1
|
Xiong Z, Guan H, Pei S, Wang C. Identification of metabolism-related subtypes and feature genes of pre-eclampsia. Sci Rep 2025; 15:4986. [PMID: 39930027 PMCID: PMC11811273 DOI: 10.1038/s41598-025-89140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
The heterogeneity of pre-eclampsia (PE) complicates its pathogenesis, which remains incompletely understood. Emerging evidence indicates a significant role of metabolism in the pathophysiology of PE. We procured the PE dataset from the Gene Expression Omnibus database and sourced a published compilation of metabolism-related genes, then employed consensus clustering to classify PE subtypes. Subsequently, we examined the relationships of these subtypes with metabolic features and immune infiltration. Feature genes were identified using weighted gene co-expression network analysis (WGCNA) and further scrutinized through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. To refine the selection of feature genes, we applied two machine learning algorithms. Additionally, we assessed the expression profiles of RAG1, RBBP7, RFTN2, SPATA7, and ZNF16 at the single-cell RNA sequencing (scRNA-seq) level. Finally, we validated the diagnostic value and expression of these genes using PE datasets and quantitative reverse transcription-PCR (qRT-PCR) analysis. We identified three PE subtypes on the basis of the number of distinct metabolic characteristics, namely Metabolism Correlated (MC) A (MCA), MCB, and MCC subclasses. Through WGCNA, we pinpointed 101 metabolic genes that were strongly associated with PE progression. Machine learning algorithms helped to narrow the list to five key signature genes, which were then used to construct a predictive model offering significant clinical benefits for PE patients. qRT-PCR analysis confirmed that these genes are closely linked to PE progression, while scRNA-seq data revealed high expression of RBBP7 in trophoblast cells. In conclusion, the five genes identified here-RAG1, RBBP7, RFTN2, SPATA7, and ZNF16-were found to be strongly associated with PE progression.
Collapse
Affiliation(s)
- Zhihui Xiong
- Obstetrical Department, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310007, China
- Obstetrical Department, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Hailian Guan
- Obstetrical Department, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Shuping Pei
- Obstetrical Department, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Caijiao Wang
- Neurology Department, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
2
|
Austin MC, Muralidharan C, Roy S, Crowder JJ, Piganelli JD, Linnemann AK. Dysfunctional β-cell autophagy induces β-cell stress and enhances islet immunogenicity. Front Immunol 2025; 16:1504583. [PMID: 39944686 PMCID: PMC11814175 DOI: 10.3389/fimmu.2025.1504583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Background Type 1 Diabetes (T1D) is caused by a combination of genetic and environmental factors that trigger autoimmune-mediated destruction of pancreatic β-cells. Defects in β-cell stress response pathways such as autophagy may play an important role in activating and/or exacerbating the immune response in disease development. Previously, we discovered that β-cell autophagy is impaired prior to the onset of T1D, implicating this pathway in T1D pathogenesis. Aims To assess the role of autophagy in β-cell health and survival, and whether defects in autophagy render islets more immunogenic. Methods We knocked out the critical autophagy enzyme, ATG7, in the β-cells of mice (ATG7Δβ-cell) then monitored blood glucose, performed glucose tolerance tests, and evaluated bulk islet mRNA and protein. We also assessed MHC-I expression and presence of CD45+ immune cells in ATG7Δβ-cell islets and evaluated how impaired autophagy affects EndoC-βH1 HLA-I expression under basal and IFNα stimulated conditions. Lastly, we co-cultured ATG7Δβ-cell islet cells with diabetogenic BDC2.5 helper T cells and evaluated T cell activation. Results We found that all ATG7Δβ-cell mice developed diabetes between 11-15 weeks of age. Gene ontology analysis revealed a significant upregulation of pathways involved in inflammatory processes, response to ER stress, and the ER-associated degradation pathway. Interestingly, we also observed upregulation of proteins involved in MHC-I presentation, suggesting that defective β-cell autophagy may alter the immunopeptidome, or antigen repertoire, and enhance β-cell immune visibility. In support of this hypothesis, we observed increased MHC-I expression and CD45+ immune cells in ATG7Δβ-cell islets. We also demonstrate that HLA-I is upregulated in EndoC β-cells when autophagic degradation is inhibited. This effect was observed under both basal and IFNα stimulated conditions. Conversely, a stimulator of lysosome acidification/function, C381, decreased HLA-I expression. Lastly, we showed that in the presence of islet cells with defective autophagy, there is enhanced BDC2.5 T cell activation. Conclusions Our findings demonstrate that β-cell autophagy is critical to cell survival/function. Defective β-cell autophagy induces ER stress, alters pathways of antigen production, and enhances MHC-I/HLA-I presentation to surveilling immune cells. Overall, our results suggest that defects in autophagy make β-cells more susceptible to immune attack and destruction.
Collapse
Affiliation(s)
- Matthew C. Austin
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Charanya Muralidharan
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Saptarshi Roy
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Justin J. Crowder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jon D. Piganelli
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amelia K. Linnemann
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Mohamed AA, Abdallah GM, Ibrahim IT, Ali NS, Hussein MA, Thabet GM, azzam OM, Mohamed AY, farghly MI, Al Hussain E, Alkhalil SS, Abouaggour AAM, Ibrahem Fathy Hassan NA, Iqbal S, Mohamed AA, Hafez W, Mahmoud MO. Evaluation of miRNA-146a, miRNA-34a, and pro-inflammatory cytokines as a potential early indicators for type 1 diabetes mellitus. Noncoding RNA Res 2024; 9:1249-1256. [PMID: 39036602 PMCID: PMC11259987 DOI: 10.1016/j.ncrna.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024] Open
Abstract
Background Type I diabetes mellitus (T1DM) is one of the most common chronic autoimmune diseases worldwide. miRNAs are a class of small non-coding RNA molecules that have been linked to immune system functions, β-cell metabolism, proliferation, and death, all of which contribute to pathogenesis of TIDM. Dysregulated miRNAs have been identified in Egyptian TIDM patients. Aim Several miRNAs were profiled in Egyptian TIDM patients to determine whether they can be used as molecular biomarkers for T1DM. The relationship between the investigated miRNAs and pro-inflammatory cytokines (TNF-α and IL-6) has also been evaluated in the development of TIDM, in addition to the creation of a proposed model for TIDM prediction. Patients & methods Case-control study included 177 Egyptian patients with confirmed type I diabetes mellitus and 177 healthy individuals. MiRNA-34 and miRNA-146 were detected in serum samples using real-time PCR, whereas TNF-α and IL-6 levels were assessed using ELIZA. Results Patients with TIDM showed a significant decrease in the expression of miRNA-146, with a cut-off value ≤ 3.3, 48 % specificity, and 92.1 % sensitivity, whereas miRNA-34 had the highest sensitivity (95.5 %) and specificity (97.2 %) for differentiating diabetic patients from controls. Furthermore, other diagnostic proinflammatory markers showed lower sensitivity and specificity. Conclusion Serum levels of miRNA-34a, miRNA-146, IL-6, and TNF-α provide new insights into T1DM pathogenesis and could be used for screening and diagnosis purposes. They can be also a potential therapeutic target, as well as allowing for more strategies to improve T1DM disease outcomes.
Collapse
Affiliation(s)
- Amal A. Mohamed
- Biochemistry and Molecular Biology Department, National Hepatology and Tropical Medicine Research Institute, GOTHI, Cairo, Egypt
| | - Gamil M. Abdallah
- Biochemistry Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ibrahim T. Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt
| | - Nada S. Ali
- Biochemistry Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mona A. Hussein
- Internal Medicine Department, National Institute of Diabetes and Endocrinology, GOTHI, Cairo, Egypt
| | - Ghada Maher Thabet
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Omar M. azzam
- Internal Medicine Department, Ahmed Maher Teaching Hospital, GOTHI, Cairo, Egypt
| | - Amira Yones Mohamed
- Internal medicine department, ELmatareya Teaching Hospital, GOTHI, Cairo, Egypt
| | - Maysa I. farghly
- Department of Clinical Pathology, Faculty of Medicine, Suez University, Suez, Egypt
| | - Eman Al Hussain
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samia S. Alkhalil
- Medical Laboratories Department, College of Applied Medical Sciences in Al Quway'iyah, Shaqraa University, Saudi Arabia
| | | | | | | | | | - Wael Hafez
- Internal Medicine Department, Medical Research and Clinical Studies Institute, The National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, Cairo Governorate 12622, Egypt
| | - Mohamed O. Mahmoud
- Biochemistry Department, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt
| |
Collapse
|
4
|
Almutairi A, White TD, Stephenson DJ, Stephenson BD, Gai-Tusing Y, Goel P, Phillips DW, Welner RS, Lei X, Hammock BD, Chalfant CE, Ramanadham S. Selective Reduction of Ca2+-Independent Phospholipase A2β (iPLA2β)-Derived Lipid Signaling From Macrophages Mitigates Type 1 Diabetes Development. Diabetes 2024; 73:2022-2033. [PMID: 39283670 PMCID: PMC11579405 DOI: 10.2337/db23-0770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/07/2024] [Indexed: 11/22/2024]
Abstract
Type 1 diabetes (T1D) is a consequence of autoimmune destruction of β-cells, and macrophages (MΦs) have a central role in initiating processes that lead to β-cell demise. We reported that Ca2+-independent phospholipase A2β (iPLA2β)-derived lipid (iDL) signaling contributes to β-cell death. Because MΦs express iPLA2β, we assessed its role in T1D development. We find that selective reduction of myeloid-iPLA2β in spontaneously diabetes-prone NOD mice 1) decreases proinflammatory eicosanoid production by MΦs, 2) favors the anti-inflammatory (M2-like) MΦ phenotype, and 3) diminishes activated CD4+ and CD8+ T-cells phenotype in the pancreatic infiltrate, prior to T1D onset. These outcomes are associated with a significant reduction in T1D. Further, inhibition of select proinflammatory lipid signaling pathways reduces M1-like MΦ polarization and adoptive transfer of M2-like MΦs reduces NOD T1D incidence, suggesting a mechanism by which iDLs impact T1D development. These findings identify MΦ-iPLA2β as a critical contributor to T1D development and potential target to counter T1D onset. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Abdulaziz Almutairi
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Tayleur D. White
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel J. Stephenson
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Benjamin D. Stephenson
- Program in Cancer Biology, UVA Comprehensive Cancer Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Ying Gai-Tusing
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Paran Goel
- Department of Medicine, Hematology & Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel W. Phillips
- Department of Medicine, Hematology & Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Robert S. Welner
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Medicine, Hematology & Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Bruce D. Hammock
- Department of Entomology and Nematology, University of California, Davis, Davis, CA
| | - Charles E. Chalfant
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
- Program in Cancer Biology, UVA Comprehensive Cancer Center, University of Virginia School of Medicine, Charlottesville, VA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
5
|
Stojchevski R, Velichkovikj S, Bogdanov J, Hadzi-Petrushev N, Mladenov M, Poretsky L, Avtanski D. Monocarbonyl analogs of curcumin C66 and B2BrBC modulate oxidative stress, JNK activity, and pancreatic gene expression in rats with streptozotocin-induced diabetes. Biochem Pharmacol 2024; 229:116491. [PMID: 39147331 DOI: 10.1016/j.bcp.2024.116491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
The pathogenesis of type 1 diabetes mellitus (T1DM) involves oxidative stress and inflammation. Curcumin, a natural polyphenolic compound found in turmeric, known to exhibit antioxidative and anti-inflammatory properties, is characterized by poor chemical stability, low bioavailability, and rapid metabolism. Monocarbonyl analogs of curcumin (MACs) with a structural absence of β-diketone and enhanced stability and bioavailability present a potential solution to the challenges associated with the use of curcumin. This study aimed to evaluate the effect of two MACs, C66 and B2BrBC, on oxidative stress markers, antioxidant enzyme activity, expression of diabetes-associated genes, and signaling pathway proteins in the context of T1DM. Streptozotocin (STZ)-induced male Wistar rats or rat pancreatic RIN-m cells were used for in vivo and in vitro experiments, respectively. C66 or B2BrBC were given either before or after STZ treatment. Oxidative stress markers and antioxidant enzyme activities were determined in various tissues. Expression of diabetes-associated genes was assessed using RT-qPCR, and the activity of signaling pathway proteins in the pancreas was determined through Western blot analysis. Treatment with C66 and B2BrBC significantly reduced oxidative stress markers and positively influenced antioxidant enzyme activities. Moreover, both compounds inhibited JNK activity in the pancreas while enhancing the expression of genes crucial for β-cell survival and glucose and redox homeostasis. The findings highlight the multifaceted potential of C66 and B2BrBC in ameliorating oxidative stress, influencing gene expression patterns linked to diabetes, and modulating key signaling pathways in the pancreas. The findings suggest that these compounds can potentially address diabetes-related pathological processes.
Collapse
Affiliation(s)
- Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Sara Velichkovikj
- Department of Medicine, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Jane Bogdanov
- Faculty of Natural Sciences and Mathematics, Institute of Chemistry, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Leonid Poretsky
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
6
|
Li Y, Gunderson RC, Xu Z, Ai W, Shen F, Ye J, Xu B, Michie SA. Mucosal Addressin Cell Adhesion Molecule-1 Mediates T Cell Migration into Pancreas-Draining Lymph Nodes for Initiation of the Autoimmune Response in Type 1 Diabetes. Int J Mol Sci 2024; 25:11350. [PMID: 39518902 PMCID: PMC11545416 DOI: 10.3390/ijms252111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is caused by autoreactive T cell-mediated destruction of insulin-producing β cells in the pancreatic islets. Although naive autoreactive T cells are initially primed by islet antigens in pancreas-draining lymph nodes (pan-LNs), the adhesion molecules that recruit T cells into pan-LNs are unknown. We show that high endothelial venules in pan-LNs of young nonobese diabetic mice have a unique adhesion molecule profile that includes strong expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1). Anti-MAdCAM-1 antibody blocked more than 80% of the migration of naive autoreactive CD4+ T cells from blood vessels into pan-LNs. Transient blockade of MAdCAM-1 in young nonobese diabetic mice led to increased numbers of autoreactive regulatory CD4+ T cells in pan-LNs and pancreas and to long-lasting protection from T1D. These results indicate the importance of MAdCAM-1 in the development of T1D and suggest MAdCAM-1 as a potential therapeutic target for treating T1D.
Collapse
Affiliation(s)
- Yankui Li
- Department of Vascular Surgery, Tianjin Medical University Second Hospital, Tianjin 300211, China
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.C.G.); (Z.X.); (W.A.); (B.X.); (S.A.M.)
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Rachel C. Gunderson
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.C.G.); (Z.X.); (W.A.); (B.X.); (S.A.M.)
| | - Zeyu Xu
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.C.G.); (Z.X.); (W.A.); (B.X.); (S.A.M.)
- Department of Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Wenjia Ai
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.C.G.); (Z.X.); (W.A.); (B.X.); (S.A.M.)
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Fanru Shen
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.C.G.); (Z.X.); (W.A.); (B.X.); (S.A.M.)
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jiayu Ye
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Baohui Xu
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.C.G.); (Z.X.); (W.A.); (B.X.); (S.A.M.)
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sara A. Michie
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.C.G.); (Z.X.); (W.A.); (B.X.); (S.A.M.)
| |
Collapse
|
7
|
Bazile C, Abdel Malik MM, Ackeifi C, Anderson RL, Beck RW, Donath MY, Dutta S, Hedrick JA, Karpen SR, Kay TWH, Marder T, Marinac M, McVean J, Meyer R, Pettus J, Quattrin T, Verstegen RHJ, Vieth JA, Latres E. TNF-α inhibitors for type 1 diabetes: exploring the path to a pivotal clinical trial. Front Immunol 2024; 15:1470677. [PMID: 39411715 PMCID: PMC11473295 DOI: 10.3389/fimmu.2024.1470677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing β-cells in the pancreas. This destruction leads to chronic hyperglycemia, necessitating lifelong insulin therapy to manage blood glucose levels. Typically diagnosed in children and young adults, T1D can, however, occur at any age. Ongoing research aims to uncover the precise mechanisms underlying T1D and to develop potential interventions. These include efforts to modulate the immune system, regenerate β-cells, and create advanced insulin delivery systems. Emerging therapies, such as closed-loop insulin pumps, stem cell-derived β-cell replacement and disease-modifying therapies (DMTs), offer hope for improving the quality of life for individuals with T1D and potentially moving towards a cure. Currently, there are no disease-modifying therapies approved for stage 3 T1D. Preserving β-cell function in stage 3 T1D is associated with better clinical outcomes, including lower HbA1c and decreased risk of hypoglycemia, neuropathy, and retinopathy. Tumor Necrosis Factor alpha (TNF-α) inhibitors have demonstrated efficacy at preserving β-cell function by measurement of C-peptide in two clinical trials in people with stage 3 T1D. However, TNF-α inhibitors have yet to be evaluated in a pivotal trial for T1D. To address the promising clinical findings of TNF-α inhibitors in T1D, Breakthrough T1D convened a panel of key opinion leaders (KOLs) in the field. The workshop aimed to outline an optimal clinical path for moving TNF-α inhibitors to a pivotal clinical trial in T1D. Here, we summarize the evidence for the beneficial use of TNF-α inhibitors in T1D and considerations for strategies collectively identified to advance TNF-α inhibitors beyond phase 2 clinical studies for stage 3 T1D.
Collapse
Affiliation(s)
- Cassandra Bazile
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | | | - Courtney Ackeifi
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | | | - Roy W. Beck
- Jaeb Center for Health Research, Tampa, FL,
United States
| | - Marc Y. Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University of Basel, Basel, Switzerland
| | - Sanjoy Dutta
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | | | - Stephen R. Karpen
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | - Thomas W. H. Kay
- St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | | | - Marjana Marinac
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | | | | | - Jeremy Pettus
- Division of Endocrinology and Metabolism, Department of Medicine, University of
California San Diego, La Jolla, CA, United States
| | - Teresa Quattrin
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Ruud H. J. Verstegen
- Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
- Division of Rheumatology, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Joshua A. Vieth
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | - Esther Latres
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| |
Collapse
|
8
|
Huang B, Yin T, Fu S, Liu L, Yang C, Zhou L, Liu X, Zhuang H, Cao Z, Hua Z. Inflammation-oriented montmorillonite adjuvant enhanced oral delivery of anti-TNF-α nanobody against inflammatory bowel disease. Proc Natl Acad Sci U S A 2024; 121:e2320482121. [PMID: 39226349 PMCID: PMC11406300 DOI: 10.1073/pnas.2320482121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/02/2024] [Indexed: 09/05/2024] Open
Abstract
Oral delivery of proteins faces challenges due to the harsh conditions of the gastrointestinal (GI) tract, including gastric acid and intestinal enzyme degradation. Permeation enhancers are limited in their ability to deliver proteins with high molecular weight and can potentially cause toxicity by opening tight junctions. To overcome these challenges, we propose the use of montmorillonite (MMT) as an adjuvant that possesses both inflammation-oriented abilities and the ability to regulate gut microbiota. This adjuvant can be used as a universal protein oral delivery technology by fusing with advantageous binding amino acid sequences. We demonstrated that anti-TNF-α nanobody (VII) can be intercalated into the MMT interlayer space. The carboxylate groups (-COOH) of aspartic acid (D) and glutamic acid (E) interact with the MMT surface through electrostatic interactions with sodium ions (Na+). The amino groups (NH2) of asparagine (N) and glutamine (Q) are primarily attracted to the MMT layers through hydrogen bonding with oxygen atoms on the surface. This binding mechanism protects VII from degradation and ensures its release in the intestinal tract, as well as retaining biological activity, leading to significantly enhanced therapeutic effects on colitis. Furthermore, VII@MMT increases the abundance of short-chain fatty acids (SCFAs)-producing strains, including Clostridia, Prevotellaceae, Alloprevotella, Oscillospiraceae, Clostridia_vadinBB60_group, and Ruminococcaceae, therefore enhance the production of SCFAs and butyrate, inducing regulatory T cells (Tregs) production to modulate local and systemic immune homeostasis. Overall, the MMT adjuvant provides a promising universal strategy for protein oral delivery by rational designed protein.
Collapse
Affiliation(s)
- Baolian Huang
- School of Biopharmacy, China Pharmaceutical University, Nanjing211198, People’s Republic of China
| | - Te Yin
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, People’s Republic of China
| | - Shuilian Fu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, People’s Republic of China
| | - Lina Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, People’s Republic of China
| | - Chen Yang
- School of Biopharmacy, China Pharmaceutical University, Nanjing211198, People’s Republic of China
| | - Lulu Zhou
- School of Biopharmacy, China Pharmaceutical University, Nanjing211198, People’s Republic of China
| | - Xing Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, People’s Republic of China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, People’s Republic of China
| | - Zhiting Cao
- School of Biopharmacy, China Pharmaceutical University, Nanjing211198, People’s Republic of China
| | - Zichun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing211198, People’s Republic of China
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, People’s Republic of China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou213164, People’s Republic of China
| |
Collapse
|
9
|
Coomans de Brachène A, Alvelos MI, Szymczak F, Zimath PL, Castela A, Marmontel de Souza B, Roca Rivada A, Marín-Cañas S, Yi X, Op de Beeck A, Morgan NG, Sonntag S, Jawurek S, Title AC, Yesildag B, Pattou F, Kerr-Conte J, Montanya E, Nacher M, Marselli L, Marchetti P, Richardson SJ, Eizirik DL. Interferons are key cytokines acting on pancreatic islets in type 1 diabetes. Diabetologia 2024; 67:908-927. [PMID: 38409439 DOI: 10.1007/s00125-024-06106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
AIMS/HYPOTHESIS The proinflammatory cytokines IFN-α, IFN-γ, IL-1β and TNF-α may contribute to innate and adaptive immune responses during insulitis in type 1 diabetes and therefore represent attractive therapeutic targets to protect beta cells. However, the specific role of each of these cytokines individually on pancreatic beta cells remains unknown. METHODS We used deep RNA-seq analysis, followed by extensive confirmation experiments based on reverse transcription-quantitative PCR (RT-qPCR), western blot, histology and use of siRNAs, to characterise the response of human pancreatic beta cells to each cytokine individually and compared the signatures obtained with those present in islets of individuals affected by type 1 diabetes. RESULTS IFN-α and IFN-γ had a greater impact on the beta cell transcriptome when compared with IL-1β and TNF-α. The IFN-induced gene signatures have a strong correlation with those observed in beta cells from individuals with type 1 diabetes, and the level of expression of specific IFN-stimulated genes is positively correlated with proteins present in islets of these individuals, regulating beta cell responses to 'danger signals' such as viral infections. Zinc finger NFX1-type containing 1 (ZNFX1), a double-stranded RNA sensor, was identified as highly induced by IFNs and shown to play a key role in the antiviral response in beta cells. CONCLUSIONS/INTERPRETATION These data suggest that IFN-α and IFN-γ are key cytokines at the islet level in human type 1 diabetes, contributing to the triggering and amplification of autoimmunity.
Collapse
Affiliation(s)
| | - Maria Ines Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Florian Szymczak
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Priscila L Zimath
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Arturo Roca Rivada
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Sandra Marín-Cañas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Op de Beeck
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Noel G Morgan
- Islet Biology Exeter (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Sebastian Sonntag
- InSphero AG, Schlieren, Switzerland
- University of Applied Sciences and Arts Northwestern Switzerland, Basel, Switzerland
| | | | | | | | - François Pattou
- European Genomic Institute for Diabetes, UMR 1190 Translational Research for Diabetes, Inserm, CHU Lille, University of Lille, Lille, France
| | - Julie Kerr-Conte
- European Genomic Institute for Diabetes, UMR 1190 Translational Research for Diabetes, Inserm, CHU Lille, University of Lille, Lille, France
| | - Eduard Montanya
- Hospital Universitari Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and University of Barcelona, Barcelona, Spain
| | - Montserrat Nacher
- Hospital Universitari Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and University of Barcelona, Barcelona, Spain
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sarah J Richardson
- Islet Biology Exeter (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
10
|
Dos Santos Haber JF, Barbalho SM, Sgarbi JA, de Argollo Haber RS, de Labio RW, Laurindo LF, Chagas EFB, Payão SLM. The Relationship between Type 1 Diabetes Mellitus, TNF-α, and IL-10 Gene Expression. Biomedicines 2023; 11:biomedicines11041120. [PMID: 37189738 DOI: 10.3390/biomedicines11041120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is one of the major chronic diseases in children worldwide. This study aimed to investigate interleukin-10 (IL-10) gene expression and tumor necrosis factor-alpha (TNF-α) in T1DM. A total of 107 patients were included, 15 were T1DM in ketoacidosis, 30 patients had T1DM and HbA1c ≥ 8%; 32 patients had T1DM and presented HbA1c < 8%; and 30 were controls. The expression of peripheral blood mononuclear cells was performed using the reverse transcriptase-polymerase chain reaction in real time. The cytokines gene expression was higher in patients with T1DM. The IL-10 gene expression increased substantially in patients with ketoacidosis, and there was a positive correlation with HbA1c. A negative correlation was found for IL-10 expression and the age of patients with diabetes, and the time of diagnosis of the disease. There was a positive correlation between TNF-α expression with age. The expression of IL-10 and TNF-α genes showed a significant increase in DM1 patients. Once current T1DM treatment is based on exogenous insulin, there is a need for other therapies, and inflammatory biomarkers could bring new possibilities to the therapeutic approach of the patients.
Collapse
Affiliation(s)
- Jesselina Francisco Dos Santos Haber
- School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-160, Brazil
- Postgraduate Program of Health and Aging, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
| | - Sandra Maria Barbalho
- School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-160, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-160, Brazil
| | - Jose Augusto Sgarbi
- Postgraduate Program of Health and Aging, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
- Division of Endocrinology and Metabolism, Department of Medicine, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
| | | | - Roger William de Labio
- Department of Genetics, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
| | - Lucas Fornari Laurindo
- School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-160, Brazil
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program of Health and Aging, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-160, Brazil
| | - Spencer Luiz Marques Payão
- Postgraduate Program of Health and Aging, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
- Department of Genetics, Marilia Medical School (FAMEMA), Monte Carmelo, 800-Fragata, Marília 17519-030, Brazil
| |
Collapse
|
11
|
Rigby MR, Hayes B, Li Y, Vercruysse F, Hedrick JA, Quattrin T. Two-Year Follow-up From the T1GER Study: Continued Off-Therapy Metabolic Improvements in Children and Young Adults With New-Onset T1D Treated With Golimumab and Characterization of Responders. Diabetes Care 2023; 46:561-569. [PMID: 36576974 PMCID: PMC10020023 DOI: 10.2337/dc22-0908] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The T1GER (A Study of SIMPONI to Arrest β-Cell Loss in Type 1 Diabetes) study showed many metabolic benefits of the tumor necrosis factor-α blocker golimumab in children and young adults with type 1 diabetes (T1D). Off-therapy effects are reported. RESEARCH DESIGNS AND METHODS T1GER was a phase 2, placebo-controlled, randomized trial in which golimumab or placebo was administered for 52 weeks to participants 6-21 years old diagnosed with T1D within 100 days of randomization. Assessments occurred during the 52-week on-therapy and 52-week off-therapy periods. RESULTS After treatment was stopped, C-peptide area under the curve (AUC) remained greater in the treatment versus control group. At weeks 78 and 104, the golimumab group had lower reductions in the 4-h C-peptide AUC baseline than the placebo group, where specifically the golimumab group had reductions of 0.31 and 0.41 nmol/L, and the placebo group had reductions of 0.64 and 0.74 nmol/L. There were also trends in less insulin use, higher peak C-peptide levels and those in partial remission, and higher peak C-peptide levels in the golimumab group. Golimumab responders, defined as having an increase or minimal loss of C-peptide AUC and/or being in partial remission at week 52, showed even greater improvements in most metabolic parameters on and off therapy and had less hypoglycemia during the off-therapy period versus placebo. Adverse events, including infections, were similar between the groups during all time periods of the study. CONCLUSIONS In children and young adults with new-onset T1D, golimumab preserved endogenous β-cell function and resulted in other favorable metabolic parameters on and off therapy. A subpopulation had disease stabilization while on therapy, with improved metabolic parameters off therapy.
Collapse
Affiliation(s)
- Mark R. Rigby
- Janssen Pharmaceuticals Inc. Research and Development, Springhouse, PA
| | - Beverly Hayes
- Janssen Pharmaceuticals Inc. Research and Development, Springhouse, PA
| | - Yinglei Li
- Janssen Pharmaceuticals Inc. Research and Development, Springhouse, PA
| | - Frank Vercruysse
- Janssen Pharmaceuticals Inc. Research and Development, Beerse, Belgium
| | - Joseph A. Hedrick
- Janssen Pharmaceuticals Inc. Research and Development, Springhouse, PA
| | - Teresa Quattrin
- The Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
- Diabetes Center, John R. Oishei Children’s Hospital, Buffalo, NY
| |
Collapse
|
12
|
Singh RD, Tiwari R, Sharma V, Khan H, Gangopadhyay S, Singh S, Koshta K, Shukla S, Arjaria N, Mandrah K, Jagdale PR, Patnaik S, Roy SK, Singh D, Giri AK, Srivastava V. Prenatal arsenic exposure induces immunometabolic alteration and renal injury in rats. Front Med (Lausanne) 2023; 9:1045692. [PMID: 36714129 PMCID: PMC9874122 DOI: 10.3389/fmed.2022.1045692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Arsenic (As) exposure is progressively associated with chronic kidney disease (CKD), a leading public health concern present worldwide. The adverse effect of As exposure on the kidneys of people living in As endemic areas have not been extensively studied. Furthermore, the impact of only prenatal exposure to As on the progression of CKD also has not been fully characterized. In the present study, we examined the effect of prenatal exposure to low doses of As 0.04 and 0.4 mg/kg body weight (0.04 and 0.4 ppm, respectively) on the progression of CKD in male offspring using a Wistar rat model. Interestingly, only prenatal As exposure was sufficient to elevate the expression of profibrotic (TGF-β1) and proinflammatory (IL-1α, MIP-2α, RANTES, and TNF-α) cytokines at 2-day, 12- and 38-week time points in the exposed progeny. Further, alteration in adipogenic factors (ghrelin, leptin, and glucagon) was also observed in 12- and 38-week old male offspring prenatally exposed to As. An altered level of these factors coincides with impaired glucose metabolism and homeostasis accompanied by progressive kidney damage. We observed a significant increase in the deposition of extracellular matrix components and glomerular and tubular damage in the kidneys of 38-week-old male offspring prenatally exposed to As. Furthermore, the overexpression of TGF-β1 in kidneys corresponds with hypermethylation of the TGF-β1 gene-body, indicating a possible involvement of prenatal As exposure-driven epigenetic modulations of TGF-β1 expression. Our study provides evidence that prenatal As exposure to males can adversely affect the immunometabolism of offspring which can promote kidney damage later in life.
Collapse
Affiliation(s)
- Radha Dutt Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India,Radha Dutt Singh, ,
| | - Ratnakar Tiwari
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Vineeta Sharma
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Hafizurrahman Khan
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Siddhartha Gangopadhyay
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sukhveer Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Kavita Koshta
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Shagun Shukla
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Nidhi Arjaria
- Advanced Imaging Facility, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Pankaj Ramji Jagdale
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Somendu Kumar Roy
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Dhirendra Singh
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Ashok Kumar Giri
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Vikas Srivastava
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India,*Correspondence: Vikas Srivastava, ,
| |
Collapse
|
13
|
Kou X, Liu J, Wang D, Yu M, Li C, Lu L, Chen C, Liu D, Yu W, Yu T, Liu Y, Mao X, Naji A, Cai T, Sun L, Shi S. Exocrine pancreas regeneration modifies original pancreas to alleviate diabetes in mouse models. Sci Transl Med 2022; 14:eabg9170. [PMID: 35921475 DOI: 10.1126/scitranslmed.abg9170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diabetes is a major public health issue because of its widely epidemic nature and lack of cure. Here, we show that pancreas-derived mesenchymal stem cells (PMSCs) are capable of regenerating exocrine pancreas when implanted into the kidney capsule of mice with streptozotocin (STZ)-induced diabetes. Mechanistically, we found that the regenerated exocrine pancreas elevated interleukin-6 (IL-6) in PMSC implants, which transiently activated tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) to inhibit IL-17, thereby rescuing damaged exocrine pancreas and islet β cells. In addition, we used knockout mouse models to show that global lack of IL-6, TNF-α, or IFN-γ resulted in increased severity of STZ-induced diabetes and resistance to PMSC implantation therapy, confirming the roles of these factors in safeguarding pancreatic β cells. Furthermore, removal of the kidney capsule PMSC implants at 28 days after implantation did not affect the PMSC-initiated therapeutic effect on diabetic mice. This study reveals a previously unknown role of exocrine pancreas regeneration in safeguarding β cells and demonstrates a "soil-rescues-seed" strategy for type 1 diabetes therapy.
Collapse
Affiliation(s)
- Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jin Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Laboratory for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ming Yu
- Division of Transplantation, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Can Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Lu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Dawei Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Department of Orthodontics, Peking University School & Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing 100081, China
| | - Wenjing Yu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Tingting Yu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Department of Orthodontics, Peking University School & Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing 100081, China
| | - Yao Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang 110002, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Ali Naji
- Division of Transplantation, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tao Cai
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.,Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.,Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
14
|
Liu SW, Sun F, Rong SJ, Wang T, Wang CY. Lymphotoxins Serve as a Novel Orchestrator in T1D Pathogenesis. Front Immunol 2022; 13:917577. [PMID: 35757751 PMCID: PMC9219589 DOI: 10.3389/fimmu.2022.917577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Type 1 diabetes (T1D) stems from pancreatic β cell destruction by islet reactive immune cells. Similar as other autoimmune disorders, there is no curative remedy for T1D thus far. Chronic insulitis is the hallmark of T1D, which creates a local inflammatory microenvironment that impairs β cell function and ultimately leads to β cell death. Immune regulation shows promise in T1D treatment by providing a time window for β cell recovery. However, due to the complex nature of T1D pathogenesis, the therapeutic effect of immune regulation is often short-lasting and unsatisfying in monotherapies. Lymphotoxins (LTs) were first identified in 1960s as the lymphocyte-producing cytokine that can kill other cell types. As a biological cousin of tumor necrosis factor alpha (TNFα), LTs play unique roles in T1D development. Herein in this review, we summarized the advancements of LTs in T1D pathogenesis. We particularly highlighted their effect on the formation of peri-islet tertiary lymphoid organs (TLOs), and discussed their synergistic effect with other cytokines on β cell toxicity and autoimmune progression. Given the complex and dynamic crosstalk between immune cells and β cells in T1D setting, blockade of lymphotoxin signaling applied to the existing therapies could be an efficient approach to delay or even reverse the established T1D.
Collapse
Affiliation(s)
- Shi-Wei Liu
- Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Fei Sun
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Shan-Jie Rong
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ting Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
15
|
Abela AG, Fava S. Prenatal and early life factors and type 1 diabetes. Endocrine 2022; 77:48-56. [PMID: 35484448 PMCID: PMC9049652 DOI: 10.1007/s12020-022-03057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND The prevalence of type 1 diabetes is increasing worldwide, suggesting that unknown environmental factors are becoming increasingly important in its pathogenesis. AIM The aim of the study was to investigate the possible role of a number of prenatal and perinatal factors in the aetiology of type 1 diabetes. METHODS Mothers of patients diagnosed with type 1 diabetes (cases) and mothers of children born on the same day and of the same sex as type 1 diabetes patients (controls) were interviewed on a number of prenatal and perinatal factors of interest. RESULTS Hand washing prior to eating, frequency of bathing and total stress score were found to be positively associated with the development of type 1 diabetes on univariate analyses. Hand-washing prior to eating and frequency of house cleaning were independently associated with an increased risk of type 1 diabetes, whilst getting dirty was associated with a reduced risk in multivariate analyses. There was no association of type 1 diabetes to removing of outdoor shoes indoors or to the age of first attendance to school or pre-school. There were also no significant associations to parental smoking, parental age, birth order, infant feeding, antibiotic use, mode of delivery or birth weight. CONCLUSION Our data suggest that factors that affect the skin or gut microbiome might be more important than infections or factors affecting the microbiome at other sites.
Collapse
Affiliation(s)
| | - Stephen Fava
- University of Malta Medical School & Mater Dei Hospital, Msida, Malta.
| |
Collapse
|
16
|
Locker KC, Kachapati K, Wu Y, Bednar KJ, Adams D, Patel C, Tsukamoto H, Heuer LS, Aronow BJ, Herr AB, Ridgway WM. Endosomal Sequestration of TLR4 Antibody Induces Myeloid-Derived Suppressor Cells and Reverses Acute Type 1 Diabetes. Diabetes 2022; 71:470-482. [PMID: 35040474 PMCID: PMC8893939 DOI: 10.2337/db21-0426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022]
Abstract
We previously showed that treating NOD mice with an agonistic monoclonal anti-TLR4/MD2 antibody (TLR4-Ab) reversed acute type 1 diabetes (T1D). Here, we show that TLR4-Ab reverses T1D by induction of myeloid-derived suppressor cells (MDSCs). Unbiased gene expression analysis after TLR4-Ab treatment demonstrated upregulation of genes associated with CD11b+Ly6G+ myeloid cells and downregulation of T-cell genes. Further RNA sequencing of purified, TLR4-Ab-treated CD11b+ cells showed significant upregulation of genes associated with bone marrow-derived CD11b+ cells and innate immune system genes. TLR4-Ab significantly increased percentages and numbers of CD11b+ cells. TLR4-Ab-induced CD11b+ cells, derived ex vivo from TLR4-Ab-treated mice, suppress T cells, and TLR4-Ab-conditioned bone marrow cells suppress acute T1D when transferred into acutely diabetic mice. Thus, the TLR4-Ab-induced CD11b+ cells, by the currently accepted definition, are MDSCs able to reverse T1D. To understand the TLR4-Ab mechanism, we compared TLR4-Ab with TLR4 agonist lipopolysaccharide (LPS), which cannot reverse T1D. TLR4-Ab remains sequestered at least 48 times longer than LPS within early endosomes, alters TLR4 signaling, and downregulates inflammatory genes and proteins, including nuclear factor-κB. TLR4-Ab in the endosome, therefore, induces a sustained, attenuated inflammatory response, providing an ideal "second signal" for the activation/maturation of MDSCs that can reverse acute T1D.
Collapse
Affiliation(s)
- Kathryn C.S. Locker
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center, and University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kritika Kachapati
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Yuehong Wu
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kyle J. Bednar
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - David Adams
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Caroline Patel
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Hiroki Tsukamoto
- Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka International University of Health and Welfare, Okawa, Fukuoka, Japan
| | - Luke S. Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA
| | - Bruce J. Aronow
- Division of Bioinformatics, Cincinnati Children’s Hospital, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Andrew B. Herr
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Infectious Diseases, Cincinnati Children’s Hospital, Cincinnati, OH
| | - William M. Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA
| |
Collapse
|
17
|
Frørup C, Mirza AH, Yarani R, Nielsen LB, Mathiesen ER, Damm P, Svare J, Engelbrekt C, Størling J, Johannesen J, Mortensen HB, Pociot F, Kaur S. Plasma Exosome-Enriched Extracellular Vesicles From Lactating Mothers With Type 1 Diabetes Contain Aberrant Levels of miRNAs During the Postpartum Period. Front Immunol 2021; 12:744509. [PMID: 34691048 PMCID: PMC8531745 DOI: 10.3389/fimmu.2021.744509] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes is an immune-driven disease, where the insulin-producing beta cells from the pancreatic islets of Langerhans becomes target of immune-mediated destruction. Several studies have highlighted the implication of circulating and exosomal microRNAs (miRNAs) in type 1 diabetes, underlining its biomarker value and novel therapeutic potential. Recently, we discovered that exosome-enriched extracellular vesicles carry altered levels of both known and novel miRNAs in breast milk from lactating mothers with type 1 diabetes. In this study, we aimed to characterize exosomal miRNAs in the circulation of lactating mothers with and without type 1 diabetes, hypothesizing that differences in type 1 diabetes risk in offspring from these groups are reflected in the circulating miRNA profile. We performed small RNA sequencing on exosome-enriched extracellular vesicles extracted from plasma of 52 lactating mothers around 5 weeks postpartum (26 with type 1 diabetes and 26 age-matched controls), and found a total of 2,289 miRNAs in vesicles from type 1 diabetes and control libraries. Of these, 176 were differentially expressed in plasma from mothers with type 1 diabetes (167 upregulated; 9 downregulated, using a cut-off of abs(log2FC) >1 and FDR adjusted p-value <0.05). Extracellular vesicles were verified by nanoparticle tracking analysis, transmission electron microscopy and immunoblotting. Five candidate miRNAs were selected based on their involvement in diabetes and immune modulation/beta-cell functions: hsa-miR-127-3p, hsa-miR-146a-5p, hsa-miR-26a-5p, hsa-miR-24-3p and hsa-miR-30d-5p. Real-time qPCR validation confirmed that hsa-miR-146a-5p, hsa-miR-26a-5p, hsa-miR-24-3p, and hsa-miR-30d-5p were significantly upregulated in lactating mothers with type 1 diabetes as compared to lactating healthy mothers. To determine possible target genes and affected pathways of the 5 miRNA candidates, computational network-based analyses were carried out with TargetScan, mirTarBase, QIAGEN Ingenuity Pathway Analysis and PantherDB database. The candidates showed significant association with inflammatory response and cytokine and chemokine mediated signaling pathways. With this study, we detect aberrant levels of miRNAs within plasma extracellular vesicles from lactating mothers with type 1 diabetes during the postpartum period, including miRNAs with associations to disease pathogenesis and inflammatory responses.
Collapse
Affiliation(s)
- Caroline Frørup
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aashiq H Mirza
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Department of Pharmacology, Weill Cornell Medical, New York, NY, United States
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Lotte B Nielsen
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Elisabeth R Mathiesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Peter Damm
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | - Jens Svare
- Department of Obstetrics, Herlev and Gentofte Hospital, Herlev, Denmark
| | | | - Joachim Størling
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Johannesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Henrik B Mortensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
18
|
Bódi N, Chandrakumar L, al Doghmi A, Mezei D, Szalai Z, Barta BP, Balázs J, Bagyánszki M. Intestinal Region-Specific and Layer-Dependent Induction of TNFα in Rats with Streptozotocin-Induced Diabetes and after Insulin Replacement. Cells 2021; 10:cells10092410. [PMID: 34572059 PMCID: PMC8466257 DOI: 10.3390/cells10092410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Tumour necrosis factor alpha (TNFα) is essential in neuroinflammatory modulation. Therefore, the goal of this study is to reveal the effects of chronic hyperglycaemia and insulin treatment on TNFα expression in different gut segments and intestinal wall layers. TNFα expression was mapped by fluorescent immunohistochemistry and quantitative immunogold electron microscopy in myenteric ganglia of duodenum, ileum and colon. Tissue TNFα levels were measured by enzyme-linked immunosorbent assays in muscle/myenteric plexus-containing (MUSCLE-MP) and mucosa/submucosa/submucous plexus-containing (MUC-SUBMUC-SP) homogenates. Increasing density of TNFα-labelling gold particles is observed in myenteric ganglia from proximal to distal segments and TNFα tissue levels are much more elevated in MUSCLE-MP homogenates than in MUC-SUBMUC-SP samples in healthy controls. In the diabetics, the number of TNFα gold labels is significantly increased in the duodenum, decreased in the colon and remained unchanged in the ileal ganglia, while insulin does not prevent these diabetes-related TNFα changes. TNFα tissue concentration is also increased in MUSCLE-MP homogenates of diabetic duodenum, while decreased in MUC-SUBMUC-SP samples of diabetic ileum and colon. These findings support that type 1 diabetes has region-specific and intestinal layer-dependent effects on TNFα expression, contributing to the regional damage of myenteric neurons and their intestinal milieu.
Collapse
|
19
|
Pagni PP, Chaplin J, Wijaranakula M, Wesley JD, Granger J, Cracraft J, O'Brien C, Perdue N, Kumar V, Li S, Ratliff SS, Roach A, Misquith A, Chan CL, Coppieters K, von Herrath M. Multicomponent Plasmid Protects Mice From Spontaneous Autoimmune Diabetes. Diabetes 2021; 71:db210327. [PMID: 34389610 PMCID: PMC8763876 DOI: 10.2337/db21-0327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/08/2021] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes is an autoimmune disease in which insulin-secreting β-cells are destroyed, leading to a life-long dependency on exogenous insulin. There are no approved disease-modifying therapies available, and future immunotherapies would need to avoid generalized immune suppression. We developed a novel plasmid expressing preproinsulin2 and a combination of immune-modulatory cytokines (transforming growth factor-beta-1, interleukin [IL] 10 and IL-2) capable of near-complete prevention of autoimmune diabetes in non-obese diabetic mice. Efficacy depended on preproinsulin2, suggesting antigen-specific tolerization, and on the cytokine combination encoded. Diabetes suppression was achieved following either intramuscular or subcutaneous injections. Intramuscular plasmid treatment promoted increased peripheral levels of endogenous IL-10 and modulated myeloid cell types without inducing global immunosuppression. To prepare for first-in-human studies, the plasmid was modified to allow for selection without the use of antibiotic resistance; this modification had no impact on efficacy. This pre-clinical study demonstrates that this multi-component, plasmid-based antigen-specific immunotherapy holds potential for inducing self-tolerance in persons at risk of developing type 1 diabetes. Importantly, the study also informs on relevant cytokine and immune cell biomarkers that may facilitate clinical trials. This therapy is currently being tested for safety and tolerability in a phase 1 trial (ClinicalTrials.gov Identifier: NCT04279613).
Collapse
Affiliation(s)
- Philippe P Pagni
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Jay Chaplin
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Michael Wijaranakula
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Johnna D Wesley
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Jaimie Granger
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Justen Cracraft
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Conor O'Brien
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Nikole Perdue
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Vijetha Kumar
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Shangjin Li
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | | | - Allie Roach
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Ayesha Misquith
- Discovery Biologics, Global Research Technologies, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Chung-Leung Chan
- Discovery Biologics, Global Research Technologies, Novo Nordisk Research Center Seattle, Inc., Seattle, WA, U.S.A
| | - Ken Coppieters
- Project and Alliance Management, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Matthias von Herrath
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark
| |
Collapse
|
20
|
Insights into the biology and therapeutic implications of TNF and regulatory T cells. Nat Rev Rheumatol 2021; 17:487-504. [PMID: 34226727 DOI: 10.1038/s41584-021-00639-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Treatments that block tumour necrosis factor (TNF) have major beneficial effects in several autoimmune and rheumatic diseases, including rheumatoid arthritis. However, some patients do not respond to TNF inhibitor treatment and rare occurrences of paradoxical disease exacerbation have been reported. These limitations on the clinical efficacy of TNF inhibitors can be explained by the differences between TNF receptor 1 (TNFR1) and TNFR2 signalling and by the diverse effects of TNF on multiple immune cells, including FOXP3+ regulatory T cells. This basic knowledge sheds light on the consequences of TNF inhibitor therapies on regulatory T cells in treated patients and on the limitations of such treatment in the control of diseases with an autoimmune component. Accordingly, the next generation of drugs targeting TNF is likely to be based on agents that selectively block the binding of TNF to TNFR1 and on TNFR2 agonists. These approaches could improve the treatment of rheumatic diseases in the future.
Collapse
|
21
|
You K, Gu H, Yuan Z, Xu X. Tumor Necrosis Factor Alpha Signaling and Organogenesis. Front Cell Dev Biol 2021; 9:727075. [PMID: 34395451 PMCID: PMC8361451 DOI: 10.3389/fcell.2021.727075] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α) plays important roles in processes such as immunomodulation, fever, inflammatory response, inhibition of tumor formation, and inhibition of viral replication. TNF-α and its receptors are ubiquitously expressed in developing organs and they regulate the survival, proliferation, and apoptosis of embryonic stem cells (ESCs) and progenitor cells. TNF-α is an important inflammatory factor that also regulates the inflammatory response during organogenesis, and its cytotoxic effects can interfere with normal developmental processes, even leading to the onset of diseases. This review summarizes the various roles of TNF-α in organogenesis in terms of its secreting pattern, concentration-dependent activities, and interactions with other signaling pathways. We also explored new potential functions of TNF-α.
Collapse
Affiliation(s)
- Kai You
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuewen Xu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Lin J, Lu Y, Wang B, Jiao P, Ma J. Analysis of immune cell components and immune-related gene expression profiles in peripheral blood of patients with type 1 diabetes mellitus. J Transl Med 2021; 19:319. [PMID: 34311758 PMCID: PMC8314644 DOI: 10.1186/s12967-021-02991-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease caused by severe loss of pancreatic β cells. Immune cells are key mediators of β cell destruction. This study attempted to investigate the role of immune cells and immune-related genes in the occurrence and development of T1DM. METHODS The raw gene expression profile of the samples from 12 T1DM patients and 10 normal controls was obtained from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified by Limma package in R. The least absolute shrinkage and selection operator (LASSO)-support vector machines (SVM) were used to screen the hub genes. CIBERSORT algorithm was used to identify the different immune cells in distribution between T1DM and normal samples. Correlation of the hub genes and immune cells was analyzed by Spearman, and gene-GO-BP and gene-pathway interaction networks were constructed by Cytoscape plug-in ClueGO. Receiver operating characteristic (ROC) curves were used to assess diagnostic value of genes in T1DM. RESULTS The 50 immune-related DEGs were obtained between the T1DM and normal samples. Then, the 50 immune-related DEGs were further screened to obtain the 5 hub genes. CIBERSORT analysis revealed that the distribution of plasma cells, resting mast cells, resting NK cells and neutrophils had significant difference between T1DM and normal samples. Natural cytotoxicity triggering receptor 3 (NCR3) was significantly related to the activated NK cells, M0 macrophages, monocytes, resting NK cells, and resting memory CD4+ T cells. Moreover, tumor necrosis factor (TNF) was significantly associated with naive B cell and naive CD4+ T cell. NCR3 [Area under curve (AUC) = 0.918] possessed a higher accuracy than TNF (AUC = 0.763) in diagnosis of T1DM. CONCLUSIONS The immune-related genes (NCR3 and TNF) and immune cells (NK cells) may play a vital regulatory role in the occurrence and development of T1DM, which possibly provide new ideas and potential targets for the immunotherapy of diabetes mellitus (DM).
Collapse
Affiliation(s)
- Jian Lin
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin, 130021, P.R. China
| | - Yuanhua Lu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin, 130021, P.R. China
| | - Bizhou Wang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Ping Jiao
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin, 130021, P.R. China.
| | - Jie Ma
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin, 130021, P.R. China.
| |
Collapse
|
23
|
Xhonneux LP, Knight O, Lernmark Å, Bonifacio E, Hagopian WA, Rewers MJ, She JX, Toppari J, Parikh H, Smith KGC, Ziegler AG, Akolkar B, Krischer JP, McKinney EF. Transcriptional networks in at-risk individuals identify signatures of type 1 diabetes progression. Sci Transl Med 2021; 13:eabd5666. [PMID: 33790023 PMCID: PMC8447843 DOI: 10.1126/scitranslmed.abd5666] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is a disease of insulin deficiency that results from autoimmune destruction of pancreatic islet β cells. The exact cause of T1D remains unknown, although asymptomatic islet autoimmunity lasting from weeks to years before diagnosis raises the possibility of intervention before the onset of clinical disease. The number, type, and titer of islet autoantibodies are associated with long-term disease risk but do not cause disease, and robust early predictors of individual progression to T1D onset remain elusive. The Environmental Determinants of Diabetes in the Young (TEDDY) consortium is a prospective cohort study aiming to determine genetic and environmental interactions causing T1D. Here, we analyzed longitudinal blood transcriptomes of 2013 samples from 400 individuals in the TEDDY study before both T1D and islet autoimmunity. We identified and interpreted age-associated gene expression changes in healthy infancy and age-independent changes tracking with progression to both T1D and islet autoimmunity, beginning before other evidence of islet autoimmunity was present. We combined multivariate longitudinal data in a Bayesian joint model to predict individual risk of T1D onset and validated the association of a natural killer cell signature with progression and the model's predictive performance on an additional 356 samples from 56 individuals in the independent Type 1 Diabetes Prediction and Prevention study. Together, our results indicate that T1D is characterized by early and longitudinal changes in gene expression, informing the immunopathology of disease progression and facilitating prediction of its course.
Collapse
Affiliation(s)
- Louis-Pascal Xhonneux
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Oliver Knight
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC Skåne University Hospital Malmo, Jan Waldenströms gata 35, Malmö, Sweden
| | - Ezio Bonifacio
- Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - William A Hagopian
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, USA
| | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, 1775 Aurora Ct, Aurora, CO 80045, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1462 Laney Walker Blvd., Augusta, GA 30912, USA
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turun Lyliopisto, Finland
| | - Hemang Parikh
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische, Universität München, Forschergruppe Diabetes e.V., Arcisstraße 21, 80333 München, Germany
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike Bethesda, MD 20892, USA
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Eoin F McKinney
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK.
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
- Cambridge Centre for Artificial Intelligence in Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Somani J, Ramchandran S, Lähdesmäki H. A personalised approach for identifying disease-relevant pathways in heterogeneous diseases. NPJ Syst Biol Appl 2020; 6:17. [PMID: 32518234 PMCID: PMC7283216 DOI: 10.1038/s41540-020-0130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/12/2020] [Indexed: 11/30/2022] Open
Abstract
Numerous time-course gene expression datasets have been generated for studying the biological dynamics that drive disease progression; and nearly as many methods have been proposed to analyse them. However, barely any method exists that can appropriately model time-course data while accounting for heterogeneity that entails many complex diseases. Most methods manage to fulfil either one of those qualities, but not both. The lack of appropriate methods hinders our capability of understanding the disease process and pursuing preventive treatments. We present a method that models time-course data in a personalised manner using Gaussian processes in order to identify differentially expressed genes (DEGs); and combines the DEG lists on a pathway-level using a permutation-based empirical hypothesis testing in order to overcome gene-level variability and inconsistencies prevalent to datasets from heterogenous diseases. Our method can be applied to study the time-course dynamics, as well as specific time-windows of heterogeneous diseases. We apply our personalised approach on three longitudinal type 1 diabetes (T1D) datasets, where the first two are used to determine perturbations taking place during early prognosis of the disease, as well as in time-windows before autoantibody positivity and T1D diagnosis; and the third is used to assess the generalisability of our method. By comparing to non-personalised methods, we demonstrate that our approach is biologically motivated and can reveal more insights into progression of heterogeneous diseases. With its robust capabilities of identifying disease-relevant pathways, our approach could be useful for predicting events in the progression of heterogeneous diseases and even for biomarker identification.
Collapse
Affiliation(s)
- Juhi Somani
- Department of Computer Science, Aalto University, 02150, Espoo, Finland
| | | | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, 02150, Espoo, Finland.
| |
Collapse
|
25
|
Lu J, Liu J, Li L, Lan Y, Liang Y. Cytokines in type 1 diabetes: mechanisms of action and immunotherapeutic targets. Clin Transl Immunology 2020; 9:e1122. [PMID: 32185024 PMCID: PMC7074462 DOI: 10.1002/cti2.1122] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/31/2020] [Accepted: 03/01/2020] [Indexed: 12/17/2022] Open
Abstract
Cytokines play crucial roles in orchestrating complex multicellular interactions between pancreatic β cells and immune cells in the development of type 1 diabetes (T1D) and are thus potential immunotherapeutic targets for this disorder. Cytokines that can induce regulatory functions-for example, IL-10, TGF-β and IL-33-are thought to restore immune tolerance and prevent β-cell damage. By contrast, cytokines such as IL-6, IL-17, IL-21 and TNF, which promote the differentiation and function of diabetogenic immune cells, are thought to lead to T1D onset and progression. However, targeting these dysregulated cytokine networks does not always result in consistent effects because anti-inflammatory or proinflammatory functions of cytokines, responsible for β-cell destruction, are context dependent. In this review, we summarise the current knowledge on the involvement of well-known cytokines in both the initiation and destruction phases of T1D and discuss advances in recently discovered roles of cytokines. Additionally, we emphasise the complexity and implications of cytokine modulation therapy and discuss the ways in which this strategy has been translated into clinical trials.
Collapse
Affiliation(s)
- Jingli Lu
- Department of Pharmacy The First Affiliated Hospital of Zhengzhou University Zhengzhou China.,Henan Key Laboratory of Precision Clinical Pharmacy Zhengzhou University Zhengzhou China
| | - Jiyun Liu
- Department of Pharmacy The First Affiliated Hospital of Zhengzhou University Zhengzhou China.,Henan Key Laboratory of Precision Clinical Pharmacy Zhengzhou University Zhengzhou China
| | - Lulu Li
- Department of Pharmacy Wuhan No.1 Hospital Wuhan China
| | - Yan Lan
- Department of Pharmacy Huangshi Center Hospital Huangshi China
| | - Yan Liang
- Department of Pharmacy The First Affiliated Hospital of Zhengzhou University Zhengzhou China.,Henan Key Laboratory of Precision Clinical Pharmacy Zhengzhou University Zhengzhou China
| |
Collapse
|
26
|
Muñoz Díaz HA, Lúquez Mindiola AJ, Gómez Aldana AJ. Fisiopatología de la hepatitis C y diabetes mellitus. Hacia la cura de dos epidemias en el siglo XXI. REVISTA COLOMBIANA DE GASTROENTEROLOGÍA 2019; 34:277-287. [DOI: 10.22516/25007440.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
La infección crónica por virus de la hepatitis C (VHC) y la diabetes mellitus (DM) son dos problemas de salud pública que impactan los sistemas de salud, con una alta carga económica global. La infección por VHC produce manifestaciones hepáticas tales como hepatitis, cirrosis y carcinoma hepatocelular; asimismo, se ha involucrado en la patogénesis de manifestaciones extrahepáticas, entre las cuales se ha asociado con alteraciones metabólicas como la DM. Estudios longitudinales y transversales han reportado mayor incidencia y prevalencia de DM en pacientes con infección crónica por VHC. La DM acelera la progresión histológica y clínica en pacientes con infección crónica por VHC y las complicaciones cardiovasculares. Recientemente se ha avanzado en el tratamiento y la introducción de nuevos medicamentos como los antivirales de acción directa, que mejoran el control glucémico en estos pacientes.
Collapse
|
27
|
The Association between Depression and Type 1 Diabetes Mellitus: Inflammatory Cytokines as Ferrymen in between? Mediators Inflamm 2019; 2019:2987901. [PMID: 31049023 PMCID: PMC6458932 DOI: 10.1155/2019/2987901] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
The depression incidence is much higher in patients with diabetes mellitus (DM), and the majority of these cases remain under-diagnosed. Type 1 diabetes mellitus (T1D) is now widely thought to be an organ-specific autoimmune disease. As a chronic autoimmune condition, T1D is characterized by T cell-mediated selective loss of insulin-producing β-cells. The age of onset of T1D is earlier than T2D, and T1D patients have an increased vulnerability to depression due to its diagnosis and treatment burden occurring in a period when the individuals are young. The literature has suggested that inflammatory cytokines play a wide role in both diseases. In this review, the mechanisms behind the initiation and propagation of the autoimmune response in T1D and depression are analyzed, and the contribution of cytokines to both conditions is discussed. This review outlines the immunological mechanism of T1D and depression, with a particular emphasis on the role of tumor necrosis factor-α (TNF-α), IL-1β, and interferon-γ (IFN-γ) cytokines and their signaling pathways. The purpose of this review is to highlight the possible pathways of the cytokines shared by these two diseases via deciphering their cytokine cascades. They may provide a basic groundwork for future study of the possible mechanism that links these two diseases and to develop new compounds that target the same pathway but can conquer two diseases.
Collapse
|
28
|
Scantlebery AML, Uil M, Butter LM, Poelman R, Claessen N, Girardin SE, Florquin S, Roelofs JJTH, Leemans JC. NLRX1 does not play a role in diabetes nor the development of diabetic nephropathy induced by multiple low doses of streptozotocin. PLoS One 2019; 14:e0214437. [PMID: 30908533 PMCID: PMC6433286 DOI: 10.1371/journal.pone.0214437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/13/2019] [Indexed: 01/28/2023] Open
Abstract
Diabetic nephropathy (DN) is a microvascular complication of diabetes mellitus that results in both tubular and glomerular injury. Low-grade inflammation and oxidative stress are two mechanisms known to drive the progression of DN. Nucleotide-binding leucine-rich repeat containing family member X1 (NLRX1) is an innate immune receptor, uniquely located in mitochondria, that has been found to regulate inflammatory responses and to dampen renal oxidative stress by regulating oxidative phosphorylation. For this reason, we investigated the role of NLRX1 in the development of DN in a Type 1 Diabetes mouse model. We analyzed the effect of NLRX1 deficiency on diabetes development and the accompanied renal damage, inflammation, and fibrosis. We found that multiple low doses of streptozotocin induced body weight loss, polydipsia, hyperglycemia, glycosuria, and a mild DN phenotype in wildtype and NLRX1-deficient mice, without significant differences between these mouse strains. Despite increased NLRX1 expression in diabetic wildtype mice, NLRX1 deficiency did not affect the diabetic phenotype induced by streptozotocin treatment, as reflected by similar levels of polyuria, microalbuminuria, and increased renal markers of oxidative stress and inflammation in wildtype and NLRX1-deficient mice. The present findings show that NLRX1 does not mediate the development of streptozotocin-induced diabetes and diabetic-induced nephropathy in mice after multiple low doses of streptozotocin. This data implies that, while NLRX1 can be triggered by cellular stress, its regulatory and functional effects may be dependent on the specific physiological conditions. In the case of DN, NLRX1 may be neither helpful nor harmful, but rather a marker of metabolic stress.
Collapse
Affiliation(s)
- Angelique M. L. Scantlebery
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| | - Melissa Uil
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| | - Loes M. Butter
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| | - Renée Poelman
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| | - Nike Claessen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| | - Stephen E. Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| | - Joris J. T. H. Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| | - Jaklien C. Leemans
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, North Holland, The Netherlands
| |
Collapse
|
29
|
Kim NS, Torrez T, Langridge W. LPS enhances CTB-INSULIN induction of IDO1 and IL-10 synthesis in human dendritic cells. Cell Immunol 2019; 338:32-42. [PMID: 30910218 DOI: 10.1016/j.cellimm.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 12/19/2022]
Abstract
Autoantigen-specific immunotherapy promises effective treatment for devastating tissue specific autoimmune diseases like multiple sclerosis (MS) and type 1 diabetes (T1D). Because activated dendritic cells (DCs) stimulate the differentiation of autoreactive T cells involved in the initiation of autoimmunity, blocking the activation of DCs may be an effective strategy for inhibiting tissue specific autoimmunity. Following this approach, immature DCs were shown to remain inactive after treatment with chimeric fusion proteins composed of the cholera toxin B subunit adjuvant linked to autoantigens like proinsulin (CTB-INS). Mass spectrometer analysis of human DCs treated with CTB-INS suggest that upregulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1) is responsible for inhibiting DC activation thereby resulting in a state of immunological tolerance within the DC. Here we show that the fusion protein CTB-INS inhibits human monocyte derived DC (moDC) activation through stimulation of IDO1 biosynthesis and that the resultant state of DC tolerance can be further enhanced by the presence of residual E. coli lipopolysaccharide (LPS) present in partially purified CTB-INS preparations. Additional experiments showed that LPS enhancement of DC tolerance was dependent upon stimulation of IDO1 biosynthesis. LPS stimulation of increased levels of IDO1 in the DC resulted in increased secretion of kynurenines, tryptophan degradation products known to suppress DC mediated pro-inflammatory T cell differentiation and to stimulate the proliferation of regulatory T cells (Tregs). Further, the presence of LPS in CTB-INS treated DCs stimulated the biosynthesis of costimulatory factors CD80 and CD86 but failed to upregulate maturation factor CD83, suggesting CTB-INS treated DCs may be maintained in a state of semi-activation. While treatment of moDCs with increasing amounts of LPS free CTB-INS was shown to increase DC secretion of the anti-inflammatory cytokine IL-10, the presence of residual LPS in partially purified CTB-INS preparations dramatically increased IL-10 secretion, suggesting that CTB-INS may enhance DC mediated immunological tolerance by stimulating the proliferation of anti-inflammatory T cells. While the extraction of LPS from bacterial generated CTB-INS may remove additional unknown factors that may contribute to the regulation of IDO1 levels, together, our experimental data suggest that LPS stimulates the ability of CTB-INS to induce IDO1 and IL-10 important factors required for establishment of a state of functional immunological tolerance in human DCs. Regulation of the ratio of LPS to CTB-INS may prove to be an effective method for optimization of readily available "off the shelf" CTB-INS mediated immune-therapy for tissue specific autoimmune diseases including type 1 diabetes.
Collapse
Affiliation(s)
- Nan-Sun Kim
- Division of Biochemistry, Center for Health Disparity and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, United States; National Institute of Horticultural & Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju 55365, Republic of Korea; Department of Molecular Biology, Chonbuk National University, Dukjindong 664-14, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Timothy Torrez
- Division of Biochemistry, Center for Health Disparity and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, United States
| | - William Langridge
- Division of Biochemistry, Center for Health Disparity and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, United States.
| |
Collapse
|
30
|
Abstract
The clinical onset of type 1 diabetes is characterized by the destruction of the insulin-producing β cells of the pancreas and is caused by autoantigen-induced inflammation (insulitis) of the islets of Langerhans. The current standard of care for type 1 diabetes mellitus patients allows for management of the disease with exogenous insulin, but patients eventually succumb to many chronic complications such as limb amputation, blindness, and kidney failure. New therapeutic approaches now on the horizon are looking beyond glycemic management and are evaluating new strategies from protecting and regenerating endogenous islets to treating the underlying autoimmunity through selective modulation of key immune cell populations. Currently, there are no effective treatments for the autoimmunity that causes the disease, and strategies that aim to delay or prevent the onset of the disease will play an important role in the future of diabetes research. In this review, we summarize many of the key efforts underway that utilize molecular approaches to selectively modulate this disease and look at new therapeutic paradigms that can transform clinical treatment.
Collapse
Affiliation(s)
- Daniel Sheehy
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Sean Quinnell
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Arturo J. Vegas
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
31
|
Nyaga DM, Vickers MH, Jefferies C, Perry JK, O'Sullivan JM. The genetic architecture of type 1 diabetes mellitus. Mol Cell Endocrinol 2018; 477:70-80. [PMID: 29913182 DOI: 10.1016/j.mce.2018.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/14/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes mellitus (T1D) is a complex autoimmune disorder characterised by loss of the insulin-producing pancreatic beta cells in genetically predisposed individuals, ultimately resulting in insulin deficiency and hyperglycaemia. T1D is most common among children and young adults, and the incidence is on the rise across the world. The aetiology of T1D is hypothesized to involve genetic and environmental factors that result in the T-cell mediated destruction of pancreatic beta cells. There is a strong genetic risk to T1D; with genome-wide association studies (GWAS) identifying over 60 susceptibility regions within the human genome which are marked by single nucleotide polymorphisms (SNPs). Here, we review what is currently known about the genetics of T1D. We argue that advancing our understanding of the aetiology and pathogenesis of T1D will require the integration of genome biology (omics-data) with GWAS data, thereby making it possible to elucidate the putative gene regulatory networks modulated by disease-associated SNPs. This approach has a potential to revolutionize clinical management of T1D in an era of precision medicine.
Collapse
Affiliation(s)
- Denis M Nyaga
- The Liggins Institute, The University of Auckland, New Zealand
| | - Mark H Vickers
- The Liggins Institute, The University of Auckland, New Zealand
| | - Craig Jefferies
- The Liggins Institute, The University of Auckland, New Zealand; Starship Children's Health, Auckland, New Zealand
| | - Jo K Perry
- The Liggins Institute, The University of Auckland, New Zealand
| | | |
Collapse
|
32
|
Qiao D, Liu L, Chen Y, Xue C, Gao Q, Mao HQ, Leong KW, Chen Y. Potency of a Scalable Nanoparticulate Subunit Vaccine. NANO LETTERS 2018; 18:3007-3016. [PMID: 29694053 DOI: 10.1021/acs.nanolett.8b00478] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticulate vaccines can potentiate immune responses by site-specific drainage to lymph nodes (LNs). This approach may benefit from a nanoparticle engineering method with fine control over size and codelivery of antigen and adjuvant. Here, we applied the flash nanocomplexation (FNC) method to prepare nanovaccines via polyelectrolyte complexation of chitosan and heparin to coencapsulate the VP1 protein antigen from enterovirus 71, which causes hand-foot-mouth disease (HFMD), with tumor necrosis factor α (TNF) or CpG as adjuvants. FNC allows for reduction of the nanovaccine size to range from 90 to 130 nm with relatively narrower size distribution and a high payload capacity. These nanovaccines reached both proximal and distal LNs via subcutaneous injection and subsequently exhibited prolonged retention in the LNs. The codelivery induced strong immune activation toward a Th1 response in addition to a potent Th2 response, and conferred effective protection against lethal virus challenge comparable to that of an approved inactivated viral vaccine in mouse models of both passive and active immunization setting. In addition, these nanovaccines also elicited strong IgA titers, which may offer unique advantages for mucosal protection. This study addresses the issues of size control, antigen bioactivity retention, and biomanufacturing to demonstrate the translational potential of a subunit nanovaccine design.
Collapse
Affiliation(s)
- Dongdong Qiao
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lixin Liu
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yi Chen
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
| | - Chenbao Xue
- Sinovac Biotech Co. Ltd , No. 39 Shangdi Xi Road , Beijing 100085 , China
| | - Qiang Gao
- Sinovac Biotech Co. Ltd , No. 39 Shangdi Xi Road , Beijing 100085 , China
| | - Hai-Quan Mao
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
- Department of Materials Science and Engineering, and Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Kam W Leong
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Yongming Chen
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
33
|
Kaminitz A, Ash S, Askenasy N. Neutralization Versus Reinforcement of Proinflammatory Cytokines to Arrest Autoimmunity in Type 1 Diabetes. Clin Rev Allergy Immunol 2018; 52:460-472. [PMID: 27677500 DOI: 10.1007/s12016-016-8587-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As physiological pathways of intercellular communication produced by all cells, cytokines are involved in the pathogenesis of inflammatory insulitis as well as pivotal mediators of immune homeostasis. Proinflammatory cytokines including interleukins, interferons, transforming growth factor-β, tumor necrosis factor-α, and nitric oxide promote destructive insulitis in type 1 diabetes through amplification of the autoimmune reaction, direct toxicity to β-cells, and sensitization of islets to apoptosis. The concept that neutralization of cytokines may be of therapeutic benefit has been tested in few clinical studies, which fell short of inducing sustained remission or achieving disease arrest. Therapeutic failure is explained by the redundant activities of individual cytokines and their combinations, which are rather dispensable in the process of destructive insulitis because other cytolytic pathways efficiently compensate their deficiency. Proinflammatory cytokines are less redundant in regulation of the inflammatory reaction, displaying protective effects through restriction of effector cell activity, reinforcement of suppressor cell function, and participation in islet recovery from injury. Our analysis suggests that the role of cytokines in immune homeostasis overrides their contribution to β-cell death and may be used as potent immunomodulatory agents for therapeutic purposes rather than neutralized.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Shifra Ash
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202.
| |
Collapse
|
34
|
Dendritic cell recruitment and activation in autoimmunity. J Autoimmun 2017; 85:126-140. [DOI: 10.1016/j.jaut.2017.07.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
|
35
|
Zhang M, Zhou Z, Wang J, Li S. ZnT8107-115/HLA-A2 dimers attenuate the severity of diabetes by inducing CD8+ T cell tolerance. Immunol Lett 2016; 180:66-72. [DOI: 10.1016/j.imlet.2016.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/15/2016] [Accepted: 11/06/2016] [Indexed: 12/16/2022]
|
36
|
Hudson LK, Dancho ME, Li J, Bruchfeld JB, Ragab AA, He MM, Bragg M, Lenaghan D, Quinn MD, Fritz JR, Tanzi MV, Silverman HA, Hanes WM, Levine YA, Pavlov VA, Olofsson PS, Roth J, Al-Abed Y, Andersson U, Tracey KJ, Chavan SS. Emetine Di-HCl Attenuates Type 1 Diabetes Mellitus in Mice. Mol Med 2016; 22:585-596. [PMID: 27341452 DOI: 10.2119/molmed.2016.00082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/26/2016] [Indexed: 01/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease characterized by beta cell destruction, insulin deficiency and hyperglycemia. Activated macrophages and autoimmune T cells play a crucial role in the pathogenesis of hyperglycemia in NOD murine diabetes models, but the molecular mechanisms of macrophage activation are unknown. We recently identified pigment epithelium-derived factor (PEDF) as an adipocyte-derived factor that activates macrophages and mediates insulin resistance. Reasoning that PEDF might participate as a proinflammatory mediator in murine diabetes, we measured PEDF levels in NOD mice. PEDF levels are significantly elevated in pancreas, in correlation with pancreatic TNF levels in NOD mice. To identify experimental therapeutics, we screened 2,327 compounds in two chemical libraries (the NIH Clinical Collection and Pharmakon-1600a) for leads that inhibit PEDF mediated TNF release in macrophage cultures. The lead molecule selected, "emetine" is a widely used emetic. It inhibited PEDF-mediated macrophage activation with an EC50 or 146 nM. Administration of emetine to NOD mice and to C57Bl6 mice subjected to streptozotocin significantly attenuated hyperglycemia, reduced TNF levels in pancreas, and attenuated insulitis. Together, these results suggest that targeting PEDF with emetine may attenuate TNF release and hyperglycemia in murine diabetes models. This suggests that further investigation of PEDF and emetine in the pathogenesis of human diabetes is warranted.
Collapse
Affiliation(s)
- LaQueta K Hudson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America.,Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America
| | - Meghan E Dancho
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jianhua Li
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Johanna B Bruchfeld
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ahmed A Ragab
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Mingzhu M He
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Meaghan Bragg
- Center for Comparative Physiology, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Delaney Lenaghan
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Michael D Quinn
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jason R Fritz
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Matthew V Tanzi
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Harold A Silverman
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - William M Hanes
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Yaakov A Levine
- Department of Advanced Research, SetPoint Medical Corporation, Valencia, California, United States of America
| | - Valentin A Pavlov
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Peder S Olofsson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jesse Roth
- Laboratory for Diabetes and Diabetes-Related Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ulf Andersson
- Deptartment of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kevin J Tracey
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America.,Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
37
|
Thayer TC, Wong FS. Tracking Immunological Responses of Islet Antigen-Specific T Cells in the Nonobese Diabetic (NOD) Mouse Model of Type 1 Diabetes. Methods Mol Biol 2016; 1433:127-34. [PMID: 26791361 DOI: 10.1007/7651_2015_293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Tracking autoreactive cells in vivo is important in the study of autoimmune diseases, such as type 1 diabetes. This method provides a model to study the responses of T cells responding to physiologically relevant and organ-specific antigen. Intracellular fluorescent tracers are useful tools to identify adoptively transferred T cells. Firstly, they provide a unique fluorescent signal to distinguish adoptively transferred from endogenous cells. Secondly, cytoplasmic dyes can be used to evaluate proliferation, as the fluorescent intensity is halved with each round of cell division. This provides an important readout to assess cell activation and function.
Collapse
Affiliation(s)
- Terri C Thayer
- Institute of Molecular and Experimental Medicine, Cardiff School of Medicine, Cardiff University, Tenovus Building, Heath Park, CF14 4XN, UK
| | - F Susan Wong
- Institute of Molecular and Experimental Medicine, Cardiff School of Medicine, Cardiff University, Tenovus Building, Heath Park, CF14 4XN, UK.
| |
Collapse
|
38
|
Mahmoud MH, Badr G, Badr BM, Kassem AU, Mohamed MS. Elevated IFN-alpha/beta levels in a streptozotocin-induced type I diabetic mouse model promote oxidative stress and mediate depletion of spleen-homing CD8+ T cells by apoptosis through impaired CCL21/CCR7 axis and IL-7/CD127 signaling. Cell Signal 2015; 27:2110-9. [PMID: 26192098 DOI: 10.1016/j.cellsig.2015.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/27/2015] [Accepted: 07/01/2015] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes mellitus (T1D) is associated with increased type 1 interferon (IFN) levels and subsequent severe defects in lymphocyte function, which increase susceptibility to infections. The blockade of type 1 IFN receptor 1 (IFNAR1) in non-obese diabetic mice has been shown to delay T1D onset and decrease T1D incidence by enhancing spleen CD4+ T cells and restoring B cell function. However, the effect of type 1 IFN blockade during T1D on splenic CD8+ T cells has not previously been studied. Therefore, we investigated, for the first time, the effect of IFNAR1 blockade on the survival and architecture of spleen-homing CD8+ T cells in a streptozotocin-induced T1D mouse model. Three groups of mice were examined: a non-diabetic control group; a diabetic group; and a diabetic group treated with an anti-IFNAR1 blocking antibody. We observed that T1D induction was accompanied by a marked destruction of β cells followed by a marked reduction in insulin levels and increased IFN-α and IFN-β levels in the diabetic group. The diabetic mice also exhibited many abnormal changes including an elevation in blood and spleen free radical (reactive oxygen species and nitric oxide) and pro-inflammatory cytokine (IL-6 and TNF-α) levels, a significant decrease in IL-7 levels, and subsequently, a significant decrease in the numbers of spleen-homing CD8+ T cells. This decrease in spleen-homing CD8+ T cells resulted from a marked reduction in the CCL21-mediated entry of CD8+ T cells into the spleen and from increased apoptosis due to a marked reduction in IL-7-mediated STAT5 and AKT phosphorylation. Interestingly, type 1 IFN signaling blockade in diabetic mice significantly restored the numbers of splenic CD8+ T cells by restoring free radical, pro-inflammatory cytokine and IL-7 levels. These effects subsequently rescued splenic CD8+ T cells from apoptosis through a mechanism that was dependent upon CCL21- and IL-7-mediated signaling. Our data suggest that type 1 IFN is an essential mediator of pathogenesis in T1D and that this role results from the negative effect of IFN signaling on the survival of splenic CD8+ T cells.
Collapse
Affiliation(s)
- Mohamed H Mahmoud
- Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia; Food Science and Nutrition Department, National Research Center, Dokki, Cairo, Egypt
| | - Gamal Badr
- Laboratory of Immunology & Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt. http://www.aun.edu.eg/
| | - Badr Mohamed Badr
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Cairo, Egypt
| | - Ahmad Usama Kassem
- Laboratory of Immunology & Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Mahmoud Shaaban Mohamed
- Laboratory of Immunology & Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| |
Collapse
|
39
|
Price JD, Tarbell KV. The Role of Dendritic Cell Subsets and Innate Immunity in the Pathogenesis of Type 1 Diabetes and Other Autoimmune Diseases. Front Immunol 2015; 6:288. [PMID: 26124756 PMCID: PMC4466467 DOI: 10.3389/fimmu.2015.00288] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are key antigen-presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, there are four main subsets identified in both mouse and human: conventional cDC1 and cDC2, plasmacytoid DCs, and monocyte-derived DCs. In this review, we will discuss the role of these subsets in autoimmune pathogenesis and regulation, as well as the genetic and environmental signals that influence their function. Specific topics to be addressed include impact of susceptibility loci on DC subsets, alterations in DC subset development, the role of infection- and host-derived innate inflammatory signals, and the role of the intestinal microbiota on DC phenotype. The effects of these various signals on disease progression and the relative effects of DC subset composition and maturation level of DCs will be examined. These areas will be explored using examples from several autoimmune diseases but will focus mainly on type 1 diabetes.
Collapse
Affiliation(s)
- Jeffrey D Price
- Diabetes, Endocrinology, and Obesity Branch, Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Kristin V Tarbell
- Diabetes, Endocrinology, and Obesity Branch, Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
40
|
Maruotti N, d’Onofrio F, Cantatore FP. Metabolic syndrome and chronic arthritis: effects of anti-TNF-α therapy. Clin Exp Med 2014; 15:433-8. [DOI: 10.1007/s10238-014-0323-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/20/2014] [Indexed: 12/18/2022]
|
41
|
Li M, Song LJ, Qin XY. Advances in the cellular immunological pathogenesis of type 1 diabetes. J Cell Mol Med 2014; 18:749-58. [PMID: 24629100 PMCID: PMC4119381 DOI: 10.1111/jcmm.12270] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/30/2014] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease caused by the immune-mediated destruction of insulin-producing pancreatic β cells. In recent years, the incidence of type 1 diabetes continues to increase. It is supposed that genetic, environmental and immune factors participate in the damage of pancreatic β cells. Both the immune regulation and the immune response are involved in the pathogenesis of type 1 diabetes, in which cellular immunity plays a significant role. For the infiltration of CD4(+) and CD8(+) T lymphocyte, B lymphocytes, natural killer cells, dendritic cells and other immune cells take part in the damage of pancreatic β cells, which ultimately lead to type 1 diabetes. This review outlines the cellular immunological mechanism of type 1 diabetes, with a particular emphasis to T lymphocyte and natural killer cells, and provides the effective immune therapy in T1D, which is approached at three stages. However, future studies will be directed at searching for an effective, safe and long-lasting strategy to enhance the regulation of a diabetogenic immune system with limited toxicity and without global immunosuppression.
Collapse
Affiliation(s)
- Min Li
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Lu-Jun Song
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Xin-Yu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
42
|
Li CR, Mueller EE, Bradley LM. Islet antigen-specific Th17 cells can induce TNF-α-dependent autoimmune diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:1425-32. [PMID: 24446517 PMCID: PMC3932136 DOI: 10.4049/jimmunol.1301742] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of pancreatic β-cells. Although Th1 cells are key orchestrators of T1D, the function(s) of the more recently identified Th17 subset are unclear due to inherent plasticity. In this study, we analyzed Th17 cells for stability and diabetogenicity in NOD mice. We found that like Th1 cells, Th17 are a distinct population throughout the prediabetic phase. At diabetes onset, there were marked increases in IL-17-producing Th17 cells and IFN-γ-producing Th1 cells in the pancreas as well as in the serum levels of these cytokines, indicating that these proinflammatory mediators serve as biomarkers of advanced autoimmunity. Although naturally occurring Th17 cells in diabetic mice did not contribute to diabetes development in transfer models, islet-specific Th17 cells were diabetogenic independently of IL-17 and displayed inflammation-induced Th17-to-Th1 reprogramming that could be elicited by Th1 cells. However, an inability to generate Th1 cells because of Stat4, Ifngr, and Ifng deficiencies did not prevent diabetes. Instead, TNF-α could mediate diabetes in response to either Th17 cells or Th1 cells. The results identify a previously unknown mechanism by which Th17 cells can contribute to T1D. Our studies also suggest that when developing interventions for T1D, it will be potentially advantageous to focus on mechanisms common to effector T cells rather than on the signature cytokines of various subsets.
Collapse
Affiliation(s)
- Cheng-Rui Li
- Infectious and Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Erin E Mueller
- Infectious and Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Linda M Bradley
- Infectious and Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
43
|
Castillo NE, Leffler DA. Celiac Disease as a Model Disorder for Testing Novel Autoimmune Therapeutics. THE VALUE OF BCG AND TNF IN AUTOIMMUNITY 2014:126-139. [DOI: 10.1016/b978-0-12-799964-7.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Morel PA. Dendritic cell subsets in type 1 diabetes: friend or foe? Front Immunol 2013; 4:415. [PMID: 24367363 PMCID: PMC3853773 DOI: 10.3389/fimmu.2013.00415] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune mediated destruction of the insulin-producing β cells in the islets of Langerhans. Dendritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective and pathogenic effects and a newly described merocytic DC population has been shown to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of DC therapy in T1D diabetes have been initiated. In this review we will critically examine the recent published literature on the role of DC subsets in the induction and regulation of the autoimmune response in T1D.
Collapse
Affiliation(s)
- Penelope A Morel
- Department of Immunology, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
45
|
Price JD, Beauchamp NM, Rahir G, Zhao Y, Rieger CC, Lau-Kilby AW, Tarbell KV. CD8+ dendritic cell-mediated tolerance of autoreactive CD4+ T cells is deficient in NOD mice and can be corrected by blocking CD40L. J Leukoc Biol 2013; 95:325-36. [PMID: 24082013 DOI: 10.1189/jlb.0113013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DCs are important mediators of peripheral tolerance for the prevention of autoimmunity. Chimeric αDEC-205 antibodies with attached antigens allow in vivo antigen-specific stimulation of T cells by CD8(+) DCs, resulting in tolerance in nonautoimmune mice. However, it is not clear whether DC-mediated tolerance induction occurs in the context of ongoing autoimmunity. We assessed the role of CD8(+) DCs in stimulation of autoreactive CD4(+) T cells in the NOD mouse model of type 1 diabetes. Targeting of antigen to CD8(+) DCs via αDEC-205 led to proliferation and expansion of β-cell specific BDC2.5 T cells. These T cells also produced IL-2 and IFN-γ and did not up-regulate FoxP3, consistent with an activated rather than tolerant phenotype. Similarly, endogenous BDC peptide-reactive T cells, identified with I-A(g7) tetramers, did not become tolerant after antigen delivery via αDEC-205: no deletion or Treg induction was observed. We observed that CD8(+) DCs from NOD mice expressed higher surface levels of CD40 than CD8(+) DCs from C57BL/6 mice. Blockade of CD40-CD40L interactions reduced the number of BDC2.5 T cells remaining in mice, 10 days after antigen targeting to CD8 DCs, and blocked IFN-γ production by BDC2.5 T cells. These data indicate that the ability of autoreactive CD4(+) T cells to undergo tolerance mediated by CD8(+) DCs is defective in NOD mice and that blocking CD40-CD40L interactions can restore tolerance induction.
Collapse
Affiliation(s)
- Jeffrey D Price
- 1.Diabetes, Endocrinology, and Obesity Branch, NIDDK, NIH, Bldg. 10, CRC, West Labs, 5-5940, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Dendritic cells (DCs) initiate and shape both the innate and adaptive immune responses. Accordingly, recent evidence from clinical studies and experimental models implicates DCs in the pathogenesis of most autoimmune diseases. However, fundamental questions remain unanswered concerning the actual roles of DCs in autoimmunity, both in general and, in particular, in specific diseases. In this Review, we discuss the proposed roles of DCs in immunological tolerance, the effect of the gain or loss of DCs on autoimmunity and DC-intrinsic molecular regulators that help to prevent the development of autoimmunity. We also review the emerging roles of DCs in several autoimmune diseases, including autoimmune myocarditis, multiple sclerosis, psoriasis, type 1 diabetes and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Dipyaman Ganguly
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | |
Collapse
|
47
|
Pharmaceutical perspectives for the delivery of TNF-α in cancer therapy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2012. [DOI: 10.1007/s40005-012-0044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Thomas HE, Graham KL, Chee J, Thomas R, Kay TW, Krishnamurthy B. Proinflammatory cytokines contribute to development and function of regulatory T cells in type 1 diabetes. Ann N Y Acad Sci 2012; 1283:81-6. [DOI: 10.1111/j.1749-6632.2012.06797.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Kate L. Graham
- Immunology and Diabetes Unit; St. Vincent's Institute; Fitzroy; Victoria; Australia
| | - Jonathan Chee
- Immunology and Diabetes Unit; St. Vincent's Institute; Fitzroy; Victoria; Australia
| | - Ranjeny Thomas
- Diamantina Institute for Cancer, Immunology, and Metabolic Medicine; University of Queensland, Princess Alexandra Hospital; Brisbane; Queensland; Australia
| | | | | |
Collapse
|
49
|
Anti-IL-7 receptor-α reverses established type 1 diabetes in nonobese diabetic mice by modulating effector T-cell function. Proc Natl Acad Sci U S A 2012; 109:12674-9. [PMID: 22733769 DOI: 10.1073/pnas.1203795109] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Genetic variation in the IL-7 receptor-α (IL-7R) gene is associated with susceptibility to human type 1 diabetes (T1D). Here we investigate the therapeutic efficacy and mechanism of IL-7Rα antibody in a mouse model of T1D. IL-7Rα antibody induces durable, complete remission in newly onset diabetic mice after only two to three injections. IL-7 increases, whereas IL-7Rα antibody therapy reduces, the IFN-γ-producing CD4(+) (T(H)1) and IFN-γ-producing CD8(+) T cells. Conversely, IL-7 decreases and IL-7Rα antibody enhances the inhibitory receptor Programmed Death 1 (PD-1) expression in the effector T cells. Programmed Death 1 blockade reversed the immune tolerance mediated by the IL-7Rα antibody therapy. Furthermore, IL-7Rα antibody therapy increases the frequency of regulatory T cells without affecting their suppressor activity. The durable efficacy and the multipronged tolerogenic mechanisms of IL-7Rα antibody therapy suggest a unique disease-modifying approach to T1D.
Collapse
|
50
|
Pancreatic islet expression of chemokine CCL2 suppresses autoimmune diabetes via tolerogenic CD11c+ CD11b+ dendritic cells. Proc Natl Acad Sci U S A 2012; 109:3457-62. [PMID: 22328150 DOI: 10.1073/pnas.1115308109] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Development of type 1 diabetes in the nonobese diabetic (NOD) mouse is preceded by an immune cell infiltrate in the pancreatic islets. The exact role of the attracted cells is still poorly understood. Chemokine CCL2/MCP-1 is known to attract CCR2(+) monocytes and dendritic cells (DCs). We have previously shown that transgenic expression of CCL2 in pancreatic islets via the rat insulin promoter induces nondestructive insulitis on a nonautoimmune background. We report here an unexpected reduction of diabetes development on the NOD background despite an increased islet cell infiltrate with markedly increased numbers of CD11c(+) CD11b(+) DCs. These DCs exhibited a hypoactive phenotype with low CD40, MHC II, CD80/CD86 expression, and reduced TNF-α but elevated IL-10 secretions. They failed to induce proliferation of diabetogenic CD4(+) T cells in vitro. Pancreatic lymph node CD4(+) T cells were down-regulated ex vivo and expressed the anergy marker Grail. By using an in vivo transfer system, we show that CD11c(+) CD11b(+) DCs from rat insulin promoter-CCL2 transgenic NOD mice were the most potent cells suppressing diabetes development. These findings support an unexpected beneficial role for CCL2 in type 1 diabetes with implications for current strategies interfering with the CCL2/CCR2 axis in humans, and for dendritic cell biology in autoimmunity.
Collapse
|