H.G.); (J.L.)
| | - Yi Ma
- Animal Husbandry Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (T.F.); (Z.D.); (L.X.); (Y.C.); (L.Z.); (H.G.); (J.L.)
| |
Collapse
|
9
|
Ninausz N, Fehér P, Csányi E, Heltai M, Szabó L, Barta E, Kemenszky P, Sándor G, Jánoska F, Horváth M, Kusza S, Frank K, Varga L, Stéger V. White and other fur colourations and hybridization in golden jackals (Canis aureus) in the Carpathian basin. Sci Rep 2023; 13:21969. [PMID: 38082037 PMCID: PMC10713657 DOI: 10.1038/s41598-023-49265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
The golden jackal (Canis aureus) is a reoccurring species in the centre of the Carpathian basin, in Hungary. In total, 31 golden jackal tissue samples were collected, from 8 white-coated, 2 black-coated and one mottled animal across Hungary. Sequences and fragment length polymorphisms were studied for white colour (MC1R), and for black coat colouration (CBD103). In each white animal, the most widespread mutation causing white fur colour in dogs in homozygous form was detected. Three animals were found to carry the mutation in heterozygous form. The two black golden jackals were heterozygous for the 3 bp deletion in CBD103 that mutation for black coat colouration in dogs, and one of them also carried the mutation causing white fur. None of the white animals showed signs of hybridization, but both the black and the mottled coloured individuals were found to be hybrids based on genetic testing. Kinship was found three times, twice between white animals, and once between a white animal and an agouti animal carrying the mutation of white coat. Our results confirm the findings that golden jackal-dog hybrids may occur without human intervention, and the detected mutation causing white fur colour in golden jackals could possibly be due to an early hybridization event.
Collapse
Affiliation(s)
- Nóra Ninausz
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Péter Fehér
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Erika Csányi
- Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Miklós Heltai
- Department of Wildlife Biology and Management, Institute of Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - László Szabó
- Department of Wildlife Biology and Management, Institute of Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Endre Barta
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Gyula Sándor
- Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Ferenc Jánoska
- Faculty of Forestry, University of Sopron, Sopron, Hungary
| | | | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | | | - László Varga
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Viktor Stéger
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.
| |
Collapse
|
10
|
Wei J, Brophy B, Cole SA, Leath S, Oback B, Boch J, Wells DN, Laible G. Production of light-coloured, low heat-absorbing Holstein Friesian cattle by precise embryo-mediated genome editing. Reprod Fertil Dev 2023; 36:112-123. [PMID: 38064192 DOI: 10.1071/rd23163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
CONTEXT Genome editing enables the introduction of beneficial sequence variants into the genomes of animals with high genetic merit in a single generation. This can be achieved by introducing variants into primary cells followed by producing a live animal from these cells by somatic cell nuclear transfer cloning. The latter step is associated with low efficiencies and developmental problems due to incorrect reprogramming of the donor cells, causing animal welfare concerns. Direct editing of fertilised one-cell embryos could circumvent this issue and might better integrate with genetic improvement strategies implemented by the industry. METHODS In vitro fertilised zygotes were injected with TALEN editors and repair template to introduce a known coat colour dilution mutation in the PMEL gene. Embryo biopsies of injected embryos were screened by polymerase chain reaction and sequencing for intended biallelic edits before transferring verified embryos into recipients for development to term. Calves were genotyped and their coats scanned with visible and hyperspectral cameras to assess thermal energy absorption. KEY RESULTS Multiple non-mosaic calves with precision edited genotypes were produced, including calves from high genetic merit parents. Compared to controls, the edited calves showed a strong coat colour dilution which was associated with lower thermal energy absorbance. CONCLUSIONS Although biopsy screening was not absolutely accurate, non-mosaic, precisely edited calves can be readily produced by embryo-mediated editing. The lighter coat colouring caused by the PMEL mutation can lower radiative heat gain which might help to reduce heat stress. IMPLICATIONS The study validates putative causative sequence variants to rapidly adapt grazing cattle to changing environmental conditions.
Collapse
Affiliation(s)
- Jingwei Wei
- Animal Biotechnology, Ruakura Research Centre, AgResearch, Hamilton, New Zealand
| | - Brigid Brophy
- Animal Biotechnology, Ruakura Research Centre, AgResearch, Hamilton, New Zealand
| | - Sally-Ann Cole
- Animal Biotechnology, Ruakura Research Centre, AgResearch, Hamilton, New Zealand
| | - Shane Leath
- Animal Biotechnology, Ruakura Research Centre, AgResearch, Hamilton, New Zealand
| | - Björn Oback
- Animal Biotechnology, Ruakura Research Centre, AgResearch, Hamilton, New Zealand; and School of Sciences, University of Waikato, Hamilton, New Zealand; and Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - David N Wells
- Animal Biotechnology, Ruakura Research Centre, AgResearch, Hamilton, New Zealand
| | - Götz Laible
- Animal Biotechnology, Ruakura Research Centre, AgResearch, Hamilton, New Zealand; and Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Kawahara R, Usami T, Arakawa S, Kamo H, Suzuki T, Komatsu R, Hara H, Niwa Y, Shimizu E, Dohmae N, Shimizu S, Simizu S. Biogenesis of fibrils requires C-mannosylation of PMEL. FEBS J 2023; 290:5373-5394. [PMID: 37552474 DOI: 10.1111/febs.16927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Premelanosome protein (PMEL), a melanocyte-specific glycoprotein, has an essential role in melanosome maturation, assembling amyloid fibrils for melanin deposition. PMEL undergoes several post-translational modifications, including N- and O-glycosylations, which are associated with proper melanosome development. C-mannosylation is a rare type of protein glycosylation at a tryptophan residue that might regulate the secretion and localization of proteins. PMEL has one putative C-mannosylation site in its core amyloid fragment (CAF); however, there is no report focusing on C-mannosylation of PMEL. To investigate this, we expressed recombinant PMEL in SK-MEL-28 human melanoma cells and purified the protein. Mass spectrometry analyses demonstrated that human PMEL is C-mannosylated at multiple tryptophan residues in its CAF and N-terminal fragment (NTF). In addition to the W153 or W156 residue (CAF), which lies in the consensus sequence for C-mannosylation, the W104 residue (NTF) was C-mannosylated without the consensus sequence. To determine the effects of the modifications, we deleted the PMEL gene by using CRISPR/Cas9 technology and re-expressed wild-type or C-mannosylation-defective mutants of PMEL, in which the C-mannosylated tryptophan was replaced with a phenylalanine residue (WF mutation), in SK-MEL-28 cells. Importantly, fibril-containing melanosomes were significantly decreased in W104F mutant PMEL-re-expressing cells compared with wild-type PMEL, observed using transmission electron microscopy. Furthermore, western blot and immunofluorescence analysis suggested that the W104F mutation may cause mild endoplasmic reticulumretention, possibly associated with early misfolding, and lysosomal misaggregation, thus reducing functional fibril formation. Our results demonstrate that C-mannosylation of PMEL is required for proper melanosome development by regulating PMEL-derived fibril formation.
Collapse
Affiliation(s)
- Ryota Kawahara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Tomoko Usami
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Japan
- Research Core, Institute of Research, Tokyo Medical and Dental University, Japan
| | - Hiroki Kamo
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Ryosuke Komatsu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Hiroyuki Hara
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Yuki Niwa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Erina Shimizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
12
|
Bell SM, Evans JM, Greif EA, Tsai KL, Friedenberg SG, Clark LA. GWAS using low-pass whole genome sequence reveals a novel locus in canine congenital idiopathic megaesophagus. Mamm Genome 2023; 34:464-472. [PMID: 37041421 PMCID: PMC10600401 DOI: 10.1007/s00335-023-09991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023]
Abstract
Congenital idiopathic megaesophagus (CIM) is a gastrointestinal disorder of dogs wherein the esophagus is dilated and swallowing activity is reduced, causing regurgitation of ingesta. Affected individuals experience weight loss and malnourishment and are at risk for aspiration pneumonia, intussusception, and euthanasia. Great Danes have among the highest incidences of CIM across dog breeds, suggesting a genetic predisposition. We generated low-pass sequencing data for 83 Great Danes and used variant calls to impute missing whole genome single-nucleotide variants (SNVs) for each individual based on haplotypes phased from 624 high-coverage dog genomes, including 21 Great Danes. We validated the utility of our imputed data set for genome-wide association studies (GWASs) by mapping loci known to underlie coat phenotypes with simple and complex inheritance patterns. We conducted a GWAS for CIM with 2,010,300 SNVs, identifying a novel locus on canine chromosome 1 (P-val = 2.76 × 10-10). Associated SNVs are intergenic or intronic and are found in two clusters across a 1.7-Mb region. Inspection of coding regions in high-coverage genomes from affected Great Danes did not reveal candidate causal variants, suggesting that regulatory variants underlie CIM. Further studies are necessary to assess the role of these non-coding variants.
Collapse
Affiliation(s)
- Sarah M Bell
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Jacquelyn M Evans
- College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Elizabeth A Greif
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Kate L Tsai
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
| | - Leigh Anne Clark
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.
| |
Collapse
|
13
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
14
|
Li Z, Wang Z, Chen Z, Voegeli H, Lichtman JH, Smith P, Liu J, DeWan AT, Hoh J. Systematically identifying genetic signatures including novel SNP-clusters, nonsense variants, frame-shift INDELs, and long STR expansions that potentially link to unknown phenotypes existing in dog breeds. BMC Genomics 2023; 24:302. [PMID: 37277710 DOI: 10.1186/s12864-023-09390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND In light of previous studies that profiled breed-specific traits or used genome-wide association studies to refine loci associated with characteristic morphological features in dogs, the field has gained tremendous genetic insights for known dog traits observed among breeds. Here we aim to address the question from a reserve perspective: whether there are breed-specific genotypes that may underlie currently unknown phenotypes. This study provides a complete set of breed-specific genetic signatures (BSGS). Several novel BSGS with significant protein-altering effects were highlighted and validated. RESULTS Using the next generation whole-genome sequencing technology coupled with unsupervised machine learning for pattern recognitions, we constructed and analyzed a high-resolution sequence map for 76 breeds of 412 dogs. Genomic structures including novel single nucleotide polymorphisms (SNPs), SNP clusters, insertions, deletions (INDELs) and short tandem repeats (STRs) were uncovered mutually exclusively among breeds. We also partially validated some novel nonsense variants by Sanger sequencing with additional dogs. Four novel nonsense BSGS were found in the Bernese Mountain Dog, Samoyed, Bull Terrier, and Basset Hound, respectively. Four INDELs resulting in either frame-shift or codon disruptions were found in the Norwich Terrier, Airedale Terrier, Chow Chow and Bernese Mountain Dog, respectively. A total of 15 genomic regions containing three types of BSGS (SNP-clusters, INDELs and STRs) were identified in the Akita, Alaskan Malamute, Chow Chow, Field Spaniel, Keeshond, Shetland Sheepdog and Sussex Spaniel, in which Keeshond and Sussex Spaniel each carried one amino-acid changing BSGS in such regions. CONCLUSION Given the strong relationship between human and dog breed-specific traits, this study might be of considerable interest to researchers and all. Novel genetic signatures that can differentiate dog breeds were uncovered. Several functional genetic signatures might indicate potentially breed-specific unknown phenotypic traits or disease predispositions. These results open the door for further investigations. Importantly, the computational tools we developed can be applied to any dog breeds as well as other species. This study will stimulate new thinking, as the results of breed-specific genetic signatures may offer an overarching relevance of the animal models to human health and disease.
Collapse
Affiliation(s)
- Zicheng Li
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA.
| | - Zuoheng Wang
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Zhiyuan Chen
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Heidi Voegeli
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Judith H Lichtman
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Peter Smith
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Ju Liu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Andrew T DeWan
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA
- Center for Perinatal Pediatric and Environmental Epidemiology, Yale University, New Haven, CT, 06510, USA
| | - Josephine Hoh
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA.
- Department of Ophthalmology and Visual Science, School of Medicine, Yale University, New Haven, CT, 06510, USA.
- Department of Applied Mathematics, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
15
|
Heinrich J, Berger C, Berger B, Hecht W, Phillips C, Parson W. The LASSIE MPS panel: Predicting externally visible traits in dogs for forensic purposes. Forensic Sci Int Genet 2023; 66:102893. [PMID: 37290253 DOI: 10.1016/j.fsigen.2023.102893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Predicting the outward appearance of dogs via their DNA, also known as Canine DNA Phenotyping, is a young, emerging field of research in forensic genetics. The few previous studies published in this respect were restricted to the consecutive analysis of single DNA markers, a process that is time- and sample-consuming and therefore not a viable option for limited forensic specimens. Here, we report on the development and evaluation of a Massively Parallel Sequencing (MPS) based molecular genetic assay, the LASSIE MPS Panel. This panel aims to predict externally visible as well as skeletal traits, which include coat color, coat pattern, coat structure, tail morphology, skull shape, ear shape, eye color and body size from DNA using 44 genetic markers in a single molecular genetic assay. A biostatistical naïve Bayes classification approach was applied to identify the most informative marker combinations for predicting phenotypes. Overall, the predictive performance was characterized by a very high classification success for some of the trait categories, and high to moderate success for others. The performance of the developed predictive framework was further evaluated using blind samples from three randomly selected dog individuals, whose appearance was well predicted.
Collapse
Affiliation(s)
- Josephin Heinrich
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Cordula Berger
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Burkhard Berger
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Hecht
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christopher Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
16
|
Flack N, Drown M, Walls C, Pratte J, McLain A, Faulk C. Chromosome-level, nanopore-only genome and allele-specific DNA methylation of Pallas's cat, Otocolobus manul. NAR Genom Bioinform 2023; 5:lqad033. [PMID: 37025970 PMCID: PMC10071556 DOI: 10.1093/nargab/lqad033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Pallas's cat, or the manul cat (Otocolobus manul), is a small felid native to the grasslands and steppes of central Asia. Population strongholds in Mongolia and China face growing challenges from climate change, habitat fragmentation, poaching, and other sources. These threats, combined with O. manul's zoo collection popularity and value in evolutionary biology, necessitate improvement of species genomic resources. We used standalone nanopore sequencing to assemble a 2.5 Gb, 61-contig nuclear assembly and 17097 bp mitogenome for O. manul. The primary nuclear assembly had 56× sequencing coverage, a contig N50 of 118 Mb, and a 94.7% BUSCO completeness score for Carnivora-specific genes. High genome collinearity within Felidae permitted alignment-based scaffolding onto the fishing cat (Prionailurus viverrinus) reference genome. Manul contigs spanned all 19 felid chromosomes with an inferred total gap length of less than 400 kilobases. Modified basecalling and variant phasing produced an alternate pseudohaplotype assembly and allele-specific DNA methylation calls; 61 differentially methylated regions were identified between haplotypes. Nearest features included classical imprinted genes, non-coding RNAs, and putative novel imprinted loci. The assembled mitogenome successfully resolved existing discordance between Felinae nuclear and mtDNA phylogenies. All assembly drafts were generated from 158 Gb of sequence using seven minION flow cells.
Collapse
Affiliation(s)
- Nicole Flack
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Melissa Drown
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Carrie Walls
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jay Pratte
- Bloomington Parks and Recreation, Miller Park Zoo, Bloomington, IL 61701, USA
| | - Adam McLain
- Department of Biology and Chemistry, SUNY Polytechnic Institute, Utica, NY 13502, USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
17
|
Leeb T, Bannasch D, Schoenebeck JJ. Identification of Genetic Risk Factors for Monogenic and Complex Canine Diseases. Annu Rev Anim Biosci 2023; 11:183-205. [PMID: 36322969 DOI: 10.1146/annurev-animal-050622-055534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Advances in DNA sequencing and other technologies have greatly facilitated the identification of genetic risk factors for inherited diseases in dogs. We review recent technological developments based on selected examples from canine disease genetics. The identification of disease-causing variants in dogs with monogenic diseases may become a widely employed diagnostic approach in clinical veterinary medicine in the not-too-distant future. Diseases with complex modes of inheritance continue to pose challenges to researchers but have also become much more tangible than in the past. In addition to strategies for identifying genetic risk factors, we provide some thoughts on the interpretation of sequence variants that are largely inspired by developments in human clinical genetics.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland;
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California, Davis, California, USA;
| | - Jeffrey J Schoenebeck
- The Roslin Institute and Royal (Dick) School for Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom;
| |
Collapse
|
18
|
AlAbdi L, Alshammari M, Helaby R, Khan AO, Alkuraya FS. PMEL is mutated in oculocutaneous albinism. Hum Genet 2023; 142:139-144. [PMID: 36166100 DOI: 10.1007/s00439-022-02489-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/17/2022] [Indexed: 01/18/2023]
Abstract
Oculocutaneous albinism (OCA) is a group of Mendelian disorders characterized by hypopigmentation of skin, hair and pigmented ocular structures. While much of the genetic heterogeneity of OCA has been resolved, many patients still lack a molecular diagnosis following exome sequencing. Here, we report a consanguineous family in which the index patient presented with OCA and Hirschsprung disease but tested negative for known genetic causes of OCA. Instead, he was found to have a homozygous presumptive loss of function variant in PMEL. PMEL encodes a scaffolding protein that is essential for the normal maturation of melanosomes and normal deposition of the melanin pigment therein. Numerous PMEL vertebrate ortholog mutants have been reported and all were characterized by conspicuous pigmentary abnormalities. We suggest that the patient we report is the first human equivalent of PMEL loss of function.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Muneera Alshammari
- Pediatric Department, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Rana Helaby
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Arif O Khan
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
19
|
Kosushkin SA, Ustyantsev IG, Borodulina OR, Vassetzky NS, Kramerov DA. Tail Wags Dog’s SINE: Retropositional Mechanisms of Can SINE Depend on Its A-Tail Structure. BIOLOGY 2022; 11:biology11101403. [PMID: 36290307 PMCID: PMC9599045 DOI: 10.3390/biology11101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary The genomes of higher organisms including humans are invaded by millions of repetitive elements (transposons), which can sometimes be deleterious or beneficial for hosts. Many aspects of the mechanisms underlying the expansion of transposons in the genomes remain unclear. Short retrotransposons (SINEs) are one of the most abundant classes of genomic repeats. Their amplification relies on two major processes: transcription and reverse transcription. Here, short retrotransposons of dogs and other canids called Can SINE were analyzed. Their amplification was extraordinarily active in the wolf and, particularly, dog breeds relative to other canids. We also studied a variation of their transcription mechanism involving the polyadenylation of transcripts. An analysis of specific signals involved in this process allowed us to conclude that Can SINEs could alternate amplification with and without polyadenylation in their evolution. Understanding the mechanisms of transposon replication can shed light on the mechanisms of genome function. Abstract SINEs, non-autonomous short retrotransposons, are widespread in mammalian genomes. Their transcripts are generated by RNA polymerase III (pol III). Transcripts of certain SINEs can be polyadenylated, which requires polyadenylation and pol III termination signals in their sequences. Our sequence analysis divided Can SINEs in canids into four subfamilies, older a1 and a2 and younger b1 and b2. Can_b2 and to a lesser extent Can_b1 remained retrotranspositionally active, while the amplification of Can_a1 and Can_a2 ceased long ago. An extraordinarily high Can amplification was revealed in different dog breeds. Functional polyadenylation signals were analyzed in Can subfamilies, particularly in fractions of recently amplified, i.e., active copies. The transcription of various Can constructs transfected into HeLa cells proposed AATAAA and (TC)n as functional polyadenylation signals. Our analysis indicates that older Can subfamilies (a1, a2, and b1) with an active transcription terminator were amplified by the T+ mechanism (with polyadenylation of pol III transcripts). In the currently active Can_b2 subfamily, the amplification mechanisms with (T+) and without the polyadenylation of pol III transcripts (T−) irregularly alternate. The active transcription terminator tends to shorten, which renders it nonfunctional and favors a switch to the T− retrotransposition. The activity of a truncated terminator is occasionally restored by its elongation, which rehabilitates the T+ retrotransposition for a particular SINE copy.
Collapse
|
20
|
Liu F, Sun F, Kuang GQ, Wang L, Yue GH. The Insertion in the 3' UTR of Pmel17 Is the Causal Variant for Golden Skin Color in Tilapia. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:566-573. [PMID: 35416601 DOI: 10.1007/s10126-022-10125-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Understanding of the relationships between genotypes and phenotypes is a central problem in biology. Although teleosts have colorful phenotypes, not much is known about their underlying mechanisms. Our previous study showed that golden skin color in Mozambique tilapia was mapped in the major locus containing the Pmel gene, and an insertion in 3' UTR of Pmel17 was fully correlated with the golden color. However, the molecular mechanism of how Pmel17 determines the golden skin color is unknown. In this study, knockout of Pmel17 with CRISPR/Cas9 in blackish tilapias resulted in golden coloration, and rescue of Pmel17 in golden tilapias recovered the wild-type blackish color, indicating that Pmel17 is the gene determining the golden and blackish color. Functional analysis in vitro showed that the insertion in the 3' UTR of Pmel17 reduced the transcripts of Pmel17. Our data supplies more evidence to support that Pmel17 is the gene for blackish and golden colors, and highlights that the insertion in the 3' UTR of Pmel17 is the causative mutation for the golden coloration.
Collapse
Affiliation(s)
- Feng Liu
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- Shanghai Fisheries Institute, 265 Jiamusi Road, Shanghai, 200433, China
| | - Fei Sun
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Gang Qiao Kuang
- Department of Fisheries, Southwestern University, Rongchang Campus, 160 Xueyuan Road, Rongchang, Chongqing, 402460, China
| | - Le Wang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Gen Hua Yue
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Queenstown, 117543, Singapore.
| |
Collapse
|
21
|
Yang L, Wei F, Zhan X, Fan H, Zhao P, Huang G, Chang J, Lei Y, Hu Y. Evolutionary conservation genomics reveals recent speciation and local adaptation in threatened takins. Mol Biol Evol 2022; 39:6590449. [PMID: 35599233 PMCID: PMC9174980 DOI: 10.1093/molbev/msac111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Incorrect species delimitation will lead to inappropriate conservation decisions, especially for threatened species. The takin (Budorcas taxicolor) is a large artiodactyl endemic to the Himalayan–Hengduan–Qinling Mountains and is well known for its threatened status and peculiar appearance. However, the speciation, intraspecies taxonomy, evolutionary history, and adaptive evolution of this species still remain unclear, which greatly hampers its scientific conservation. Here, we de novo assembled a high-quality chromosome-level genome of takin and resequenced the genomes of 75 wild takins. Phylogenomics revealed that takin was positioned at the root of Caprinae. Population genomics based on the autosome, X chromosome, and Y chromosome SNPs and mitochondrial genomes consistently revealed the existence of two phylogenetic species and recent speciation in takins: the Himalayan takin (B. taxicolor) and the Chinese takin (B. tibetana), with the support of morphological evidence. Two genetically divergent subspecies were identified in both takin species, rejecting three previously proposed taxonomical viewpoints. Furthermore, their distribution boundaries were determined, suggesting that large rivers play important roles in shaping the genetic partition. Compared with the other subspecies, the Qinling subspecies presented the lowest genomic diversity, higher linkage disequilibrium, inbreeding, and genetic load, thus is in urgent need of genetic management and protection. Moreover, coat color gene (PMEL) variation may be responsible for the adaptive coat color difference between the two species following Gloger’s rule. Our findings provide novel insights into the recent speciation, local adaptation, scientific conservation of takins, and biogeography of the Himalaya–Hengduan biodiversity hotspot.
Collapse
Affiliation(s)
- Lin Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Xiangjiang Zhan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Huizhong Fan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengpeng Zhao
- Shaanxi (Louguantai) Rescue and Breeding Center for Rare Wildlife, Xi’an, Shaanxi, China
| | - Guangping Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yinghu Lei
- Shaanxi (Louguantai) Rescue and Breeding Center for Rare Wildlife, Xi’an, Shaanxi, China
| | - Yibo Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
22
|
Jara E, Peñagaricano F, Armstrong E, Menezes C, Tardiz L, Rodons G, Iriarte A. Identification of Long Noncoding RNAs Involved in Eyelid Pigmentation of Hereford Cattle. Front Genet 2022; 13:864567. [PMID: 35601493 PMCID: PMC9114348 DOI: 10.3389/fgene.2022.864567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/20/2022] [Indexed: 12/05/2022] Open
Abstract
Several ocular pathologies in cattle, such as ocular squamous cell carcinoma and infectious keratoconjunctivitis, have been associated with low pigmentation of the eyelids. The main objective of this study was to analyze the transcriptome of eyelid skin in Hereford cattle using strand-specific RNA sequencing technology to characterize and identify long noncoding RNAs (lncRNAs). We compared the expression of lncRNAs between pigmented and unpigmented eyelids and analyzed the interaction of lncRNAs and putative target genes to reveal the genetic basis underlying eyelid pigmentation in cattle. We predicted 4,937 putative lncRNAs mapped to the bovine reference genome, enriching the catalog of lncRNAs in Bos taurus. We found 27 differentially expressed lncRNAs between pigmented and unpigmented eyelids, suggesting their involvement in eyelid pigmentation. In addition, we revealed potential links between some significant differentially expressed lncRNAs and target mRNAs involved in the immune response and pigmentation. Overall, this study expands the catalog of lncRNAs in cattle and contributes to a better understanding of the biology of eyelid pigmentation.
Collapse
Affiliation(s)
- Eugenio Jara
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Eileen Armstrong
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Claudia Menezes
- Laboratorio de Endocrinología y Metabolismo Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Lucía Tardiz
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Gastón Rodons
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
- *Correspondence: Andrés Iriarte,
| |
Collapse
|
23
|
Morrill K, Hekman J, Li X, McClure J, Logan B, Goodman L, Gao M, Dong Y, Alonso M, Carmichael E, Snyder-Mackler N, Alonso J, Noh HJ, Johnson J, Koltookian M, Lieu C, Megquier K, Swofford R, Turner-Maier J, White ME, Weng Z, Colubri A, Genereux DP, Lord KA, Karlsson EK. Ancestry-inclusive dog genomics challenges popular breed stereotypes. Science 2022; 376:eabk0639. [PMID: 35482869 DOI: 10.1126/science.abk0639] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Behavioral genetics in dogs has focused on modern breeds, which are isolated subgroups with distinctive physical and, purportedly, behavioral characteristics. We interrogated breed stereotypes by surveying owners of 18,385 purebred and mixed-breed dogs and genotyping 2155 dogs. Most behavioral traits are heritable [heritability (h2) > 25%], and admixture patterns in mixed-breed dogs reveal breed propensities. Breed explains just 9% of behavioral variation in individuals. Genome-wide association analyses identify 11 loci that are significantly associated with behavior, and characteristic breed behaviors exhibit genetic complexity. Behavioral loci are not unusually differentiated in breeds, but breed propensities align, albeit weakly, with ancestral function. We propose that behaviors perceived as characteristic of modern breeds derive from thousands of years of polygenic adaptation that predates breed formation, with modern breeds distinguished primarily by aesthetic traits.
Collapse
Affiliation(s)
- Kathleen Morrill
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jessica Hekman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xue Li
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jesse McClure
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Brittney Logan
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Linda Goodman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Fauna Bio Inc., Emeryville, CA 94608, USA
| | - Mingshi Gao
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Yinan Dong
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marjie Alonso
- The International Association of Animal Behavior Consultants, Cranberry Township, PA 16066, USA.,IAABC Foundation, Cranberry Township, PA 16066, USA
| | - Elena Carmichael
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Rice University, Houston, TX 77005, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85251, USA.,School for Human Evolution and Social Change, Arizona State University, Tempe, AZ 85251, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85251, USA
| | - Jacob Alonso
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hyun Ji Noh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Charlie Lieu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Darwin's Ark Foundation, Seattle, WA 98026, USA
| | - Kate Megquier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Michelle E White
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhiping Weng
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Andrés Colubri
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Kathryn A Lord
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Darwin's Ark Foundation, Seattle, WA 98026, USA.,Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
24
|
|
25
|
Laible G, Cole SA, Brophy B, Wei J, Leath S, Jivanji S, Littlejohn MD, Wells DN. Holstein Friesian dairy cattle edited for diluted coat color as a potential adaptation to climate change. BMC Genomics 2021; 22:856. [PMID: 34836496 PMCID: PMC8626976 DOI: 10.1186/s12864-021-08175-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND High-producing Holstein Friesian dairy cattle have a characteristic black and white coat, often with large proportions of black. Compared to a light coat color, black absorbs more solar radiation which is a contributing factor to heat stress in cattle. To better adapt dairy cattle to rapidly warming climates, we aimed to lighten their coat color by genome editing. RESULTS Using gRNA/Cas9-mediated editing, we introduced a three bp deletion in the pre-melanosomal protein 17 gene (PMEL) proposed as causative variant for the semi-dominant color dilution phenotype observed in Galloway and Highland cattle. Calves generated from cells with homozygous edits revealed a strong color dilution effect. Instead of the characteristic black and white markings of control calves generated from unedited cells, the edited calves displayed a novel grey and white coat pattern. CONCLUSION This, for the first time, verified the causative nature of the PMEL mutation for diluting the black coat color in cattle. Although only one of the calves was healthy at birth and later succumbed to a naval infection, the study showed the feasibility of generating such edited animals with the possibility to dissect the effects of the introgressed edit and other interfering allelic variants that might exist in individual cattle and accurately determine the impact of only the three bp change.
Collapse
Affiliation(s)
- G Laible
- AgResearch, Ruakura Research Centre, Hamilton, 3240, New Zealand.
- School of Medical Sciences, University of Auckland, Auckland, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| | - S-A Cole
- AgResearch, Ruakura Research Centre, Hamilton, 3240, New Zealand
| | - B Brophy
- AgResearch, Ruakura Research Centre, Hamilton, 3240, New Zealand
| | - J Wei
- AgResearch, Ruakura Research Centre, Hamilton, 3240, New Zealand
| | - S Leath
- AgResearch, Ruakura Research Centre, Hamilton, 3240, New Zealand
| | - S Jivanji
- Massey University Manawatu, Palmerston North, New Zealand
| | - M D Littlejohn
- Massey University Manawatu, Palmerston North, New Zealand
- Livestock Improvement Corporation, Newstead, Hamilton, New Zealand
| | - D N Wells
- AgResearch, Ruakura Research Centre, Hamilton, 3240, New Zealand
| |
Collapse
|
26
|
Brancalion L, Haase B, Wade CM. Canine coat pigmentation genetics: a review. Anim Genet 2021; 53:3-34. [PMID: 34751460 DOI: 10.1111/age.13154] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022]
Abstract
Our understanding of canine coat colour genetics and the associated health implications is developing rapidly. To date, there are 15 genes with known roles in canine coat colour phenotypes. Many coat phenotypes result from complex and/or epistatic genetic interactions among variants within and between loci, some of which remain unidentified. Some genes involved in canine pigmentation have been linked to aural, visual and neurological impairments. Consequently, coat pigmentation in the domestic dog retains considerable ethical and economic interest. In this paper we discuss coat colour phenotypes in the domestic dog, the genes and variants responsible for these phenotypes and any proven coat colour-associated health effects.
Collapse
Affiliation(s)
- L Brancalion
- Faculty of Science, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - B Haase
- Faculty of Science, School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - C M Wade
- Faculty of Science, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
27
|
Grützner N, Heilmann RM, Tress U, Peters IR, Suchodolski JS, Steiner JM. Genomic association and further characterisation of faecal immunoglobulin A deficiency in German Shepherd dogs. Vet Med Sci 2021; 7:2144-2155. [PMID: 34390535 PMCID: PMC8604126 DOI: 10.1002/vms3.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Immunoglobulin A (IgA) deficiency, chronic enteropathies and exocrine pancreatic insufficiency (EPI) have a high prevalence in German Shepherd dogs (GSD). This prospective study determined the prevalence of faecal IgA deficiency (IgAD) in GSD and investigated several candidate genes and the canine genome for a region or locus co-segregating with IgAD in GSD. Faecal IgA concentrations were quantified and genomic DNA was extracted from 8 GSD with an undetectable faecal IgA (classified as IgAD) and 80 non-IgAD GSD. The canine minimal screening set II microsatellite markers were genotyped, with evidence of an association at p < 1.0 × 10-3 . Faecal IgA concentrations were also tested for an association with patient clinical and biochemical variables. RESULTS Allele frequencies observed using the candidate gene approach were not associated with faecal IgAD in GSD. In the genome-wide association study (GWAS), the microsatellite marker FH2361 on canine chromosome 33 approached statistical significance for a link with IgAD in GSD (p = 1.2 × 10-3 ). A subsequent GWAS in 11 GSD with EPI and 80 control GSD revealed a significant association between EPI and FH2361 (p = 8.2 × 10-4 ). CONCLUSIONS The lack of an association with the phenotype of faecal IgAD in GSD using the candidate gene approach and GWAS might suggests that faecal IgAD in GSD is a relative or transient state of deficiency. However, the prevalence of faecal IgAD in GSD appears to be low (<3%). The relationship between faecal IgAD, EPI and loci close to FH2361 on canine chromosome 33 in GSD warrants further investigation.
Collapse
Affiliation(s)
- Niels Grützner
- Gastrointestinal LaboratoryDepartment of Small Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
- Clinic for Swine and Small RuminantsForensic Medicine and Ambulatory ServiceUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Romy M. Heilmann
- Gastrointestinal LaboratoryDepartment of Small Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
- Department for Small AnimalsVeterinary Teaching HospitalCollege of Veterinary MedicineUniversity of LeipzigLeipzigSNGermany
| | - Ursula Tress
- Gastrointestinal LaboratoryDepartment of Small Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
- Small Animal Practice PommerhofPlaidtRLPGermany
| | - Iain R. Peters
- Department of Clinical Veterinary ScienceUniversity of BristolLangfordBristolUK
- Veterinary Pathology Group (VPG) ExeterVPG Synlab GroupExeterDevonUK
| | - Jan S. Suchodolski
- Gastrointestinal LaboratoryDepartment of Small Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Jörg M. Steiner
- Gastrointestinal LaboratoryDepartment of Small Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
28
|
Herb VM, Zehetner V, Blohm KO. Multiple Congenital Ocular Anomalies in a silver coat Missouri Fox Trotter stallion. Tierarztl Prax Ausg G Grosstiere Nutztiere 2021; 49:350-354. [PMID: 34666370 DOI: 10.1055/a-1581-4810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This is the first description of Multiple Congenital Ocular Anomalies (MCOA) in a silver coat Missouri Fox Trotter determined to be heterozygous for the Silver PMEL17 missense mutation associated with MCOA and a silver coat in other breeds. The stallion was treated for meningoencephalitis and bilateral uveitis of unknown origin. A complete ophthalmic examination and ocular ultrasonography were performed. As an incidental finding, the patient exhibited bilateral cystic lesions restricted to the temporal anterior uvea consistent with the Cyst phenotype and was genotyped heterozygous for the Silver mutation. Additionally, 4 other non-silver colored Missouri Fox Trotters were genotyped homozygous for the wild-type allele. Screening for PMEL17 mutation in Missouri Fox Trotters accompanied by ophthalmic phenotype characterization is recommended to determine the allelic frequency and facilitate informed breeding decisions since the silver coat color is particularly popular.
Collapse
Affiliation(s)
- Verena Maria Herb
- Department for Companion Animals and Horses, Ophthalmology Unit, University of Veterinary Medicine
| | - Verena Zehetner
- Department for Companion Animals and Horses, Equine Internal Medicine, University of Veterinary Medicine
| | - Klaas-Ole Blohm
- Department for Companion Animals and Horses, Ophthalmology Unit, University of Veterinary Medicine.,AniCura Tierärztliche Spezialisten Hamburg.,Tierarztpraxis Schönhoff
| |
Collapse
|
29
|
Cho E, Kim M, Manjula P, Cho SH, Seo D, Lee SS, Lee JH. A retroviral insertion in the tyrosinase ( TYR) gene is associated with the recessive white plumage color in the Yeonsan Ogye chicken. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:751-758. [PMID: 34447952 PMCID: PMC8367395 DOI: 10.5187/jast.2021.e71] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 01/16/2023]
Abstract
The recessive white (locus c) phenotype observed in chickens is associated with three alleles (recessive white c, albino ca , and red-eyed white cre ) and causative mutations in the tyrosinase (TYR) gene. The recessive white mutation (c) inhibits the transcription of TYR exon 5 due to a retroviral sequence insertion in intron 4. In this study, we genotyped and sequenced the insertion in TYR intron 4 to identify the mutation causing the unusual white plumage of Yeonsan Ogye chickens, which normally have black plumage. The white chickens had a homozygous recessive white genotype that matched the sequence of the recessive white type, and the inserted sequence exhibited 98% identity with the avian leukosis virus ev-1 sequence. In comparison, brindle and normal chickens had the homozygous color genotype, and their sequences were the same as the wild-type sequence, indicating that this phenotype is derived from other mutation(s). In conclusion, white chickens have a recessive white mutation allele. Since the size of the sample used in this study was limited, further research through securing additional samples to perform validation studies is necessary. Therefore, after validation studies, a selection system for conserving the phenotypic characteristics and genetic diversity of the population could be established if additional studies to elucidate specific phenotype-related genes in Yeonsan Ogye are performed.
Collapse
Affiliation(s)
- Eunjin Cho
- Department of Bio-Big Data, Chungnam National University, Daejeon 34134, Korea
| | - Minjun Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Korea
| | - Prabuddha Manjula
- Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Sung Hyun Cho
- Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Dongwon Seo
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Korea.,Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Seung-Sook Lee
- Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea.,Jisan Farm, Nonsan 32910, Korea
| | - Jun Heon Lee
- Department of Bio-Big Data, Chungnam National University, Daejeon 34134, Korea.,Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Korea.,Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
30
|
Ballif BC, Emerson LJ, Ramirez CJ, Carl CR, Sundin K, Flores-Smith H, Shaffer LG. The PMEL gene and merle (dapple) in the dachshund: cryptic, hidden, and mosaic variants demonstrate the need for genetic testing prior to breeding. Hum Genet 2021; 140:1581-1591. [PMID: 34370083 DOI: 10.1007/s00439-021-02330-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/31/2021] [Indexed: 11/26/2022]
Abstract
One of the most unique coat color patterns in the domestic dog is merle (also known as dapple in the dachshund breed), characterized by patches of normal pigmentation surrounded by diluted eumelanin pigment. In dogs, this striking variegated pattern is caused by an insertion of a SINE element into the PMEL gene. Differences in the length of the SINE insertion [due to a variable-length poly(A)-tail] has been associated with variation in the merle coat color and patterning. We previously performed a systematic evaluation of merle in 175 Australian shepherds and related breeds and correlated the length of the merle insertion variants with four broad phenotypic clusters designated as "cryptic", "atypical", "classic", and "harlequin" merle. In this study, we evaluated the SINE insertions in 140 dachshunds and identified the same major merle phenotypic clusters with only slight variation between breeds. Specifically, we identified numerous cases of true "hidden" merle in dachshunds with light/red (pheomelanin) coats with little to no black/brown pigment (eumelanin) and thus minimal or no observable merle phenotype. In addition, we identified somatic and gonadal mosaicism, with one dog having a large insertion in the harlequin size range of M281 that had no merle phenotype and unintentionally produced a double merle puppy with anophthalmia. The frequent identification of cryptic, hidden, and mosaic merle variants, which can be undetectable by phenotypic inspection, should be of particular concern to breeders and illustrates the critical need for genetic testing for merle prior to breeding to avoid producing dogs with serious health problems.
Collapse
Affiliation(s)
- Blake C Ballif
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., 220 E Rowan, Suite 220, Spokane, WA, 99207, USA.
| | | | - Christina J Ramirez
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., 220 E Rowan, Suite 220, Spokane, WA, 99207, USA
| | - Casey R Carl
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., 220 E Rowan, Suite 220, Spokane, WA, 99207, USA
| | - Kyle Sundin
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., 220 E Rowan, Suite 220, Spokane, WA, 99207, USA
| | - Helen Flores-Smith
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., 220 E Rowan, Suite 220, Spokane, WA, 99207, USA
| | - Lisa G Shaffer
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., 220 E Rowan, Suite 220, Spokane, WA, 99207, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
31
|
Cumer T, Boyer F, Pompanon F. Genome-Wide Detection of Structural Variations Reveals New Regions Associated with Domestication in Small Ruminants. Genome Biol Evol 2021; 13:evab165. [PMID: 34264322 PMCID: PMC8350358 DOI: 10.1093/gbe/evab165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 11/28/2022] Open
Abstract
During domestication processes, changes in selective pressures induce multiple phenotypical, physiological, and behavioral changes in target species. The rise of next-generation sequencing has provided a chance to study the genetics bases of these changes, most of the time based on single nucleotide polymorphisms (SNPs). However, several studies have highlighted the impact of structural variations (SVs) on individual fitness, particularly in domestic species. We aimed at unraveling the role of SVs during the domestication and later improvement of small ruminants by analyzing whole-genome sequences of 40 domestic sheep and 11 of their close wild relatives (Ovis orientalis), and 40 goats and 18 of their close wild relatives (Capra aegagrus). Using a combination of detection tools, we called 45,796 SVs in Ovis and 15,047 SVs in Capra genomes, including insertions, deletions, inversions, copy number variations, and chromosomal translocations. Most of these SVs were previously unreported in small ruminants. 69 and 45 SVs in sheep and goats, respectively, were in genomic regions with neighboring SNPs highly differentiated between wilds and domestics (i.e., putatively related to domestication). Among them, 25 and 20 SVs were close to or overlapping with genes related to physiological and morpho-anatomical traits linked with productivity (e.g., size, meat or milk quality, wool color), reproduction, or immunity. Finally, several of the SVs differentiated between wilds and domestics would not have been detected by screening only the differentiation of SNPs surrounding them, highlighting the complementarity of SVs and SNPs based approaches to detect signatures of selection.
Collapse
Affiliation(s)
- Tristan Cumer
- Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, LECA, Grenoble, France
| | - Frédéric Boyer
- Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, LECA, Grenoble, France
| | - François Pompanon
- Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
32
|
Berger C, Heinrich J, Berger B, Hecht W, Parson W. Towards Forensic DNA Phenotyping for Predicting Visible Traits in Dogs. Genes (Basel) 2021; 12:genes12060908. [PMID: 34208207 PMCID: PMC8230911 DOI: 10.3390/genes12060908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
The popularity of dogs as human companions explains why these pets regularly come into focus in forensic cases such as bite attacks or accidents. Canine evidence, e.g., dog hairs, can also act as a link between the victim and suspect in a crime case due to the close contact between dogs and their owners. In line with human DNA identification, dog individualization from crime scene evidence is mainly based on the analysis of short tandem repeat (STR) markers. However, when the DNA profile does not match a reference, additional information regarding the appearance of the dog may provide substantial intelligence value. Key features of the dog's appearance, such as the body size and coat colour are well-recognizable and easy to describe even to non-dog experts, including most investigating officers and eyewitnesses. Therefore, it is reasonable to complement eyewitnesses' testimonies with externally visible traits predicted from associated canine DNA samples. Here, the feasibility and suitability of canine DNA phenotyping is explored from scratch in the form of a proof of concept study. To predict the overall appearance of an unknown dog from its DNA as accurately as possible, the following six traits were chosen: (1) coat colour, (2) coat pattern, (3) coat structure, (4) body size, (5) ear shape, and (6) tail length. A total of 21 genetic markers known for high predicting values for these traits were selected from previously published datasets, comprising 15 SNPs and six INDELS. Three of them belonged to SINE insertions. The experiments were designed in three phases. In the first two stages, the performance of the markers was tested on DNA samples from dogs with well-documented physical characteristics from different breeds. The final blind test, including dogs with initially withheld appearance information, showed that the majority of the selected markers allowed to develop composite sketches, providing a realistic impression of the tested dogs. We regard this study as the first attempt to evaluate the possibilities and limitations of forensic canine DNA phenotyping.
Collapse
Affiliation(s)
- Cordula Berger
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.H.); (B.B.); (W.P.)
- Correspondence: ; Tel.: +43-512-9003-70640
| | - Josephin Heinrich
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.H.); (B.B.); (W.P.)
| | - Burkhard Berger
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.H.); (B.B.); (W.P.)
| | - Werner Hecht
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, 35390 Giessen, Germany;
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.H.); (B.B.); (W.P.)
- Forensic Science Program, The Pennsylvania State University, University Park, PA 16801, USA
| | | |
Collapse
|
33
|
Functional Domains and Evolutionary History of the PMEL and GPNMB Family Proteins. Molecules 2021; 26:molecules26123529. [PMID: 34207849 PMCID: PMC8273697 DOI: 10.3390/molecules26123529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
The ancient paralogs premelanosome protein (PMEL) and glycoprotein nonmetastatic melanoma protein B (GPNMB) have independently emerged as intriguing disease loci in recent years. Both proteins possess common functional domains and variants that cause a shared spectrum of overlapping phenotypes and disease associations: melanin-based pigmentation, cancer, neurodegenerative disease and glaucoma. Surprisingly, these proteins have yet to be shown to physically or genetically interact within the same cellular pathway. This juxtaposition inspired us to compare and contrast this family across a breadth of species to better understand the divergent evolutionary trajectories of two related, but distinct, genes. In this study, we investigated the evolutionary history of PMEL and GPNMB in clade-representative species and identified TMEM130 as the most ancient paralog of the family. By curating the functional domains in each paralog, we identified many commonalities dating back to the emergence of the gene family in basal metazoans. PMEL and GPNMB have gained functional domains since their divergence from TMEM130, including the core amyloid fragment (CAF) that is critical for the amyloid potential of PMEL. Additionally, the PMEL gene has acquired the enigmatic repeat domain (RPT), composed of a variable number of imperfect tandem repeats; this domain acts in an accessory role to control amyloid formation. Our analyses revealed the vast variability in sequence, length and repeat number in homologous RPT domains between craniates, even within the same taxonomic class. We hope that these analyses inspire further investigation into a gene family that is remarkable from the evolutionary, pathological and cell biology perspectives.
Collapse
|
34
|
Moravčíková N, Kasarda R, Židek R, Vostrý L, Vostrá-Vydrová H, Vašek J, Čílová D. Czechoslovakian Wolfdog Genomic Divergence from Its Ancestors Canis lupus, German Shepherd Dog, and Different Sheepdogs of European Origin. Genes (Basel) 2021; 12:832. [PMID: 34071464 PMCID: PMC8228135 DOI: 10.3390/genes12060832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 12/03/2022] Open
Abstract
This study focused on the genomic differences between the Czechoslovakian wolfdog (CWD) and its ancestors, the Grey wolf (GW) and German Shepherd dog. The Saarloos wolfdog and Belgian Shepherd dog were also included to study the level of GW genetics retained in the genome of domesticated breeds. The dataset consisted of 131 animals and 143,593 single nucleotide polymorphisms (SNPs). The effects of demographic history on the overall genome structure were determined by screening the distribution of the homozygous segments. The genetic variance distributed within and between groups was quantified by genetic distances, the FST index, and discriminant analysis of principal components. Fine-scale population stratification due to specific morphological and behavioural traits was assessed by principal component and factorial analyses. In the CWD, a demographic history effect was manifested mainly in a high genome-wide proportion of short homozygous segments corresponding to a historical load of inbreeding derived from founders. The observed proportion of long homozygous segments indicated that the inbreeding events shaped the CWD genome relatively recently compared to other groups. Even if there was a significant increase in genetic similarity among wolf-like breeds, they were genetically separated from each other. Moreover, this study showed that the CWD genome carries private alleles that are not found in either wolves or other dog breeds analysed in this study.
Collapse
Affiliation(s)
- Nina Moravčíková
- Department of Animal Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Radovan Kasarda
- Department of Animal Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Radoslav Židek
- Department of Food Hygiene and Safety, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
- NU3gen, Pažite 145/7, 010 09 Žilina, Slovakia
| | - Luboš Vostrý
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.V.); (J.V.); (D.Č.)
| | - Hana Vostrá-Vydrová
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Jakub Vašek
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.V.); (J.V.); (D.Č.)
| | - Daniela Čílová
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.V.); (J.V.); (D.Č.)
| |
Collapse
|
35
|
Slavney AJ, Kawakami T, Jensen MK, Nelson TC, Sams AJ, Boyko AR. Five genetic variants explain over 70% of hair coat pheomelanin intensity variation in purebred and mixed breed domestic dogs. PLoS One 2021; 16:e0250579. [PMID: 34043658 PMCID: PMC8158882 DOI: 10.1371/journal.pone.0250579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 11/19/2022] Open
Abstract
In mammals, the pigment molecule pheomelanin confers red and yellow color to hair, and the intensity of this coloration is caused by variation in the amount of pheomelanin. Domestic dogs exhibit a wide range of pheomelanin intensity, ranging from the white coat of the Samoyed to the deep red coat of the Irish Setter. While several genetic variants have been associated with specific coat intensity phenotypes in certain dog breeds, they do not explain the majority of phenotypic variation across breeds. In order to gain further insight into the extent of multigenicity and epistatic interactions underlying coat pheomelanin intensity in dogs, we leveraged a large dataset obtained via a direct-to-consumer canine genetic testing service. This consisted of genome-wide single nucleotide polymorphism (SNP) genotype data and owner-provided photos for 3,057 pheomelanic mixed breed and purebred dogs from 63 breeds and varieties spanning the full range of canine coat pheomelanin intensity. We first performed a genome-wide association study (GWAS) on 2,149 of these dogs to search for additional genetic variants that underlie intensity variation. GWAS identified five loci significantly associated with intensity, of which two (CFA15 29.8 Mb and CFA20 55.8 Mb) replicate previous findings and three (CFA2 74.7 Mb, CFA18 12.9 Mb, CFA21 10.9 Mb) have not previously been reported. In order to assess the combined predictive power of these loci across dog breeds, we used our GWAS data set to fit a linear model, which explained over 70% of variation in coat pheomelanin intensity in an independent validation dataset of 908 dogs. These results introduce three novel pheomelanin intensity loci, and further demonstrate the multigenic nature of coat pheomelanin intensity determination in domestic dogs.
Collapse
Affiliation(s)
- Andrea J. Slavney
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Takeshi Kawakami
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Meghan K. Jensen
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Thomas C. Nelson
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Aaron J. Sams
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Adam R. Boyko
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, United States of America
| |
Collapse
|
36
|
Identification of critical amino acid residues in the regulatory N-terminal domain of PMEL. Sci Rep 2021; 11:7730. [PMID: 33833328 PMCID: PMC8032716 DOI: 10.1038/s41598-021-87259-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 01/22/2023] Open
Abstract
The pigment cell-specific protein PMEL forms a functional amyloid matrix in melanosomes onto which the pigment melanin is deposited. The amyloid core consists of a short proteolytic fragment, which we have termed the core-amyloid fragment (CAF) and perhaps additional parts of the protein, such as the PKD domain. A highly O-glycosylated repeat (RPT) domain also derived from PMEL proteolysis associates with the amyloid and is necessary to establish the sheet-like morphology of the assemblies. Excluded from the aggregate is the regulatory N-terminus, which nevertheless must be linked in cis to the CAF in order to drive amyloid formation. The domain is then likely cleaved away immediately before, during, or immediately after the incorporation of a new CAF subunit into the nascent amyloid. We had previously identified a 21 amino acid long region, which mediates the regulatory activity of the N-terminus towards the CAF. However, many mutations in the respective segment caused misfolding and/or blocked PMEL export from the endoplasmic reticulum, leaving their phenotype hard to interpret. Here, we employ a saturating mutagenesis approach targeting the motif at single amino acid resolution. Our results confirm the critical nature of the PMEL N-terminal region and identify several residues essential for PMEL amyloidogenesis.
Collapse
|
37
|
Kimmel CB, Wind AL, Oliva W, Ahlquist SD, Walker C, Dowd J, Blanco-Sánchez B, Titus TA, Batzel P, Talbot JC, Postlethwait JH, Nichols JT. Transgene-mediated skeletal phenotypic variation in zebrafish. JOURNAL OF FISH BIOLOGY 2021; 98:956-970. [PMID: 32112658 PMCID: PMC7483860 DOI: 10.1111/jfb.14300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/13/2020] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
When considering relationships between genotype and phenotype we frequently ignore the fact that the genome of a typical animal, notably including that of a fish and a human, harbours a huge amount of foreign DNA. Such DNA, in the form of transposable elements, can affect genome function in a major way, and transgene biology needs to be included in our understanding of the genome. Here we examine an unexpected phenotypic effect of the chromosomally integrated transgene fli1a-F-hsp70l:Gal4VP16 that serves as a model for transgene function generally. We examine larval fras1 mutant zebrafish (Danio rerio). Gal4VP16 is a potent transcriptional activator that is already well known for toxicity and mediating unusual transcriptional effects. In the presence of the transgene, phenotypes in the neural crest-derived craniofacial skeleton, notably fusions and shape changes associated with loss of function fras1 mutations, are made more severe, as we quantify by scoring phenotypic penetrance, the fraction of mutants expressing the trait. A very interesting feature is that the enhancements are highly specific for fras1 mutant phenotypes, occurring in the apparent absence of more widespread changes. Except for the features due to the fras1 mutation, the transgene-bearing larvae appear generally healthy and to be developing normally. The transgene behaves as a genetic partial dominant: a single copy is sufficient for the enhancements, yet, for some traits, two copies may exert a stronger effect. We made new strains bearing independent insertions of the fli1a-F-hsp70l:Gal4VP16 transgene in new locations in the genome, and observed increased severities of the same phenotypes as observed for the original insertion. This finding suggests that sequences within the transgene, for example Gal4VP16, are responsible for the enhancements, rather than the effect on neighbouring host sequences (such as an insertional mutation). The specificity and biological action underlying the traits are subjects of considerable interest for further investigation, as we discuss. Our findings show that work with transgenes needs to be undertaken with caution and attention to detail.
Collapse
Affiliation(s)
| | | | - Whitney Oliva
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | - Charline Walker
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - John Dowd
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Bernardo Blanco-Sánchez
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
- Current address: Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | - Tom A. Titus
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jared C. Talbot
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | | | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
38
|
Kawakami T, Jensen MK, Slavney A, Deane PE, Milano A, Raghavan V, Ford B, Chu ET, Sams AJ, Boyko AR. R-locus for roaned coat is associated with a tandem duplication in an intronic region of USH2A in dogs and also contributes to Dalmatian spotting. PLoS One 2021; 16:e0248233. [PMID: 33755696 PMCID: PMC7987146 DOI: 10.1371/journal.pone.0248233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/22/2021] [Indexed: 11/18/2022] Open
Abstract
Structural variations (SVs) represent a large fraction of all genetic diversity, but how this genetic diversity is translated into phenotypic and organismal diversity is unclear. Explosive diversification of dog coat color and patterns after domestication can provide a unique opportunity to explore this question; however, the major obstacle is to efficiently collect a sufficient number of individuals with known phenotypes and genotypes of hundreds of thousands of markers. Using customer-provided information about coat color and patterns of dogs tested on a commercial canine genotyping platform, we identified a genomic region on chromosome 38 that is strongly associated with a mottled coat pattern (roaning) by genome-wide association study. We identified a putative causal variant in this region, an 11-kb tandem duplication (11,131,835–11,143,237) characterized by sequence read coverage and discordant reads of whole-genome sequence data, microarray probe intensity data, and a duplication-specific PCR assay. The tandem duplication is in an intronic region of usherin gene (USH2A), which was perfectly associated with roaning but absent in non-roaned dogs. We detected strong selection signals in this region characterized by reduced nucleotide diversity (π), increased runs of homozygosity, and extended haplotype homozygosity in Wirehaired Pointing Griffons and Australian Cattle Dogs (typically roaned breeds), as well as elevated genetic difference (FST) between Wirehaired Pointing Griffon (roaned) and Labrador Retriever (non-roaned). Surprisingly, all Dalmatians (N = 262) carried the duplication embedded in identical or similar haplotypes with roaned dogs, indicating this region as a shared target of selection during the breed’s formation. We propose that the Dalmatian’s unique spots were a derived coat pattern by establishing a novel epistatic interaction between roaning “R-locus” on chromosome 38 and an uncharacterized modifier locus. These results highlight the utility of consumer-oriented genotype and phenotype data in the discovery of genomic regions contributing to phenotypic diversity in dogs.
Collapse
Affiliation(s)
- Takeshi Kawakami
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
- * E-mail: (ARB); (TK)
| | - Meghan K. Jensen
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Andrea Slavney
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Petra E. Deane
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Ausra Milano
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Vandana Raghavan
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Brett Ford
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Erin T. Chu
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Aaron J. Sams
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Adam R. Boyko
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (ARB); (TK)
| |
Collapse
|
39
|
Halo JV, Pendleton AL, Shen F, Doucet AJ, Derrien T, Hitte C, Kirby LE, Myers B, Sliwerska E, Emery S, Moran JV, Boyko AR, Kidd JM. Long-read assembly of a Great Dane genome highlights the contribution of GC-rich sequence and mobile elements to canine genomes. Proc Natl Acad Sci U S A 2021; 118:e2016274118. [PMID: 33836575 PMCID: PMC7980453 DOI: 10.1073/pnas.2016274118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Technological advances have allowed improvements in genome reference sequence assemblies. Here, we combined long- and short-read sequence resources to assemble the genome of a female Great Dane dog. This assembly has improved continuity compared to the existing Boxer-derived (CanFam3.1) reference genome. Annotation of the Great Dane assembly identified 22,182 protein-coding gene models and 7,049 long noncoding RNAs, including 49 protein-coding genes not present in the CanFam3.1 reference. The Great Dane assembly spans the majority of sequence gaps in the CanFam3.1 reference and illustrates that 2,151 gaps overlap the transcription start site of a predicted protein-coding gene. Moreover, a subset of the resolved gaps, which have an 80.95% median GC content, localize to transcription start sites and recombination hotspots more often than expected by chance, suggesting the stable canine recombinational landscape has shaped genome architecture. Alignment of the Great Dane and CanFam3.1 assemblies identified 16,834 deletions and 15,621 insertions, as well as 2,665 deletions and 3,493 insertions located on secondary contigs. These structural variants are dominated by retrotransposon insertion/deletion polymorphisms and include 16,221 dimorphic canine short interspersed elements (SINECs) and 1,121 dimorphic long interspersed element-1 sequences (LINE-1_Cfs). Analysis of sequences flanking the 3' end of LINE-1_Cfs (i.e., LINE-1_Cf 3'-transductions) suggests multiple retrotransposition-competent LINE-1_Cfs segregate among dog populations. Consistent with this conclusion, we demonstrate that a canine LINE-1_Cf element with intact open reading frames can retrotranspose its own RNA and that of a SINEC_Cf consensus sequence in cultured human cells, implicating ongoing retrotransposon activity as a driver of canine genetic variation.
Collapse
Affiliation(s)
- Julia V Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Amanda L Pendleton
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Feichen Shen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Aurélien J Doucet
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Université Côte d'Azur, CNRS, INSERM, Institut de Recherche sur le Cancer et le Vieillissement de Nice, F-06100 Nice, France
| | - Thomas Derrien
- Université de Rennes 1, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, F-35000 Rennes, France
| | - Christophe Hitte
- Université de Rennes 1, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, F-35000 Rennes, France
| | - Laura E Kirby
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Bridget Myers
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Elzbieta Sliwerska
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Sarah Emery
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - John V Moran
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109;
- Department Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
40
|
Saraiva IQ, Delgado E. Congenital ocular malformations in dogs and cats: 123 cases. Vet Ophthalmol 2020; 23:964-978. [PMID: 33058381 DOI: 10.1111/vop.12836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/19/2020] [Accepted: 09/26/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Provide epidemiological data regarding the prevalence of congenital ocular malformations in dogs and cats. ANIMALS STUDIED A population of 32 974 dogs and 13 977 cats that presented for consultation at the veterinary teaching hospital. PROCEDURES Medical records from 2011 to 2018 were reviewed. A retrospective and prospective epidemiological clinical study addressing congenital ocular malformations was conducted. Signalment, medical history, reason for presentation, clinical findings, vision impairment, and treatment options were analyzed. RESULTS From the total of cases analyzed, 103 dogs (0.3%) and 20 cats (0.1%) met the inclusion criteria. The majority of dogs were mixed breed, the most common breed being the French Bulldog, while the majority of cats were European domestic shorthair. The median age of diagnosis was 12 months for dogs and 6 months for cats. Sex predisposition was not found. The most frequently identified abnormalities were as follows: congenital cataract (dogs: 31.1%; cats: 30.0%), microphthalmia (dogs: 35.0%, cats: 25.0%), and persistent pupillary membrane (dogs: 27.2%, cats: 40.0%). Some of the concurrently observed malformations were significantly associated. A statistically significant association was found between ocular dermoids and the French Bulldog breed (P < .001). CONCLUSIONS Even though congenital ocular malformations are uncommon, knowledge about their prevalence is important, since they can cause vision impairment or even blindness. Moreover, some human ocular disease phenotypes are similar to the ones presented by dogs and cats, so they can be used as models to investigate pathophysiology and therapeutic approaches.
Collapse
Affiliation(s)
- Inês Q Saraiva
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Esmeralda Delgado
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
41
|
Savel S, Sombé P. Are dogs with congenital hearing and/or vision impairments so different from sensory normal dogs? A survey of demographics, morphology, health, behaviour, communication, and activities. PLoS One 2020; 15:e0230651. [PMID: 32886662 PMCID: PMC7473589 DOI: 10.1371/journal.pone.0230651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/04/2020] [Indexed: 12/02/2022] Open
Abstract
The births of domestic dogs with pigment deletion and associated congenital hearing and/or vision impairments are increasing, as a result of mutations of certain genes expressing popular coat colour patterns (Merle, piebald, Irish spotting). The future of these dogs is often pessimistic (early euthanasia or placement in rescues/fosters, lack of interactions and activities for adults). These pessimistic scenarios result from popular assumptions predicting that dogs with congenital hearing/vision impairments exhibit severe Merle-related health troubles (cardiac, skeletal, neurological), impairment-related behavioural troubles (aggressiveness, anxiety), and poor capacities to communicate, to be trained, and to be engaged in leisure or work activities. However, there is no direct scientific testing, and hence no evidence or refutation, of these assumptions. We therefore addressed an online questionnaire to owners of 223 congenitally sensory impaired (23 vision impaired, 63 hearing impaired, 137 hearing and vision impaired) and 217 sensory normal dogs from various countries. The sensory normal cohort was matched in age, lifetime with owner, breed and sex with the sensory impaired cohort, and was used as a baseline. The questionnaire assessed demographics, morphology, sensory impairments, health and behavioural troubles, activities, and dog-owner communication. Most hearing and/or vision impaired dogs exhibited abnormal pigment deletion in their coat and irises. Vision impaired dogs additionally exhibited ophthalmic abnormalities typically related to Merle. The results are opposed to all above-listed assumptions, except for neurological troubles, which were more frequently reported in sensory impaired dogs. However, we suggest that this finding could be partially accounted for by a lack of diagnosis of breed-related drug sensitivity and impairment-related compulsive behaviours. Results about communication and activities are particularly optimistic. The need for future studies of numerous dogs from various breeds tested for Merle, piebald and medical-drug-resistance genes, and the beneficial effects that present and future research may have on the future of sensory impaired dogs, are discussed.
Collapse
Affiliation(s)
- Sophie Savel
- Aix Marseille University, CNRS, Centrale Marseille, LMA UMR 7031, Marseille, France
- * E-mail:
| | - Patty Sombé
- Non-profit organisation “Blanc Comme Neige”, Pont d’Ouilly, France
| |
Collapse
|
42
|
Abstract
The domestic dog, as a highly successful domestication model, is well known as a favored human companion. Exploring its domestication history should provide great insight into our understanding of the prehistoric development of human culture and productivity. Furthermore, investigation on the mechanisms underpinning the morphological and behavioral traits associated with canid domestication syndrome is of significance not only for scientific study but also for human medical research. Current development of a multidisciplinary canine genome database, which includes enormous omics data, has substantially improved our understanding of the genetic makeup of dogs. Here, we reviewed recent advances associated with the original history and genetic basis underlying environmental adaptations and phenotypic diversities in domestic dogs, which should provide perspectives on improving the communicative relationship between dogs and humans.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China. E-mail:
| |
Collapse
|
43
|
Zheng X, Zhang B, Zhang Y, Zhong H, Nie R, Li J, Zhang H, Wu C. Transcriptome analysis of feather follicles reveals candidate genes and pathways associated with pheomelanin pigmentation in chickens. Sci Rep 2020; 10:12088. [PMID: 32694523 PMCID: PMC7374586 DOI: 10.1038/s41598-020-68931-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/03/2020] [Indexed: 11/20/2022] Open
Abstract
Yellow plumage is common in chickens, especially in breeds such as the Huiyang Bearded chicken, which is indigenous to China. We evaluated plumage colour distribution in F1, F2, and F3 populations of an Huiyang Bearded chicken × White Leghorn chicken cross, the heredity of the yellow plumage trait was distinguished from that of the gold plumage and other known plumage colours. Microscopic analysis of the feather follicles indicated that pheomelanin particles were formed in yellow but not in white feathers. To screen genes related to formation of the pheomelanin particles, we generated transcriptome data from yellow and white feather follicles from 7- and 11-week-old F3 chickens using RNA-seq. We identified 27 differentially expressed genes (DEGs) when comparing the yellow and white feather follicles. These DEGs were enriched in the Gene Ontology classes ‘melanosome’ and ‘melanosome organization’ related to the pigmentation process. Down-regulation of TYRP1, DCT, PMEL, MLANA, and HPGDS, verified using quantitative reverse transcription PCR, may lead to reduced eumelanin and increased pheomelanin synthesis in yellow plumage. Owing to the presence of the Dominant white locus, both white and yellow plumage lack eumelanin, and white feathers showed no pigments. Our results provide an understanding of yellow plumage formation in chickens.
Collapse
Affiliation(s)
- Xiaotong Zheng
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yawen Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Haian Zhong
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ruixue Nie
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
44
|
Indication of Premelanosome Protein (PMEL) Expression Outside of Pigmented Bovine Skin Suggests Functions Beyond Eumelanogenesis. Genes (Basel) 2020; 11:genes11070788. [PMID: 32668786 PMCID: PMC7397160 DOI: 10.3390/genes11070788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 01/23/2023] Open
Abstract
The premelanosome protein (PMEL) is important for fibril formation within melanosomes during vertebrate melanogenesis. Fibrils form a matrix for pigment deposition within pigmented tissues such as skin and hair. PMEL mutations are known to modulate eumelanic pigmentation in vertebrates. However, in bovines, PMEL mutations were also found to alter pheomelanic pigmentation resulting in coat color dilution. Furthermore, epistatic effects of a mutated PMEL allele were detected in the phenotypic expression of the bovine hair defect "rat-tail syndrome" (RTS) characterized by charcoal coat color and hair deformation. Reports about PMEL gene expression in non-pigmented tissues raised the hypothesis that there may be unknown functions of the PMEL protein beyond eumelanin deposition to PMEL fibrils. In our study, we analysed the PMEL protein expression in pigmented skin and non-pigmented bovine tissues (non-pigmented skin, thyroid gland, rumen, liver, kidney, and adrenal gland cortex). We found that a processed form of the bovine PMEL protein is expressed in pigmented as well as in non-pigmented tissues, which is in line with gene expression data from targeted RT-PCR and whole transcriptome RNAseq analysis. The PMEL protein is located in membranes and within the cytosol of epithelial cells. Based on our data from bovine tissues, we concluded that at least in cattle PMEL potentially has additional, yet unexplored functions, which might contribute to effects of PMEL mutations on pheomelanin coat color dilution and charcoal coat color in RTS animals. However, indication of PMEL protein in unpigmented cells and tissues will require further confirmation in the future, because there have been no confirmed reports before, which had detected bovine PMEL protein with specific antibodies either in pigmented or unpigmented tissue.
Collapse
|
45
|
Coat Color Roan Shows Association with KIT Variants and No Evidence of Lethality in Icelandic Horses. Genes (Basel) 2020; 11:genes11060680. [PMID: 32580410 PMCID: PMC7348759 DOI: 10.3390/genes11060680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/26/2022] Open
Abstract
Roan (Rn) horses show a typical seasonal change of color. Their body is covered with colored and white hair. We performed a descriptive statistical analysis of breeding records of Icelandic horses to challenge the hypothesis of roan being lethal in utero under homozygous condition. The roan to non-roan ratio of foals from roan × roan matings revealed homozygous roan Icelandic horses to be viable. Even though roan is known to be inherited in a dominant mode and epistatic to other coat colors, the causative mutation is still unknown. Nevertheless, an association between roan phenotype and the KIT gene was shown for different horse breeds. In the present study, we identified KIT variants by Sanger sequencing, and show that KIT is also associated with roan in the Icelandic horse breed.
Collapse
|
46
|
Being Merle: The Molecular Genetic Background of the Canine Merle Mutation. Genes (Basel) 2020; 11:genes11060660. [PMID: 32560567 PMCID: PMC7349775 DOI: 10.3390/genes11060660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
The intensity of the merle pattern is determined by the length of the poly(A) tail of a repeat element which has been inserted into the boundary of intron 10 and exon 11 of the PMEL17 locus in reverse orientation. This poly(A) tail behaves as a microsatellite, and due to replication slippage, longer and shorter alleles of it might be generated during cell divisions. The length of the poly(A) tail regulates the splicing mechanism. In the case of shorter tails, the removal of intron 10 takes place at the original splicing, resulting in a normal premelanosome protein (PMEL). Longer tails generate larger insertions, forcing splicing to a cryptic splice site, thereby coding for an abnormal PMEL protein, which is unable to form the normal fibrillar matrix of the eumelanosomes. Thus, eumelanin deposition ensuring the dark color formation is reduced. In summary, the longer the poly(A) tail, the lighter the coat color intensity of the melanocytes. These mutations can occur in the somatic cells and the resulting cell clones will shape the merle pattern of the coat. When they take place in the germ line, they occasionally produce offspring with unexpected color variations which are different from those of their parents.
Collapse
|
47
|
A Third MLPH Variant Causing Coat Color Dilution in Dogs. Genes (Basel) 2020; 11:genes11060639. [PMID: 32531980 PMCID: PMC7349360 DOI: 10.3390/genes11060639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/29/2022] Open
Abstract
Altered melanosome transport in melanocytes, resulting from variants in the melanophilin (MLPH) gene, are associated with inherited forms of coat color dilution in many species. In dogs, the MLPH gene corresponds to the D locus and two variants, c.-22G > A (d1) and c.705G > C (d2), leading to the dilution of coat color, as described. Here, we describe the independent investigations of dogs whose coat color dilution could not be explained by known variants, and who report a third MLPH variant, (c.667_668insC) (d3), which leads to a frameshift and premature stop codon (p.His223Profs*41). The d3 allele is found at low frequency in multiple dog breeds, as well as in wolves, wolf-dog hybrids, and indigenous dogs. Canids in which the d3 allele contributed to the grey (dilute) phenotype were d1/d3 compound heterozygotes or d3 homozygotes, and all non-dilute related dogs had one or two D alleles, consistent with a recessive inheritance. Similar to other loci responsible for coat colors in dogs, this, alongside likely additional allelic heterogeneity at the D locus, or other loci, must be considered when performing and interpreting genetic testing.
Collapse
|
48
|
Bruders R, Van Hollebeke H, Osborne EJ, Kronenberg Z, Maclary E, Yandell M, Shapiro MD. A copy number variant is associated with a spectrum of pigmentation patterns in the rock pigeon (Columba livia). PLoS Genet 2020; 16:e1008274. [PMID: 32433666 PMCID: PMC7239393 DOI: 10.1371/journal.pgen.1008274] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Rock pigeons (Columba livia) display an extraordinary array of pigment pattern variation. One such pattern, Almond, is characterized by a variegated patchwork of plumage colors that are distributed in an apparently random manner. Almond is a sex-linked, semi-dominant trait controlled by the classical Stipper (St) locus. Heterozygous males (ZStZ+ sex chromosomes) and hemizygous Almond females (ZStW) are favored by breeders for their attractive plumage. In contrast, homozygous Almond males (ZStZSt) develop severe eye defects and often lack plumage pigmentation, suggesting that higher dosage of the mutant allele is deleterious. To determine the molecular basis of Almond, we compared the genomes of Almond pigeons to non-Almond pigeons and identified a candidate St locus on the Z chromosome. We found a copy number variant (CNV) within the differentiated region that captures complete or partial coding sequences of four genes, including the melanosome maturation gene Mlana. We did not find fixed coding changes in genes within the CNV, but all genes are misexpressed in regenerating feather bud collar cells of Almond birds. Notably, six other alleles at the St locus are associated with depigmentation phenotypes, and all exhibit expansion of the same CNV. Structural variation at St is linked to diversity in plumage pigmentation and gene expression, and thus provides a potential mode of rapid phenotypic evolution in pigeons. The genetic changes responsible for different animal color patterns are poorly understood, due in part to a paucity of research organisms that are both genetically tractable and phenotypically diverse. Domestic pigeons (Columba livia) have been artificially selected for many traits, including an enormous variety of color patterns that are variable both within and among different breeds of this single species. We investigated the genetic basis of a sex-linked color pattern in pigeons called Almond that is characterized by a sprinkled pattern of plumage pigmentation. Pigeons with one copy of the Almond allele have desirable color pattern; however, male pigeons with two copies of the Almond mutation have severely depleted pigmentation and congenital eye defects. By comparing the genomes of Almond and non-Almond pigeons, we discovered that Almond pigeons have extra copies of a chromosome region that contains a gene that is critical for the formation of pigment granules. We also found that different numbers of copies of this region are associated with varying degrees of pigment reduction. The Almond phenotype in pigeons bears a remarkable resemblance to Merle coat color mutants in dogs, and our new results from pigeons suggest that similar genetic mechanisms underlie these traits in both species. Our work highlights the role of gene copy number variation as a potential driver of rapid phenotypic evolution.
Collapse
Affiliation(s)
- Rebecca Bruders
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Hannah Van Hollebeke
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Edward J. Osborne
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Zev Kronenberg
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Emily Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
49
|
Andersson L. Mutations in Domestic Animals Disrupting or Creating Pigmentation Patterns. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
50
|
Xiong Q, Tao H, Zhang N, Zhang L, Wang G, Li X, Suo X, Zhang F, Liu Y, Chen M. Skin transcriptome profiles associated with black- and white-coated regions in Boer and Macheng black crossbred goats. Genomics 2019; 112:1853-1860. [PMID: 31678151 DOI: 10.1016/j.ygeno.2019.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022]
Abstract
To increase the current understanding of the gene-expression profiles in different skin regions associated with different coat colors and identify key genes for the regulation of color patterns in goats, we used the Illumina RNA-Seq method to compare the skin transcriptomes of the black- and white-coated regions containing hair follicles from the Boer and Macheng Black crossbred goat, which has a black head and a white body. Six cDNA libraries derived from skin samples of the white-coated region (n = 3) and black-coated region (n = 3) were constructed from three full-sib goats. On average, we obtained approximately 76.5 and 73.5 million reads for skin samples from black- and white-coated regions, respectively, of which 75.39% and 76.05% were covered in the genome database. A total of 165 differentially expressed genes (DEGs) were detected between these two color regions, among which 110 were upregulated and 55 were downregulated in the skin samples of white- vs. black-coated regions. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that some of these DEGs may play an important role in controlling the pigmentation of skin or hair follicles. We identified three key DEGs, i.e., Agouti, DCT, and TYRP1, in the pathway related to melanogenesis in the different skin regions of the crossbred goat. DCT and TYRP1 were downregulated and Agouti was upregulated in the skin of the white-coated region, suggesting a lack of mature melanocytes in this region and that Agouti might play a key developmental role in color-pattern formation. All data sets (Gene Expression Omnibus) are available via public repositories. In addition, MC1R was genotyped in 200 crossbred goats with a black head and neck. Loss-of-function mutations in MC1R as well as homozygosity for the mutant alleles were widely found in this population. The MC1R gene did not seem to play a major role in determining the black head and neck in our crossbred goats. Our study provides insights into the transcriptional regulation of two distinct coat colors, which might serve as a key resource for understanding coat color pigmentation in goats. The region-specific expression of Agouti may be associated with the distribution of pigments across the body in Boer and Macheng Black crossbred goats.
Collapse
Affiliation(s)
- Qi Xiong
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Hu Tao
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Nian Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Liqing Zhang
- Hubei Livestock and Poultry Breeding Centre, Wuhan 430070, China
| | - Guiqiang Wang
- Hubei Livestock and Poultry Breeding Centre, Wuhan 430070, China
| | - Xiaofeng Li
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Xiaojun Suo
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Feng Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Yang Liu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Mingxin Chen
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China.
| |
Collapse
|